因式分解ppt课件

合集下载

课件《因式分解》精美PPT课件_人教版2

课件《因式分解》精美PPT课件_人教版2
(2)S1=S2,相同的两2个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和.
解:原式=(a2+1)(a+1)(a-1).
原式=3x(2x+1)(2x-1).
-2x(x+1)(x-1)
(3b+2a)(3b-2a)
3(x+2)(x-2)
解:原式=(m-2)(n+1)(n-1).
; .
6. (例 2)分解因式:
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)

(2)4b2-a2=
(2b+a)(2b-a)

(3)9b2-4a2=
(3b+2a)(3b-2a)
.
15. 下列各式中,能用平方差公式分解因式的是
(D )
A. 2a2-b2
B. y2+9
C. -x2-y2
D. x2-1
(2)2m(2m-3)+6m-1. (2b+a)(2b-a)
原式=y(3x+1)(3x-1).
2y(x+2)(x-2)
解:原式=(m-2)(n+1)(n-1).
(2)S1=S2,相同的两个长方形拼成的两个图形的面积相等(x+1)(x-1)
解:原式=(4x2+1)(4x2-1)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2

分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)

因式分解(完全平方公式)精选教学PPT课件

因式分解(完全平方公式)精选教学PPT课件
ab2 a2 2ab b2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这个公式 来分解因式了,我们把它称为“完全 平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子叫做完全平方式
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
最后,我打他一巴掌。干脆痛快,出手的瞬间,像那位绝望的母亲,远远掷出她的高跟鞋。掷中没有?并不重要。 有多爱,就有多不舍;有多温柔,就有多暴烈,爱得唇边有血,眼中有泪,胸口有纠缠的爱与恨,爱到如连体婴般骨肉相连。割爱,就一定不可能如拈去一片花叶般轻松微笑。 明知留不住,收不下,却不能自控我颠倒狂乱的脚步。那一遭,我是夜深街上,追逐汽车的女子。而我无声的哭泣,他没有听见。快乐是人类社会众望所归的最高境界。所谓君子之交谈如水。一个把名缰利锁看得太重的人。注定是不快乐的。快乐就是看淡尘世的物欲、烦恼,不慕荣利。假如你喜欢武侠小说,你没有必要愧对红楼梦; 假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸芸众生,绿水青山,名胜古迹,

21.2.3 因式分解法 课件(共21张PPT)

21.2.3 因式分解法 课件(共21张PPT)

( + )( − )

( − )( + )
情境引入
对于方程 − = ,除了可以用配方法或公式法求
解,还可以怎样求解呢?
观察和分析小亮的解法,你认为他的解法有没有道理?
小亮的思考及解法
解一元二次方程的关键是将它转化为一元一次方程,因此,
可将方程的左边分解因式.于是,得( − ) = .
那么这两个因式中至少有一个等于0;
(3)用因式分解法解一元二次方程的注意点:①必须将方程的右边
化为0;②方程两边不能同时除以含有未知数的代数式;
(4)解一元二次方程时,如果能用因式分解法进行解题,那么它是
首选.
知识点2:换元法解一元二次方程(难点)
1. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使
0,解得y₁=2,y₂=-1(不合题意,舍去),∴|x|=2,∴x₁=2,x₂=-2.
变式:已知(x+y-3) (x+y+4)=-10, 求x+y的值.
解:整理,得( − ) = ,
直接开平方,得 − = 或 −
= −,
解得 = , = −.
() + − = .
解: = , = , = −,
− = + = > ,
所以 =
−±

= − ± ,
21.2.3 因式分解法
1.通过阅读课本 , 学生会用因式分解法解某些简单的数字系
数的一元二次方程,提高了学生的运算能力.
2.通过学生自主探究利用因式分解的方法解方程,培养学生
分析问题、解决问题的能力,并体会通过“降次”把一元二
次方程转化为两个一元一次方程的转化思想.

