各种多天线技术模式的概念介绍
TD-LTE网络中的多天线技术
典 型 公 路 环 境 。 虽 然 站 间 距 与 城 区 环
功 率 损 失 的 增强 型 公 共 信道 发 送 方 案 , 有 效 克 服 了静 态 赋 形 的 功 率损 失 问题 , 提 升 了 广 播 信 道 的 覆 盖 ,使 8 线 公 共 天 信 道 获 得 与 2 线 相 当的 覆 盖 能 力 。在 天 深 圳 外 场 测 试 中 ,我 们 看 到 类 似 的 现 象 。 用扫 频 仪 在 相 同环 境 中 测 得 的结 果
ERI S CS ON
T T 网络中的 E
马 嫡
爱 立信市 场与 战略发展 部
口 多天线技术简介
在 无 线 通 信 领 域 ,对 多 天 线 技 术 的 研 究 由来 已 久 。 其 中 天 线 分 集 、波 束 赋 形 、 空 分 复 用 ( I O )等 技 术 M M 已在 3 G和 L 网 络 中得 到 广 泛 应 用 。 TE 多 天 线 技 术 给 网 络 带 来 的 增 益 包 括 更 好 的 覆 盖 ( 波 束 赋 形 )和 更 高 的 速 如 率 ( 空分 复 用 )。 如 3 P 范 R9 本 中规 定 了 8 传 GP 规 版 种 输模 式 ,见表 1 原 则上 ,3 P 对 天 线 。 GP
数 目与 所 采 用 的 传 输 模 式 没 有 特 别 的
考 虑 两 种 天 线 配 置 : 8 线 波 束 赋 形 天 ( 流 、双 流 )和 2 线 M I O ( 分 单 天 M 空
复 用 、发 送 分 集 )。
果 基 本 一 致 。 引入 模 式 内 、 问切 换 后 8 天 线 在 小 区 中心 采 用模 式 3 ,边 缘 则 为
mimo技术的三种模式介绍,mimo技术作用,mimo技术种类
mimo技术的三种模式介绍,mimo技术作用,mimo技术种类一、MIMO定义MIMO即多入多出技术(MulTIple-Input MulTIple-Output)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。
它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。
二、MIMO技术分类空分复用(spaTIal mulTIplexing)工作在MIMO天线配置下,能够在不增加带宽的条件下,相比SISO系统成倍地提升信息传输速率,从而极大地提高了频谱利用率。
在发射端,高速率的数据流被分割为多个较低速率的子数据流,不同的子数据流在不同的发射天线上在相同频段上发射出去。
如果发射端与接收端的天线阵列之间构成的空域子信道足够不同,即能够在时域和频域之外额外提供空域的维度,使得在不同发射天线上传送的信号之间能够相互区别,因此接收机能够区分出这些并行的子数据流,而不需付出额外的频率或者时间资源。
空间复用技术在高信噪比条件下能够极大提高信道容量,并且能够在开环,即发射端无法获得信道信息的条件下使用。
Foschini等人提出的贝尔实验室分层空时(BLAST)是典型的空间复用技术。
空间分集(spatial diversity):利用发射或接收端的多根天线所提供的多重传输途径发送相同的资料,以增强资料的传输品质。
波束成型(beamforming):借由多根天线产生一个具有指向性的波束,将能量集中在欲传输的方向,增加信号品质,并减少与其他用户间的干扰。
预编码(precoding):预编码主要是通过改造信道的特性来实现性能的提升。
以上MIMO 相关技术并非相斥,而是可以相互配合应用的,如一个MIMO 系统即可以包含空分复用和分集的技术。
三、MIMO技术优点无线电发送的信号被反射时,会产生多份信号。
LTEMIMO模式的学习理解
MIMO 学习心得 --------Ellen wangLTE的7个传输模式中6 个分别应用了四种MIMO技术方案:传输分集〔TD〕,波束赋型〔Beamforming〕,空间复用〔SM〕,多用户MIMO〔MU-MIMO〕:1.为普通单天线传输模式。
2.TransmitDiversity 模式:分2发送天线的SFBC,和4发送天线的SFBC+FSTD两种方案。
2发送天线的SFBC : SFBC是由STBC〔Space Time Block Code〕演变而来,由于OFDM一个slot的符号数为奇数,因此不适于使用STBC,但频域资源是以RB=12个子载波来分配的,因此可以用连续两个子载波来代替连续两个时域符号,从而组成SFBC。
