2019中考数学专题训练一元一次不等式组的特殊解(含解析)

合集下载

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。

2019中考数学专题练习-一元一次不等式的特殊解(含解析)

2019中考数学专题练习-一元一次不等式的特殊解(含解析)

2019中考数学专题练习-一元一次不等式的特殊解(含解析)一、单选题1.不等式4x<11的正整数解是()A. 1;2;3B. 0;1;2C. 1;2;﹣1D. 1;22.满足不等式3x﹣5>﹣1的最小整数是()A. ﹣1B. 1C. 2D. 33.若关于x的不等式2x﹣m≤0的正整数解只有4个,则m的取值范围是()A. 8<m<10B. 8≤m<10C. 8≤m≤10D. 4≤m<54.不等式3(x﹣1)≤5﹣x的非负整数解有()A. 1个B. 2个C. 3个D. 4个5.不等式3x+2≤17的正整数解的个数为()A. 2个B. 3个C. 4个D. 5个6.不等式4﹣3x≥2x﹣6的非负整数解有()A. 1个B. 2个C. 3个D. 4个7.满足不等式3x-5>-1的最小整数是()A. -1B. 1C. 2D. 38.使不等式x﹣4>4x﹣1成立的值中最大的整数是()A. 0B. ﹣2C. ﹣1D. 29.不等式<1的正整数解为()A. 1个B. 3个C. 4个D. 5个10.不等式3(x﹣1)≤5﹣x的非负整数解有()A. 1个B. 2个C. 3个D. 4个二、填空题11.若不等式x<a的正整数解有两个,那么a的取值范围是________12.不等式9﹣4x>0的非负整数解之和是________.13.满足﹣2x>﹣12的非负整数有________.14.使不等式x﹣5>4x﹣1成立的值中最大整数是 ________15.不等式3x﹣2>x﹣6的最小整数解是________.16.若关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围为________.17.使不等式3x﹣2≤5x+3成立的负整数解为________.18.满足不等式x﹣3≤5x+20的最小的整数是________.19.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程x﹣mx=5的解,则m2﹣2m+11的平方根是________.20.不等式3(x﹣1)≤5﹣x的非负整数解有________个.21.不等式7﹣x>1的正整数解为:________.三、计算题22.综合题。

2019中考数学专题练习-一元一次不等式组的特殊解(含解析)

2019中考数学专题练习-一元一次不等式组的特殊解(含解析)

2019中考数学专题练习-一元一次不等式组的特殊解(含解析)一、单选题1.如果不等式组恰有3个整数解,则a的取值范围是()A. a≤﹣1B. a<﹣1C. ﹣2≤a<﹣1D. ﹣2<a≤﹣12.不等式组的整数解的个数为()A. 3B. 4C. 5D. 63.不等式组,写出不等式组的整数解是()A. ﹣1,0,1B. 0,1,2C. ﹣2,﹣1,0D. 1,2,34.已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A. ﹣1<b≤3B. 2<b≤3C. 8≤b<9D. 3≤b<45.不等式组的正整数解的个数是()A. 1B. 2C. 3D. 46.不等式组的所有整数解的和是()A. 2B. 3C. 5D. 67.不等式组,写出不等式组的整数解是()A. ﹣1,0,1B. 0,1,2C. ﹣2,﹣1,0D. 1,2,38.不等式组的整数解有()个.A. 1B. 2C. 3D. 49.关于x的不等式组有四个整数解,则a的取值范围是()A. ﹣<a≤﹣B. ﹣≤a<﹣C. ﹣≤a≤﹣D. ﹣<a<﹣10.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A. ﹣6<a<﹣5B. ﹣6≤a<﹣5C. ﹣6<a≤﹣5D. ﹣6≤a≤﹣511.不等式组的整数解的个数是()A. 1B. 2C. 3D. 412.不等式组有3个整数解,则的取值范围是()A. B. C. D.13.已知不等式:①x>1,②x>4,③x<2,④2-x>-1,从这四个不等式中取两个,构成正整数解是2的不等式组是()A. ①与②B. ②与③C. ③与④D. ①与④14.已知不等式:①,②,③,④,从这四个不等式中取两个,构成正整数解是2的不等式组是()A. ①与②B. ②与③C. ③与④D. ①与④15.关于x的不等式组只有五个正整数解,则实数a的取值范围是()A. ﹣4<a<﹣3B. ﹣4≤a≤﹣3C. ﹣4≤a<﹣3D. ﹣4<a≤﹣316.不等式组的所有整数解的和是()A. 0B. 1C. 2D. 3二、填空题17.不等式组有2个整数解,则m的取值范围是________.18.不等式组的整数解分别是________.19.不等式组有3个整数解,则m的取值范围是________.20.不等式组的最大整数解是________.21.不等式组的最大整数解是________.22.不等式组的最小整数解是________.23.不等式组的整数解的和是________.24.不等式组的整数解为________.三、计算题25.求不等式的非负整数解。

