表面活性剂的理化性质
表面活性剂的介绍与分析方法
![表面活性剂的介绍与分析方法](https://img.taocdn.com/s3/m/b03bd8f3f9c75fbfc77da26925c52cc58bd69014.png)
表面活性剂的介绍与分析方法摘要:近年来,随着石油化工的高速发展,为表面活性剂的合成提供了丰富的原料,是表面活性剂的产量和品种迅速增长,成为国民经济的基础工业之一。
由于表面活性剂具有润湿、乳化、分散、增溶、起泡、消泡、均染、洗涤、抗静电、防腐、杀菌等一系列独特的作用和功能,表面活性剂对改进生产工艺、提高产品质量、降低成本、节约能源、提高生产率、增加附加值等方面发挥了巨大作用,因此有“工业味精”和“工业催化剂”之称。
关键字:表面活性剂;一、简介自然界存在着大量既亲水又亲油的所谓“两亲性”分子。
这类物质通常都具有亲水性链段和亲油性链段两个部分,从而使其具有“两亲”功能。
1930年Freundlich 将加入少量时就能使水的表面张力或者液-液界面张力大为降低的两亲物质称作表面活性剂。
随着人们对这种“两亲”结构物质研究的深入,表面活性剂这一概念从降低表面张力这一表面现象扩展到所有表面性能上,将少量使用即可使表面或界面的一些性质(如乳化、增溶、分散、渗透、润湿)发生显著变化的物质都叫表面活性剂。
近年来,随着石油化工的高速发展,为表面活性剂的合成提供了丰富的原料,是表面活性剂的产量和品种迅速增长,成为国民经济的基础工业之一。
由于表面活性剂具有润湿、乳化、分散、增溶、起泡、消泡、均染、洗涤、抗静电、防腐、杀菌等一系列独特的作用和功能,表面活性剂对改进生产工艺、提高产品质量、降低成本、节约能源、提高生产率、增加附加值等方面发挥了巨大作用,因此有“工业味精”和“工业催化剂”之称。
随着经济和科学技术的发展,表面活性剂的应用领域从日用化学工业扩展到食品、农业、环保、医药、石油加工、采矿等一切生产及技术领域。
值得一提的是,两亲分子的设计赋予表面活性剂新的功能及应用,成为解决许多实际问题的钥匙。
二、特点及分类1常见表面活性剂的种类任一种表面活性剂的分子都是由两种不同性质的基团所组成,非极性的亲油基团和极性的亲水基团。
也就是说,表面活性剂既具有亲水性,又具有亲油性,形成一种所谓“两亲结构”的分子,如图1-1所示。
表面活性剂文献综述
![表面活性剂文献综述](https://img.taocdn.com/s3/m/534a97dc58f5f61fb73666be.png)
表面活性剂一、表面活性剂的性质1.表面活性剂的定义表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。
具有固定的亲水亲油基团,在溶液的表面能定向排列。
表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。
2.表面活性剂的结构特点表面活性剂分子具有独特的两亲性:一端为亲水的极性基团,简称亲水基,也称为疏油基或憎油基,有时形象地称为亲水头,如-OH、-COOH、-SO3H、-NH2;另一端为亲油的非极性基团,简称亲油基,也称为疏水基或憎水基,如R-(烷基)、Ar-(芳基)。
两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,但又不是整体亲水或亲油的特性。
表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。
3.表面活性剂的性质表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。
许多表面活性剂也能在本体溶液中聚集成为聚集体。
囊泡和胶束都是此类聚集体。
表面活性剂开始形成胶束的浓度叫做临界胶束浓度或CMC。