因式分解法ppt课件

因式分解法ppt课件

(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X

解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .

先配方,再用直接开平方法降
二 配方法 次 方

适用于全部

程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因

因式分解法
式乘积的形式,另一边为0,适用于部分一

《公式法因式分解》课件

《公式法因式分解》课件

因式分解的基本思想?
因式分解的基本思想是将多 项式中的公因式提出来,然 后对剩余部分进行因式分解。
公式法因式分解
1
什么是公式法因式分解?
公式法因式分解是指通过特定的公式,将多项式分解成几个单项式的积。
2
列举公式法因式分解的几个公及其应用
例如: ①平方差公式分解:$a^2-b^2=(a-b)(a+b)$ ②三项完全平方公式分解:$a^2+2ab+b^2=(a+b)^2$ ③一次多项式因式公式分解:$ax^2+bx+c=a(x-x_1)(x-x_2)$
总结与思考
总结公式法因式分解方法 的优缺点
总结公式法因式分解方法的优 点和不足之处,引导学生思考 这一方法的适用范围和限制条 件。
思考其他因式分解方法的 应用场景
向学生介绍不同的因式分解方 法,让他们了解不同的思路和 技巧,开拓视野、拓宽思路。
强调学生掌握因式分解方 法的重要性和未来发展前 景
通过对因式分解实际应用的案 例介绍,并引领学生关注相关 前沿科技和产业,激发他们学 习的兴趣和动力。
公式法因式分解PPT课件
这份PPT课件将带你深入了解因式分解中最常用的公式法,并向你展示这一简 单易学却极其实用的技巧。
பைடு நூலகம்
背景介绍
什么是因式分解?
因式分解即将多项式写成几 个单项式的积的形式。
因式分解的意义和应用?
因式分解可以帮助我们更简 洁、准确地表达多项式,同 时在化简代数式、解方程、 求极值、证明等方面具有广 泛的应用。
3
详细步骤介绍
详细介绍公式法因式分解的每一个步骤,包括提取公因式、使用公式、检验结果等。
实例演练

初中数学因式分解.完美版PPT

初中数学因式分解.完美版PPT

【自主解答】4+12(x-y)+9(x-y)2 =22+12(x-y)+ [3(x-y)]2 =[2+3(x-y)]2 =(2+3x-3y)2. 答案:(2+3x-3y)2
【母题变式】(改变问法)因式分解:4-9(x-y)2=_____. 提示:把9(x-y)2看成[3(x-y)]2使用平方差公式分解为(2+3x-3y)(2-3x+3y). 答案:(2+3x-3y)(2-3x+3y)
-(x-1)(x+2),正确.
【思路点拨】确定公因式,提取后再根据项数确定所使用的公式继续因式分解.
【典例2】(2021·东营中考)因式分解:
【典例2】(2021·东营中考)因式分解:
只有多项式符合完全平方公式或平方差公式的特点时,才能用相应的公式因式分解.
(1)若各项系数都是整数时,取各项系数的最大公因数作为公因式的系数.
③若多项式有四项或四项以上,就考虑综合运用上面的方法.
(3)若上述方法都不能分解,则考虑把多项式重新整理、变形,再按上面步骤进行.
因为mx2-m=m(x2-1)=m(x-1)(x+1),x2-2x+1=(x-1)2,所以公因式为x-1.
答案:3(m2+4)(m+2)(m-2)
【典例4】(1)(2021·枣庄中考)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为 ( )
命题角度2:提公因式后应用公式
【典例3】(1)(2021·聊城中考)把8a3-8a2+2a进行因式分解,结果正确的是 ( )
A.2a(4a2-4a+1)
B.8a2(a-1)