2019年中考专题《不等式及一元一次不等式组》综合训练题含答案

2019年中考专题《不等式及一元一次不等式组》综合训练题含答案

2019年 初三数学中考专题复习: 不等式及一元一次不等式(组) 综合训练题1. 不等式3x +2>-1的解是( )A .x >-13B .x <-13 C .x >-1 D .x <-12.一元一次不等式2(x +1)≥4的解在数轴上表示为( )A B C D 3. 如图,数轴上所表示关于x 的不等式组的解是( )A .x ≥2B .x >2C .x >-1D .-1<x≤24.不等式组⎩⎪⎨⎪⎧x +1>2,x -1≤2的解是( )A .x <1B .x ≥3C .1≤x <3D .1<x≤35. 对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解是-52<x ≤26. 不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m >1 的解是x >1,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥0D .m ≤07. 如果关于x 的分式方程a x +1-3=1-xx +1有负分数解,且关于x 的不等式组⎩⎪⎨⎪⎧2(a -x )≥-x -4,3x +42<x +1的解为x<-2,那么符合条件的所有整数a 的积是( ) A .-3 B .0 C .3 D .98. 不等式3x +1<-2的解是_______________. 9.不等式3x +134>x3+2的解是_____________.10. 在实数范围内规定新运算“△”,其规则是a △b =2a -b.已知不等式x△k≥1的解在数轴上如图表示,则k 的值是____________.11. 若关于t 的不等式组⎩⎪⎨⎪⎧t -a≥0,2t +1≤4恰有3个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为 . 12. 不等式组⎩⎪⎨⎪⎧3x +10>0,163x -10<4x 的最小整数解是 .13. 已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n ,x +2y =5n (0<n <3).若y >1,则m 的取值范围是 .14. 解不等式: 3x -5≤2(x+2)15. 解不等式组:⎩⎪⎨⎪⎧5x -3<4x ,4(x -1)+3≥2x.16. 光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1) 求这个月晴天的天数.(2) 已知该家庭每月平均用电为150度,若按每月发电550度计,至少需要几年才能收回成本?(不计其他费用,结果取整数)参考答案:1---7 CAADB DD 8. x <-1 9. x >-3 10. -3 11. 0或1 12. -313. 25<m <2314. 解:3x -5≤2x+4,x ≤9.15. 解:⎩⎪⎨⎪⎧5x -3<4x , ①4(x -1)+3≥2x, ②由①,得x <3.由②,得x≥12.∴原不等式组的解为12≤x <3.16. 解:(1)设这个月晴天天数为x 天,由题意得30x +5(30-x)=550,解得x =16, ∴这个月的晴天天数是16天. (2)需要x 年才能收回成本,由题意得 (550-150)·(0.52+0.45)·12x≥40 000, 4 656x ≥40 000, x ≥8.6,∴至少需要9年才能收回成本.2019-2020学年数学中考模拟试卷一、选择题1.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图)则∠EAF 等于( )A .75°B .45°C .60°D .30°2.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( )A. B.C. D.3.抛物线y =x 2向下平移一个单位,向左平移两个单位,得到的抛物线关系式为( ) A .y =x 2+4x+3B .y =x 2+2x ﹣1C .y =x 2+2xD .y =x 2﹣4x+34.某鞋店对上一周某品牌女鞋的销量统计如下:该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是:( ) A .平均数B .中位数C .方差D .众数5.已知函数:①y=2x ;②()2y=-x<0x;③y=3-2x ;④()2y=2x +x x 0≥,其中,y 随x 增大而增大的函数有( ) A .1个B .2个C .3个D .4个6.将抛物线y =x 2﹣2x+3向上平移1个单位,平移后所得的抛物线的表达式为( ) A .y =x 2﹣2x+4B .y =x 2﹣2x+2C .y =x 2﹣3x+3D .y =x 2﹣x+37.如图,已知P 是Rt ΔABC 的斜边BC 上任意一点,若过点P 作直线PD 与直角边AB 或AC 相交于点D ,截得的小三角形与ΔABC 相似,那么点D 的位置最多有( )A.2处B.3处C.4处D.5处8.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE 中,DE的最小值是()A.10B.8C.6D.49.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣2;②若A(﹣1,h),B(2,k)在图象上,则h<k;③y随x的增大而减小;④若P(x,y)在图象上,则P'(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.③④C.②③D.②④10.如图是某几何体的三视图,则该几何体的表面积为()A.B.C.D.11.下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.角的平分线就是角的对称轴D.形状相同的两个三角形就是全等三角形12.“定西市乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是2S甲=17,2S乙=14.6,2S丙=19,如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择( )A.甲组B.乙组C.丙组D.采取抽签方式,随便选一个二、填空题13.如图,在平面直角坐标系xOy中,已知A,B(0,6),M(0,2),点Q在直线AB上,把BMQ 沿着直线MQ翻折,点B落在点P处,联结PQ,如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是____________14.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为_____.15.因式分解:_________.16.已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成下列形式:第1行 1第2行-2 3第3行-4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15… …按照上述规律排下去,那么第10行从左边数第5个数等于______._____.1718.某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为_____名.三、解答题19.如图,等边△ABC 中,P 是AB 上一点,过点P 作PD ⊥AC 于点D ,作PE ⊥BC 于点E ,M 是AB 的中点,连接ME ,MD . (1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明; (3)求证:MD =ME .20.有三面小旗,分别为红、黄、蓝三种颜色.(1)把三面小旗按不同顺序排列,共有多少种不同排法?用树状图表示,并把它们排列出来. (2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少? 21.先化简,再求值:22121()111x x x x x -+÷+--,其中x 满足方程x (x ﹣1)=2(x ﹣1). 22.如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =kx(x >0)的图象经过AO 的中点C ,交AB 于点D ,且AD =3. (1)设点A 的坐标为(4,4)则点C 的坐标为 ; (2)若点D 的坐标为(4,n). ①求反比例函数y =kx的表达式; ②求经过C ,D 两点的直线所对应的函数解析式;(3)在(2)的条件下,设点E 是线段CD 上的动点(不与点C ,D 重合),过点E 且平行y 轴的直线l 与反比例函数的图象交于点F ,求△OEF 面积的最大值.23.已知⊙O 的直径AB =8,弦AC 与弦BD 交于点E ,且OD ⊥AC ,垂足为F .(1)如图(1),若∠ABD=30°,求弦AC的长;(2)如图(2),若23EBDE=,求弦BD的长.24.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=2,求AC的长.25.如图,A是以BC为直径的⊙O上一点,过点B作⊙O的切线,与CA的延长线相交于点D,E是BD的中点,延长AE与CB的延长线相交于点F.(1)求证:AF是⊙O的切线;(2)若BE=5,BF=12,求CD的长.【参考答案】***一、选择题二、填空题13.(-或(0,2)-或4)14.72°15.(a―1)2 16.-501718.160 三、解答题19.(1)见解析;(2)AD+BE=12AB,理由见解析;(3)证明见解析.【解析】【分析】(1)根据题目要求,依据垂线和中点的概念作图即可得;(2)由△ABC是等边三角形知∠A=∠B=60°.结合PD⊥AC,PE⊥BC得∠APD=∠BPE=30°,据此知AD=12 AP,AD=12AP,再根据AD+BE=12(AP+BP)可得答案;(3)取BC中点F,连接MF.知MF=12AC,MF∥12AC.据此得∠MFB=∠ACB=∠A=∠MFE=60°.从而知AM=12AB,AB=AC,MF=MA.根据EF+BE=12BC得AD+BE=12AB.据此知EF=AD.即可证△MAD≌△MFE得出答案.【详解】(1)补全图形如图:(2)线段BE,AD 与AB 的数量关系是:AD+BE=12 AB,∵△ABC是等边三角形,∴∠A=∠B=60°.∵PD⊥AC,PE⊥BC,∴∠APD=∠BPE=30°,∴AD=12AP,AD=12AP.∴AD+BE=12(AP+BP)=12AB;(3)取BC中点F,连接MF.∴MF=12AC.MF∥12AC,∴∠MFB=∠ACB=60°,∴∠A=∠MFE=60°,∵AM=12AB,AB=AC,∴MF=MA,∵EF+BE=12 BC,∴AD+BE=12 AB,∴EF=AD,∴△MAD≌△MFE(SAS),∴MD=ME.【点睛】本题是三角形的综合问题,解题的关键是掌握等边三角形和直角三角形的性质、中位线定理及全等三角形的判定与性质等知识点.20.(1)共有6种不同排法:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红;(2)红色小旗排在最左端的概率是13.【解析】【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先由(1)中的树状图即可求得红色小旗排在最左端的情况,然后由概率公式求得答案.【详解】(1)画树状图得:则共有6种不同排法:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红;(2)∵由(1)中的树状图得:红色小旗排在最左端的有2种情况,∴红色小旗排在最左端的概率是:21 63 .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.x2+1,5【解析】【分析】找出原式括号中两项的最简公分母,通分并利用同分母分式的加法法则计算,除式的分母利用平方差公式分解因式,并利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,然后将已知的方程移项提取公因式x−1,左边化为积的形式,右边化为0,利用两数相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程,求出方程的解得到x的值,将满足题意x的值代入化简后的式子中计算,即可得到原式的值.【详解】解:原式=()()()()() 2121x1 11x xxx x-++-+-=x2﹣2x+1+2x=x2+1,方程x(x﹣1)=2(x﹣1),移项变形得:(x﹣1)(x﹣2)=0,解得:x=1或x=2,当x=1时,原式没有意义;则当x=2时,原式=22+1=5.【点睛】此题考查了分式的化简求值,以及利用因式分解法解一元二次方程,分式的加减运算关键是通分,通分的关键是找最简公分母,分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.22.(1)C(2,2);(2)①反比例函数解析式为y=4x;②直线CD的解析式为y=﹣12x+3;(3)m=3时,S△OEF 最大,最大值为14.【解析】【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【详解】(1)∵点C是OA的中点,A(4,4),O(0,0),∴C4040,22++⎛⎫⎪⎝⎭,∴C(2,2);故答案为(2,2);(2)①∵AD=3,D(4,n),∴A(4,n+3),∵点C是OA的中点,∴C(2,32n+),∵点C,D(4,n)在双曲线kyx=上,∴3224nkk n+⎧=⨯⎪⎨⎪=⎩,∴14 nk=⎧⎨=⎩,∴反比例函数解析式为4yx =;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴22 41a ba b+=⎧⎨+=⎩,∴123ab⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为y=﹣12x+3;(3)如图,由(2)知,直线CD的解析式为y=﹣12x+3,设点E(m,﹣12m+3),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线4yx=于F,∴F(m,4m),∴EF=﹣12m+3﹣4m,∴S△OEF=12(﹣12m+3﹣4m)×m=12(﹣12m2+3m﹣4)=﹣14(m﹣3)2+14,∵2<m<4,∴m=3时,S△OEF最大,最大值为1 4【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m 的函数关系式.23.(1)AC=(2)DB=.【解析】【分析】(1)利用圆周角定理求出∠DOA的度数,再求出∠CAO的度数,解直角三角形即可求出弦AC的长;(2)先证OD与BC平行,再证出线段OF,BC,DF之间的比,设未知数结合径的长度即可求出此三条线段的长度,再通过三次勾股定理即可求出BD的长.【详解】解:(1)如图1,连接BC,∵∠ABD=30°,∴∠AOD=60°∵OD⊥AC,垂足为F,∴∠AFO=90°,AF=FC,∴∠FAO=30°,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠FAO=30°,AB=8,⨯=AC=82(2)∵OD⊥AC,∠ACB=90°,∴∠AFO=∠ACB,∴OD∥BC,∴△BCE∽△DFE,∴BC BE2 DF DE3==,∵OF=12 BC,∴设OF=x,则BC=2x,DF=3x,∵OD=12AB=4,∴FO=1,FD=3,在Rt△AFO中,AF∴在Rt△AFD中,AD=∴在Rt△ABD中,DB=【点睛】本题考查了相似三角形的性质和判定,圆周角定理,垂径定理,三角形中位线,勾股定理等,能熟练运用圆的相关性质是解答本题的关键.24.