当胶束在水中形成,胶束的尾形成能够包裹油滴的核,而它们的(离子/极性)头能够形成一个外壳,保持与水接触。
表面活性剂在油中聚集,聚集体指的是反胶束。
在反胶束中,头在核,尾保持与油的充分接触。
表面活性剂系统的热动力学很重要,不论是理论上还是实践上。
因为表面活性剂系统代表的是介于有序和无序物质状态之间的系统。
表面活性剂溶液可能含有有序相(胶束)和无序相(自由表面活性剂分子和/或离子)。
胶束——表面活性剂分子的亲脂尾端聚于胶束内部,避免与极性的水分子接触;分子的极性亲水头端则露于外部,与极性的水分子发生作用,并对胶束内部的憎水基团产生保护作用。
表面活性剂的理化性质和生物学性质
![表面活性剂的理化性质和生物学性质](https://img.taocdn.com/s3/m/587fa7cfdd88d0d233d46af5.png)
表面活性剂的理化性质和生物学性质表面活性剂的理化性质和生物学性质一、临界胶束浓度当表面活性剂的正吸附到达饱和后继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力远大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的胶束(micelles)。
在一定温度和一定的浓度范围内,表面活性剂胶束有一定的分子缔合数,但不同表面活性剂胶束的分子缔合数各不相同,离子表面活性剂的缔合数约在10~100,少数大于1000。
非离子表面活性剂的缔合数一般较大,例如月桂醇聚氧乙烯醚在25℃的缔合数为5000。
表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC),不同表面活性剂的CMC不同,见表4-2。
具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC 越小。
在CMC时,溶液的表面张力基本上到达最低值。
在CMC到达后的一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。
表4-2 常用表面活性剂的临界胶束浓度名称测定温度/℃CMC/molL-1 名称测定温度/℃CMC/molL-1辛烷基磺酸钠25 1.50×10-1氯化十二烷基铵25 1.6×10-2辛烷基硫酸钠40 1.36×10-1月桂酸蔗糖酯2.38×10-6十二烷基硫酸钠40 8.60×10-3棕榈酸蔗糖酯9.5×10-5十四烷基硫酸钠40 2.40×10-3硬脂酸蔗糖酯6.6×10-5十六烷基硫酸钠40 5.80×10-4吐温20 25 6.0×10-2(g/L,以下同)十八烷基硫酸钠40 1.70×10-4吐温40 25 3.1×10-2硬脂酸钾50 4.50×10-45吐温60 25 2.8×10-2油酸钾50 1.20×10-3吐温65 25 5.0×10-2月桂酸钾25 1.25×10-2吐温80 25 1.4×10-2十二烷基磺酸钠25 9.0×10-3吐温85 25 2.3×10-2(二)胶束的结构在一定浓度范围的表面活性剂溶液中,胶束呈球形结构(图4-1a),其碳氢链无序缠绕构成内核,具非极性液态性质。
(完整word版)表面活性剂
![(完整word版)表面活性剂](https://img.taocdn.com/s3/m/2496c579680203d8cf2f2464.png)
第三章表面活性剂表面活性剂在药物制剂的制备中被广泛应用,其结构特征是具有亲水性与亲脂性两种基团,其作用是能显著降低分散系的表面(界面)张力,因此可用作乳化剂、助悬剂、增溶剂、促吸收剂、润湿剂、起泡剂与消泡剂、去污剂等,是药用乳剂、悬浊剂、脂质体等的重要辅料.本章重点讨论表面活性剂的基本性质(如CMC值、HLB值、Krafft点与昙点等)与测定方法等。