课件《因式分解》PPT_完美课件_人教版2

课件《因式分解》PPT_完美课件_人教版2

所学的解题过程,我们应用了如下关系:
x(a−b)3+y(b−a)3=(a−b)3(x+y)
因式分解与整式乘法是互逆过程.
(1)8a3b2+12ab3c (6) m2-4=(m+2)(m-2)
14.3.1 提公因式法因式分解
理解公因式的概念,会根据“三定法”确定公因式。
(7) 2πR+ 2πr= 2π(R+r)
新的多项式中若 有小括号,要化

即是提公因式后剩下的另一个因式.
练一练
下面的因式分解正确吗?
➢ 3x2y−9xy2=3x(xy−3y2) 3xy (x−3y) ➢ 4x2y−6xy2+2xy=2xy(2x−3y) 2xy (2x−3y+1) ➢ x(a−b)3+y(b−a)3=(a−b)3(x+y) (a−b)3(x−y)
分解因式
例1: 找 3x 2 – 6 x3y 的公因式.
因式分解与整式乘法有何关系?
提公因式并确定另一个因式:要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的另一个因式.
所以,公因式是3x2 .
所以,公因式是3x2 . 所以,公因式是3x2 . 所以,公因式是3x2 .
第十四章 整式的乘法
(5) (a-3)(a+3)=a2-9
定系数,再确定字母,最后确定公因式字母 【名师点拨】别忘记最后核实括号内的多项式是否还有公因式。
2)(x+2)(x-2)= 这种分解因式方法叫提公因式法。
6)a2+2ab+b2= 是pa+pb+pc除以p的商
2xy (2x−3y+1)
的指数;

24《因式分解法》课件(共35张PPT)ppt课件

24《因式分解法》课件(共35张PPT)ppt课件

x+2 = 0 或 3x-5 = 0
∴ x1 =-2 ,
x2 =
5 3
(3)x2-4 = 0
解:因式分解,得 (x+2) (x-2) = 0 x+2 = 0 或 x-2 = 0 ∴ x1 = -2, x
解:因式分解,得
3x 1 5 3x 1 5 = 0
PPT教学课件
回顾与复习
1.我们已经学过了几种解一元二次方程 的方法?
直接开平方法 x2=a (a≥0)
配方法 (x+m)2=n (n≥0)
公式法
x b b2 4ac . b2 4ac 0 . 2a
2.什么叫分解因式?
把一个多项式分解成几个整式乘积 的形式叫做分解因式.
回顾与复习
x1 0,
x2
100 49
2.04
这种解法是不是很简单?
以上解方程 x10 4.9 x 0的方法
是如何使二次方程降为一次的?
x10 4.9x 0 ①
x 0 或 1 0 4.9x 0, ②
可以发现,上述解法中,由①到②的过程,不是用开 方降次,而是先因式分解使方程化为两个一次式的乘 积等于0的形式,再使这两个一次式分别等于0,从而 实现降次,这种解法叫做因式分解法.
10x 4.9x2
根据这个规律求出物体经过多少秒落回地面?
(精确到 0.01 s)
提示
设物体经过 x s 落回地面,这时它 离地面的高度为 0 ,即
10x 4.9x2 0
配方法
公式法
10x 4.9x2 0
10x 4.9x2 0
解:x2 100 x 0
49
x2
100 49
x
50 49
例3.解下列方程 :