(1)见解析.(2)【解析】【分析】(1)先证明四边形BCDE是平行四边形,再证明BE=DE,根据一组邻边相等的平行四边形为菱形即可判定四边形BCDE是菱形;(2)连接AC,根据平行线的性质及角平分线的定义证得∠BAC=∠DAC=∠BCA,即可得AB=BC=2,根据锐角三角函数的定义求得∠ADB=30°,所以∠DAC=30°,∠ADC=60°,在Rt△ACD中,即可求得AC=.【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=2,∵AD=2BC=4,∴sin∠ADB=12,∴∠ADB=30°,∵四边形BCDE是菱形.∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=4,∴AC=【点睛】本题考查了菱形的判定及解直角三角形的知识,熟练运用菱形的判定方法及解直角三角形是解决问题的关键.25.(1)见解析;(2)【解析】【分析】(1)利用直角三角形斜边中线的性质和等边对等角得到∠EAB=∠EBA,结合⊙O的切线得出OA⊥AF,从而得出AF是⊙O的切线;(2)先根据勾股定理求得EF的长,再根据切线的性质得出EB=EA=5,即可求得AF的长,然后根据切割线定理求得FC,进而得出BC的长,根据E是BD的中点,得出BD的长,最后根据勾股定理即可求得CD 的长.【详解】解:(1)连接AB,OA,∵BC是⊙O的直径,∴∠BAC=90°,∵DB是⊙O的切线,∴DB⊥BC,∴∠DBO=90°,在RT△ABD中,E是斜边BD的中线,∴AE=DE=BE,∴∠EAB=∠EBA,∵OA=OB,∴∠OAB=∠OBA,∴∠EAB+∠OAB=∠EBA+∠OBA∴∠EAO=∠DBO=90°,∴OA⊥AF,∴AF是⊙O的切线;(2)∵在RT△BEF中,BE=5,BF=12,∴EF=13,∵FA、DB是⊙O的切线,∴EA=EB=5,∴AF=EF+EA=13+5=18,∵AF2=FB•FC,∴FC=22182712AFAB==∴BC=FC﹣FB=27﹣12=15,∵E是BD的中点,∴BD=2BE=10,在RT△DBC中,CD==【点睛】本题考查了切线的判定和性质,直角三角形斜边中线的性质,等腰三角形的性质,勾股定理的应用等,正确的作出辅助线是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.下列调查中,适合普查的事件是( ) A .调查华为手机的使用寿命v B .调查市九年级学生的心理健康情况 C .调查你班学生打网络游戏的情况D .调查中央电视台《中国舆论场》的节目收视率2.下列图案中既是轴对称又是中心对称图形的是( )A. B. C . D .3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 4.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.5.某鞋店对上一周某品牌女鞋的销量统计如下:该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是:( ) A .平均数B .中位数C .方差D .众数6.在平面直角坐标系中,已知点()1,4A -,()2,1B ,直线AB 与x 轴和y 轴分别交于点M ,N ,若抛物线22y x bx =-+与直线AB 有两个不同的交点,其中一个交点在线段AN 上(包含A ,N 两个端点),另一个交点在线段BM 上(包含B ,M 两个端点),则b 的取值范围是A .512b ≤≤B .1b ≤或52b ≥C .51123b ≤≤ D .52b ≤或113b ≥ 7.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >8.如图,平面直角坐标系中,P 与x 轴分别交于A 、B 两点,点P 的坐标为()3,1-,AB =P 沿着与y 轴平行的方向平移多少距离时P 与x 轴相切 ( )A .1B .2C .3D .1或39.下列计算正确的是( ) A .3362a a a +=B .236()a a -=C .623a a a ÷=D .538a a a ⋅=10.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为( ) A .44×106B .4.4×107C .4.4×108D .0.44×10811.下面由7个完全相同的小正方体组成的几何体的左视图是( )A.B.C.D.12.若关于x的一元二次方程x2﹣x+a=0没有实数根,则a的取值范围是( )A.a>14B.a<14C.a≥14D.a=14二、填空题13.一元二次方程x2﹣4x+4=0的解是________.14.有一组数据如下:3、7、4、6、5,那么这组数据的方差是_____.15.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是.16.把3m3﹣6m2n+3mn2分解因式的结果是____.17.已知不等式组1xx a>⎧⎨<⎩无解,则a的取值范围是_____.18.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A型保温杯的优势是_____.三、解答题19.如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE 的长.20.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时,日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时,日销售利润w在1500元以上?(请直接写出x的范围)21.夏季多雨,在山坡CD处出现了滑坡,为了测量山体滑坡的坡面长度CD,探测队在距离坡底C点米处的E点用热气球进行数据监测,当热气球垂直升腾到B点时观察滑坡的终端C点,俯视角为60°,当热气球继续垂直升腾90米到达A点,此时探测到滑坡的始端D点,俯视角为45°,若滑坡的山体坡角∠DCH为30°,求山体滑坡的坡面长度CD的长.(计算保留根号)22.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.23.如图,点O在△ABC的BC边上,⊙O经过点A、C,且与BC相交于点 D.点E是下半圆弧的中点,连接AE交BC于点F,已知AB=BF.(1)求证:AB是⊙O的切线;(2)若OC=3,OF=1,求cosB的值.24.如图,一次函数y=﹣x+b与反比例函数y=kx(k≠0)的图象相交于A、B两点,其中A(﹣1,4),直线l⊥x轴于点E(﹣4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC.(1)求出b和k;(2)判定△ACD的形状,并说明理由;(3)在x轴上是否存在点P,使S△PBC=S△ABC?若存在,请求出P的坐标;若不存在,请说明理由.25)2﹣|﹣3+5|+(10【参考答案】***一、选择题二、填空题13.x1=x2=214.215.15°或75°.16.3m(m﹣n)2.17.a≤118.便携性三、解答题19.4【解析】【分析】根据角平分线定义和平行线的性质求出∠D=∠CBD,求出BC=CD=4;利用两个角对应相等证得△AEB∽△CED,得出比例AB AECD CE= , 代值,求出AE=2CE,即可得出答案【详解】∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴AB AE CD CE=,∴84=AECE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.【点睛】本题考查了相似三角形的性质和判定和等腰三角形的判定、平行线的性质等知识点,能求出AE=2CE和△ABE△CDE是解此题的关键;20.(1)y=﹣5x+600;(2)当销售单价x为100元时,日销售利润w最大,最大利润是2000元;(3)当销售单价x在90元和110元之间时,日销售利润w在1500元以上.【解析】【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意列不等式即可得到结论.【详解】解:(1)设y关于x的函数解析式为y=kx+b,8517595125k bk b+=⎧⎨+=⎩,得k5b600=-⎧⎨=⎩,即y关于x的函数解析式是y=﹣5x+600,(2)设成本价为a元/个当x=85时,875=175⨯(85-a),得a=80,根据题意得,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,答:当销售单价x为100元时,日销售利润w最大,最大利润是2000元;(3)根据题意得,﹣5(x﹣100)2+2000>1500,解得90<x<110,答:当销售单价x在90元和110元之间时,日销售利润w在1500元以上.【点睛】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.21.山体滑坡的坡面长度CD的长为(810)米.【解析】【分析】作DG⊥AE于G,DF⊥EH于F,设DF=a米,根据直角三角形的性质用a表示出CF、CD,根据正切的定义求出BE,根据题意列方程,解方程得到答案.【详解】解:作DG⊥AE于G,DF⊥EH于F,则四边形GEFD为矩形,∴GE=DF,GD=EF,设DF=a米,则GE=a,在Rt△DCF中,∠DCF=30°,∴CD=2DF=2a,CF,∴EF=EC+CF=,∵AM∥GD,∴∠ADG=∠MAD=45°,∴AG=DE=EF=,∵BN∥EF,∴∠BCE=∠NBC=60°,在Rt△BEC中,tan∠BCE=BE CE,BE=EC•tan60°=360,AG=AB+BE﹣GE=450﹣a,∴450﹣a=120,解得,a=﹣405,∴CD=2a=570810,答:山体滑坡的坡面长度CD的长为(810)米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.22.(1)a =150;(2)购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.;(3)n 2y 43z 147=⎧⎪=⎨⎪=⎩,n 11y 39z 106=⎧⎪=⎨⎪=⎩,203565n y z =⎧⎪=⎨⎪=⎩,293124n y z =⎧⎪=⎨⎪=⎩.【解析】【分析】(1)根据用600元购进的餐桌数量=用160元购进的餐椅数量列方程求解可得;(2)设购进的餐桌为x 张,则餐椅为520x +张,由餐桌和餐椅的总数量不超过200张求出x 的取值范围,再设利润为w 元,列出利润关于x 的函数解析式,利用一次函数性质求解可得;(3)设成套销售n 套,零售桌子y 张,零售椅子z 张,由题意得出140110207950()(4)200n y z n y n z ++=⎧⎨+++=⎩,由,,n y z 均为整数求解可得.【详解】解:(1)根据题意,得:600160110a a =- , 解得:150a =,经检验150a =符合实际且有意义;(2)设购进的餐桌为x 张,则餐椅为(5x+20)张,520200x x ++≤ , 解得:30x ≤,设利润为为w 元,则:115027070(5202)15040(520)22245600w x x x x x x x =⨯+⨯++---+=+ 当30x = 时,w 最大值7950=;(3)设成套销售n 套,零售桌子y 张,零售椅子z 张,由题意得:140110207950()(4)200n y z n y n z ++=⎧⎨+++=⎩, 化简得:141127955200n y z n y z ++=⎧⎨++=⎩, ∴49395n y += , 则3954844399n n y --==+, ∴n 2y 43z 147=⎧⎪=⎨⎪=⎩,n 11y 39z 106=⎧⎪=⎨⎪=⎩,203565n y z =⎧⎪=⎨⎪=⎩,293124n y z =⎧⎪=⎨⎪=⎩.【点睛】本题主要考查了分式方程和一元一次不等式的应用,理解题意,找到题目蕴含的等量关系与不等关系,并正确列出方程和不等式是解题关键.23.(1)证明见解析;(2)25【解析】【分析】(1)根据垂径定理求出∠EOF=90°,根据等腰三角形性质求出∠BAF=∠BFA ,∠E=∠OAE ,求出∠OAE+∠BAF=90°,根据切线的判定得出即可;(2)设AB=x ,则BF=x ,OB=x+1,根据勾股定理求出AB 的长,解直角三角形求出即可.【详解】(1)证明:连接OA 、OE ,∵点E 是下半圆弧的中点,OE 过O ,∴OE ⊥DC ,∴∠FOE =90°,∴∠E+∠OFE =90°,∵OA =OE ,AB =BF ,∴∠BAF =∠BFA ,∠E =∠OAE ,∵∠AFB =∠OFE ,∴∠OAE+∠BAF =90°,即OA ⊥AB ,∵OA 为半径,∴AB 是⊙O 的切线;(2)解:设AB =x ,则BF =x ,OB =x+1,∵OA =OC =3,由勾股定理得:OB 2=AB 2+OA 2,∴(1+x )2=32+x 2,解得:x =4,∴cosB =45AB OB =. 【点睛】本题考查了解直角三角形、勾股定理、切线的判定和性质等知识点,能综合运用性质进行推理和计算是解此题的关键.24.(1)b=3,k=-4;(2)△ACD 是等腰直角三角形,理由详见解析;(3)存在, P 1(15,0),P 2(-15,0).【解析】【分析】(1)把A (-1,4)代入y=k x和y=﹣x+b ,即可得答案;(2)过点A 作AF ⊥直线l 于点F ,可得点F 坐标为(-4,4),由直线l ⊥x 轴于点E(﹣4,0)可得C 、D 两点的横坐标为-4,代入反比例函数和一次函数解析式即可得C 、D 两点的坐标,即可求出CD 、AD 、AC 的距离,进而可判断三角形ACD 的形状;(3)过点B 作BH ⊥x 轴于H ,联立一次函数和反比例函数解析式,可得B 点坐标,即可求出AB 的长,进而可得△ABC 的面积,由B 、C 坐标可得B 、C 两点关于原点对称,则原点O 在线段BC 上,根据S △PBC =S △ABC =12⋅OP ⋅CE+12⋅OP ⋅BH 即可求出OP 的值,即可得点P 坐标. 【详解】 (1)∵一次函数y=﹣x+b 与反比例函数y=k x (k≠0)的图象都经过A(﹣1,4), ∴4=-(-1)+b ,4=1k -, ∴b=3,k=-4.(2)过点A 作AF ⊥直线l 于点F ,∴F (-4,4),∴AF=3,∵直线l ⊥x 轴于点E(﹣4,0),与反比例函数和一次函数的图象分别相交于点C 、D ,∴C 、D 两点的横坐标为-4,∵k=-4,b=3,∴一次函数和反比例函数的解析式分别为:y=-x+3,y=4x -, ∴-(-4)+3=7,44--=1, ∴C (-4,1),D (-4,7),∴CD=6,FC=3,FD=3,∴,∵AC 2+AD 222=36,CD 2=62=36,∴AC2+AD2=CD2,∴△ACD是直角三角形,∵AC=AD,∴△ACD是等腰直角三角形.(3)存在,过点B作BH⊥x轴于H,联立一次函数和反比例函数解析式得34y xyx=-+⎧⎪⎨=-⎪⎩,解得:14xy=-⎧⎨=⎩或41xy=⎧⎨=-⎩,∴B(4,-1),∴,∴S△ABC=12AB⋅AC=12=15,∵B(4,-1),C(1,-4),∴B、C两点关于原点对称,∴点O在线段BC上,∴S△PBC=S△ABC=12⋅OP⋅CE+12⋅OP⋅BH=15,∵CE=1,BH=1,∴OP=15,∴P1(15,0),P2(-15,0).【点睛】本题考查了用待定系数法求一次函数和反比例函数的解析式,三角形的面积,一次函数与反比例函数的交点问题等知识点的应用,用了数形结合思想.25.1【解析】【分析】原式第一项利用平方的定义,第二项根据绝对值的性质化简,第三项依据零指数幂法则运算即可. 【详解】原式=2﹣2+1=1.【点睛】此题考查了实数的混合运算,掌握运算法则和运算顺序是解答此题的关键.。