第一节表面活性剂分类一、表面活性剂(surfactant):具有很强表面活性,加入少量就能使液体表面张力显著下降的物质。
1.①纯液体在一定温度有一定的表面张力,是液体的物理常数.②当在水中加入无机盐或糖类物质时,则水的表面张力略有升高;③当在水中加入低级脂肪醇、脂肪酸时,则水的表面张力下降,称此类物质为水的表面活性物质。
④当在水中加入油酸钠、十二烷基硫酸钠(高级脂肪酸)时,则水的表面张力能够显著的降低,称此类物质为该溶剂的表面活性剂(surfactant)。
2.表面活性剂分子的结构特征:是由具有极性的亲水基和非极性的亲油基组成,而且两部分分处两端。
因此,表面活性剂具有既亲水又亲油的两亲性质,但具有两亲性的分子不一定都是表面活性剂。
3.表面活性剂的吸附性:表面活性剂由于其特殊结构可以在两相界面发生定向排列,来改变两相界面性质。
从而起到润湿、乳化、增溶、絮凝、反絮凝、起泡、消泡的作用。
(1)在溶液中的正吸附:表面活性剂在溶液表面层聚集的现象为正吸附,正吸附改变了溶液表面的性质。
最外层疏水,表现低表面张力,产生较好的润湿性、乳化性、增溶性、起泡性.(2)在固体表面的吸附:表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变,易于润湿.二、表面活性剂的类型1。
表面活性剂分类方法有多种,根据来源可分为天然表面活性剂与合成表面活性剂;2。
根据溶解性质可分为水溶性表面活性剂与油溶性表面活性剂;3。
根据极性基团的解离性质分为离子型表面活性剂与非离子型表面活性剂两大类;再根据离子型表面活性剂所带电荷,又分为阳离子、阴离子、两性离子表面活性剂。
Gemini表面活性剂
![Gemini表面活性剂](https://img.taocdn.com/s3/m/d8b23de5524de518964b7d6a.png)
Gemini表面活性剂是一种分子内含有2个亲水基和2个亲油基(有时是3个亲油基)的表面活性剂。
从分子结构看,它又相似于两个传统表面活性剂分子的聚结,故有时又称之为二聚(dimeric)表面活性剂。
Gemini型表面活性剂同三头三尾以及三个以上头三个尾以上的表面活性剂统称为低聚表面活性剂(oligomeric surfactants)。
Gemini型表面活性剂因其二聚的结构从而具有许多特殊的物化性质。
例如,超低界面张力、低临界胶束浓度、低Krafft点、良好的钙皂分散能力、在某些场合表现出良好的润湿性能、良好的协同效应等。
它长期以来一直是化学家研究的一个热点。
仅从最近数量众多的性能方面的研究论文和一些应用方面的专利就不难看出这一点。
新近的研究工作不断揭示了Gemini表面活性剂的一些新而独特的性质,使得科学家对它的研究兴趣长久不衰。
1.1.1 Gemini型表面活性剂[1-5]Gemini型表面活性剂是1974年由Y.Deinega首次合成出来的。
1988年日本,Okahara也合成出了这类活性剂。
1991年美国Emery大学,F.M.Menger和C.A.Littau较系统地合成了几种Gemini型表面活性剂,并确定了它们的基本性质。
他们把这类活性剂命名为Gemini。
Gemini是天文学用语,意思是双子星座,像“连体婴儿”,形象地表达了这类化合物在结构上的特征,也包涵有深远的意思。
其后被美国、日本和法国等国家从事表面活性剂、胶体和表(界)面化学界研究人员所认可。
1993年美国M.J.Rosen称Gemini为新一代或第二代表面活性剂。
现在倍受表面活性剂、胶体和表(界)面化学界、工业界的关注,最有可能成为21世纪广泛应用的一类表面活性剂。
传统型表面活性剂分子,如肥皂,是由一个亲水基和一个疏水基构成。
Gemini型表面活性剂是由两个传统型表面活性剂分子用一个联接基,在亲水基部位或靠近亲水基部位结合起来,形成一类新的表面活性剂分子。
