第三章空间数据的表达
《测绘学概论》课程笔记
《测绘学概论》课程笔记第一章:测绘学总论1.1 测绘学的基本概念测绘学是一门研究地球形状、大小、重力场、表面形态及其空间位置的科学。
它的主要任务是对地球表面进行测量,获取地球表面的空间信息,并对其进行处理、分析和应用。
测绘学的研究对象包括地球的形状、大小、重力场、表面形态等自然属性,以及人类活动产生的各种地理现象和空间信息。
1.2 测绘学的研究内容测绘学的研究内容主要包括以下几个方面:(1)大地测量学:研究地球的形状、大小和重力场,建立地球的数学模型,为各种测量提供基准。
(2)摄影测量学:利用航空或卫星摄影技术,获取地球表面的空间信息,并通过图像处理技术对其进行解析和应用。
(3)全球卫星导航定位技术:利用卫星导航系统,如GPS、GLONASS、北斗等,进行地球表面空间位置的测量和定位。
(4)遥感科学与技术:利用遥感技术,如卫星遥感、航空遥感等,获取地球表面和大气的物理、化学和生物信息,并进行处理和应用。
(5)地理信息系统:利用计算机技术,对地理空间信息进行采集、存储、管理、分析和可视化,为地理研究和决策提供支持。
1.3 测绘学的现代发展随着科技的发展,测绘学进入了一个新的发展阶段。
现代测绘技术主要包括卫星大地测量、数字摄影测量、激光扫描、遥感技术、地理信息系统等。
这些技术的发展,使得测绘工作更加高效、精确和全面,为地球科学、资源调查、环境保护、城市规划等领域提供了强大的支持。
1.4 测绘学的科学地位和作用测绘学在科学体系中占有重要地位,它是地球科学的基础学科之一,为其他学科提供了重要的数据支持。
同时,测绘学在国民经济和国防建设中发挥着重要作用,如土地管理、城市规划、环境监测、资源调查、灾害预警等,都离不开测绘学的支持。
第二章:大地测量学2.1 概述大地测量学是测绘学的一个重要分支,主要研究地球的形状、大小、重力场及其变化,建立地球的数学模型,为各种测量提供基准。
大地测量学具有广泛的应用,如地球科学研究、资源调查、环境保护、城市规划等。
第三章空间数据模型第3节矢量数据模型
(xn,yn) (x(1x,ny,1y)n) (x1,y1)
(a) (xn,yn)
(b)
(xn,yn)
A
KI
H
J
BC
G
FE
D
(c)
第三章空间数据模型第3节矢量数据模型
一维矢量具有方向、长度
方向:即有起始结点和终止结点
长度:可以用以下方式表达:
引入欧氏空间的距离概念:
n
长度 [(xi xi1)2 ( yi yi1)2 ]1/2 i2
一.基本概念 二.关系数据模型和关系表 三.矢量数据模型( Spaghetti Model ) 四.矢量数据模型(拓扑数据模型)
第三章空间数据模型第3节矢量数据模型
一、基本概念
• 现实世界和矢量表达 • 位置和边界被清楚地记录 • 对象可以被识别 • 属性值与对象相联系 • 空间关系可以清晰表达
第三章空间数据模型第3节矢量数据模型
(1) 地理要素被当成单个对象对待
空间边界可以被清晰的编码
(2)对象之间没有关系
要素间的空间拓扑不被记录
第三章空间数据模型第3节矢量数据模型
矢量表达法
• 不同的空间特征具有不同的矢量维数
– 0维矢量-点:即空间中的一个点,没有大小、 方向,二维和三维欧氏空间中为:(x,y),(x,y,z)
– 一维矢量-线:空间中的线划要素或空间对象间 的边界,也称为弧段、链
用的概念,是三维空间中曲面法向矢量的 另外一种描述方法
第三章空间数据模型第3节矢量数据模型
空间曲面
• 矢量实现方法多样 • 常用等值线法、剖面法
第三章空间数据模型第3节矢量数据模型
三维矢量-体
• 指三维空间中的实体
第三章2-空间数据结构与管理
(X,Y) Polygon (X5,Y5) (X4,Y4)
(X2,Y2)
(X3,Y3)
3、矢量数据获取途径
1) 由外业测量获得 利用测量仪器自动记录测量成果(常称为电子手薄),然后转到地理数据库。 2) 由栅格数据转换获得 利用栅格数据矢量化技术,把栅格数据转换为矢量数据。 3) 跟踪数字化 用跟踪数字化的方法,把地图变成离散的矢量数据。
4、Hale Waihona Puke 量数据编码⑪点实体数据编码
对于点实体矢量结构中只记录其在特定坐标系下的坐标和属性代码。
⑫线实体矢量数据编码
唯一标识码是系统排列序号; 线标识码可以标识线的类型; 起始点和终止点号可直接用坐标表示;
显示信息是显示时的文本或符号等; 与线相联系的非几何属性可以直接存储于线文件中, 也可单独存储,而由标识码联接查找。
四叉树编码优点
容易而有效地计算多边形的数量特征; 阵列各部分的分辨率是可变的,边界复杂部分四叉树较高即分级 多,分辨率也高,而不需表示许多细节的部分则分级少,分辨率 低,因而既可精确表示图形结构又可减少存贮量; 栅格到四叉树及四叉树到简单栅格结构的转换比其它压缩方法容 易; 多边形中嵌套异类小多边形的表示较方便。
2、栅格数据取值方法