而当使用4发送天线时,SFBC+FSTD〔Frequency Switched TransmitDiversity〕被采用。
3.SM-open loop,UE仅仅反应信道的RI〔Rank Indicator〕。
此时基站会使用CDD〔Cycle Delay Diversity〕技术。
4.SM-close loop,UE根据信道估计的结果反应适宜的PMI〔PrecodingMatri* Indicator〕。
(如利用系统容量最大计算适宜的PMI)5.MU-MIMO,该方案将一样的时频资源通过空分,分配给不同的用户。
6.close loop rank1——SM or BF,UE反应信道信息使得基站选择适宜的Precoding。
7.UE Special RS——BF,和BeamForming的前一种方式不同,这种方式无需UE反应信道信息,而是基站通过上行信号进展方向估计,并在下行信号中插入UE Special RS。
基站可以让UE汇报UE Special RS估计出的CQI。
空间复用是为了提高传输数据数量,基于多码字的同时传输,即多个相互独立的数据流通过映射到不同的层,再由不同的天线发送出去。
MIMO技术ppt
-
MIMO的工作模式
LTE中7种MIMO模式
1 Mode 1 单天线端口 2 Mode 2 发射分集 3 Mode 3 开环空间复用 4 Mode 4 闭环空间复用 5 Mode 5 多用户MIMO 6 Mode 6 码本波束成形 7 Mode 7 非码本波束成形
-
适用于单天线端口 提供发射分集对抗衰落 适用于高速移动环境 提高峰值速率 提高系统容量
-
MIMO的工作模式
空间分集模式 空间分集的思想是制作同一个数据流的不同版
本,分别在不同的天线进行编码、调制、然后 发送。这个数据流可以是原来要发送的数据流, 也可以是原始数据流经过一定的数学变换后形 成的新数据流。同一个东西,不同的面貌。 不管是复用技术还是分集技术,都涉及把一路 数据变成多路数据的技术,即空时编码技术。
提高小区覆盖,抑制干扰
MIMO的工作模式
MIMO模式在下行物理信道的应用
物理信道
Mode1
PDSCH
PBCH
PCFICH
PDCCH
PHICH
SCH
Mode 2
Mode3 – Mode 7
-
MIMO的工作模式
MIMO模式的应用
小区中心
小区边缘
高速移动
中速移动
市区
低速移动(室内) 小-区边缘
时间
Z= S1 S2 -S2* S1*
天线
-
MIMO的工作模式
SFBC的主要思想是在空间和频率两个维度 上安排数据流的不同版本,可以有空间分 集和频率分集的效果。
Z=
S1 S2 -S2* S1*
子载波
天线
-
MIMO的工作模式
TSTD也是在空间和时间两个维度上安排数 据流的不同部分,可以有空间分集和时间 分集的效果。
简述mimo的工作模式
简述mimo的工作模式1. MIMO技术简介MIMO(Multiple-Input Multiple-Output)是多输入多输出的英文缩写,是一种无线通信系统的传输技术。
MIMO技术通过在发送和接收端使用多个天线,实现信号的空间分集,以提高通信链路的容量和可靠性。
简单而言,MIMO技术允许单一频率同时传输多个数据流。
2. MIMO的工作模式MIMO的核心工作原理是空间重复和空间编码,有以下四种主要的工作模式:##2.1 空间分集模式(Spatial Diversity)空间分集模式主要用于解决多径传播引起的信号衰减问题。
在此模式下,发送器会把同一信号的副本同时通过多个天线发送出去,接收器通过接收每个天线的信号,进行组合或选择性接收,从而降低误码率。
##2.2 信道容量模式(Spatial Multiplexing)信道容量模式也被称为空间复用模式,其目的是提高频谱效率和数据传输率。
在此模式下,发送器会将数据流分解为多个子流,然后通过多个天线同时发送。
接收器会依据接收到的信号,利用信道信息进行解码,从而实现高效的数据传输。
##2.3 传输波束成形模式(Transmit Beamforming)在波束成形模式下,发送器会根据预先获取的信道状态信息,调整每个天线的发送信号幅度和相位,使得接收天线的收到信号强度最大。
这种模式能提高链路的信号质量和覆盖范围。