表面活化剂结合剂
![表面活化剂结合剂](https://img.taocdn.com/s3/m/506bea5b53d380eb6294dd88d0d233d4b14e3f1a.png)
表面活化剂结合剂
表面活性剂结合剂通常指的是一类具有特殊分子结构的化合物,它们能在溶液中形成胶束并降低界面张力。
表面活性剂结合剂的相关信息具体如下:
1.基本概念:表面活性剂是能够改变液体表面张力或两种液体之间界面
张力的物质。
它们的分子结构通常包含亲水基团和疏水基团,这使得它们能在溶液的表面定向排列,从而产生各种作用。
2.分类:根据化学结构的不同,表面活性剂可分为离子型(包括阳离子
型、阴离子型)、非离子型、两性型、复配型等几大类。
3.作用机理:表面活性剂在溶液中的浓度达到临界胶束浓度(CMC)
时,其分子会自发缔合成为胶束,这些胶束可以包裹油脂或其他不溶于水的substances,从而形成稳定的乳化液。
4.应用功能:表面活性剂在工业和日常生活中有着广泛的应用,如洗
涤、乳化、分散、润湿、起泡、增溶等。
5.选择标准:在选择表面活性剂作为结合剂时,需要考虑其与所需结合
物质的相容性、CMC值、以及在特定应用中的性能表现。
总的来说,表面活性剂结合剂在许多领域都发挥着重要作用,从家庭用品到工业应用,其独特的性质使其成为不可或缺的成分之一。
常用表面活性剂资料
![常用表面活性剂资料](https://img.taocdn.com/s3/m/4d7787bf43323968001c920a.png)
6501用椰子油为原料,经精炼后直接或间接与二乙醇胺反应合成,是高品质的非离子表面活性剂。
一、英文名:Coconut diethanolamide二、化学名:椰油酸二乙醇酰胺6501三、化学结构式:RCON(CH2CH2OH)2四、产品特性:1.具有显著的增稠、增泡、稳泡性能;2.具有显著的乳化、去污能力;3.同其它表面活性剂有良好的复配性和协同效应;4.具有抗静电、防锈、防腐蚀等性能;5.特别适于配制透明产品;6.是性能价格比很高的品种之一。
五、技术指标型号1∶1 1∶1.5 特级不含甘油型外观常温下(25℃)为淡黄色透明液体气味无异味游离脂肪酸(%)≤0.5 ≤0.5 ≤0.5游离胺(mgkoH/g)≤30.0 ≤80.0 ≤30.0色泽(APHA)≤250 ≤250 ≤300PH值(10g/L10%乙醇)9.0-11.0 9.0-11.0 9.0-11.0六、用途与用量:1.用途:添加于香波、沐浴露、洗洁精、洗衣液、洗手液等产品中作增泡剂、稳泡剂、增稠剂,乳化去油去污剂。
2.推荐用量:2—6%本品属于非离子表面活性剂,没有浊点。
性状为淡黄色至琥珀色粘稠液体, 易溶于水、具有良好的发泡、稳泡、渗透去污、抗硬水等功能。
属非离子表面活性剂, 在阴离子表面活性剂呈酸性时与之配伍增稠效果特别明显, 能与多种表面活性剂配伍。
能加强清洁效果、可用作添加剂、泡沫安定剂、助泡剂、主要用于香波及液体洗涤剂的制造。
在水中形成一种不透明的雾状溶液,在一定的搅拌下能完全透明,在一定浓度下可完全溶解于不同种类的表面活性剂中,在低碳和高碳中也可完全溶解。
TX-10/NP-10别名:NP-10,TX-10,NPE-10英文名称:Polyoxyethylene(10)nonyl phenyl ether化学成份:壬基酚与环氧乙烷加成物外观:本系列产品在室温下为无色至棕色油状物或膏状物。