⑪中心归属法:每个栅格单元的值以网格中心 点对应的面域属性值来确定。 ⑫长度占优法:每个栅格单元的值以网格中线 (水平或垂直)的大部分长度所对应的面域 的属性值来确定。 ⑬面积占优法:每个栅格单元的值以在该网格 单元中占据最大面积的属性值来确定。 ⑭重要性法:根据栅格内不同地物的重要性程 度,选取特别重要的空间实体决定对应的栅 格单元值,如稀有金属矿产区,其所在区域 尽管面积很小或不位于中心,也应采取保留 的原则。
GIS地理信息系统空间数据结构
网络模型表示了特殊对象之间的交互,如水或者交通 流。
要素(对象)模型
基于要素的空间模型强调了个体现象, 该现象以独立的方式或者以与其它现象之间的 关系的方式来研究。任何现象,无论大小,都 可以被确定为一个对象(Object),假设它可 以从概念上与其邻域现象相分离。一个实体必 须符合三个条件: 可被识别; 重要(与问题相关); 可被描述(有特征)。
场模型可以表示为如下的数学公式:
z : s z ( s ) 上式中,z为可度量的函数,s表示空间中的位置,因
此该式表示了从空间域(甚至包括时间坐标)到某个 值域的映射。
空间数据模型与结构—对象模型与场模型比较
对象模型和场模型的比较
现实世界
对象模型 选择实体 它在哪里 数据
场模型 选择一个位置
指图形保持连续状态下变形,但图形关系
不变的性质。
拓扑变换
(橡皮变换)
将橡皮任意拉伸,压缩,但不能扭转或折叠。
非拓扑属性(几何) 两点间距离
拓扑属性(没发生变化的属性) 一个点在一条弧段的端点
一点指向另一点的方向 一条弧是一简单弧段(自身不相交)
弧段长度、区域周长、 一个点在一个区域的边界上
面积 等
一个点在一个区域的内部/外部
(x8,y8), (x17,y17), (x16,y16),
22 (x15,y15),(x14,y14) ,(x13,y13),
21
(x12,y12), (x11,y11),(x10,y10),(x1,y1)
6
20
C
3
5
18
19
4
(x24,y24),(x25,y25),(x26,y26), (x27,y27),(x28,y28),(x29,y29),(x30,y30)
第3章 空间数据模型
*通过描述小面块的几何形态、相邻关系及面块内属性 特征的变化来建立空间数据的逻辑模型;
*小面块之间不重叠且能完整铺满整个地理空间; *根据面块的形状,镶嵌数据模型可分为 规则镶嵌数据模型 不规则镶嵌数据模型
规则镶嵌数据模型
不规则镶嵌数据模型
TIN和Voronoi多边形数据模型
Voronoi 图又称为Dirichlet ( tessellation) ,其概念由 Dirichlet 于1850 年首先提出; 1907 后俄国数学家 Voronoi 对此作了进一步阐述,并提出高次方程化简; 1911 年荷兰气候学Thiessen为提高大面积气象预报 的准确度,应用Voronoi 图对气象观测站进行了有效 区域划分。因此在二维空间中,Voronoi 图也称为泰 森多边形。
2 作为两个面域之间的一个边界。
3 作为一个面域特征,精确表达河流的堤岸、辫 状河道以及河流上的运河。
4 作为一条曲线以构成表面模型上的沟槽。根据 地表上河流的路径,可以算出其横截面、落差度、 排水流域以及在预测降雨下的洪水爆发可能性。
针对真实的世界,每一个人都在创建他 自己的主观模型。GIS的观点是为真实世 界建立一个通用的模型。
泰森(Thiessen)多边形的特点: 1 组成多边形的边总是与两相邻样点的连线垂直; 2 多边形内的任意位置总是离该多边形内样点的距 离最近,离相邻多边形内样点距离远; 3 每个多边形内包含且仅包含一个样点。
(五)面向对象数据模型
为了有效地描述复杂的事物或现象,需要 在更高层次上综合利用和管理多种数据结构 和数据模型,并用面向对象的方法进行统一 的抽象。
空间逻辑数据模型作为概念模型向 物理模型转换的桥梁,是根据概念模型 确定的空间信息内容,以计算机能理解 和处理的形式,具体地表达空间实体及 其关系。
第三章 空间数据的表达方法
(一)特点: 1.用离散的点或线描述地理现象及特征 2.用拓扑关系描述矢量数据之间关系
3.面向目标的操作
4.数据结构复杂且难以同遥感数据结合
5.难于处理位置关系
空间对象(实体)的地图表达
点:位置:(x,y) 属性:符号 线:位置:(x1,y1),(x2,y2),…,(xn,yn) 1 1 2 2),„,(xn n 属性:符号—形状、颜色、尺寸
7 7 7 7ຫໍສະໝຸດ 7 7 7 77 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
空间单元人为划定成 大小相等的正方形网 格,有着统一的定位 参照系。每个空间 单元只记录其属性值, 而不记录它的坐标值。
2
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 1 4 4 4 4 4 4 4 4
2
1 4 4 4 4 4 4 4 4 4
1
1 4 4 4 4 4 4 4 4 4
1
7 1 4 4 4 4 4 4 4 4
7
7 7 1 4 4 4 4 4 4 4
7
7 7 7 1 4 4 4 4 4 4
7