##2.4 网络 MIMO(Coordinated Multipoint Transmission)网络MIMO模式是基于信道状态信息,由多个节点协同工作,同一时间向多个用户发送数据,可以进一步提高频谱利用率和系统容量。
3. MIMO的发展和应用MIMO技术作为现代无线通信系统的重要技术之一,已广泛应用于无线局域网、蜂窝移动通信、无线传感网络等领域。
随着科技的不断进步,MIMO技术还有望在未来的5G甚至6G通信系统中发挥重要作用。
简述mimo的工作模式
简述mimo的工作模式MIMO的工作模式MIMO是多输入多输出(Multiple Input Multiple Output)的缩写,是一种通信技术,通过在发送和接收端同时使用多个天线来提高无线通信系统的性能。
MIMO技术广泛应用于Wi-Fi、4G和5G等无线通信系统中,极大地提高了数据传输速率和系统容量。
MIMO的工作模式可以简述为:在发送端,MIMO系统将待发送的数据分成多个子流,然后通过不同的天线进行传输。
而在接收端,MIMO 系统同时利用多个天线接收到的信号进行数据恢复和解码,从而提高系统的可靠性和传输速率。
MIMO系统的关键是利用多个天线。
在发送端,待发送的数据经过空分多路复用(Spatial Multiplexing)技术被分成多个子流,每个子流通过不同的天线进行发送。
通过将数据分成多个子流并通过不同的天线发送,MIMO系统可以充分利用空间资源,提高数据传输效率。
同时,MIMO系统还可以利用多个天线同时发送相同的数据,从而提高系统的覆盖范围和抗干扰能力。
在接收端,MIMO系统利用多个天线接收到的信号进行数据恢复和解码。
在接收端的每个天线接收到的信号是经过多个传播路径传输而来的,这些传播路径具有不同的路径损耗、相位差和时延。
MIMO系统通过利用这些传播路径之间的差异,可以通过合理的信号处理算法将多个接收到的信号进行解码和恢复,从而提高系统的可靠性和传输速率。
除了空分多路复用技术,MIMO系统还可以利用空间分集(Spatial Diversity)技术提高系统性能。
空间分集技术通过在发送端利用多个天线发送相同的数据,在接收端接收到的多个信号之间进行比较和组合,从而减小信号的多径衰落效应,提高系统的抗干扰能力和传输可靠性。
MIMO的工作模式是通过在发送和接收端同时利用多个天线,利用空分多路复用和空间分集技术来提高无线通信系统的性能。
MIMO技术的应用使得无线通信系统可以在相同的频谱资源下传输更多的数据,提高系统的容量和传输速率。
MIMO技术
√√ √√Fra bibliotek课程内容
MIMO基本原理 MIMO的工作模式 MIMO系统的实现 自适应MIMO 多用户MIMO
MIMO的工作模式
MIMO系统的多个输入和多个输出实际上就 是多个信号流在空中的并行传输 提高信息传送效率的工作模式就是MIMO的 复用模式 提高信息传送可靠性的工作模式就是MIMO 的分集模式
码本波束成形 非码本波束成形
高 高
低速移动 低速移动
低 低
小区边缘 小区边缘
课程内容
MIMO基本原理 MIMO的工作模式 MIMO系统的实现 自适应MIMO 多用户MIMO
MIMO系统的实现
最多2个码字流 q
2
最多4层
4
最多4个天线端口 P
4
每端口天线数目 M P 1
M1 4
t:是CDD的时延量
MIMO的工作模式
LTE中7种MIMO模式
1 2 3 4 5 6 7
Mode 1 单天线端口 Mode 2 发射分集 Mode 3 开环空间复用 Mode 4 闭环空间复用 Mode 5 多用户MIMO Mode 6 码本波束成形 适用于单天线端口 提供发射分集对抗衰落 适用于高速移动环境 提高峰值速率 提高系统容量
MIMO模式的应用
小区中心 小区边缘
市区
高速移动 中速移动
低速移动(室内)
小区边缘
MIMO的工作模式
MIMO 模式总结
传输 方案 发射分集 (SFBC) 开环空间复用 双流预编码 多用户MIMO 信道 相关性 低 低 低 低 移动性 高/中速移动 高/中速移动 低速移动 低速移动 数据 速率 低 中/低 高 高 在小区中 的位置 小区边缘 小区中心/边缘 小区中心 小区中心
无线通信中的多天线技术研究
无线通信中的多天线技术研究第一章引言随着移动通信技术的迅猛发展,人们对于无线通信的需求越来越高。
然而,无线通信频段资源有限,为了提高通信质量和容量,多天线技术逐渐成为无线通信领域的研究热点。
本章将介绍本文的研究背景、目的和意义,并简要概括多天线技术的基本概念和应用领域。