外观无色透明液体浊点61-67℃活性物含量(%)≥99,水分≤0.3%色泽(APHA) ≤79灰分(%) ≤0.4PH值(1%水溶液) 6-7性能及应用:TX-10 易溶于水,具有优良的乳化净洗能力,是合成洗涤剂重要组分之一,能配制各种净洗剂,对动、植、矿物油污清洗能力特强;是合成纤维工业油剂组分之一,除显示乳化性能外,且具有除静电效果;在合纤短纤维混纺纱浆料中做柔软剂,可提高浆膜的平滑性和弹性,该乳液对胶体有保护作用;一般工业作乳化剂,配制乳液稳定;用作防腐剂、润湿剂、电池缓蚀剂;印染工业中作匀染、扩散、润湿、洗涤等用途的助剂,均有良好效能;用作羊毛低温染色新工艺的匀染剂;在农药、医药、橡胶工业用作乳化剂,建筑行业可作为乳化沥清的乳化剂,又是金属水基清洗剂的重要组成之一;油田用润湿剂、起泡剂、泥浆活性处理剂。
表面活性剂在纳米技术中的应用
![表面活性剂在纳米技术中的应用](https://img.taocdn.com/s3/m/06c107470640be1e650e52ea551810a6f424c854.png)
3.表面活性剂的理化性质与生物性质
▪ 临界胶束浓度
▪ 表面活性剂在溶液中超过一定浓度时会 从单体(单个离子或分子)缔合成为胶态聚 合物,即胶束(或称胶团)。开始形成胶束 的浓度称为临界胶束浓度 (critical micelle concentration) ,用CMC表示。当溶液中 形成胶束后溶液的性质如渗透压、浓度、界 面张力、摩尔电导等都存在突变现象。
4.弯矩效应——弯矩在正胶团体系中的作用。 (弯矩是指各向异性的界面上应力的法向分 量与切向分量之差的第一阶矩。)与表面活 性剂分子的几何构型和荷电特性有关。
论点: 在胶团体系中,负值的表面活性 剂作用形成的溶液界面张力将促使体系形成 大量的微小胶团,而微小胶团的大量形成将 使界面张力上升到一个很小的正值。
了解表面活性剂在界面上的作用可以有 效的解决微粒的合成细化、稳定、表面修 饰和改性等问题。
2.表面活性剂在界面上的吸附 可以用吉布斯公式表示:
通过吉布斯公式可以选择表面活性剂或计算胶 团尺寸。
(1)表面活性剂在气-液界面上的吸附
可以根据上边公式计算出表面吸附 量的值,并从吸附量值计算出表面上每个表 面活性剂分子所占的平均面积。将此面积与 来自分子结构计算出来的分子大小相比较可 判断表面活性剂分子在吸附层中的取向和排 列状态。
第二章 表面活性剂的分类、功 能和作用原理
一、定义与分类
1.表面活性剂 对于某种水溶液,加入少量溶质,溶液表面
张力急剧下降,但达到一定浓度后,随着溶液浓 度增加表面张力值不再变化。加入的这种溶质就 叫表面活性剂。它对水溶液有表面活性。
例:有机酸盐、有机胺盐、磺酸盐、苯磺酸 盐、聚乙烯醚等
2.分类
(2)表面活性剂在油-水界面上的吸附
物质的理化性质
![物质的理化性质](https://img.taocdn.com/s3/m/bd4451d67f1922791688e86a.png)
十二烷基硫酸钠 - 物理化学性质
白至微黄色粉末,微有特殊气味。
易溶于水。
十二烷基硫酸钠是一种阴离子表面活性剂,属于硫酸酯类表面活性剂的典型代表,简称SDS,又叫AS、K12、椰油醇硫酸钠,月桂醇硫酸钠、发泡剂,市场上销售的商品通常为白色至微黄色结晶粉末,无毒,微溶于醇,不溶于氯仿、醚,易溶于水,与阴离子、非离子复配伍性好,具有良好的乳化性、起泡性、发泡、渗透、去污和分散性能、泡沬丰富,生物降解快,但水溶程度次于脂肪醇聚氧乙烯醚硫酸钠(简称AES)。
毒性LD50为1300mg/kg。
十二烷基硫酸钠是洗洁精的主要成分。
常用于DNA提取过程中,使蛋白质变性后与DNA分开。
作为发泡剂被广泛应用于牙膏、肥皂、浴液、洗发香波、洗衣粉,以及化妆品中。
95%的个人护肤用品和家居清洁用品中都含有十二烷基硫酸钠。
表面活性剂的性能与作用
![表面活性剂的性能与作用](https://img.taocdn.com/s3/m/9794cc000912a2161579292b.png)
