五年级奥数—火车行程问题
五年级奥数火车行程问题
五年级奥数~ 火车过桥的问题火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”。
过桥的路程=桥长+车长桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长列车从车头上桥到车尾离开桥行驶的路程是:桥长+车长。
火车过桥问题会有很多的变式,找到突破口进行解答。
当火车连续通过两座桥时:速度=两次的路程差÷两次的时间差。
(1)一列火车行驶的速度是72千米每小时,阿派要测量这列火车的长度,在车头到达他身边时他按动秒表,到车尾离开他身边时按停秒表,测得19秒钟,这列火车长多少米?(2)一列火车全车从一个停在路旁避让的人的身旁驶过,行了14秒钟,已知这列火车每小时行90千米,这列火车长多少米?(3)一列火车长414米,它用23秒钟全车通过一个路旁避让的人的身旁,这列火车每小时行驶多少千米?(4)一列火车以72千米每小时的速度全车过一座长738米的桥,行了52秒钟,这列火车长多少米?(5)一列火车每小时行54千米,全车通过一条隧道行了38秒钟。
已知这列火车长239米,这条隧道长多少米?(6)一列火车全车过一座长1332米的桥行了1分25秒钟。
火车长368米,这列火车每小时行多少千米?(7)一列火车长700米,从路边的一棵大树旁边通过,用了1.75分钟。
以同样的速度通过一座大桥,从车头上桥到车尾离桥共用了4分钟,这座大桥长多少米?(8)一列火车长800米,从路边的一根电线杆旁边通过,用了2分钟。
以同样的速度通过一座桥,从车头上桥到车尾离开共用了5分钟,这座桥长多少米?(9)一个人站在铁路旁,听见行驶而来的火车汽笛声后,再过57秒钟火车驶过他面前。
已知火车响起汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度。
(得数保留整数)(10)(11)火车通过300米长的隧道用15秒,通过180米长的桥梁用12秒,列车的车身长是多少米?(12)一列火车以相同的速度通过两个隧道,第一个隧道长316米,第二个隧道长140米,全车通过第一个隧道行了25秒钟,全车通过第二个隧道行了14秒钟。
五年级奥数 行程问题
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?例2 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2,汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?1,甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A 地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?2,小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350千米处遇到小红。
小红每分钟走多少千米?例4 甲、乙两车早上8点分别从A、B两地同时出发相向而行,到10点时两车相距112.5千米。
两车继续行驶到下午1点,两车相距还是112.5千米。
A、B两地间的距离是多少千米?1,甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米;又行3小时,两车又相例1 中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
五年级奥数-火车行程问题
头并进,则甲车行40秒超过乙车;若两列车齐尾并进, 则甲车行30秒超过乙车。甲列车和乙列车各长多少米? 分析 根据题意可知:甲列车每秒比乙列车多行20- 14=6米,当两列车齐头并进,甲列车超过乙列车时, 比乙列车多行的路程就是甲列车的车长。6×40=240 米;当两列车齐尾并进,甲列车超过乙列车时,比乙 列车多行的路程就是乙列车的车长,即6×30=180米。
专题简析:
有关火车过桥、火车过隧道、两列火车车头相遇到车
尾相离等问题,也是一种行程问题。在考虑速度、时 间和路程三种数量关系时,必须考虑到火车本身的长 度。如果有些问题不容易一下子看出运动过程中的数 量关系,可以利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几 点:
1,火车过桥(或隧道)所用的时间=[桥(隧道长)+
练 习 二
1,一列火车长360米,每秒行18米。全车通过一座长
90米的大桥,需要多长时间? 2,一座大桥长2100米。一列火车以每分钟800米的速 度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。 这列火车长多少米? 3,一列火车通过200米的大桥需要80秒,同样的速度 通过144米长的隧道需要72秒。求火车的速度和车长。
火车车长]÷火车的速度; 2,两列火车相向而行,从相遇到相离所用的时间=两 火车车身长度和÷两车速度和; 3,两车同向而行,快车从追上到超过慢车所用的时间 =两车车身长度和÷两车速度差。
例1
甲火车长210米,每秒行18米;乙火车长140米,每秒
行13米。乙火车在前,两火车在双轨车道上行驶。甲 火车从后面追上到完全超过乙火车要用多少秒?