2019中考数学专题训练 一元一次不等式组的特殊解(含解析)

2019中考数学专题训练 一元一次不等式组的特殊解(含解析)

2019中考数学专题训练-一元一次不等式组的特殊解一、单选题1.不等式组的整数解共有()A. 1个B. 2个C. 3个D. 4个2.不等式组的整数解的个数是()A. 3B. 5C. 7D. 无数个3.若[m]表示不大于m的最大整数,例如:[5]=5,[﹣3,6]=﹣4,则关于x的方程[ ﹣5]=7的整数解有()A. 1个B. 2个2 2C. 3个D. 4个4.不等式组的整数解的和为()A. 1B. 0C. -1D. -25.满足不等式组的整数解为()A. ﹣2,﹣1,0B. ﹣1,0,1 C. ﹣1,0 D. ﹣2,﹣1,0,16.不等式组的整数解的个数是()A. 无数个B. 6C. 5D. 47.不等式组的所有整数解是()A. ﹣1、0B. ﹣2、﹣1 C. 0、1 D. ﹣2、﹣1、08.不等式组的正整数解的个数是()A. 1B. 2C. 3D. 49.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4 B. 3≤a<4 C. 4≤a<5 D. 4<a≤5二、填空题10.不等式10(x+4)+x≤84的非负整数解为________.11.不等式组的所有整数解的和为________.12.求不等式组的整数解是________ .13.已知关于x的不等式组仅有三个整数解,则a的取值范围是________14.不等式组有2个整数解,则m的取值范围是________.15.不等式组的整数解的和是________.16.已知关于x的不等式组有且只有1个整数解,a的取值范围是________.三、计算题17.先化简,再求值: ,其中是不等式组的整数解.18. 计算题(1)计算:()﹣1﹣(π+3)0﹣cos30°+ +| |(2)先化简,再求值:(+1)÷ ,其中x是满足不等式组的最小整数.19.先化简,再求值:(a+ )÷(1+ ).其中a是不等式组的整数解.20.计算:(1)(﹣)2+|﹣2|﹣(﹣2)0;(2)解不等式组,并写出它的所有非负整数解.四、解答题34 421.解不等式组,并写出该不等式组的最大整数解.22.解不等式组,并写出不等式的正整数解.23.求不等式组的整数解.五、综合题24.综合题。

2019年数学中考真题知识点汇编10 一元一次不等式(组)(含解析).docx

2019年数学中考真题知识点汇编10  一元一次不等式(组)(含解析).docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一、选择题6.(2019·德州)不等式组523(1)131722x xx x+>-⎧⎪⎨--⎪⎩≤的所有非负整数解的和是()A.10 B.7 C.6 D.0【答案】A【解析】本题考查了一元一次不等式不等式组的非负整数解,先求出不等式组的解集,再确定非负整数解,最后求和.解答过程如下:解不等式①,得x>-52;解不等式②,得x≤4;∴不等式组的解集为-52<x≤4.∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10.故选A.7.(2019·广元)不等式组3117212x xxx的非负整数解的个数是( )A.3B.4C.5D.6 【答案】B【解析】3117212x xxx解①得,x>-2,解②得,x≤3,∴原不等式组的解集为-2<x≤3,故符合条件的非负整数解有0,1,2,3,一共有四个,故选B.9.(2019·滨州)已知点P(a-3,2-a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解析】∵点P(a-3,2-a)关于原点对称的点在第四象限,∴点P(a-3,2-a)在第二象限,∴320 aa-<0,->解得32aa<,<,∴不等式组的解集是a<0,在数轴上表示如选项C所示.故选C.9.(2019·威海)解不等式组34221xx x-≥+-⎧⎪⎨⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是()【答案】D 【解析】分别求出各不等式的解集,得x <5.将两个不等式的解集表示在数轴上如下:6.(2019·山西)不等式组13224x x ->⎧⎨-<⎩的解集是( )A.x>4B.x>-1C.-1<x<4D.x<-1【答案】A【解析】解不等式①得x>4,解不等式②得x>-1,∴原不等式组的解集是x>4,故选A.9.(2019·衡阳)不等式组23,42x x x >⎧⎨+>⎩的整数解是( )A. 0B. -1C. -2D.1 【答案】B . 【解析】23,42x x x >⎧⎨+>⎩①②解不等式①,得x <0. 解不等式②,得x >-2.∴不等式组的解集是-2<x <0.∴不等式组23,42x x x >⎧⎨+>⎩的整数解是x =-1,故选B .6.(2019·常德)小明网购了一本《好玩的数学》 ,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说“至多12元.”丙说“至多10元.”小明说:“你们三个人都说错了.”则这本书的价格x (元)所在的范围为( )A .10<x <12B .12<x <15C .10<x <15D .11<x <14 【答案】B【解析】根据甲 “至少15元.”错误,可知x <15,乙 “至多12元.” 错误,可知x >12,丙 “至多10元.”错误,可知x >10,所以x 的取值范围为12<x <15,故选项B 正确.A.B.C.D.7.(2019·陇南)不等式2x +9≥3(x +2)的解集是( )A .x ≤3B .x ≤﹣3C .x ≥3D .x ≥﹣3 【答案】A【解析】∵2x+9≥3(x+2),∴2x+9≥3x+6,∴3≥x ,∴x ≤3,故选:A . 9.(2019·安徽) 已知三个实数a ,b ,c 满足a ﹣2b+c=0,a+2b+c ﹤0,则 A. b ﹥0,b 2﹣ac≤0 B. b ﹤0,b 2﹣ac≤0 C. b ﹥0,b 2﹣ac ≥0 D. b ﹤0,b 2﹣ac ≥0 【答案】D【解析】由a -2b +c =0,得:a +c =2b ,∴a +2b +c =2b +2b =4b <0,故b <0;b 2-ac =(2ca +)2-ac =44222ac c ac a -++=(2c a -)2≥0. 即b <0,b 2﹣ac ≥0,故选D .1. (2019·聊城) 若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为 ( )A.m ≤2B.m<2C.m ≥2D.m>2 【答案】A【解析】解不等式①,得x>8,,由不等式②,知x<4m,当4m ≤8时,原不等式无解,∴m ≤2,故选A.2. (2019·泰安) 不等式组542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩的解集是 ( )A.x ≤2B.x ≥-2C.-2<x ≤2D.-2≤x<2 【答案】D【解析】解不等式①,得x ≥-2,解不等式①,得x<2,∴原不等式的解集为:-2≤x<2,故选D.3. (2019·乐山) 不等式组⎪⎩⎪⎨⎧≥--+<-04152362x x x x 的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【解析】本题考查了一元一次不等式组的解法与解集的表示,由第1个不等式解得x>-6,由第2个不等式解得x ≤13,故选B4. (2019·凉山) 不等式1–x ≥x -1的解集是( ) A.x ≥1 B.x ≥-1 C .x ≤1 D .x ≤-1【答案】C5. (2019·宁波)不等式32xx ->的解为( ) A.x<1 B.x<-1C.x>1D.x>-1 【答案】A【解析】不等式两边同乘2,得3-x>2x,移项,合并,得3>3x,∴x<1,故选A.6.(2019·重庆B 卷)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为( )A.13B.14C.15D.16 【答案】C【解析】设小华答对的题的个数为x 题,则答错或不答的习题为(20-x )题,可列不等式10x -5(20-5x )≥120,解得x≥3214,即他至少要答对的题的个数为15题. 故选C.7. (2019·重庆B 卷)若数a 使关于x 的不等式组()()⎪⎩⎪⎨⎧->≤x 15a 2-x 67-x 412-3x有且仅有三个整数解,且使关于y 的分式方程31121-=----yay y 的解为正数,则所有满足条件的整数a 的值之和是 A .-3 B .-2 C .-1 D .1 【答案】A【解析】根据解一元一次不等式组的基本步骤解()()⎪⎩⎪⎨⎧->≤②15a 2-x 6①7-x 412-3xx 可得. 解不等式①,得:x ≤3, 解不等式②,得:x >11a25+,因为有且仅有3个整数解,所以三个整数解分别为:3,2,1.所以11a 25+的大致范围为111a250<+<; 特别的,当11a 25+=0的时候,不等式组的整数解仍是3,2,1,所以11a25+=0也成立,所以111a250<+≤.,化简为35.2<≤-a , 求分式方程321-=--ay 的解,得 a y -=2.根据分式方程的解为正数和分式方程的分母不能为零,得⎩⎨⎧≠>10y y ,即:⎩⎨⎧≠->-1202a a .解得:a <2且a ≠1.∴25.2<≤-a 且a ≠1,所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3.故选A .二、填空题12.(2019·温州)不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .【答案】1<x ≤9【解析】先确定不等式组中每个不等式的解集,然后利用口诀寻找两个不等式解集的公共部分. 解不等式x+2>3,得x >1;解不等式12x -≤4,得x ≤9.根据“大小小大中间找”确定不等式组的解集是1<x ≤9,故填:1<x ≤9.12.(2019·绍兴 )不等式423≥-x 的解为 . 【答案】x≥2【解析】移项得3x≥6,解得x≥2.16.(2019·烟台)如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c+的解为 .【答案】1x ≤-【解析】因为直线2y x =+与直线y ax c =+相交于点(,3)P m ,所以32m =+,解得1m =,由图象可以直接得出关于x 的不等式2x +≤ax c +的解为1x ≤-. 10.(2019·泰州)不等式组13x x <⎧⎨<-⎩的解集为______.【答案】x<-3【解析】根据"同大取大,同小取小"的原则,可以得到,原不等式的解集为x<-3.13.(2019·益阳)不等式组⎩⎨⎧--301><x x 的解集为 .【答案】x <-3 【解析⎩⎨⎧--②>①<301x x ,解①得x <1;解②得x <-3.∴原不等式组的解集为x <-3. 10.(2019·常德)不等式3x +1>2(x +4)的解为 . 【答案】x >7【解析】去括号3x +1>2x +8,移项得3x -2x >8-1,整理得x >7. 15.(2019·长沙)不等式组10360x x +≥⎧⎨-<⎩的解集是 .【答案】-1≤x <2【解析】先确定不等式组中每个不等式的解集,然后利用口诀寻找两个不等式解集的公共部分. 解不等式x+1≥0,得x ≥-1;解不等式3x-6<0,得x <2.根据“大小小大中间找”确定不等式组的解集是-1≤x <2,故填:-1≤x <2. 14.(2019·株洲)若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 . 【答案】a<1【解析】根据不等式的性质,将2-a>1,变形为-a>-1,不等式两边都除以-1,得a<1。