三乙醇胺的性能与作用化学性质及合成方法1.英文名称:Triethanolamine2.CAS:102-71-63.分子式:C6H15O3N结构式:N(CH2CH2OH)34.相对分子量:149.19密度:1.12425.熔点:21.2℃饱和蒸气压:0.67(190℃)6.沸点:360℃7.闪点:193℃8.折射率:1.48529.溶解性:有吸湿性,能与水、乙醇、丙酮等混溶。
25℃时在苯中的溶解度4.2%10.理化性质:常温下无色、粘稠液体,稍有氨味,易溶于水、乙醇。
可腐蚀铜、铝及其合金。
液体和蒸汽腐蚀皮肤和眼睛。
具有碱性,能吸收CO2和H2S,其水溶液呈碱性,可与多种酸反应生成酯、酰胺盐,还能和高级脂肪酸形成脂。
具有叔胺的性质,碱性比氨低,能吸收CO2和H2S,其水溶液呈碱性,能与无机酸或有机酸反应生成盐,还能和高级脂肪酸形成脂。
可与多种重金属螯合生成2-4个配位的稳定螯合物,是优良的螯合剂.一般由液氨先配置成一定浓度的氨水,之后与环氧乙烷在微加热的情况下反应。
通过精制得到各种纯度无色透明的产品一般用途(1)用于制备表面活性剂、切削油、防冻液,在金属加工工业中,可用来制备缓蚀剂,保护金属表面,防止氧化;(2)在电镀行业中,可代替氰化钠,或采用微氰电镀,被称之为微氰或无氰无毒电镀,镀件内在质量完全可与氰镀件媲美;(3)水泥助磨剂主要原料(约占千分之一助磨剂配方总量的15%左右),加入助磨剂可以增加水泥产量10%-20%;(4)直接加入水泥熟料助磨(比例约为万分之一),混合后球磨,不但可增加水泥产量,而且增加细度提高质量标号,降低能耗;(5)混凝土减水剂原料;(6)混凝土早强剂原料。
其他用途(1)洗涤剂原料;美容品原料;护肤品、化妆品原料。
(2)三乙醇胺也是高效螯合剂,可螯合各种重金属。
(3)三乙醇胺也是良好的溶剂,吸湿剂,用于纺织工业中。
(4)三乙醇胺在化妆品中还具有中和剂的作用,它可以与CP-940中和,从而达到增稠和保湿的作用。
aeo-14 壬基酚聚醚-14 质量标准
![aeo-14 壬基酚聚醚-14 质量标准](https://img.taocdn.com/s3/m/c50c7936a517866fb84ae45c3b3567ec102ddc35.png)
aeo-14 壬基酚聚醚-14 质量标准一、引言壬基酚聚醚-14是一种常用的表面活性剂,被广泛应用于各个领域,包括家居清洁产品、个人护理品、工业清洁剂等。
为了确保产品的质量和安全性,制定壬基酚聚醚-14的质量标准至关重要。
本文将从外观性状、主要成分、理化性质、纯度、溶解性、微生物限度等方面,详细介绍壬基酚聚醚-14质量标准的要求。
二、外观性状要求壬基酚聚醚-14的外观应为无色或微黄色透明液体。
在质量标准中,应明确外观色泽的范围,并规定了允许的色度、透明度要求,以确保产品在质量上符合要求。
三、主要成分检测壬基酚聚醚-14的主要成分是壬基酚聚氧乙烯醚,因此质量标准中应规定主要成分含量的要求。
一般以氧乙烯基团数来表示其含量,要求明确规定壬基酚聚氧乙烯醚含量的下限和上限,以保证产品的一致性和稳定性。
四、理化性质要求1. 密度:壬基酚聚醚-14的密度是其物理性质之一,通过密度的要求,可以确保产品的质量和规范性。
2. 相对分子质量:通过相对分子质量的要求,可以验证壬基酚聚醚-14的纯度和化学组成,确保产品的质量标准。
五、纯度检测壬基酚聚醚-14的纯度是保证产品质量的重要指标,质量标准中应规定壬基酚聚醚-14的纯度要求,一般用含量值来表示。
此外,还可以根据不同行业的需求,对有害杂质的含量进行限制。
六、溶解性要求壬基酚聚醚-14的溶解性影响着其在不同产品中的应用效果。
质量标准中应规定壬基酚聚醚-14的溶解性要求,可以根据产品的使用环境来制定相关标准,以确保产品能够正常溶解并发挥其应有的功能。
七、微生物限度壬基酚聚醚-14作为一种表面活性剂,其微生物限度是确保产品安全性和稳定性的重要要求之一。
质量标准中应包括壬基酚聚醚-14的微生物限度要求,包括菌落总数、大肠菌群和真菌、酵母菌等指标的检测和要求。