练 习 五
1,一列快车长200米,每秒行22米;一列慢车长160米,
2024年小学五年级行程问题奥数题及答案
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案
五年级奥数火车行程问题
火车行程问题
1、甲火车长210米,每秒行18米,乙火车长140米,每秒行13米,乙火车在前,甲火车在双轨道上行驶,求甲火车从后面追上到完全超过乙火车要用多少秒?
练习1 一列火快车长150米,每秒行22米,一列慢车长100米,每秒行14米,快车从后面追上慢车到超过慢车,共需要几秒?
练习2 A火车长180米,每秒行18米,B火车每秒行15米,两火车同方向行驶,A火车追上B火车到超过他共用了100秒,求B火车长多少米?
2、一列火车长180米,每秒行25米,全车通过一条120米长的山洞,需要多少时间?
练习3 一座大桥长2100米,一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开桥共用3.1分钟,这列火车长多少米?
练习4 五年级222名学生排成两路纵队春游,每两名同学相隔0.6米,队伍以每分钟60米的速度通过长294米的市民广场,一共需要多少时间?
3、一列火车穿过长2400米的隧道需要1.7分钟,以同样的速度通过一座长1050米的大桥需要48秒,这列火车长多少米?
练习5 有两列火车,一列长320米,每秒行18米,另一列火车以每秒22米的速度迎面开来,两车从相遇到离开共用了15秒,求另一列火车车长?
3,乙车行了4、两辆车分别从甲乙两地相向而行,甲车行了全程的
5
5后两车相距27千米,求甲乙相距多少千米?
全程的
8。
奥数-行程问题-火车过桥专题综合(含知识梳理与习题详细解析)
奥数-行程问题-火车过桥专题综合(含知识梳理与习题详细解析)火车过桥常见问题题型及解题方法(一)行程问题基公式:路程=速度×总时向总路程=平均速度×总时间(二)相遇、追及问题:速度和×相遇时间=相遇路程速度差×追及时向=追及路程(三)火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度,但没速度解法:火车长+桥(隧道)长度(总路程)=火车速度×通过时间2.火车+树(电线杆):一个有长度、有速度,一个没长度没速度3.火车加人:一个有长度,有速度、一个没长度但有速度(1)火车+迎面行走的人:相当于相遇问题解法:火车车长(总路程)=火车速度+人的速度×迎面错过的时间(2)火车+同向行走的人,相当于追及问题解法:火车车长(总路程)=(火车速度±人的速度)=迎面错过的时间(追及的问题)4.火车+火车,一个有长度、有速度,一个也有长度、有速度(1)错车问题:相当于相遇问题解法:快车车长+慢车车上(总路程)=(快车速度+慢车速度)×错车时间(2)超车问题:相当于追及问解法:快车车长+慢车车长(总路程)=(快车车速-慢车车速)×超车时间提醒:注意对于火车过桥,火车和人相遇,火车追及人以及火车和火车之间的相遇、追及等等这几类型的题目,在分析的时候一定得结合着图表进行。
【例1】一列火车长200米,以60秒的速度前进,它通过一座220米长的大桥用时多少?【解析:可以发现火车走过的路程为:200+220=420(米),所以用时420÷60=7(秒)答案:7秒【例2】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进。
四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米,他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长——米?【解析】100名学生分成2列,每列50人,应该产生49个间距。
五年级奥数第27讲-火车行程问题(学)
学科教师辅导讲义知识梳理一、基本公式路程=时间×速度时间=路程÷速度速度=路程÷时间二、火车行程问题有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。
在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。
如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
典例分析考点一:求时间考点三:求车长例1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是每秒多少米?车长多少米?例2、快车长210m,每秒钟行驶25m,慢车每秒钟行驶20m,连列车同方向行驶,从快车追上慢车到超过共用了80秒,求慢车的长度。
考点四:求车速例6、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?例7、一支队伍1200米长,以每分钟80米的速度行进。
队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。
问联络员每分钟行多少米实战演练➢课堂狙击1、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离要多少分钟?2、一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米?3、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米?直击赛场1、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。
行程问题五年级奥数题及答案
行程问题
甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇
解:要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V 人),
所以,V车=l5V人。
②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V人。
③求火车头遇到乙时甲、乙二人之间的距离。
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。
④求甲、乙二人过几分钟相遇。
五年级奥数之----火车行程问题
五年级奥数之----火车行程问题1.一列火车长360米,每秒行驶18米。
全车通过一座长90米的大桥要用多少时间?(25s)2.小明以每秒3米的速度沿着铁路边的人行道跑步,后面开来一列180米的火车,火车每秒钟行驶18米。
问:从火车追上小明到完全超过小明共用多少秒钟?(12s)3.A火车长210米,每秒钟行驶25米,B火车每秒行驶20米,两列火车同方向行驶,从A火车追上B火车到超过共用80秒,求B 火车的长度。
(190m)4.南京长江铁路大桥全长6000米,一列火车以每分钟720米的速度通过这座大桥,从车头上桥到车尾离开大桥共用8.6分钟,求这列火车多长?(192m)5.一列列车长240米,每秒钟行驶20米。
全车通过一座160米的大桥需要多少时间?(20秒)6.一列火车长210米,每秒行驶25米。
全车通过一个190米的山洞需要多少时间?(16s)7.一列火车通过340米的大桥需要100秒,用同样的速度通过144米的大桥用了72秒。
求火车的速度和长度。
(7m/s、360m)8.有两列火车,客车长168米,每秒钟行驶23米,货车长288米,每秒钟行驶15米。
问从两车相遇到离开需要多长时间?(12s)9.甲列车每秒钟行驶18米,乙列车每秒钟行驶12米。
若两列车齐头并进,则甲列车经过40秒超过乙列车,若两列车齐尾并进,则甲列车经过30秒超过乙列车。
求甲、乙列车的长度。
(甲:240m,乙:180m)10.一列350米长的火车以每秒钟25米的速度穿过一座桥花了20秒,问:大桥的桥长是多少?(150m)11.老李沿着铁路散步,他每分钟走60米,迎面过来一列长300米的火车,他与车头相遇到车尾相离共用了20秒,求火车的速度。
(14m/s)12.一列快车长200米,每秒钟行驶20米,一列慢车长160米,每秒钟行驶15米。
若两车齐头并进,则快车超过慢车要多少时间?若两列车齐尾并进,则快车超过慢车要多少时间?(40s、32s)。
应用题板块-行程问题之火车过桥(小学五年级奥数题)
应用题板块-行程问题之火车过桥(小学五年级奥数题)【一、题型要领】1. 行程问题【基本概念】行程问题源自于研究物体运动,他研究的是物体运动速度、运动时间和经过路程三者之间的关系。
【基本公式】经过路程= 运动速度* 运动时间2. 火车过桥【基本概念】火车过桥是行程问题的一个经典问题,也有路程、速度和时间之间的数量关系。
他的特殊之处在于,经过路程是从车头上桥算起到车尾离桥为止的总路程,如下图所示,也就是列车车长和桥长之和。
【基本公式】列车车长+ 桥长= 火车速度* 运动时间【解题关键】列车车长不可忽略,如果只行进了桥的长度则不能算“过桥”,因此总路程需要加上列车的车长。
【举一反三】一是火车过隧道,过山洞等与火车过桥是相似的;二是由人或者车组成的队列过桥,则队伍本身的长度是不能忽略的。
【二、重点例题】例题1【题目】一列长90米的火车以30米/秒的速度匀速通过一座长1200米的桥,需要多长时间?【分析】这是最基本的火车过桥问题,需注意火车通过大桥所走的距离为桥长加上车身长度【解】(90 + 1200)÷ 30 = 43(秒)【答】火车过桥需要43秒例题2【题目】一列火车通过180米长的桥用时40秒,用同样的速度穿过300米长的隧道用时48秒,求这列火车的长度和速度。
【分析】火车过桥,可以理解为40秒的行程为桥长加上车身长;火车过隧道,可以理解为48秒的行程为隧道长加上车身长,两者相减,相当于火车8秒行驶了120米,由此可以计算出火车的速度,进而计算出火车的长度【解】火车的速度= (300 - 180) ÷ (48 - 40) = 15(米/秒)火车的长度= 15 * 40 - 180 = 420 (米)【答】火车的速度是15米/秒,车长是420米例题3【题目】某小学三、四年级学生共528人,排成四路纵队去看电影,队伍行经的速度是25米/分,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥用时16分,这座桥的长度有多少米?【分析】由人组成的队伍过桥,需要计算队伍本身的长度。
小学数学5年级培优奥数讲义 第27讲 火车行程问题(学生版)
第27讲火车行程问题清楚理解火车行程问题中的等量关系;能够透过分析实际问题,提炼出等量关系;培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力;一、基本公式路程=时间×速度时间=路程÷速度速度=路程÷时间二、火车行程问题有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。
在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。
如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
考点一:求时间知识梳理典例分析学习目标例1、一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?例2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?考点二:求隧道长例1、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?例2、一列火车长900米,从路旁的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。