专题10 一元一次不等式(组)(归纳与讲解)(解析版)

专题10 一元一次不等式(组)(归纳与讲解)(解析版)

专题10 一元一次不等式(组) 【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)【注意】1. 不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。

2)不等式的解集是指满足这个不等式的未知数的所有的值。

3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。

2. 用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。

2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤: (1)审题; (2)设未知数;(3)找出能够包含未知数的不等量关系; (4)列出不等式(组); (5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值; (7)写出答案(包括单位名称).【技巧归纳】技巧1:一元一次不等式组的解法技巧 【类型】一、解普通型的一元一次不等式组1.不等式组⎩⎪⎨⎪⎧-2x <6,x -2≤0的解集,在数轴上表示正确的是( )2.解不等式组,并把解集表示在数轴上.⎩⎪⎨⎪⎧2x +5≤3(x +2),①1-2x 3+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是( )A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________. 5.用两种不同的方法解不等式组-1<2x -13≤5.【类型】三、“绝对值”型不等式转化为不等式组求解. 6.解不等式⎪⎪⎪⎪3x -12≤4.【类型】四、“分式”型不等式转化为不等式组求解 7.解不等式3x -62x +1<0.参考答案 1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1:原不等式组可化为下面的不等式组⎩⎨⎧-1<2x -13,①2x -13≤5.②解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由⎪⎪⎪⎪3x -12≤4,得-4≤3x -12≤4.则原不等式可转化为⎩⎨⎧3x -12≥-4,①3x -12≤4.②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:解题时要先将不等式转化为不等式组再进行求解. 7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:(Ⅰ)⎩⎪⎨⎪⎧3x -6>0,2x +1<0或(Ⅱ)⎩⎪⎨⎪⎧3x -6<0,2x +1>0.解(Ⅰ)的不等式组得⎩⎪⎨⎪⎧x >2,x <-12.∴此不等式组无解. 解(Ⅱ)的不等式组得⎩⎪⎨⎪⎧x <2,x >-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用 【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2; (2)4x -13-x >1; (3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x5.解:去分母,得5(4-3x)-1<3(7+5x). ① 去括号,得20-15x -1<21+15x. ② 移项,合并同类项,得-30x <2. ③ 系数化为1,得x >-115. ④【类型】二、解含字母系数的一元一次不等式 3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5.二元一次方程组⎩⎪⎨⎪⎧2x +3y =10,4x -3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来. 【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围. 8.关于x 的两个不等式①3x +a2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围. 参考答案1.解:(1)x >13x -2,23x > -2, x > -3.这个不等式的解集在数轴上的表示如图所示.(2)4x -13-x >1,4x -1-3x > 3,x > 4.这个不等式的解集在数轴上的表示如图所示.(3)x +13≥2(x +1),x +1≥ 6x +6, -5x ≥ 5, x ≤ -1.这个不等式的解集在数轴上的表示如图所示.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x). 去括号,得20-15x -15<21+15x. 移项,合并同类项,得-30x <16. 系数化为1,得x >-815.3.解:移项,合并同类项得,(a -1)x >2,当a -1>0,即a >1时,x >2a -1; 当a -1=0,即a =1时,x 无解; 当a -1<0,即a <1时,x <2a -1. 4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:解方程组⎩⎪⎨⎪⎧ 2x +3y =10,4x -3y =2,得⎩⎪⎨⎪⎧x =2,y =2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13, 去括号,得9-3x +1<13, 移项,合并同类项,得-3x <3, 系数化为1,得x >-1. 在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用 【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是( )A .m >-2B .m <2C .m <-2D .m >22.已知方程组⎩⎪⎨⎪⎧x +y =-7-a ,x -y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围. 【类型】二、与不等式(组)的解集的综合问题 题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6.已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87.如果不等式组⎩⎪⎨⎪⎧2x -a ≥0,3x -b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,则a 的取值范围是__________.9.若不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7 ②有解,求实数a 的取值范围.参考答案 1.B2.解:(1)解方程组得⎩⎪⎨⎪⎧x =-3+a ,y =-4-2a.∵x 为非正数,y 为负数,∴⎩⎪⎨⎪⎧-3+a ≤0,-4-2a <0,解得-2<a ≤3. (2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b ,得⎩⎪⎨⎪⎧a +b =-3,-3a +b =13,解得⎩⎪⎨⎪⎧a =-4,b =1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y4<2,解得-7<y <5.4.a <25.解:⎩⎪⎨⎪⎧2x -a <1.①,x -2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9. 6.A7.解:解不等式组得a 2≤x <b3.∵不等式组仅有整数解1,2,3, ∴0<a 2≤1,3<b3≤4.解得0<a ≤2,9<b ≤12. ∵a ,b 为整数,∴a =1,2,b =10,11,12. 8.a ≤19.解:⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②,解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<x <a -1,则a -1>-6,a >-5. 【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2 -3 【详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式① 得: x>1+a ,解不等式①得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为: -2, -3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m的取值范围是().A.m>3B.m≥3C.m≤3D.m<3【答案】C【解析】详解:841x xx m+<-⎧⎨>⎩①②,解①得,x>3;解①得,x>m,①不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m①3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13 B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 100 5 120x x -+>, 15 220x >,解得:443x >, 根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题. 故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是( ). A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+ D .am an -<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、①m >n ,①-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意; B 、①m >n ,①m +1>n +1,则1144m n ++>,故该选项成立,符合题意; C 、①m >n ,①m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、①m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意; 故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件, 根据题意,得:100x +80(10﹣x )≤900, 故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是( )A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集. 【详解】由30x +>得:3x >- 由50x -≤得:5x ≤ ①35x -<≤ 故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键. 4.不等式3﹣x <2x +6的解集是( )A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可. 【详解】解:326x x -<+, 移项得362x x -<+, 合并同类项得33x -<, 系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键. 5.在数轴上表示不等式1x >-的解集正确的是( ) A . B .C .D .【答案】A【分析】根据不等式解集的表示方法依次判断. 【详解】解:在数轴上表示不等式x >−1的解集的是A . 故选:A .【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A ,B 两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A 种西瓜__________kg .【答案】120【分析】设批发A 种西瓜x kg ,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A 种西瓜x kg ,则 (6-4)x +120043x-×(4-3)≥1200×40%, 解得x ≥120.答:该超市至少批发A 种西瓜120kg . 故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解. 7.不等式2103x --<的解集为____. 【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解. 【详解】解:去分母,得:230x --<, 移项,得:23x <+, 合并同类项,得:5x <. ①不等式的解集为:5x <. 故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意①不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【分析】先求出每个一元一次不等式的解集,再求两个解集的公共部分,即是不等式组的解集. 【详解】解:解不等式36x x -≤,得:3x ≥, 解不等式312(1)x x +>-,得:3x >-, ①3x ≥与3x >-的公共部分为3x ≥, ①不等式组的解集是:3x ≥. 在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)一、单选题1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示; ①将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴①; ①平移数轴①使点A 位于点B 的正下方,如图2所示;①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧. 则整数k 的最小值为( )A .511B .510C .509D .500【答案】A【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解. 【详解】解:依题意,4AC =,2042AB =①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧, ∴k ⋅AC AB >,即42042k >, 解得15102k >,k 为正整数,①k 的最小值为511, 故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -, 移项,得:3+2<1x x -, 合并同类项,得:<1x -, 系数化为1,得>1x -, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b+=.则下列结论正确的是( )A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c =【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b+=,得出c b <;B.根据112a cb +=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b+=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断. 【详解】A.①0a b >>, ①11a b <, ①112a c b+=,①11c b>, ①c b <,故A 错误;B.①112a cb +=,即2a c ac b+=, ①()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,①a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误. 故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5 B .﹣3C .0D .2【答案】D【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8, 解不等式①得:y ≤a ,①原不等式组的解集为:﹣8<y ≤a , ①不等式组至少有3个整数解, ①a ≥﹣5, 1133x ax x++=--, 去分母得①1﹣x ﹣a =x ﹣3,解得:x 42a-=, ①分式方程有非负整数解, ①x ≥0(x 为整数)且x ≠3, ①42a-为非负整数,且42a -≠3, ①a ≤4且a ≠﹣2,①符合条件的所有整数a 的值为:﹣4,0,2,4, ①符合条件的所有整数a 的和是:2, 故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是( ) A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c =-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数, 则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩, 解得37711c ≤≤, ①3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c =﹣2+3c,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____. 【答案】254m >-## 6.25m >-##164m >- 【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得. 【详解】解:根据题意得254()0m =-->Δ, 解得,254m >-, 故答案为:254m >-. 【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算. 7.若关于x 的分式方程232x mx -=-的解是非负数,则m 的取值范围是________. 【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解. 【详解】解:关于x 的分式方程232x mx -=-的解为:x =6−m , ①分式方程有可能产生增根2, ①6−m ≠2, ①m ≠4,①关于x 的分式方程232x mx -=-的解是非负数, ①6−m ≥0, 解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4. 故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元. ①求w 与a 的函数关系式(不要求写出a 的取值范围);①若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+①购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1)根据总数,设立未知数,建立分式方程,即可求解.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式. ①根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解. (1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元. 依题意得100100510x x =++. 解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元; (2)解:①“神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.①购进“神舟”模型的数量不超过“天宫”模型数量的13. ()12003a a ∴≤-. 解得:50a ≤.51000w a =+.50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩ 【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解. 【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②, 解不等式①,得 1x ≥-,解不等式①,得 >7x -,①该不等式组的解集为 1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。