7 7 7 7 1 4 4 4 4 4
地理信息系统为什么要研究数据模型
现实世界真实模型
空间数据处理
空间数据查询
空间数据分析
空间数据模型 空间数据复原 空间数据结构
数据库:空间数据物 理结构
空间信息 3.2 空间数据模型 3.3 空间数据结构 3.4 地貌的表达——数字化地形模型
GIS三版总复习答案
第一章绪论1、信息(Information):是用文字、数字、符号、语言、图像等介质来表示事件、事物、现象等的内容、数量或特征,从而向人们(或系统)提供关于现实世界新的事实和知识,作为生产、建设、经营、管理、分析和决策的依据。
2、信息的特点1)信息的客观性2)信息的适用性3)信息的传输性4)信息的共享性3、数据:数据是通过数字化或直接记录下来的可以被鉴别的符号,用以定性或定量地描述事物的特征和状况。
4、数据处理:即对数据进行收集、筛选、排序、归并、转换、存储、检索、计算,以及分析、模拟和预测等操作。
5、数据与信息关系:信息与数据是不可分离的,即信息是数据的内涵,而数据是信息的表达。
也就是说数据是信息的载体。
6、地理信息:是地理数据所蕴含和表达的地理含义。
7、地理信息的特点:1)空间分布性2)具有多维结构的特征3)时序特征十分明显8、地理数据:是与地理环境要素有关的物质的数量、质量、分布特征、相互联系和变化规律的数字、文字、图像和图形等的总称。
9、地理信息系统:是由计算机硬、软件和不同方法组成的系统,该系统设计来支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划和管理问题。
10、简述GIS的构成。
它的的基本功能有哪些?硬件系统、软件系统、空间数据库、应用模型、用户基本功:数据采集与编辑、数据存储与管理、数据处理与变换、空间分析和统计、产品制作与显示、二次开发和编辑。
11、GIS与其它系统的区别 GIS有别于DBMS(数据库管理系统),GIS具有以某种选定的方式对空间数据进行解释和判断的能力,而不是简单的数据管理,这种能力使用户能得到关于数据的知识,因此,GIS是能对空间数据进行分析的DBMS,GIS必须包含DBMS。
GIS有别于MIS(管理信息系统),GIS要对图形数据和属性数据库共同管理、分析和应用,GIS 的软硬件设备要复杂、系统功能要强;MIS则只有属性数据库的管理,即使存贮了图形,也是以文件形式管理,图形要素不能分解、查询、没有拓扑关系。
第三章 空间概念和数据模型
3.1 空间信息模型 三、空间对象操作
面向方位的操作:
绝对的:以全球作为参照系,如东、西、南、 北、东北等 相对的:以给定目标为参照,如左、右、前、 后、上、下等
面向度量的操作:
度量空间:集合X满足下列条件就称为一个度量 空间:如果对X中的任意一点对x、y,都存在与之 相关联的实数d(x,y),称x到y的距离(也称为一种 度量),且对于任意x、y、z满足如下性质:
3.1 空间信息模型 六、空间对象模型小结
OGIS 标准预定义了一系列空间数据类型和操作 空间对象模型和面向对象的软件有很多相似之处 可以方便地和多种语言集成,采用类似Java, C++, Visual basic等编程实现建模(如2.1.6节中JAVA程序实 现) 和后关系数据库(Post-relational databases, e.g. OODBMS, ORDBMS)集成。
3.1 空间信息模型 二、对象模型
对象模型: 对象:空间信息中可以抽象成明确的、可识别的和 相关的事物或实体。 对象具有相应的属性和方法 以道路图为例: 对象:道路, 里程碑, ... 道路对象属性: 空间属性:位置, 如道路的多边形边界 非空间属性:道路名, 道路类型 (国道、省道等),车 道数, 限速等 道路对象的方法: 确定道路中心线,确定道路长度, 确 定道路交叉口等
Dimension
Point
Curve Surface
City
River Country
0
1 2
OGIS数据模型中的空间对象 UML表示
3.1 空间信息模型 三、空间对象操作
面向集合的:面向集合的空间操作。在所有内
嵌空间中,最简单且最通用的类型是面向集合的 内嵌空间。这种集合可以利用一些常见的关系, 即在基于集合的关系中常见的并、交、包含和属 于关系。层次关系(如森林包含林分,州立公园 包含森林,州包含州立公园)就适于用集合理论 来建模 。如两个多边形的相交操作产生一个新的 多边形。
北师大地理信息系统课件03空间数据模型
因此,最好的通用数据模型是不存在的,数据模型优劣取决于 你的需要,使用数据的方式和目的才是决定数据模型优劣的标 准。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子:
河流作为组成网络的一系列要素。每条线段都拥有流量、容量和其他属性 。这时可以使用线性网络模型(几何网络)来分析水文流量或者船务运输 等。
空间事物或现象 选择、综合、简化和抽象
概念世界
数据世界 (计算机)
概念模型 Conceptial Model
最高层
编码、表达、建立空间关系