第二章多天线技术的基本原理2.1 多天线系统的基本概念多天线系统是指在发射端和接收端同时使用多个天线的通信系统。
通过增加天线数量,可以提高通信系统的性能和容量。
本节将介绍多天线系统的基本概念,包括多输入多输出(MIMO)系统、多天线信号处理和多天线天线阵列等内容。
2.2 多天线技术的原理多天线技术的基本原理是利用多径传播的信号特点,通过在发射端和接收端使用多个天线来提供空间上的多样性。
本节将详细介绍多天线技术的原理,包括空时编码、空分复用和波束成形等。
第三章多天线技术的应用3.1 无线通信系统中的多天线技术多天线技术在无线通信系统中有广泛的应用,可以提高信号的传输速率和可靠性。
本节将介绍多天线技术在4G、5G等无线通信系统中的应用,包括空间复用、干扰消除和功率控制等。
3.2 多天线技术在物联网中的应用物联网是未来发展的一个重要领域,多天线技术在物联网中也有着重要的应用价值。
本节将介绍多天线技术在物联网中的应用场景和优势,包括智能家居、智能交通和智慧城市等方面。
第四章多天线技术研究的挑战和前景4.1 多天线技术研究面临的挑战多天线技术的研究虽然取得了很大的突破,但仍然面临着很多挑战。
本节将介绍多天线技术研究面临的主要挑战,包括天线设计、干扰管理和算法复杂性等方面。
4.2 多天线技术的发展前景多天线技术具有巨大的发展潜力,可以提高无线通信系统的性能和容量。
本节将展望多天线技术的发展前景,包括6G、物理层安全和无线电频谱利用效率等方面。
第五章结论本文总结了无线通信中的多天线技术的研究现状和应用领域,阐述了多天线技术的基本原理和发展趋势。
浅析LTE 系统的多天线技术
浅析LTE 系统的多天线技术摘要:多天线技术能够在不增加带宽的条件下,大幅提高系统容量和链路可靠性,因而成为LTE 的关键技术之一。
多天线技术性能不仅取决于空时信号处理,天线本身的指标也很大程度上影响其网络部署。
LTE的多天线技术包含了分集、空间复用和波束赋形技术。
与之相对应,LTE规定了8种传输模式。
文章介绍了多天线技术的分类,对TM3与TM7的切换做了简要分析,探讨了波束赋形与发送分集的性能对比。
关键词:LTE;多天线;传输模式;波束赋形1 LTE多天线技术的分类在下行链路,LTE的多天线发送方式可分为发射分集、空间复用和波束赋形等传输模式。
1.1发射分集发射分集方案有多种实现方法,例如延迟发射分集、循环延迟发射分集、切换发射分集、空时(频)编码等;LTE标准中采用空频编码(SFBC)作为两天线端口的发射分集方案、4天线端口的发射分集方案为SFBC+FSTD(空频编码+频率切换发射分集)。
其中,两天线端口的发射分集方案- 空频编码SFBC:待发送信息经过星座映射后,以两个符号为单位进入空频编码器。
在第一个频率(子载波),天线端口1传输符号c1,天线端口2传输符号c2;在另一个子载波上,天线端口1与天线端口2分别传输符号- c2与c1。
两天线端口的SFBC发射机结构如图1所示。
4天线端口的发射分集方案- SFBC+FSTD:在FSTD中,发射天线按照不同的子载波进行切换,不同的天线支路使用不同的子载波集合进行发送,减小了子载波之间的相关性,使等效信道产生了频率选择性。
SFBC+FSTD方案将待传输的数据符号以4个为一组进行编码操作,记为c1、c2、c3、c4,这4个符号按照表1所示的关系映射到子载波0、1、2、3和天线端口0、1、2、3上。
在子载波0和1上,天线端口0和2传输数据,端口1和3不传输数据;类似的,子载波2和3上,天线端口1和3传输数据,端口0和2不传输数据。
子载波0与1、2与3构成了两个子载波组,天线端口0与2、1与3构成了两个天线组,两个天线组使用不同的子载波,形成FSTD。
LTE-MIMO-基本原理介绍
MIMO基本原理介绍课程目标:●了解MIMO的基本概念●了解MIMO的技术优势●理解MIMO传输模型●了解MIMO技术的典型应用目录第1章系统概述 (1)1.1 MIMO基本概念 (1)1.2 LTE系统中的MIMO模型 (2)第2章 MIMO基本原理 (5)2.1 MIMO系统模型 (5)2.2 MIMO系统容量 (6)2.3 MIMO关键技术 (7)2.3.1 空间复用 (7)2.3.2 空间分集 (9)2.3.3 波束成形 (13)2.3.4 上行天线选择 (14)2.3.5 上行多用户MIMO (15)第3章 MIMO的应用 (17)3.1 MIMO模式概述 (17)3.2 典型应用场景 (19)3.2.1 MIMO部署 (19)3.2.2 发射分集的应用场景 (21)3.2.3 闭环空间复用的应用场景 (22)3.2.4 波束成形的应用场景 (23)第4章 MIMO系统性能分析 (25)4.1 MIMO系统仿真结果分析 (25)4.2 MIMO系统仿真结果汇总 (27)第1章系统概述知识点MIMO基本概念LTE系统中的MIMO模型1.1 MIMO基本概念多天线技术是移动通信领域中无线传输技术的重大突破。