2019中考数学专题训练 一元一次不等式组的实际应用(含解析)

2019中考数学专题训练 一元一次不等式组的实际应用(含解析)

-一元一次不等式组的实际应用一、单选题1.六一儿童节到了要把一些苹果分给几个小朋友,如果每人分3个,则剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则共有多少个小朋友()A. 4B. 5C. 6D. 72.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A. 6人 B.5人 C.6人或5人 D.4人3.若不等式组的解集是x<2,则a的取值范围是( )A. a<2B. a≤2C. a≥2D. 无法确定4.如图是测量一颗玻璃球体积的过程:(1)将300ml的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20cm3以上,30cm3以下 B. 3 0cm3以上,40cm3以下C. 40cm3以上,50cm3以下 D. 5 0cm3以上,60cm3以下5.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值()A. 5B. 6C. 7D. 86.现有43本书,计划分给各学习小组,若每组8本有剩余,每组9本却不足,则学习小组共有()A. 4个B. 5个C. 6个D. 7个7.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A. 20cm3以上,30cm3以223下 B. 30cm 3以上,40cm 3以下 C. 40cm 3以上,50cm 3以下 D. 50cm 3以上,60cm 3以下8.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( ) A. 3种 B. 4种 C. 5种 D. 6种9.已知关于x 的不等式组恰有3个整数解,则a 的取值范围是( )A.B.C.D.10.某种商品的价格第一年上升了10%.第二年下降了(m -5)%(m >5)后.仍不低于原价.则m 的值应为( ) A. 5<m≤B. 5≤m≤C. 5<m<D. 5≤m<11.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( ) A. 29人 B. 30人 C. 31人 D.4 4 32人12.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A. 7x+9≤8+9(x﹣1)B. 7x+9≥9(x﹣1)C.D.二、填空题13.把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为________.14.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是________ .(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值时0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.15.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________16.两根木棒长分别为5和7,要选择第三根木棒将其钉成三角形,•若第三根木棒的长选取偶数时,有________种选取情况.17.不等式组的解集为x<6m+3,则m的取值范围是________.18.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友能分到不足5个苹果.这一箱苹果的个数是________,小朋友的人数是________19.若不等式组有解,则a的取值范围是________20.一个三角形的三边长分别为xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则x的取值范围是________21.某公司从超市购买了墨水笔和圆珠笔共15盒,所付金额超过570元,但不到580元.已知墨水笔的单价为每盒34.90元,圆珠笔的单价为每盒44.90元.设购买圆珠笔x盒,可列不等式组为________22.幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友能分到玩具,但不足4件,共有小朋友________人,这批玩具共有________ 件.三、解答题23.小明攒了60张10元和50元的纸币,这些纸币的总值不到2 000元,请问他最少拥有多少张10元纸币?24.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,求一共购买了多少支签字笔?25.某学校组织学生到外郊游,学生行进速度为每小时3千米,8点出发,10点时学校开始送中餐,如果送中餐的师傅在11:30与12:00之间赶上一直在行进的学生队伍,问送中餐的师傅的速度是多少千米/时?四、综合题26.为了抓住市文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A,B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?27.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是________.(2)如果[ ]=3,求满足条件的所有正整数x.56 6 答案解析部分一、单选题1.六一儿童节到了要把一些苹果分给几个小朋友,如果每人分3个,则剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则共有多少个小朋友()A. 4B. 5C. 6D. 7【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:设共有x个小朋友,则苹果有(3x+8)个,由题意得:0≤(3x+8)﹣5(x﹣1)<3,解得:5<x≤6,∵x为正整数,∴x=6.答:共有6个小朋友.故选C.【分析】首先设共有x个小朋友,则苹果有(3x+8)个,由关键语句“如果每人分5个,那么最后一个小朋友就分不到3个”可得不等式0≤(3x+8)﹣5(x﹣1)<3,解不等式,取整数解即可.2.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A. 6人 B.5人 C.6人或5人 D.4人【答案】A【考点】一元一次不等式组的应用【解析】【解答】解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x≤6.5,故共有学生6人,故选A.【分析】根据题意可以列出相应的不等式组,从而可以解答本题.3.若不等式组的解集是x<2,则a的取值范围是( )A. a<2B. a≤2C. a≥2D. 无法确定【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:由(1)得:x<2由(2)得:x<a∵不等式组的解集是x<2∴a≥2故应选:C.【分析】首先解出不等式组中的每一个不等式,然后由不等式组的解集是x<2,及同小取小得出a≥2 。

2019年数学中考题一元一次不等式考点归总解析

2019年数学中考题一元一次不等式考点归总解析

2019年数学中考题一元一次不等式考点归总解析各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢以下是中国()为您推荐的xxxx年数学中考题一元一次不等式考点归总解析,希望本篇对您学习有所帮助。

xxxx年数学中考题一元一次不等式考点归总解析一、选择题1.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

则共有学生A、4人B、5人c、6人D、5人或6人【答案】c。

【考点】一元一次不等式组的应用。

【分析】假设共有学生人,根据题意,得不等式组,,解得:5”要用空心圆点表示。

故选c。

二、填空题1.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入.铁钉所受的阻力也越来越大,当铁钉未进入木块部分长度足够时,每次钉入木块妁铁钉长度是前一次的,已知这个铁钉被敲击3次后全部进入木块.且第一次敲击后,铁钉进入木块的长度是cm,若铁钉总长度为6cm,则的取值范围是▲。

【答案】。

【考点】一元一次不等式组的应用。

【分析】由题意得敲击2次后铁钉进入木块的长度是+,而此时还要敲击1次,所以两次敲打进去的长度要小于6,经过三次敲打后全部进入,所以三次敲打后进入的长度要大于等于6,列出不等式组,解之,得。

2.有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载▲捆材枓.【答案】42。

【考点】一元一次不等式的应用。

【分析】设最多还能搭载捆材枓,根据电梯最大负荷为1050kg,列出不等式求解即可:依题意得:20+210≤1050,解得:≤42.故该电梯在此3人乘坐的情况下最多还能搭载42捆材枓。

3.我国从xxxx年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对▲道题.【答案】14。

九年级中考数学专题练习解一元一次不等式组(含解析)

九年级中考数学专题练习解一元一次不等式组(含解析)

中考数学专题练习-解一元一次不等式组(含解析)一、单选题1.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤72.不等式组的解集在数轴上表示为()A. B.C. D.3.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-14.不等式组的解集是()A.x>﹣9B.x≤2C.﹣9<x≤2D.x≥25.若不等式组有解,则k的取值范围是()A.k<2B.k≥2C.k<1D.1≤k <26.不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥47.不等式组的解集是()A. -1<x≤2B. -2≤x<1C.x<-1或x≥2D.2≤x <-18.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A. B. C. D.9.若一元一次不等式组有解,则m的取值范围是()A.m≤6B.m≥6C.m<6D.m >610.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤211.若关于x的一元一次不等式组有解,则m的取值范围为()A. B. C. D.12.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤ C.D.m≤-13.已知不等式组,其解集正确的是()A.﹣1≤x<3B.﹣1<x≤3C.x>3D.x≤﹣114.不等式组的解集是()A.x≤1B.x>﹣7C. -7<x≤1D.无解二、填空题15.若不等式组的解集为,那么的值等于________.16.若不等式组的解集是﹣1<x<1,则(a+b)2019________17.已知不等式组的解集为﹣1<x<2,则(m+n)2019________.18.不等式组的解集为________.19.不等式组的解集是________.20.若不等式组的解集是﹣1<x<1,那么(a+b)2019=________.21.已知关于x的不等式组无解,则a的取值范围为________.三、计算题22.解不等式组.23.24.解不等式组.25.解不等式组.26.解方程(1)解方程:(x﹣4)2=x﹣4;(2)解不等式组:.四、解答题27.解不等式组:.28.解不等式组:,并把解集在数轴上表示出来.五、综合题29.解方程与不等式组(1)解方程:x2+4x﹣5=0;(2)解不等式组.答案解析部分一、单选题1.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤7【答案】C【考点】解一元一次不等式组【解析】【分析】解出不等式组的解集,与不等式组有解相比较,得到m的取值范围.【解答】由(1)得x<7,由(2)得x>m,∵不等式组有解,∵m<x<7;∵m<7,故选C.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.2.不等式组的解集在数轴上表示为()A. B.C. D.【答案】B【考点】解一元一次不等式组【解析】【解答】解不等式∵得:x>-1,解不等式∵得:x1,∵原不等式组的解集为:-1<x 1.故答案为:B.【分析】依次解出不等式∵及不等式∵的解集,再在数轴上分别表示出来,找到解集的公共部分即可.3.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-1【答案】C【考点】解一元一次不等式组【解析】【解答】解:由∵得:x≥4-a由∵得:-3x>-9解之:x<3∵原不等式组无解∵4-a≥3解之:a≤1故答案为:C【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。