求这座大桥的长度。
考点三:求车长例1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是每秒多少米?车长多少米?例2、快车长210m,每秒钟行驶25m,慢车每秒钟行驶20m,连列车同方向行驶,从快车追上慢车到超过共用了80秒,求慢车的长度。
考点四:求车速例6、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?例7、一支队伍1200米长,以每分钟80米的速度行进。
五年级奥数行程问题(追及相遇+火车过桥)
(一)行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
①追击及相遇问题一、例题与方法指导例1. 甲、乙、两人同时同地出发,绕一个花圃行走,甲与乙背向而行。
甲每分钟走40米,乙每分钟走38米。
在途中,甲和乙行走5分钟之后相遇。
问:这个花圃的周长是多少米?例2. 东、西两地间有一条公路长230千米,甲车以每小时25千米的速度从东到西地,2小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。
哥哥骑自行车每分钟行200米,妹妹每分钟走80米。
哥哥刚到学校就立即返回来在途中与妹妹相遇。
从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?二、巩固训练1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。
甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?2. 两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,乙车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?三、拓展提升1. 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,行驶5小时后两车相遇。
求甲乙两地相距多少千米?3.甲、乙、丙三辆车同时从A地出发到B地去,丙第一个出发,乙第二,甲最后出发。
人教版五年级奥数练习:火车行程问题 (2)
人教版五年级奥数练习:火车行程问题
例2 一列火车长180米,每秒钟行25米。
全车通过一条120米的山洞,需要多长时间?
分析由于火车长180米,我们以车头为准,当车进入山洞行120米,虽然车头出山洞,但180米的车身仍在山洞里。
因此,火车必须再行180米,才能全部通过山洞。
即火车共要行180+120=300米,需要300÷25=12秒。
练习二
1,一列火车长360米,每秒行18米。
全车通过一座长90米的大桥,需要多长时间?
2,一座大桥长2100米。
一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。
这列火车长多少米?
3,一列火车通过200米的大桥需要80秒,同样的速度通过144米长的隧道需要72秒。
求火车的速度和车长。
第1 页共1 页。
小学五年级奥数趣味学习——火车行程问题
小学五年级奥数趣味学习——火车行程问题火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。
人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。
例1:一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。
例2:一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。
例3:一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。
解:这列客车每秒行驶:(860-620)÷(45-35)=240÷10=24(米)这列客车的车身长:24×45-860=1080-860=220(米)答:这列客车每秒行驶24米,车身长220米。
例4:某小学三、四年级学生共528人,排成四路纵队去看电影,队伍进行的速度是每分25米,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分,这座桥走多少米?解:队伍长:1×(528÷4-1)=131(米)队伍行进的路程:25×16=400(米)桥长:400-131=269(米)答:这座桥长269米。
【小学五年级奥数讲义】火车行程问题
【小学五年级奥数讲义】火车行程问题
一、专题简析:
有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。
在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。
如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几点:
1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;
2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;
3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
二、精讲精练
例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。
乙火车在前,两火车在双轨车道上行驶。
甲火车从后面追上到完全超过乙火车要用多少秒?