八、结论本文对壬基酚聚醚-14的质量标准进行了全面的论述,从外观性状、主要成分、理化性质、纯度、溶解性和微生物限度等方面进行了详细介绍。
磷酸酯表面活性剂系列
![磷酸酯表面活性剂系列](https://img.taocdn.com/s3/m/86933708c950ad02de80d4d8d15abe23482f0325.png)
磷酸酯表面活性剂系列浏览原图发布时间:2011-3-7详细信息磷酸酯表面活性剂系列:xx磷酸酯表面活性剂--1脂肪醇聚氧乙烯醚磷酸酯/盐:AEO-9 磷酸酯/AEO-9P/AEO-3 磷酸酯/AEO-3P/MOA-3P/MOA-9P(一)xx:Polyoxyethylene Laurylether Phosphate(二)化学名:月桂醇醚磷酸酯(三)化学式:RO(CH2O)n-PO(OH)2 和[RO(CH2O)n]2PO(OH)R:C=12-14n=3、9(四)产品特性:1.呈阴离子型,常与非离子、阴离子、两性离子复配。
2.具有优良的去污、乳化、分散、净洗、润湿、抗静电和防锈性能,具有较强的脱脂力。
3.稳定性好。
耐酸、耐碱、耐高温、耐硬水、耐无机盐。
4. xx于有机溶剂。
5.温和,对环境无害。
(五)技术指标:1.外观(25℃):常温下为无色至淡黄色透明粘稠的液体。
2.有效物(%):>98,03.PH值(10g/L、10%乙醇溶液):<3.0(六)用途与用量:1.用途:用于个人清洁产品中,如香波、浴液、洗面奶;用于家庭、工业硬表面清洁洗涤剂,如洁瓷产品、干洗剂、金属清洁防锈剂等;纺织印染工业作油剂、抗静电剂、渗透剂、煮炼剂和净洗剂;皮革工业作脱脂剂、匀染剂。
其他用途:造纸工业脱墨剂;有机磷农药乳化剂、电镀液添加剂,金属切削润滑剂、合成树脂、涂料的颜料分散剂等。
2.推荐用量:3-10%磷酸酯表面活性剂--2异辛醇聚氧乙烯醚磷酸酯OEP-98 CAS:68439-39-4.alpha.-(2-Ethylhexyl)-.omega.-hydroxypoly(oxy-1,2-ethanediyl) phosphates(二)化学名:异辛醇聚氧乙烯醚磷酸酯(三)产品性状1.外观无色至淡黄色稠状液体2.活性物含量296 %3.酸值(mgKOH/g) 260±504.比重 1.10-1.155. PH 值(1%) 2±0.5(四)产品特点本品渗透润湿性能优异,可用于各种日化产品中渗透剂、乳化剂、有良好的洗涤协同作用。
十六种常见危险化学品理化特性
![十六种常见危险化学品理化特性](https://img.taocdn.com/s3/m/0dee87250b4e767f5acfced2.png)
目录
目录 (1)
表1涉及化学品目录 (2)
表2 丙酮物质特性表 (3)
表3 盐酸物质特性表 (4)
表4 硫酸物质特性表 (5)
表5 过氧化氢物质特性表 (6)
表6 次氯酸钠物质特性表 (7)
表7 1,1-二氯-1-氟乙烷的特性 (8)
表8 聚乙二醇物质特性表(以PEG200为例) (9)
表9 乙二酸(草酸)物质特性表 (10)
表10 亚硫酸氢钠物质特性表 (11)
表11 氢氧化钠物质特性表 (12)
表12 聚合氯化铝物质特性表 (13)
表13 FR-110 物质特性表 (14)
表14 L-1110物质特性表 (15)
表15 CF-5物质特性表 (16)
表16 表面活性剂物质特性表 (17)
根据《易制毒化学品管理条例》(国务院令第445号),盐酸、硫酸和丙酮属于第三类易制毒化学品,是可以用于制毒的化学配剂。
表1涉及化学品目录
表2 丙酮物质特性表
表5 过氧化氢物质特性表
表6 次氯酸钠物质特性表
表7 1,1-二氯-1-氟乙烷的特性
表8 聚乙二醇物质特性表(以PEG200为例)
表9 乙二酸(草酸)物质特性表
表10 亚硫酸氢钠物质特性表