2019年数学中考真题知识点汇编11 一元一次不等式(组)的应用(含解析).docx

2019年数学中考真题知识点汇编11  一元一次不等式(组)的应用(含解析).docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一、选择题1. (2019·怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则可有一户可分得母羊但不足3只.这批种羊共( )只.A.55B.72C.83D.89【答案】C.【解析】设该村有x 户,则这批种羊中母羊有(5x +17)只,根据题意可得 ()()517710517713x x x x +--⎧⎪⎨+--⎪⎩><, 解得10.5<x <12.∵x 为正整数,∴x =11,∴这批种羊共有11+5×11+17=83只.故选C.2. (2019·无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )A. 10B. 9C. 8D. 7【答案】B【解析】设原计划 m 天完成,开工 n 天后有人外出,则 15am =2160,am =144,15an +12(a +2)(m -n )<2160,化简可得:an +4am +8m -8n <720,将am =144 代入得 an +8m -8n <144,an +8m -8n <am ,a (n-m )<8(n -m ),其中 n -m <0,a >8, 至少为 9 ,故选 B.三、解答题23.(2019浙江省温州市,23,10分)(本题满分10分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解题过程】(1)该旅行团中成人有x 人,少年有y 人,根据题意,得:103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人有17人,少年有5人;(2)①∵成人8人可免费带8名儿童,∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元).②设可以安排成人a 人、少年b 人带队,则1≤a ≤17,1≤b ≤5.设10≤a ≤17时,(i) 当a=10时,100×10+80b ≤1200,∴b ≤52, ∴ b 最大值=2,此时 a+b=12,费用为1160元;(ii) 当a=11时,100×11+80b ≤1200,∴b ≤54, ∴ b 最大值=1,此时 a+b=12,费用为1180元;(iii) 当a ≥12时,100a ≥1200,即成人门票至少需要1200元,不符合题意,舍去.设1≤a <10时,(i) 当a=9时,100×9+80b+60≤1200,∴b ≤3,∴ b 最大值=3,此时 a+b=12,费用为1200元;(ii) 当a=8时,100×8+80b+60×2≤1200,∴b ≤72, ∴ b 最大值=3,此时 a+b=11<12,不符合题意,舍去;(iii) 同理,当a <8时,a+b <12,不符合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人、少年2人;成人11人、少年1人;成人9人、少年3人.其中当成人10人、少年2人时购票费用最少.22.(2019山东滨州,22,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解题过程】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为a 人,b 人,23=1802=105a b ab ,,………………………………………………………………………3分解得=45=30.a b , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人.………………5分(2)设租用甲种客车x 辆,租车费用为y 元,根据题意,得y=400x+280(6-x )=120x+1680.………………………………8分由45x+30(6-x )≥240,得x≥4.………………………………………………10分∵120>0,∴y 随x 的增大而增大,∴当x 为最小值4时,y 值最小.即租用甲种客车4辆,乙种客车2辆,费用最低,………………………………11分此时,最低费用y=120×4+1680=2160(元).……………………………………12分一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

一元一次不等式(组)专题训练

一元一次不等式(组)专题训练

一元一次不等式(组)一、 一元一次不等式(组)的解A 、 已知不等式(组)的解(集),求参数的值或取值范围 例1:不等式-<+mx 23x 4的解集是63x m >-,求m 的取值范围。

练习:1、若关于x 的不等式a(1)x 12a x ->+-的解集是1x <-求a 的取值范围。

2、若关于x 的不等式(1)x 5a a -<+的解集和24x <的解集相同,求a 的取值。

3、不等式475x a x ->+的解集是1x <-求a 的取值4、若关于x 的不等式2132x a a ->-的解集和2x a <的解集相同,求a 的取值例2:若不等式组3x x a >⎧⎨>⎩的解集是x a >则a 的取值范围是 练习:1、(1)若不等式组5x x m <⎧⎨>⎩ 无解,则a 的取值范围是 (2)若无解,则a 的取值范围是2、已知不等式组x a x b <⎧⎨>⎩无解,求不等式组11x a x b >-⎧⎨<-⎩的解3、当a 满足什么条件时,不等式组131x a x a >+⎧⎨<-⎩无解4、如果2a <,那么不等式组2x x a >⎧⎨>⎩的解集为 ,2x x a <⎧⎨<⎩的解集为 例3:若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<求(a 3)(b 3)-+ 的值。

练习:1、一元一次不等式组13x a x -≤⎧⎨+>⎩的解集为x a ≥-,求a 的取值范围。

2、一元一次不等式组221x a b x a a -≥⎧⎨-<+⎩的解集为35x ≤<,求b a3、一元一次不等式组213(x 1)x x m ->-⎧⎨<⎩的解集为2x <,求m 的取值范围。

4、不等式组26x x x m-+<-⎧⎨>⎩的解集为4x >,求m 的取值范围B :已知不等式(组)的整数解的个数,求参数的取值范围例4:已知不等式30x a -≤ 的正整数解有三个,1,2,3求a 的取值范围。

中考数学专题训练 解一元一次不等式组(含解析)-人教版初中九年级全册数学试题

中考数学专题训练 解一元一次不等式组(含解析)-人教版初中九年级全册数学试题

解一元一次不等式组一、单选题的解集为﹣2<x<3,则a的取值X围是()A. a=﹣2 B.a= C. a≥﹣2 D. a≤一1的解集是()A. x>-1 B. x≤1 C. x<-1 D. -1<x≤1的解集是x>2,那么m的取值X围()A. m>2 B. m <2 C. m ≥2 D. m≤24.不等式组的整数解是()A. ﹣1B. ﹣1,1,2 C. ﹣1,0,1 D. 0,1,25.把不等式组的解集表示在数轴上,正确的是()A. B.C. D.6.若点P(1-m, m)在第二象限,则下列关系正确的是( )A. 0<m<1 B. m<0 C. m>0 D. m>17.如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式x>kx+b>-2的解集为( )A. x<2B. x> -1C. x<1或x>2D. -1<x<28.对于不等式组下列说法正确的是()A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是﹣3,﹣2,﹣1D. 此不等式组的解集是﹣<x≤29.把不等式组的解在数轴上表示出来,正确的是()A. B.C. D.10.不等式的解集在数轴上表示正确的是()A.B.C.D.11.不等式组的解集是()A.x>﹣B.x<﹣C.x<1D.﹣<x<1二、填空题12.在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值X围是________.的解集是﹣1<x<1,则(a+b)2009=________14.不等式组的解集为________.15.若关于x的不等式组有解,则实数a的取值X围是________ .16.实数a、b在数轴上的位置如图所示,写出不等式组的解集为________ .三、计算题17.解不等式组解不等式组,并把它的解集表示在数轴上.18.解不等式组:.19.计算下列各题(1)计算:(﹣)﹣2﹣|2﹣ |﹣3tan30°;(2)解不等式组:.四、解答题20.解不等式组并把它们的解集在数轴上表示出来。

中考数学专题10 一元一次不等式(组)及其应用(附教师答案版)

中考数学专题10 一元一次不等式(组)及其应用(附教师答案版)

专题10 一元一次不等式(组)及其应用1.用不等号“<”“>”“≤ ”“≥”表示不相等关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

6.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。

性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

7.一元一次不等式的解法的一般步骤:(1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化为1.8.不等式解集在数轴上的表示方法:含≥或≤,用空心圆圈,含>或<用实心圆点。

9.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

10.求不等式组解集的规律:不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时, 则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;专题知识回顾(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.【例题1】(2019江苏镇江)解不等式:14(1)2x x--<【例题2】(2019四川省雅安市)不等式组2442xx->⎧⎪⎨≤⎪⎩的解集为()A.6≤x<8 B.6<x≤8 C.2≤x<4 D.2<x≤8【例题3】(2019•山东省德州市)不等式组的所有非负整数解的和是()A.10B.7C.6D.0【例题4】(2019广西北部湾)解不等式组351342163x xx x-+⎧⎪--⎨⎪⎩<≤,并利用数轴确定不等式组的解集.【例题5】(2019•江苏无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10B.9C.8D.7一、选择题1.(2019甘肃省陇南市) 不等式2x+9≥3(x+2)的解集是()A.x≤3 B.x≤﹣3 C.x≥3D.x≥﹣32.(2019•河北)语句“x的与x的和不超过5”可以表示为()专题典型题考法及解析专题典型训练题A .+x ≤5B .+x ≥5C .≤5D .+x =53.(2019•浙江宁波)不等式>x 的解为( )A .x <1B .x <﹣1C .x >1D .x >﹣14.(2019广西河池)不等式组23121x x x -⎧⎨>+⎩的解集是( )A .2xB .1x <C .12x <D .12x <5.(2019黑龙江绥化)不等式组10842x x x -≥⎧⎨+>+⎩的解集在数轴上表示正确的是( )6.(2019湖北仙桃)不等式组{x −1>0,5−2x ≥1的解集在数轴上表示正确的是( )7.(2019吉林长春)不等式-x +2≥0的解集为( )A.x ≥-2B.x ≤-2C.x ≥2D.x ≤2.(2019辽宁本溪) 不等式组3280x x -⎧⎨-⎩>0≤的解集是( )A .x >3 B.x ≤4 C. x <3 D.3<x ≤49.(2019江苏镇江)下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .10.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种B .4种C .5种D .6种11.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为( ) A .10<x <12B .12<x <15C .10<x <15D .11<x <1412.(2019•湖南怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只. A .55 B .72C .83D .89二、填空题13.(2019黑龙江哈尔滨)不等式组⎪⎩⎪⎨⎧≥+≤-123023x x的解集是 .14.(2019山东东营)不等式组32421152x x x x -->,-+≤的解集为____________.15.(2019•河南)不等式组的解集是 .16.(2019内蒙古包头市)已知不等式组{2x +9>−6x +1x −k >1的解集为x >-1,则k 的取值范围是 .17.(2019黑龙江大庆)已知x =4是不等式ax -3a -1<0的解,x =2不是不等式ax -3a -1<0的解,则实数a 的取值范围是______.18.(2019•铜仁)如果不等式组的解集是x <a ﹣4,则a 的取值范围是 .19.(2019湖南邵阳)不等式组43113x x +<⎧⎪-⎨⎪⎩的解集是 .20.(2019•大渡口区)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打 折销售.三、解答题21.(2019广西省贵港市)解不等式组:622(4)23323x x x x ->-⎧⎪-⎨--⎪⎩,并在数轴上表示该不等式组的解集.22.(2019北京市)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩23.(2019•江苏扬州)解不等式组,并写出它的所有负整数解.24.(2019贵州省安顺市)先化简(1+32-x )÷96122+--x x x ,再从不等式组⎩⎨⎧+<<-42342x x x 的整数解中选一个合适的x 的值代入求值.25.(2019•新疆)解不等式组:并把解集在数轴上表示出来.26.(2019▪黑龙江哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元; (1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?27.(2019四川巴中)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?28.(2019▪湖北黄石)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P 所在的象限.29.(2019•山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.30.(2019•遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?专题10 一元一次不等式(组)及其应用1.用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。

专题04 一元一次不等式(组)的特殊解问题-2019年中考辅导之考点不等式(组)讲解与真题分析(解析版)

专题04 一元一次不等式(组)的特殊解问题-2019年中考辅导之考点不等式(组)讲解与真题分析(解析版)