1。
五年级上册数学 火车行程问题 思维奥数讲义
五年级上册数学思维奥数讲义火车行程问题知识梳理1、车头上桥到车尾下桥:路程=火车长+桥长2、车尾上桥到车头下桥:路程=桥长-火车长3、火车与人相遇:路程和=火车长4、火车与人追及:路程差=火车长5、火车与火车相遇(车头相遇到车尾相离):路程和=甲车长+乙车长6、火车与火车追及(快车车头追上慢车车尾到快车车尾离开慢车车头):路程差=快车长+慢车长知识精讲小热身(1)甲乙两人相距50米,相向而行,速度分别为3米/秒和2米/秒,多久后两人相遇?(2)甲乙两人相距50米,同向而行,速度分别为3米/秒和2米/秒,多久后甲追上乙?典例1 (1)一列高铁长180米,每秒钟行驶60米,这列高铁通过一座300米长的大桥时,从车头开始上桥到车尾完全过桥需要多少时间?(2)一列高铁以每秒钟70米的速度行驶,通过一条400米长的隧道时,从车头开始进入隧道到车尾完全通过隧道共用时8秒钟,请问这列高铁车长多少米?变式1 (1)一列动车以每秒钟60米的速度通过一条长1000米的隧道,从车头开始进入隧道到车尾完全通过隧道共用时20秒,请问这列动车的长度是多少米?(2)一列动车长150米,每秒钟行驶70米,这列动车通过一座200米长的大桥时,从车头开始上桥到车尾完全过桥需要多少时间?典例2 同一列动车完全通过(从车头进入到车尾离开)一条490米长的隧道需要10秒,完全通过一条370米长的大桥需要8秒,那么这列动车的速度是每秒钟多少米?车长多少米?变式2 同一列高铁完全通过(从车头进入到车尾离开)一条长800米的大桥需要14秒,完全通过一条长540米深的隧道时需要10秒钟,请问高铁的速度是多少米?车长多少米?典例3 某铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分,整列火车完全在桥上的时间为40秒。
求火车的长度和速度。
变式3某条隧道长900米,现有一列100米长的火车从隧道中通过,测得火车从开始进入隧道到完全通过隧道共用20秒,则整列火车完全在隧道里的时间是多长?典例4 (1)一名行人沿着与铁路平行的公路散步,每秒走1米,迎面过来一列长120米的动车,已知动车每秒钟行驶59米,请问:从动车头与行人相遇到动车尾离开他共用了多长时间?(2)一人以每分钟60米的速度沿着与铁路平行的公路散步,一列长180米的动车从他身后开来,动车的速度是每秒钟61米,动车从他身边经过用了多长时间?变式4 (1)一人以每分钟60米的速度沿着与铁路平行的公路散步,一列长180米的动车从对面开来,从他身边经过用了3秒钟,动车的速度是每秒钟多少米?(2)小明在铁路旁边沿着与铁路方向平行的公路散步,他散步的速度是2米/秒,这时背后开来一列火车,从车头追上他到车尾离开他一共用了3秒,已知火车速度是42米/秒,请问:火车的车长多少米?典例5 (1)一列火车车长180米,每秒行驶40米,另一列火车长200米,每秒行驶36米,两车相向而行,它们从车头相遇到车尾相离要经过多长时间?(2)甲火车长420米,每秒钟行驶30米,乙火车在甲火车后,长300米,每秒钟行驶42米,两车同向行驶,请问:乙车从追上甲车到完全超过共需要多长时间?