逻辑数据模型 Logical Data Model
中间层
数据结构对数据进行组织
物理数据模型 Physical Data Model
最底层
信息
11 地理空间数学基础
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子: 即使在同一数据模型中,每种空间数据也有不同的表达方式。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据概念模型类型
现有GIS中常用的空间数据概念模型主要有三个: 场(Field)模型:强调空间要素的连续性
地图使用者的认识模型
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
维度世界:度 量语言
地理空间世 界:GIS 语言
概念世界:自 然语言
现实世界:基 本语言
地理空间数学基础
对现实世界的抽象
项目世界: 信息团体
点世界:坐标 几何
几何世界:WKT
OpenGIS的九层模 型
要素世界:要 素
第三章空间数据的组织与结构(二)
24 25 8 6
3 4
5
多边形原始数据
多边形 A B
数据项
(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),(x6,y6),(x7,y7),(x8,y8),(x9,y 9),(x1,y1) (x1,y1), (x9,y9), (x8,y8), (x17,y17), (x16,y16), (x15,y15),(x14,y14) ,(x13,y13), (x12,y12), (x11,y11),(x10,y10),(x1,y1)
栅格数据结构是一种影像数据结构,适用于遥 感图像的处理。它与制图物体的空间分布特征 有着简单、直观而严格的对应关系,对于制图 物体空间位置的可探性强,并为应用机器视觉 提供了可能性,对于探测物体之间的位置关系, 栅格数据最为便捷。 多边形数据结构的计算方法中常常采用栅格选 择方案,而且在许多情况下,栅格方案还更有 效。例如,多边形周长、面积、总和、平均值 的计算、从一点出发的半径等在栅格数据结构 中都减化为简单的计数操作。
c
d e f g h i j
16
19 15 15 1 8 16 31
8
5 19 16 15 1 19 31
E
O O D O A D B
B
E D B B B E C
弧段文件
弧段坐标文件
结点号 1 2
坐标 (x1,y1)
连接弧段 a,g
…… …… …… ……
结点文件
…… …… …… ……
……
22 23
24 25 8 6
3 4
5
B
C
D
EaΒιβλιοθήκη bcfg
h j
第三章 空间数据模型
分类 空间关系 非空间关系 时间关系 非空间属性 地理空间 空间要素
子类 超类 子部分 超部分
几何坐标
对象模型对空间要素的描述
场模型 • 也称域(field)模型,是把地理空间中的现象看作连续 也称域( )模型,是把地理空间中的现象看作连续 的变量或体,如大气污染程度、地表温度、土壤湿度、 变量或体 如大气污染程度、地表温度、土壤湿度、 地形高度以及大面积空气和水域的流速和方向等。 地形高度以及大面积空气和水域的流速和方向等。 • 场可分为二维或三维。二维场是在二维空间 2中任意给 在二维空间R 场可分 二维或三维。 场是在二维空间 定的一个空间位置上,都有一个表现某现象的属性值, 定的一个空间位置上,都有一个表现某现象的属性值, 场是在三维空间R 即A=f(x,y)。三维场是在三维空间 3中任意给定一个 = , 。三维场是在三维空间 空间位置上,都对应一个属性值, 空间位置上,都对应一个属性值,即A=f(x,y,z)。 = , , 。
• 由于地理空间事物和现象的复杂性和人们 认识地理空间在观念和方法上的不同, 认识地理空间在观念和方法上的不同,墓 地里信息系统对空间实体的抽象方式也存 在一定的差别,或者说不同的学科或部门 在一定的差别, 可能对地理空间按照各自的认识和思维方 式来构造不同的模型。 式来构造不同的模型。
地理空间认知概念模式( 地理空间认知概念模式(国际标准化组织地理信息 标准化委员会) 标准化委员会)
机器世界
用数据模型描述现实世界中的事物及其联系。 用数据模型描述现实世界中的事物及其联系。
1) 字段(field)或数据项(data item): 字段( )或数据项( ): 标记实体属性的命名单位,是数据库中的最小信息单位。 标记实体属性的命名单位,是数据库中的最小信息单位。 2) 记录(record):字段值的有序集合。 记录( ):字段值的有序集合 ):字段值的有序集合。 3) 记录型 : 字段名的有序集合。 字段名的有序集合。 4) 文件 : 同类记录的集合。对应于实体集。 同类记录的集合。对应于实体集。
p03第三章 空间数据模型-第六-八节2
要素的特点
① 要素具有形状 ② 要素具有空间参考 ③ 要素具有属性 ④ 要素具有子类 ⑤ 要素具有关联 ⑥ 要素属性可以被限制 ⑦ 要素能用规则来验证 ⑧ 要素具有拓扑关系 ⑨ 要素具有复杂的行为