04 不等式(组)中考考点讲评系列一元一次不等式(组)的特殊解问题【考点讲解】不等式(组)的整数解问题是求不等式组解集的一个延伸问题,也是中考的一个重点内容,此类问题只要掌握了解不等式组的基本方法,领会数形结合的数学思想,能够正确的把不等式(组)的解集在数轴上表示出来,此类问题就不难解决。

【真题分析】1. (2018山东临沂,5,3分)不等式组123122xx-<⎧⎪⎨+≤⎪⎩的正整数解的个数是( )A.5 B.4 C.3 D.2【答案】C2.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组的整数解仅有x=2,x=3,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【答案】D.又∵a,b为整数,∴a=3或4,b=9或10或11,∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种.【知识点】不等式组的整数解3. (2018·重庆A 卷,12,4)若数a 使关于x 的不等式组112352x x x x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的分式方程2211y a a y y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .-3 B .-2 C .1 D .2【答案】C .【知识点】一元一次不等式组的解法 分式方程的解法4. (2018四川雅安,8题,3分)不等式组2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩的整数解的个数是 A.0个 B.2个 C.3个 D.4个【答案】C【解析】解①得,x ≥-1;解②得,x<2;原不等式的解集为:-1≤x<2,故整数解有3个,选C【知识点】不等式的特殊解5. (2018湖北荆门,7,3分) 已知关于x 的不等式310x m -+>的最小整数解为2,则实数m 的取值范围是( )A .47m ≤<B .47m << C. 47m ≤≤ D .47m <≤【答案】A.【解析】解:解不等式310x m -+>,得31>-m x , ∵不等式有最小整数解2, ∴2<311-≤m , 解得4≤m <7.故选A.【知识点】一元一次不等式的整数解,解一元一次不等式6.(2018山东省泰安市,8,3)不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-【答案】B【知识点】一元一次不等式(组)的应用---与整数解有关的问题7. (2018四川省宜宾市,10,3分)不等式组1<12x-2≤2的所有整数解的和为 . 【答案】15【知识点】解不等式组8. (2018山东菏泽,9,3分)不等式组101102x x +>⎧⎪⎨-≥⎪⎩的最小整数解是 . 【答案】0 【解析】101102x x +>⎧⎪⎨-≥⎪⎩①②解不等式①,得x >-1;解不等式②,得x≤2;∴不等式组的解集是-1<x≤2.满足-1<x≤2的最小整数是0,所以不等式组的最小整数解是0.【知识点】不等式组的特殊解9. (2018甘肃天水,T11,F4)不等式组的所有整数解的和是____.【答案】-2. 【解析】【知识点】不等式组的整数解10.(2018福建B 卷,14,4)不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______. 【答案】2x >【思路分析】先分别求得不等式①和不等式②的解集,然后依据同大取大,同小取小,小大大小中间找出,大大小小找不着,判断出不等式组的解集即可.【解析】解:解不等式①得:1x >,解不等式②得:2x >,所以不等式组的解集为2x >.【知识点】一元一次不等式组的解法、不等式(组)的解集的表示方法11. (2018贵州安顺,T13,F4)不等式组340,12412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为___. 【答案】0【解析】解340,124 1.2x x +≥⎧⎪⎨-≤⎪⎩解得425.32x -≤≤∵在解集中包含整数0,∴所有整数解的积为0. 【知识点】解一元一次不等式组.12. (2018四川攀枝花,14,4) 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是 .【答案】3≤a<4.13.(2018河南,13,3分)不等式组52,43x x +⎧⎨-⎩>≥的最小整数解是 . 【答案】-2【解析】本题是求不等式组的最小整数解,正确解不等式组是关键.不等式52x +>的解集为-x >3,不等式43x -≥的解集为1x ≤,所以不等式组5243x x +⎧⎨-⎩>≥的解集为-1x 3<≤,它的整数解有-2、-1、0、1,所以其最小整数解是-2.故答案为-2.【知识点】一元一次不等式14. (2018湖北黄冈,15题,5分)求满足不等式组3(2)8131322x x x x --≤⎧⎪⎨-<-⎪⎩的所有整数解 【思路分析】先解不等式组,再求得所有的整数解【解题过程】解①得:x ≥-1,解②得:x <2,所以不等式组的解集为-1≤x <2,其中所有的整数解为:-1,0,1.【知识点】不等式组的特殊解15. (2018湖南郴州,18,6)解不等式组:()32214232x x x x +>-⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【答案】40x -<≤ 【思路分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【知识点】不等式组16. (2018广东广州,17,9分)解不等式组:⎩⎨⎧1+x >0,2x -1<3.【思路分析】先分别求出每一个不等式的解集,再确定不等式组的解集.【解析】解:解不等式1+x >0,得x >-1,解不等式2x -1<3,得x <2,∴原不等式组的解集为-1<x<2 .【知识点】一元一次不等式组的解法17. (2018山东省日照市,17(1),5分)(1)实数x 取哪些整数时,不等式2x -1>x +1与12x -1≤7-32x 都成立? 【思路分析】将两个不等式组成不等式组,解不等式组确定解集,再确定整数值.【解析】解:解不等式组⎪⎩⎪⎨⎧-≤-+>-②①,,237121112x x x x , 解不等式①,得x >2.解不等式②,得x ≤4.所以不等式组的解集为2<x ≤4.所以x 可取的整数值是3,4.【知识点】不等式组 整数解18. (2018 湖南张家界,16, 5分)解不等式组 ,写出其整数解【知识点】不等式的解集.19. (2018四川凉山州,19,5分)先化简,再求值: 23321452x x x x x x --++-÷[()()],其中x 是不等式组202113x x -<+≥⎧⎪⎨⎪⎩ 的整数解. 【思路分析】先解不等式组,得到整数x 的值,再化简代数式,将x 的值代入求出值.【解题过程】20211312=1x x x x -<+≥⎧⎪≤⎨⎪⎩∴解:解不等式组,得<整数22232223214523227715252=151255x x x x x x x x x x x x x --++-÷=--+-+-⨯+--=-∴-=-[()()]().当时,原式=51212{<-≥+x x【知识点】解不等式组,不等式组的整数解,化简代数式,计算.。

备战中考数学专题练习(2019全国通用)-一元一次不等式组的特殊解-卷二(含解析)

备战中考数学专题练习(2019全国通用)-一元一次不等式组的特殊解-卷二(含解析)

备战中考数学专题练习(2019全国通用)-一元一次不等式组的特殊解(含解析)一、单选题1.如果不等式组恰有3个整数解,则a的取值范围是()A. a≤﹣1B. a<﹣1C. ﹣2≤a<﹣1D. ﹣2<a≤﹣12.不等式组的整数解的个数为()A. 3B. 4C. 5D. 63.不等式组,写出不等式组的整数解是()A. ﹣1,0,1B. 0,1,2C. ﹣2,﹣1,0D. 1,2,34.已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A. ﹣1<b≤3B. 2<b≤3C. 8≤b<9D. 3≤b<45.不等式组的正整数解的个数是()A. 1B. 2C. 3D. 46.不等式组的所有整数解的和是()A. 2B. 3C. 5D. 67.不等式组,写出不等式组的整数解是()A. ﹣1,0,1B. 0,1,2C. ﹣2,﹣1,0D. 1,2,38.不等式组的整数解有()个.A. 1B. 2C. 3D. 49.关于x的不等式组有四个整数解,则a的取值范围是()A. ﹣<a≤﹣B. ﹣≤a<﹣C. ﹣≤a≤﹣D. ﹣<a <﹣10.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A. ﹣6<a<﹣5B. ﹣6≤a<﹣5C. ﹣6<a≤﹣5D. ﹣6≤a≤﹣511.不等式组的整数解的个数是()A. 1B. 2C. 3D. 412.不等式组有3个整数解,则的取值范围是()A. B. C. D.13.已知不等式:①x>1,②x>4,③x<2,④2-x>-1,从这四个不等式中取两个,构成正整数解是2的不等式组是()A. ①与②B. ②与③C. ③与④D. ①与④14.已知不等式:①,②,③,④,从这四个不等式中取两个,构成正整数解是2的不等式组是()A. ①与②B. ②与③C. ③与④D. ①与④15.关于x的不等式组只有五个正整数解,则实数a的取值范围是()A. ﹣4<a<﹣3B. ﹣4≤a≤﹣3C. ﹣4≤a<﹣3D. ﹣4<a≤﹣316.不等式组的所有整数解的和是()A. 0B. 1C. 2D. 3二、填空题17.不等式组有2个整数解,则m的取值范围是________.18.不等式组的整数解分别是________.19.不等式组有3个整数解,则m的取值范围是________.20.不等式组的最大整数解是________.21.不等式组的最大整数解是________.22.不等式组的最小整数解是________.23.不等式组的整数解的和是________.24.不等式组的整数解为________.三、计算题25.求不等式的非负整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学专题训练-一元一次不等式组的特殊解
一、单选题
1.不等式组的整数解共有()
A. 1

B. 2

C. 3

D. 4个
2.不等式组的整数解的个数是()
A. 3
B. 5
C. 7
D. 无数个
3.若[m]表示不大于m的最大整数,例如:[5]=5,[﹣3,6]=﹣4,则关于x的方程[ ﹣
5]=7的整数解有()
A. 1

B. 2

C. 3

D. 4个
4.不等式组的整数解的和为()
A. 1
B. 0
C. -
1
D. -2
5.满足不等式组的整数解为()
A. ﹣2,﹣1,0
B. ﹣1,0,
1 C. ﹣1,
0 D. ﹣2,﹣1,0,1
6.不等式组的整数解的个数是()
A. 无数

B. 6
C. 5
D. 4
7.不等式组的所有整数解是()
A. ﹣1、0
B. ﹣2、﹣
1 C. 0、
1 D. ﹣2、﹣1、0
8.不等式组的正整数解的个数是()
A. 1
B. 2
C. 3
D. 4
9.如果不等式组只有一个整数解,那么a的范围是()
A. 3<
a≤4 B. 3≤a<
4 C. 4≤a<
5 D. 4<a≤5
二、填空题
10.不等式10(x+4)+x≤84的非负整数解为________.
11.不等式组的所有整数解的和为________.
12.求不等式组的整数解是________ .
13.已知关于x的不等式组仅有三个整数解,则a的取值范围是________
14.不等式组有2个整数解,则m的取值范围是________.。

相关文档
最新文档