《因式分解》ppt全文课件

《因式分解》ppt全文课件

思路点拨:因式分解法解一元二次方程的步骤是: (1)化方程为一般形式; (2)将方程左边因式分解; (3)至少有一个因式为零,得到两个一元一次方程; (4)两个一元一次方程的解就是原方程的解. 但要具体情况具体分析.
解:(1)方程可变形为 y(y+7)=0, ∴y+7=0 或 y=0.∴y1=-7,y2=0. (2)∵方程可变形为 t(2t-1)-3(2t-1)=0, ∴(2t-1)(t-3)=0. ∴2t-1=0 或 t-3=0.∴t1=12,t2=3.
∴(3x+2)(15x+10-3x)=0.
∴3x+2=0 或 12x+10=0.∴x1=-23,x2=-56.
《因式分解》上课实用课件(PPT优秀 课件)
《因式分解》上课实用课件(PPT优秀 课件)
4.我们已经学习了一元二次方程的四种解法:直接开平方 法、配方法、公式法和因式分解法.请从以下一元二次方程中 任选一个,并选择你认为适当的方法解这个方程.
《因式分解》上课实用课件(PPT优秀 课件)
《因式分解》上课实用课件(PPT优秀 课件)
2.用因式分解法解下列方程: (1)(x-4)(x+1)=0; (2)(5x-1)(x+1)=(6x+1)(x+1). 解:(1)(x-4)(x+1)=0,即 x-4=0 或 x+1=0. ∴x1=4,x2=-1. (2)(5x-1)(x+1)=(6x+1)(x+1), ∴(5x-1)(x+1)-(6x+1)(x+1)=0, (x+1)(5x-1-6x-1)=0. ∴(x+1)(-x-2)=0. 即 x+1=0 或-x-2=0.∴x1=-1,x2=-2.
《因式分解》上课实用课件(PPT优秀 课件)
《因式分解》上课实用课件(PPT优秀 课件)
【跟踪训练】

因式分解ppt(共22张PPT)

因式分解ppt(共22张PPT)
3.(随堂练习p31、2)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.

因式分解的概念PPT

因式分解的概念PPT

宽都是8m,长分别是55.5m,24.4m,20.1m,那么这 些绿化带的面积之和是________
8
55.5 24.4 20.1
(3)填空x2-8x+m=(x-4)(
),且m=______
你知道因式分解的定义吗?
你会判别哪些代数式的变形是因式分解吗? 你知道因式分解与整式的乘法的关系吗? 你会验证因式分解是否正确吗? 你会利用因式分解快速解决某些问题吗?
a2-b2=(a+b)(a-b) a2+2ab+b2 =(a+b)2 am+bm =m(a+b)
整式乘法
因式分解
一般地,把一个多项式转化成几个
整式的积的形式,叫做因式分解,有时
我们也把这一过程叫做分解因式。
下列代数式从左到右的变形是因式分解吗?
是 a a ( a 1) 2 (2)( a 3)( a 3) a 9 不是 不是 (3)4 x 2 4 x 1 (2 x 1) 2
1.请叙述因式分解的定义 2.说说因式分解与整式的乘法的关系 3.检验下列因式分解是否正确: (1) x2y-xy2=xy(x-y); (2) 2x2-1=(2x+1)(2x-1); (3) x2+3x+2=(x+1)(x+2). 4.计算下列各题,并说明你的算法: (1)872+87×13 (2)1012-992
做一做
你能否先写出整式相乘的两个例子, 你能由此得到相应的两个多项式的因式 分解吗?把结果与你的同伴交流。
(1)∵3a(a+4) =3a2+12a
∴ 3a2+12a = 3a ( )( a +4
(2)∵ (a+3)2=a2+6a+9 ∴a2+6a+9 = ( )( a + 3+3 a) +2 3 ( a