1)要素具有形状
要素的形状是以 Geometry (shape)这么一个特殊字段存储在要素类 表中的。要素可以用以下这些几何类型表达: 点或多点(一组点) 线(一组相连或不相连的线段) 多边形(不相邻或嵌套的环)。环是由一组连接的、闭合的、不 相交的线段组成的
• 属性关联:也可以定义非空间对象的关联,如房屋与 其主人的关系。
6)要素属性可以被限制
• 为加强数据录入的准确性,还可以制定属性域对要素的属性 进行限定。属性域,表现为一个数值范围或合法值的列表, 也可以在要素创建之时为其属性自动分配一个缺省值。可以 在要素类中为不同的子类设置不同的属性域和缺省值。
要素集中可以存储对象(Objects)、要素(features)及关联 类(Relationship class)和拓扑、几何网络。
对象、要素和关联类直接存储在 Geodatabase 中,不需要非得 存放在要素集中。
二、对象类
• 对象类是Geodatabase中的一个表,保存与地理对 象相关联的描述性信息;
7)要素能用规则来验证
• 现实世界中的对象存在或改变都是必须遵循一定规则 的。可以用这样的规则来限制几何网络中元素的制约 规则,或者定义这些元素关联的对应基数。
8)要素可具有拓扑关系
各类型要素之间具有的精确的空间位置关系就叫做拓扑。 例如,宗地 的二级小分块必须是彼此严格毗邻的,不允许有缝隙和重叠。这种二 维关系称为平面拓扑。
第八节、面向对象的空间数据模型介绍
第3章 空间数据模型
空间数据概念模型
• 网络是由一系列节点和环链组成的,与对象模型 没有本质的区别 • 网络模型可以看成对象模型的一个特例,它是由 点对象和线对象之间的拓扑空间关系构成的 • 空间数据概念模型归结为对象模型(或称要素模 型)和场模型(或称域模型)两类
空间数据概念模型
• 不规则多边形区。将平面区域划分为简单连通的多边形区 域,每个多边形区域的边界由一组点所定义;每个多边形 区域对应一个属性常量值,而忽略区域内部属性的细节变 化 • 不规则三角形区。将平面区域划分为简单连通三角形区域, 三角形的顶点由样点定义,且每个顶点对应一个属性值; 三角形区域内部任意位置的属性值通过线性内插函数得到 • 等值线。用一组等值线C1,C2,…,Cn,将平面区域划 分成若干个区域。每条等值线对应一个属性值,两条等值 线中间区域任意位置的属性是这两条等值线的连续插值
(a) 规则分布的点
( b ) 不规则分布的 点
(c)规则矩形区
(d) 不规则多边形区
(e) 不规则三角形区
(f) 等值线
空间数据概念模型
• 网络模型
– 网络模型与对象模型类似,都是描述不连续的地理现 象,不同之处在于它需要考虑通过路径相互连接多个 地理现象之间的连通情况 – 网络是由欧式空间R2中的若干点及它们之间相互连接 的线(段)构成
地理空间与空间实体
• 属性特征
– 也称为非空间特征或专题特征,是与空间实体相联系 的、表征空间实体本身性质的数据或数量,如实体的 类型语义定义、量值等 – 类型
• 定性属性,如名称、类型、特性等 • 定量属性,如数量、等级等
GIS空间分析的数据模型
基态修正模型
基态修正模型按事先设定的时间间隔进行采样,它 只存储某个时间数据状态(基态)和相对于基态的变 化量。
33
时空立方体模型( Space-time Cube)
由空间两个维度和一个时间维组成,描述了二维 空间沿着第三个时间维演变的过程。任何一个空 间实体的演变历史都是空间-时间立方体中的一 个实体。
➢ 拐点(Turn):从一个链到另一个链的过渡。拐点在 网络模型中不用于模拟现实世界中的实体,而是 代表链与链之间的过渡关系。
21
常用的网络模型:
网络跟踪(Trace)
➢用于研究网络中资源和信息的流向; ➢在水文应用中,网络跟踪可用于: • 计算河流中水流的体积, • 跟踪污染物从污染源开始,沿溪流向下游扩散的
28
3.7 时空数据模型
➢ 静态GIS(SGIS):
传统的地理信息系统应用只涉及地理信息的 两个方面:空间维度和属性维度。
➢时态GIS (TGIS):
能够同时处理时间维度。 解决历史数据的丢失问题。 实现数据的历史状态重建、时空变化跟踪、
发展势态的预测等功能。
29
数据的时间维度:
➢结构化数据:如一个测站历史数据的积累,可以 通过在属性数据表记录中简单地增加一个时间戳 (Time Stamp)实现管理;
➢ 结点(Node):链的终止点。 链总是在结点处相交。结点可以用来表示道路 网络中道路交叉点、河网中的河流交汇点等。
20
➢ 站点(Stops):在某个流路上经过的位置。代表现 实世界中邮路系统中的邮件接收点、或高速公路 网中经过的城市等。
➢ 中心(Center):网络中的一些离散位置,可以提供 资源。如现实世界中的资源分发中心、购物中心、 学校、机场等。其状态属性包括资源容量,如总 的资源量;阻力限额,如中心与链之间的最大距 离或时间限制。
第三章 空间数据结构
(三)栅格数据的组织
数据文件 像元1
像元2 … 像元n
X坐标
数据文件
Y坐标
层1属性
层1
层2属性 ...