通常,多径效应会引起衰落,因而被视为有害因素,然而,多天线技术却能将多径作为一个有利因素加以利用。
MIMO (Multiple Input Multiple output:多输入多输出)技术利用空间中的多径因素,在发送端和接收端采用多个天线,如下图所示,通过空时处理技术实现分集增益或复用增益,充分利用空间资源,提高频谱利用率。
图 1.1-1 MIMO系统模型总的来说,MIMO技术的基础目的是:●提供更高的空间分集增益:联合发射分集和接收分集两部分的空间分集增益,提供更大的空间分集增益,保证等效无线信道更加“平稳”,从而降低误码率,进一步提升系统容量;●提供更大的系统容量:在信噪比SNR足够高,同时信道条件满足“秩>1”,则可以在发射端把用户数据分解为多个并行的数据流,然后分别在每根发送天线上进行同时刻、同频率的发送,同时保持总发射功率不变,最后,再由多元接收天线阵根据各个并行数据流的空间特性,在接收机端将其识别,并利用多用户解调结束最终恢复出原数据流。
MIMO技术原理、概念、现状简介
MIMO技术原理、概念、现状简介2004-12-14 09:29 移动通信在线导读--MIMO提高通信系统的容量和频谱利用率,是新一代移动通信系统采用的关键技术。
多入多出(MIMO)或多发多收天线(MTMRA)技术是无线移动通信领域智能天线技术的重大突破。
该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是新一代移动通信系统必须采用的关键技术。
那么MIMO技术究竟是怎样的?实际上多进多出(MIMO)技术由来已久,早在1908年马可尼就提出用它来抗衰落。
在70年代有人提出将多入多出技术用于通信系统,但是对无线移动通信系统多入多出技术产生巨大推动的奠基工作则是90年代由A T&T Bell实验室学者完成的。
1995年Teladar给出了在衰落情况下的MIMO容量;1996年Foshinia给出了一种多入多出处理算法——对角-贝尔实验室分层空时(D-BLAST)算法;1998年Tarokh等讨论了用于多入多出的空时码;1998年Wolniansky等人采用垂直-贝尔实验室分层空时(V-BLAST)算法建立了一个MIMO实验系统,在室内试验中达到了20 bit/s/Hz以上的频谱利用率,这一频谱利用率在普通系统中极难实现。
这些工作受到各国学者的极大注意,并使得多入多出的研究工作得到了迅速发展。
一句话,MIMO(Multiple-Input Multiple-Out-put)系统就是利用多天线来抑制信道衰落。
根据收发两端天线数量,相对于普通的SISO(Single-Input Single-Output)系统,MIMO还可以包括SIMO(Single-Input Multi-ple-Output)系统和MISO(Multiple-Input Single-Output)系统。
MIMO的概念通常,多径要引起衰落,因而被视为有害因素。
然而研究结果表明,对于MIMO系统来说,多径可以作为一个有利因素加以利用。
无线通信技术中的多天线与波束赋形
无线通信技术中的多天线与波束赋形随着无线通信技术的不断发展,人们对于通信质量的要求也不断提高。
为了提高通信系统的性能和容量,多天线与波束赋形技术逐渐被广泛应用。
本文将详细介绍多天线与波束赋形技术的概念、原理、应用以及未来发展。
一、多天线技术的概念和原理1. 多天线技术是指在无线通信系统中采用多个天线来进行信号的传输和接收。
通过多个天线同时发射或接收信号,可以提高信号的传输速率和可靠性。
2. 多天线技术的原理是利用空间分集和空间复用的特性,在无线信道中进行信号的干扰与抑制。
通过合理设计天线的位置和数目,可以实现信号的分集和多用户之间的空间复用。
二、多天线技术的应用1. 天线分集:通过多个天线同时接受信号,可以增加接收到的信号幅度,从而提高信号的可靠性和抗干扰性。
这在移动通信系统中尤为重要,可以有效应对信道衰落、多径效应等问题。