变式5 (1)已知快车长240米,每秒钟行驶38米,慢车长360米,两车相向而行,它们从车头相遇到车尾相离共用时10秒,请问:慢车速度是多少?(2)已知快车长240米,每秒钟行驶66米,慢车长360米,两车同向而行,它们从快车追上到完全超越慢车共用时20秒,请问:慢车速度是多少?课后训练1、一列火车长200米,以每分钟500米的速度通过一座长1300米的大桥,从车头上桥到车尾离开桥需要多少分钟?2、一列高铁车长120米,通过一条长720米的大桥时,从车头开始上桥到车尾完全过桥需要14秒,这列高铁完全通过(从车头进入隧道到车尾离开隧道)一条长360米长的隧道时需要多少秒?3、一列高铁车长100米,通过一条长700米的大桥时,高铁完全在桥上(车尾上桥到车头离开桥)的时间是10秒钟,这列高铁的速度是多少?4、一人以每分钟60米的速度沿着与铁路平行的公路散步,一列动车从他身后开来,动车的速度是每秒钟61米,3秒钟后动车从他身边经过,请问这列动车长多少米?5、有两列火车,一列长360米,每秒行驶36米,另一列长240米,每秒行驶60米,两车同向而行,快车赶超慢车(从追上到完全超过)需要多少秒?6、甲火车每秒行驶50米,乙火车每秒行驶30米,两列火车相向而行时,它们从车头相遇到车尾相离要经过4秒,请问:如果两列火车同向行驶时,甲火车从追上乙火车到完全超过共需要多长时间?7、现在有两列火车同时同方向齐头行进,快车每秒行驶18米,慢车每秒行驶10米,行驶12秒后快车超过慢车。
五级奥数火车行程问题优秀PPT资料
例2
一列火车长180米,每秒钟行25米。全车通过一条120 米的山洞,需要多长时间?
分析 由于火车长180米,我们以车头为准,当车进入 山洞行120米,虽然车头出山洞,但180米的车身仍在 山洞里。因此,火车必须再行180米,才能全部通过山 洞。即火车共要行180+120=300米,需要300÷25=12 秒。
分析 火车通过大桥时,所行的路程是桥长加火车的长, 而通过电线杆时,行的路程就是火车的长度。因此,3 分钟比1分钟多的2分钟内,就行了2400米,火车的速 度是每分钟行2400÷2=1200米。
练习四
1,一列火车从小明身旁通过用了15秒,用同样的速度 通过一座长100米的桥用了20秒。这列火车的速度是多 少?
2,快车每秒行18米,慢车每秒行10米。 3,两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。 3,两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
例1
甲火车长210米,每秒行18米;乙火车长140米,每秒 行13米。乙火车在前,两火车在双轨车道上行驶。甲 火车从后面追上到完全超过乙火车要用多少秒?
专题简析:
有关火车过桥、火车过隧道、两列火车车头相遇到车 尾相离等问题,也是一种行程问题。在考虑速度、时 间和路程三种数量关系时,必须考虑到火车本身的长 度。如果有些问题不容易一下子看出运动过程中的数 量关系,可以利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几 点:
1,火车过桥(或隧道)所用的时间=[桥(隧道长)+ 3,五年级384个同学排成两路纵队去郊游,每两个同学相隔0.