层n属性
层2 …
层n
像元1
X坐标
Y坐标 属性值
数据文件 层1
像元2 ...
像元n
多边 形1
属性值 像元1坐标
像元2坐标 … 像元n坐标
多边形2 ... 多边形n
层2 …
层n
(四)栅格结构的建立
一)建立途径
数据存储量大
(2)费尔曼链码 (边界编码)
将线状地物或区域边界表示为:由某一起始点 和某些基本方向上的单位矢量链组成。
前两个字母表示起点的行列号,从第三个数 字开始每个数字表示单位矢量的方向。
单位矢量的长度 为一个栅格单元, 后续点可能位于前 继点8个基本方向上。
7
0
1
6
2
5
4
3
(2)费尔曼链码 (边界编码)
三)栅格属性值的确定
4、重要性法
突出某些主要属性,只要在栅格中出现就把该属性作为 栅格属性
A
B
C
D
AABB AABB CDDB DDDD
三)栅格属性值的确定
5、百分比法
根据矩形区域内各地理要素所占面积的百分比数确定单 元的取值。
A
B
C
D
AABB AABB CDDB DDDD
(五)栅格数据编码方式
(3)游程(行程)编码
特点:属性的变化愈少,游程愈长,即压缩比的
大小与图的复杂程度成反比。
优点:数据压缩率高,易于实现叠加,检索和合
并运算。
缺点:适合类型区面积较大的专题图、遥感影像
第三章空间数据模型第2节栅格数据模型
5
7
D
5
8
C
5
8
Full Raster Encoding (100 Values)
Rows
Columns 0123456789 0 AAAAAAAAAA 1 AAAAAAAAAA 2 AAAABBBBBB 3 AAAABBBBBB 4 DDDDBBBBBB 5 DDDDDBBBBB 6 DDDDDCCCCC 7 DDDDDCCCCC 8 DDDDDCCCCC 9 DDDDCCCCCC
(88 bytes)
4、四杈树编码-概念
四 叉 树 分 割
四杈树编码-数据表达
三、计算机中的栅格数据
• DEM示例
地形表达
地形表达 DEM
地形表达
等值线表示
污染浓度表示
等高线的栅格表示
四、栅格数据总结
1. 面积被表达为栅格矩阵
栅格是基本元素(像元)
2. 空间描述的详细程度依赖于栅格的大小 3. 存储要求高,需要压缩
第三章 空间数据模型
主要内容
第一节 关系数据模型 第二节 栅格数据模型 第三节 矢量数据模型 第四节 矢量数据模型TIN 第五节 空间数据模型比较 第六节 属性数据与空间数据的连接 第七节 数据模型发展趋势
第二节 栅格数据模型
一.栅格表达 二.栅格数据压缩技术 三.计算机中的栅格数据 四.栅格数据总结
1 2 34 5 6 7 8 1 2 3 4 5 6 7 8
作业:分别用块状编码和标准游程长度编码对此图像进行编码
栅格表达的 精度-分辨率 的大小,依 赖于栅格的 大小
存储量和精 度的矛盾
分辨率与存储单元示意图
思考题
1. 感知世界的二分法是什么?地理信息的空间变化在 这种二分法下是如何被感知的?