2. 空间复用:通过多个天线同时发送信号,可以将同一个频段的信号分别发射到不同的方向,从而实现对不同用户的服务。
这在无线局域网和蜂窝通信系统中应用广泛,可以提高系统的容量和覆盖范围。
三、波束赋形技术的概念和原理1. 波束赋形技术是指通过优化天线阵列中各个天线的相位和幅度,使得发射或接收信号在特定方向上形成一个或多个波束。
通过准确控制波束的方向和形状,可以提高信号的增益和定向性。
2. 波束赋形技术的原理是利用干涉理论和波的传播特性,在天线阵列中产生相干干涉,从而实现波束的形成。
通过调节天线的相位和幅度,可以实现对波束的精确控制。
四、波束赋形技术的应用1. 数据传输:通过优化波束的方向和形状,可以提高信号的增益和方向性,从而提高数据传输的速率和可靠性。
这在高速移动通信和室内分布式系统中尤为重要。
2. 网络覆盖:通过调整波束的方向和形状,可以实现对特定区域的覆盖,从而提高系统的容量和覆盖范围。
这在城市热点区域和农村边缘地区的网络建设中具有重要意义。
3. 干扰抑制:通过调整波束的方向和形状,可以减小对附近用户的干扰,从而提高系统的抗干扰性能。
(完整版)LTE多天线技术
个人也是学习中,算不上高手,说下我的理解:1、最早的多天线技术出现在接收端多天线接收,由于在接收端有多天线,可以形成多条接收通道,从而可以对抗无线信道的深度衰落,显然嘛:多条接收通道同时处于深度衰落的可能性肯定是小于单条接收通道处于深度衰落的可能性,这样就能改善传输质量,提高无线传输的可靠性。
这种技术又叫“收分集”技术,可以应用在基站或手机侧,而且显然由于不涉及到互操作,所以也不用标准化。
从而最先在无线系统中使用。
因为不用标准化,所以在LTE中我们就没有看到这方面的内容。
2、“收分集”技术的应用又给了人们启发:如果手机接收端部署多天线,显然对手机的成本和复杂度是有提高的。
能否把多天线部署在发射端来提高接收端的信道可靠性呢?这样一来:手机只用单个天线,复杂度和成本都在基站一侧,由系统侧承担,岂不乐哉?然而问题随之而来:如果发射端单纯的用多天线发射相同的数据流,它们实际上是相互干扰的,不但起不了分集的作用,而且可能会相互抵消!要多天线发射起到提供增益,而不相互打架,就需要特别的信号处理技术。
(以下都两天线发射为例,H表示复数的共轭,exp()表示一个复数,)牛人1: Alamouti天线1发射{x1, x2, .......}天线2发射{-H(x2),H(x1), .......}这种发射编码方案相当于在形成2个正交的信道(为啥?),从而可以提高传输可靠性这种发射编码方案被用在LTE中就是Mode 2“发射分集”方案牛人2: 无名天线1发射{x1, x2, .......}天线2发射{x1*exp(b1),x2*exp(b2), .......}这种发射编码方案天线1正常发射,天线2把数据加上一个大的相位偏移后再发射相当于在信道中人为造成多径效应(为啥?),从而可以提高传输可靠性这种发射编码方案被用在LTE中就是CDD“分集”方案,LTE中CDD不单独使用,只和空间复用技术结合在一起使用。
牛人3: 无名天线1发射{x1, x2, .......}天线2发射{x1*exp(B1),x2*exp(B2), .......}这种发射编码方案天线1正常发射,天线2把数据加上一个相位偏移后再发射。
LTE MIMO 模式的学习理解
MIMO 学习心得 --------Ellen wangLTE的7个传输模式中6 个分别应用了四种MIMO技术方案:传输分集(TD),波束赋型(Beamforming),空间复用(SM),多用户MIMO(MU-MIMO):1.为普通单天线传输模式。
2.TransmitDiversity 模式:分2发送天线的SFBC,和4发送天线的SFBC+FSTD两种方案。
2发送天线的SFBC : SFBC是由STBC(Space Time Block Code)演变而来,由于OFDM一个slot的符号数为奇数,因此不适于使用STBC,但频域资源是以RB=12个子载波来分配的,因此可以用连续两个子载波来代替连续两个时域符号,从而组成SFBC。
而当使用4发送天线时,SFBC+FSTD(Frequency Switched TransmitDiversity)被采用。
3.SM-open loop,UE仅仅反馈信道的RI(Rank Indicator)。