因式分解(十字相乘法) ppt课件

因式分解(十字相乘法)  ppt课件

(4). 分解a 2 3ab 2b2的结果为 ( D )
练习二丶把下列各式分解因式:
1. x 4 x 3;
2
2. y 7 y 12;
2
3. m 7 m 18;
2
4. p 5 p 36;
2
ppt课件
因式分解:
2 (1)x +8x+12 2 (3)x +13x+12
2 (2)x -11x-12 2 (4)x -x-12
ppt课件
ppt课件
分解因式: 3x -10x+3 解:原式=(x-3)(3x-1) x
3x -3
2
-1
(-x)+( -9x) =-10x
ppt课件
分解因式: 5x -17x-12 3x² +10x+8
2
ppt课件
1多项式称为字母的二次三项式其中称为二次项为一次项为常数项
因式分解--方法三
十字相乘法
一、整式的有关概念
数与字母乘积,这样的代数式叫单项式。 1、单项式: 单独的一个数或字母也是单项式。
2、单项式的系数: 单项式中的数字因数。
3、单项式的次数: 单项式中所有的字母的指数和。 4、多项式: 几个单项式的和叫多项式。 5、多项式的项:组成多项式中的单项式叫多项式的项 6、多项式的次数: 多项式中次数最高的项的次数叫做这个多项式的次数。 7、整式:单项式与多项式统称整式。
(2)x2 -5x+6
ppt课件
例2. 分解因式 (1)x2-7x-60
(2)x2+14x-72
ppt课件
x (a b)x ab
2
x px q

人教教材《因式分解》全文课件

人教教材《因式分解》全文课件

(1)a2-3ab-4b2=
(a-4b)(a+b)
(2)2x2+x-6=
(2x-3)(x+2)
(3)a2b+ab2+a+b=(ab+1)(a+b)
; ;

6.将下列各式因式分解: (1)x2+3x+2; 解:原式=(x+1)(x+2). (2)x2-x-6; 解:原式=(x-3)(x+2).
(3)2x2+5x-3; 解:原式=(x+3)(2x-1). (4)x2-5xy+6y2;
人教教材《因式分解》全文课件
人教教材《因式分解》全文课件
(3)a2+b2-9+2ab. 解:原式=a2+2ab+b2-9 =(a+b)2-32 =(a+b+3)(a+b-3).
人教教材《因式分解》全文课件
人教教材《因式分解》全文课件
知识点 2 十字相乘法 【例 2】 阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq, 将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式: x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2 +3)x+2×3=(x+2)(x+3).
数学
第十四章 整式的乘法与因式分解 第16课时 运用特殊方法因式分解
01 课前预习
1.把多项式分成几组来分解因式的方法叫 分组分解法

2.十字相乘法:利用十字交叉线来分解系数,把二次三项式分解因式的
方法叫做十字相乘法.
02 课堂精讲精练
知识点 1 分组分解法 【例 1】 【阅读材料】 分解因式:mx+nx+my+ny=(mx+nx)+ (my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称 为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”, 也可以是“三、一(或一、三)分组”.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

评 一般地,把一个多项式分解成几个整 式乘积的形式,叫做多项式的因式分解,
分解因式要注意以下几点: 1.分解的对象必须是多项式. 2.分解的结果一定是几个整式的 乘积的形式.

因式分解与整式乘法的关系:
x2
1
因式分解 整式乘法
x 1x 1
因式分解与整式乘法是互逆关系

判断下列各式哪些是整式乘法?哪些是因式分解?
(4)4b2+4b+1=4b( b+1)+1 ( )
不是
是 是
不 是

(1)6ab-12ac=6a(
)
(2)4mn-2xm=( )(2n-x)
(3)a2-9b2=(
)(a-3b)
(4)b2+8b+16=(
)2

2、1在87一2 次8智7力13抢答? 赛中,主持人2提10出12: 992 ?
1872 8713 ?
╳ √ ① 8a2bc3 2a2 • 2b • 2c3
②x2
4
x2 4x 4 (x 2)2
(x 2)(x
2)

③ x( y 1) xy x ④ x2 2x 1 x(x 2) 1 ╳
√ ⑤ 7m 14n 7(m 2n) ⑥

要求:C层同学口头展示,B层同学纠错

2、请将下列等式左边多项式的另一个因式填在括号里:
—导入新知
列式:37×102+37×93+37×105
=37×(102+93+105) =37×300=11100(棵) m37 ×1a02+m37× b93+m37× 1c05 =m37× (1a02+9b3+1c05)
m·a+m·b+m·c= m (a+b+c)
—学习目标
1、理解因式别与联系。



② 3ax 3ay 3(a x+y)
3mn 6nx 3n (m 2x)