第三章-空间数据模型
2)邻接性: (同类元素之 间)
多边形之间、结点之间。
邻接矩阵
重叠:-- 邻接:1 不邻接: 0
P1 P2 P3 P4 P1 -- 1 1 1 P2 1 -- 1 0 P3 1 1 -- 0 P4 1 0 0 --
3)连通性:与邻接性相类似,指对弧段连接的判别,如用于网络 分析中确定路径、街道是否相通。
连通矩阵: 重叠:-- 连通:1 不连通:0
V1 V2 V3 …
V1 -- 1 0 V2 1 -- 1 V3 0 1 --
4)拓扑包含:指面状实体包含了哪些线、点或面状实体。
主要的拓扑关系:拓扑邻接、拓扑关联、拓扑包含。
P2
P1
P2
P3 P2
P1 P1
P2
拓扑关系的表达 拓扑关系具体可由4个关系表来表示: (1) 面--链关系: 面 构成面的弧段 (2) 链--结点关系: 链 链两端的结点 (3) 结点--链关系: 结点 通过该结点的链 (4) 链—面关系: 链 左面 右面
2 杨树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
3 松树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
空间对象的矢量数据模型
3.4 空间逻辑数据模型
二、栅格数据模型
在栅格数据模型中,点实体是一 个栅格单元(cell)或像元,线实体 由一串彼此相连的像元构成,面实 体则由一系列相邻的像元构成,像 元的大小是一致的。
象)
分类
子类/超类 等效
空间关系 非空间关系 时间关系
地理空间 空间要素
几何坐标
子部分 超部分
非空间属性
(第三章)空间数据结构
(第三章)空间数据结构空间数据结构1·简介空间数据结构是在计算机科学领域中用于表示和组织空间数据的数据结构。
它们被广泛应用于地理信息系统(GIS)、计算机图形学、计算机视觉等领域。
2·常见的空间数据结构2·1·四叉树四叉树是一种常见的空间数据结构,它将空间划分为四个象限,并将空间中的点或对象存储在树节点中。
它可以支持高效的空间查询和检索操作,特别适用于二维空间数据。
2·2·八叉树八叉树是四叉树的扩展,将空间划分为八个象限。
它在三维空间中更加常用,可以表示立方体或球体中的对象。
八叉树适用于对三维空间进行高效的查询和搜索。
2·3·R树R树是一种多叉树,用于表示和组织高维空间中的对象。
它通过将空间划分为矩形区域来存储和查询对象。
R树广泛应用于空间数据库和地理信息系统中。
2·4·KD树KD树是一种二叉树,用于存储和查询k维空间中的对象。
它通过将空间划分为超平面来快速定位对象。
KD树在计算机视觉领域中广泛使用,特别适用于最近邻搜索和范围搜索。
2·5·网格网格是一种将空间划分为规则网格单元的数据结构。
它是一种简单而高效的空间索引方法,可以快速进行点查询和范围查询。
3·空间查询操作3·1·点查询点查询是通过给定一个点坐标来查找空间数据结构中的对象。
点查询可以通过遍历整个数据结构或使用特定的查询算法来实现。
3·2·范围查询范围查询是通过给定一个矩形区域来查找空间数据结构中与该区域相交的对象。
范围查询可以通过遍历整个数据结构或使用特定的查询算法来实现。
3·3·最近邻查询最近邻查询是通过给定一个点坐标来查找空间数据结构中最接近该点的对象。
最近邻查询可以通过遍历整个数据结构或使用特定的查询算法来实现。
4·附件附件一:四叉树示意图附件二:八叉树示意图附件三:R树示意图附件四:KD树示意图附件五:网格示意图5·法律名词及注释5·1·GIS(地理信息系统):是一种用于捕获、存储、分析、管理和展示地理空间数据的计算机系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本拓扑关系
关联:不同拓扑元素之间的关系 邻接:相同拓扑元素之间的关系 包含:面与其他元素之间的关系 层次:相同拓扑元素左邻面 右邻面
a
P0
P1
b
P2
P1
c
P3
P1
d
P0
P2
e
P0
P3
f
P3
P2
g
P1
18
三、空间数据拓扑关系的意义
空间数据的拓扑关系,对地理信息系统的 数据处理和空间分析,具有重要意义,因为:
➢ 不需要利用坐标或距离,可以确定空间实体的位 置关系;
➢ 利用拓扑关系便于空间要素的查询; ➢ 根据拓扑关系可以重建地理实体,例如利用弧
段构建多边形,最佳路径的选择等。
19
3.2 空间数据结构的类型
一、两种数据结构 表示地理实体的空间数据包含着空间特
征和属性特征,对具有这些复杂特征的空间 数据,如何组织和建立它们之间的联系,以 便计算机存储和操作,这称为数据结构。
栅格和矢量结构是计算机描述空间实体 的两种最基本的方式。
20
21
(x2,y2)
点、线、面之间的拓扑关系
点: 弧:
起点
面: 弧段3
弧段4
中间点
弧段2
终点
弧段1
9
空间对象关系
不考虑度量(距离)和方向的空间物体之间的关系。在拓 扑变换(理想橡皮板拉伸或缩短,但不能撕破或重叠)下两个