此时基站会使用CDD(Cycle Delay Diversity)技术。
4.SM-close loop,UE根据信道估计的结果反馈合适的PMI(PrecodingMatrix Indicator)。
(如利用系统容量最大计算合适的PMI)5.MU-MIMO,该方案将相同的时频资源通过空分,分配给不同的用户。
6.close loop rank1——SM or BF,UE反馈信道信息使得基站选择合适的Precoding。
7.UE Special RS——BF,和BeamForming的前一种方式不同,这种方式无需UE反馈信道信息,而是基站通过上行信号进行方向估计,并在下行信号中插入UE Special RS。
基站可以让UE汇报UE Special RS估计出的CQI。
空间复用是为了提高传输数据数量,基于多码字的同时传输,即多个相互独立的数据流通过映射到不同的层,再由不同的天线发送出去。
LTE-MIMO-基本原理介绍
0.045
0.047
4T2R
0
0.01
0.02
0.03
0.04
0.05
0.06
0.0495
秩
eNodeB
UE
MIMO仿真结果 - Case 4
小区频谱效率
0.045
0.047
0.054
4T2R
0
0.4
0.8
1.0
1.4
1.8
2.2
1.748
4T2R
0
0.01
0.02
0.03
0.04
什么是MIMO?
MIMO (Multiple Input Multiple output:多输入多输出)系统,其基本思想是在收发两端采用多根天线,分别同时发射与接收无线信号。
SU-MIMO(单用户MIMO):指在同一时频单元上一个用户独占所有空间资源,这时 的预编码考虑的是单个收发链路的性能; MU-MIMO(多用户MIMO):指在同一时频单元上多个用户共享所有的空间资源,相当于一种空分多址技术,这时的预编码还要和多用户调度结合起来,评估系统的性能。
空时发射分集
空频发射分集与空时发射分集类似,不同的是SFTD是对发送的符号进行频域和空域编码 将同一组数据承载在不同的子载波上面获得频率分集增益
空频发射分集
在不同的发射天线上发送具有不同相对延时的同一个信号, 人为地制造时间弥散,能够获得分集增益。且循环延时分集采用的是循环延时而不是线性延时,延迟是通过固定步长的移相(Cyclic Shift,循环移相)来等效实现延迟 。
低
小区边缘
非码本波束成形
1
高
低速移动
低
小区边缘
描述mimo技术的三种应用模式
描述mimo技术的三种应用模式MIMO (Multiple-Input Multiple-Output)技术是一种现代无线通信技术,可将多个天线组合在一起,实现多路径传输和空间多样性,从而提高了无线通信的带宽和可靠性。
MIMO技术具有多种应用模式,下面将介绍三种主要应用模式。
1.多流MIMO模式。
多流MIMO模式由一个发送天线和多个接收天线组成。
发送天线可以同时传输多个数据流,每个数据流都经过多个路径传输到接收天线。
接收天线可以将这些数据流通过信号处理技术进行合并,从而提高传输速率和频谱利用率。
多流MIMO模式常用于LTE(Long-Term Evolution)系统等宽带无线通信系统中,可实现高速数据传输和优化网络性能。
2.空时编码MIMO模式。
空时编码MIMO模式由两个或多个发送天线和两个或多个接收天线组成。
每个发送天线可以向接收天线传输独立的数据流,接收天线可以通过信号处理技术将这些数据流进行合并,并恢复原始数据。
空时编码MIMO模式的优点在于可提高通信的可靠性和鲁棒性,减少信号传输中的干扰和噪声等影响因素。
空时编码MIMO模式常用于WLAN(无线局域网)和WiFi (无线设备)系统中,可提高数据传输速率和网络性能。
3.天线分集MIMO模式。
天线分集MIMO模式通常由多个发送天线和一个接收天线组成。
每个发送天线可以向接收天线传输同一数据流的副本。
接收天线可以通过信号处理技术对这些副本进行合并,从而提高数据传输的可靠性和抗干扰能力。
天线分集MIMO模式的优点在于可减少信号传输中的误码率和丢失率,提高数据传输的稳定性和质量。
天线分集MIMO模式常用于卫星通信、移动通信以及广播电视等通信系统中,可增强通信信号的可靠性和覆盖范围。
描述mimo技术的三种应用模式
描述mimo技术的三种应用模式MIMO(Multiple-Input Multiple-Output)是一种无线通信技术,利用多个发射天线和接收天线来显著提高无线信号的容量和可靠性。