16x 2
1
(4x

1)
4x-1

④ a2 6a 9 (a 3)( a+3 )
要求:B层同学口头展示,A层同学纠错

4、尹老师在一块边长为a=13.2的正方形铁板 的四个角处截去4个边长为 b=3.4的正方形,帮老师算算剩余部分的面积。
要求:B层同学黑板板演并讲解, 其他同学质疑、纠错。

x 2x p 5、已知
2 可以因式分解为
,求P的值。
(x 3)(x 5)
要求:A层同学黑板板演并讲解, 其他同学质疑、纠错。

一般地,把一个多项式分解成几个整 式乘积的形式,叫做多项式的因式分解, 有时我们也把这一过程叫做分解因式。其 中每个整式都叫做这个多项式的因式。
评 判断下列变形是不是因式分解(依照定义)
① x 2x 2 x2 4
② 6x4 y3 2x3 y 3xy2

x2 mx n 能分解成 ( x 2)( x 5)
nm 则 = ______, = ______.
评 检验下列因式分解是否正确:
(1) x²y-xy=xy (x-y) ╳ (2) 2x²-1=(2x+1)(2x-1) ╳
(3) x²+3x+2=(x+1)(x+2) √
(4)a2 2a 2 (a 2)2 ╳
注意
检验因式分解是否正确,只要看等式右边几 个整式相乘的积与左边的多项式是否相等。

(1)4a2bc=4a2•b•c
()
(2)8m2n-2mn2=2mn(4m-n) ( )
(3)a2-4b2=( a+2b)(a-2b) ( )
21012 992 ?
谢谢大家
再见
PPT素材:./sucai/ PPT图表:./tubiao/ PPT教程: ./powerpoint/ 范文下载:./fanwen/ 教案下载:./jiaoan/
PPT 课件:./k ejian/ 数学课件:./kejian/shuxue/ 美术课件:./kejian/meishu/ 物理课件:./kejian/wuli/ 生物课件:./kejian/shengwu/ 历史课件:./kejian/lishi/
—导入新知
近年来,我国土地沙漠化问题严重,有3队青年志愿者向沙漠宣战,组
织了一次植物造林活动。每队都种树37行,其中一队种树102列,二队种 树93列,三队种树105列,完成这次植树活动共需要多少棵树苗?
PPT模板:./moban/ PPT背景:./beijing/ PPT下载:./xiazai/ 资料下载:./ziliao/ 试卷下载:./shiti/ PPT论坛: 语文课件:./kejian/yuwen/ 英语课件:./kejian/yingyu/ 科学课件:./kejian/kexue/ 化学课件:./kejian/huaxue/ 地理课件:./kejian/dili/
PPT教学课件
导 —回顾旧知
1.整式乘法有几种形式?
记忆 大比拼
(1)单项式乘单项式
(2)单项式乘多项式: m(a+b+c)=ma+mb+mc
(3)多项式乘多项式:(a+b)(m+n)=am+an+bm+bn
2.乘法公式有哪些?
(1)平方差公式: (a+b)(a-b)=a2-b2
(2)完全平方公式: (a±b)2=a2±2ab+b2
2、能判断因式分解的正误,会进行简单的因式分解。 3、感觉因式分解在解决相关问题中的作用。

对议:1、因式分解的概念是什么? 因式分解与整式乘法的关系?
2、结合提纲1、2题探讨因式分解的识别 需注意哪几点?
组议:探讨提纲3、4、5题的思路与方法, 感受因式分解在解决相关问题中的作用。

1、下列各式中,从等号左边到右边的变形, 哪些是多项式的因式分解?
(1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+1 (4) x2+4x+4=(x+2)2 (5) (a-3)(a+3)=a2-9 (6) m2-4=(m+2)(m-2)
因式分解 整式乘法 整式乘法 因式分解
整式乘法
因式分解
相关文档
最新文档