分析 根据题意可知:甲列车每秒比乙列车多行20- 14=6米,当两列车齐头并进,甲列车超过乙列车时, 比乙列车多行的路程就是甲列车的车长。6×40=240 米;当两列车齐尾并进,甲列车超过乙列车时,比乙 列车多行的路程就是乙列车的车长,即6×30=180米。
五年级奥数火车行程问题
五年级奥数~ 火车过桥的问题火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”。
过桥的路程=桥长+车长桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长列车从车头上桥到车尾离开桥行驶的路程是:桥长+车长。
火车过桥问题会有很多的变式,找到突破口进行解答。
当火车连续通过两座桥时:速度=两次的路程差÷两次的时间差。
(1)一列火车行驶的速度是72千米每小时,阿派要测量这列火车的长度,在车头到达他身边时他按动秒表,到车尾离开他身边时按停秒表,测得19秒钟,这列火车长多少米?(2)一列火车全车从一个停在路旁避让的人的身旁驶过,行了14秒钟,已知这列火车每小时行90千米,这列火车长多少米?(3)一列火车长414米,它用23秒钟全车通过一个路旁避让的人的身旁,这列火车每小时行驶多少千米?(4)一列火车以72千米每小时的速度全车过一座长738米的桥,行了52秒钟,这列火车长多少米?(5)一列火车每小时行54千米,全车通过一条隧道行了38秒钟。
已知这列火车长239米,这条隧道长多少米?(6)一列火车全车过一座长1332米的桥行了1分25秒钟。
火车长368米,这列火车每小时行多少千米?(7)一列火车长700米,从路边的一棵大树旁边通过,用了1.75分钟。
以同样的速度通过一座大桥,从车头上桥到车尾离桥共用了4分钟,这座大桥长多少米?(8)一列火车长800米,从路边的一根电线杆旁边通过,用了2分钟。
以同样的速度通过一座桥,从车头上桥到车尾离开共用了5分钟,这座桥长多少米?(9)一个人站在铁路旁,听见行驶而来的火车汽笛声后,再过57秒钟火车驶过他面前。
已知火车响起汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度。
(得数保留整数)(10)(11)火车通过300米长的隧道用15秒,通过180米长的桥梁用12秒,列车的车身长是多少米?(12)一列火车以相同的速度通过两个隧道,第一个隧道长316米,第二个隧道长140米,全车通过第一个隧道行了25秒钟,全车通过第二个隧道行了14秒钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数训练——火车行程问题
姓名:
例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。
乙火车在前,两火车在双轨车道上行驶。
甲火车从后面追上到完全超过乙火车要用多少秒?
练习一
一列快车长150米,每秒行22米;一列慢车长100米,每秒行14米。
快车从后面追上慢车到超过慢车,共需几秒钟?
例2 一列火车长180米,每秒钟行25米。
全车通过一条120米的山洞,需要多长时间?
练习二
一列火车长360米,每秒行18米。
全车通过一座长90米的大桥,需要多长时间?
例3 有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。
现在两车相向而行,从相遇到离开需要几秒钟?
有两列火车,一列长260米,每秒行18米;另一列长216米,每秒行30米。
现两列车相向而行,从相遇到相离需要几秒钟?
例4一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。
求这列火车的速度。
练习四
一列火车从小明身旁通过用了15秒,用同样的速度通过一座长100米的桥用了20秒。
这列火车的速度是多少?
例5甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车;若两列车齐尾并进,则甲车行30秒超过乙车。
甲列车和乙列车各长多少米?
练习五
列快车长200米,每秒行22米;一列慢车长160米,每秒行17米。
两列车齐头并进,快车超过慢车要多少秒?若齐尾并进,快车超过慢车要多少秒?
1、车长180米,每秒行18米;B火车每秒行15米。
两火车同方向行驶,A 火车从追上B火车到超过它共用了100秒钟,求B火车长多少米?
2、火车通过200米的大桥需要80秒,同样的速度通过144米长的隧道需要72秒。
求火车的速度和车长。
3、一列火车长210米,以每秒40米的速度过一座桥,从上桥到离开桥共用20秒。
桥长多少米?
4、级384个同学排成两路纵队去郊游,每两个同学相隔0.5米,队伍以每分钟61米的速度通过一座长207米的大桥,一共需要多少时间?
5、叔沿铁路边散步,他每分钟走50米,迎面驶来一列长280米的列车,他与列车车头相遇到车尾相离共用了半分钟,求这列火车的速度。
1、以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长188米的火车,火车每秒行18米。
问:火车追上小明到完全超过小明共用了多少秒钟?
2、一座大桥长2100米。
一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。
这列火车长多少米?
3、火车长500米,要穿过一个长150米的山洞,如果火车每秒钟行26米,那么,从车头进洞到车长全部离开山洞一共要用几秒钟?
4、车长900米,从路旁的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。
求这座大桥的长度。
5、秒行18米,慢车每秒行10米。
两列火车同时同方向齐头并进,行10秒钟后快车超过慢车;如果两列火车齐尾并进,则7秒钟后快车超过慢车。
求两列火车的车长。