MIMO技术广泛应用于无线通信系统和Wi-Fi网络中,具有重要的意义。
本文将介绍MIMO技术的三种主要应用模式并提供相关参考内容。
1. 空时编码空时编码是MIMO技术的一种主要应用模式,它利用多个发射天线和接收天线发送和接收多个数据流,通过巧妙的编码和解码算法来提高信号的传输速率和可靠性。
空时编码技术可以在无需增加带宽和发射功率的情况下提高系统性能,适用于各种无线通信系统。
在空时编码的研究中,有一种常用的编码方案称为空时分组码(Space-time Block Code,STBC)。
STBC通过在多个时间间隔和多个天线上编码数据,实现了数据的并行传输和多路径增益。
这种编码方案不仅能提高系统的可靠性,还可以充分利用多天线之间的空间多样性,在不同路径上达到更好的信号传输质量。
参考文献:- Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451-1458.- Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions onInformation Theory, 45(5), 1456-1467.2. 多用户MIMO多用户MIMO是一种利用MIMO技术进行多用户通信的应用模式。
它可以同时传输多个用户的数据流,提高系统的容量和效率。
MIMO基本概念及8种模式
MIMO(Multiple-Input Multiple-Output)系统是一项运用于的核心技术。
802.11n是IEEE继\a\g后全新的技术,速度可达600Mbps。
同时,专有MIMO技术可改进已有/b/g网络的性能。
该技术最早是由Marconi于1908年提出的,它利用多天线来抑制信道衰落。
根据收发两端天线数量,相对于普通的SISO(Single-Input Single-Output)系统,MIMO还可以包括SIMO(Single-Input Multi-ple-Output)系统和MISO(Multiple-Input Single-Output)系统。
应该是说,网络资料通过多重切割之后,经过多重天线进行同步传送,由于无线讯号在传送的过程当中,为了避免发生干扰起见,会走不同的反射或穿透路径,因此到达接收端的时间会不一致。
为了避免资料不一致而无法重新组合,因此接收端会同时具备多重天线接收,然后利用DSP重新计算的方式,根据时间差的因素,将分开的资料重新作组合,然后传送出正确且快速的资料流。
由于传送的资料经过分割传送,不仅单一资料流量降低,可拉高传送距离,又增加天线接收范围,因此MIMO技术不仅可以增加既有无线网络频谱的资料传输速度,而且又不用额外占用频谱范围,更重要的是,还能增加讯号接收距离。
所以不少强调资料传输速度与传输距离的无线网络设备,纷纷开始抛开对既有Wi-Fi联盟的兼容性要求,而采用MIMO的技术,推出高传输率的无线网络产品。
MIMO技术大致可以分为两类:发射/接收分集和空间复用。
传统的多天线被用来增加分集度从而克服信道MIMO1衰落。
具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。
举例来说,在慢信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。
如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到,单天线衰落信道的平均误差概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种多天线技术模式的概念介绍
多天线技术,是指在发送端或接收端都采用多根天线的无线通信技术,是近期发展较快的热点研究技术之一。
采用多天线技术可获得功率增益、空间分集增益、空间复用增益、阵列增益和干扰抑制增益[1],从而可以在不显着增加无线通信系统成本的同时,提高系统的覆盖范围、链路的稳定性和系统传输速率。
多天线技术有不同的实现模式,如波束赋形[2]、循环延迟分集[3],空间分集[4-6]、空间复用[7],以及他们之间的结合。
1 多天线技术模式介绍
每种多天线技术模式都各有其特点,下面将详细介绍他们的原理和特点。
(1)空间分集技术
空间分集是在空间引入信号冗余以达到分集的目的。
如图1中空间分集所示,发送端通过在两根天线的两个时刻发送正交的信息集合,从而获得分集增益。
(2)空间复用技术。