以上拓扑元素间能够保持不变的几何属性——拓扑属性具有
空间分析意义。
➢
相离——重合——邻接——相交——包含
P2
a
P3
P4
a, b, c, -g b, d, f c, f, e g
弧段 a b c d e f
扑关系
结点 A,B B,D D,A B,C C,A C,D
g
E,E
表2-2 结点与弧段的拓
扑关系
结点 弧段
A
a, c, e
B
a, d, b
C
d, e, f
D
b, f, c
E
g
表2-4 弧段与多边形的
拓扑关系
非拓扑属性
一个点在一个弧段的端点
两点之间的距离
一个弧段是一个简单的弧段 一个点指向另一个点的方向
一个点在一个区域的边界上 一个点在一个区域的内部
弧段的长度 一个区域的周长
一个点在一个区域的外部
一个区域的面积
一个面是一个简单的面(无岛)
一个面的连通性
拓扑变换 (橡皮变换)
3、空间对象的拓扑空间关系
拓扑元素:
③拓扑包含:指存在于空间图形的同类,但不同级的元素之间
的拓扑关系。包含包括简单包含、多层包含、等价包含三种形
式。
A P0
e
c
P1
P3
E
a
f
D
P4 g
C b
P2
d
B
17
拓扑结构表达
A
e
c
P1
P3
E
f
D
P4 g
C b
P2
d
B
表2-1多边形与弧段的拓 表2-3 弧段与结点的拓
P0
扑关系 面域 弧段
P1
4
空间对象关系
1、拓扑关系概念:是明确定义空间关系 的一种数学方法。在GIS中,用来描述并 确定空间的点线面之间的关系及属性, 并可实现相关的查询和检索。
2、拓扑关系特点: 1)独立于坐标系统的几何关系 2)不随几何实体平移 旋转 缩放而变化
拓扑关系反映了空间实体间的逻辑关系, 不需要坐标、距离信息,不受比例尺限 制,也不随投影关系变化。
(2)属性信息:三条呈不同等级的交通线;
(3)拓扑信息:三条具有关联关系的交通线。
15
16
➢ 二、拓扑关系类型:
➢
拓扑关系是指网结构元素结点、弧段、面域之间
的空间关系,主要表现为下列三种关系:
①拓扑邻接:指存在于空间图形的同类元素之间的拓扑关系。
②拓扑关联:指存在于空间图形的不同元素之间的拓扑关系。
如:地图的矢量和栅格表示
(x1,y1) (x3,y3)
(x4,y4)
0 0 0 0 0 0 1 0 00 00 3 3 0 0 8 1 0 4 44 00 3 3 3 0 0 1 4 4 44 40 3 3 3 0 1 0 4 4 44 44 3 3 3 0 1 0 4 4 44 40 0 0 0 1 7 0 0 4 44 00 0 0 0 1 5 5 0 0 00 00 7 0 1 5 5 5 5 0 00 00 0 0 1 5 5 5 5 0 00 80 0 1 0 5 5 0 0 0 00 00
第三章 空间数据表达
1
3.1 空间对象及空间对象关系
一、地理空间(Geographic Space)
指物质、能量、信息的存在形式在形态、结构过程、 功能关系上的分布方式和格局及其在时间上的延续,具 体包括地球上大气圈、水圈、生物圈、土壤圈和岩石圈 交互作用的区域。
地理空间具体被描述为: 1)绝对空间,具有属性描述的空间位置的集合,一系 列坐标值组成。 2)相对空间,是具有空间属性特征的实体的集合,由 不同实体之间的空间关系组成。
理解拓扑变换和拓扑属性时,我们可以设想
一块高质量的橡皮,它的表面是欧几里德平 面,可被任意拉伸压缩,但不能扭转折叠。 表面上有由结点、弧、环和区域组成的图形。 若对该橡皮进行任意拉伸、压缩,但不扭转 和折叠,则在橡皮形状的这些变换中,图形 的一些属性将得到保留,有些属性将消失。
拓扑和非拓扑属性
拓扑属性
河流在区域内吗?
13
拓扑关系的应用——面
面—点
面—线
面—面
该邮政区包括学校吗? 该区域包括铁路吗? 区域彼此影响吗? 区域重叠吗?
14
空间数据的基本特征
一、
N3
c2
c4
P4
c5
P3
N2
c1
N1
P2 N5
c3
P1
c6
N4
该地图为一副交通图,它传递的基本信息包括:
(1)定位信息:三条呈不同分布状态的交通线;
10
点—点
邻接
点—线
点—面
线—线
线—面
面—面
相交
相离
包含
重合
11
四、拓扑关系的应用——点
点—点
点—线
点—面
住宅
学校
学校和住宅接近吗?
海岸线 码头
肺癌病例 区域
码头在海岸线上吗? 肺癌病在区内分布
12
拓扑关系的应用——线
线—点
线—线
线—面
镇 乘车线路 这条线路过镇上吗?
河流 小路
小路穿过河流吗?
2
现实世界
特征 关系 行为
观察
选择 抽象 综合
空间数据
地图 遥感影像
测量:位置 编码:属性 建立关系: 表达
3
二、空间对象(实体)类型
空间对象一般按地形维数进行归类划分 零维空间对象:点 一维空间对象:线 二维空间对象:面 三维空间对象:体 时间:通常以第四维表达,但目前GIS
还很难处理时间属性。 空间对象的维数与比例尺是相关的