表11 氢氧化钠物质特性表
表12 聚合氯化铝物质特性表
表13 FR-110 物质特性表
表14 L-1110物质特性表
表15 CF-5物质特性表
表16 表面活性剂物质特性表。
氨基酸型表面活性剂
![氨基酸型表面活性剂](https://img.taocdn.com/s3/m/c9426d0231126edb6f1a107f.png)
1 表面活性剂概述
2.1 氨基酸型表面活性剂结构分类
按氨基酸的不同分类 根据分子中所含氨基和梭基的相对数目,分为: ①中性,如N-酰基肌氨酸、二(辛氨基乙基)甘氨酸; ②酸性:如N-酰基谷氨酸、N-酰基谷氨酸二酷; ③碱性,如Nβ-酰基-L-赖氨酸(R=十二烷基)、Nα-二甲基-Nα-酰基赖 氨酸(R=十二烷基)。 根据氨基酸结构不同,及其溶于水时的离子类型不同可分为: ①阴离子型,如N-酰基谷氨酸、N-酰基肌氨酸;②阳离子型,如Nα椰子酰精氨酸乙醋 (CAE);③两性型,如N-烷基天冬氨酸-β-烷基酯、 Nα-L-赖氨酸(R=十二烷基);④非离子型,如N-酰基谷氨酸二酯、甘 油单毗咯烷酮梭酸酯。
1.1 表面活性剂的研究热点
①生物表面活性剂
生物表面活性剂具有或优于化学合成表面活性剂的理化特性,对它的开发始 于20世纪60年代中期。与化学合成表面活性剂相比,生物表面活性剂具有选择 性好,用量少,无毒,能够被生物完全降解,不对环境造成污染。可用微生物 方法引入化学方法难以合成的新化学基团等特点。随着生物技术的进步,生物 表面活性剂将在功能性、环保性及经济性方面与化学合成表面活性剂之间进行 激烈的竞争。 ②Gemini型表面活性剂
反应型表面活性剂是指带有反应基团的表面活性剂,它能与所吸 附的基体发生化学反应。从而键合到基体表面,对基体起表面活性 作用,同时也成了基体的一部分,它可以解决许多传统表面活性剂 的不足。在乳液聚合、溶液聚合、无皂聚合、功能性高分子的制备 等方面,传统表面活性剂被反应型表面活性剂全部或部分代替后, 产品的性能得到了很大的改善或制得了新的产品。
表面活性剂的分析与测试
![表面活性剂的分析与测试](https://img.taocdn.com/s3/m/20e1f6610740be1e640e9a41.png)
表面活性剂的分析与测试2008-03-20 19:09表面活性剂具有降低表面张力及在溶液中定向吸附并形成胶束的特性,由此表面活性剂具有湿润、乳化、分散、起泡、消泡、增溶、絮凝、杀菌、去污等一系列作用和功能。
这些功能已在洗涤剂生产、纺织、造纸、皮革加工、金属加工、石油工业、农药制剂生产等诸多工业领域得以应用并发挥重要作用。
各种用途的工业表面活性剂产品通常是用几种不同性能的表面活性剂、无机物、水或有机溶剂等复配而成。
一般需要用物理、化学和色谱方法对混合物进行分析、分离和精制,再利用红外、紫外、核磁、质谱和色谱等仪器进行未知物的定性分析、定量分析及组成与结构测试。
一、表面活性剂的理化性能测试浊点是非离子表面活性剂亲水性与温度关系的重要指标,与应用需求密切相关,多采用一定浓度的水溶液升温法。
分散力测试方法有分散指数法、酸量滴定法、比浊法等。
润湿力的测定方法通常用帆布沉降法、纱布沉降法、纱线沉降法和接触角法等。
静表面张力测定有滴重法、吊环法、平板法、悬滴法和最大泡压法。
形成胶束所需表面活性剂的最低浓度称为临界胶束浓度(cmc),表面活性剂的水溶液只有其浓度略高于其CMC值时它的作用才能充分显示,测定方法有表面张力、染料、电导率法等。
表面活性剂在水溶液中形成胶束以后,能使不溶解或微溶于水的有机化合物的溶解度显著增大的能力,形成真溶液体系。
增溶实验是将一定量的表面活性剂将苯或其它所需考察的有机物增溶在水中,当体系中有机溶剂含量超过表面活性剂的增溶极限时,体系浑浊,由此测定其增溶能力。
表面活性剂的泡沫性能包括它的起泡性和稳泡性两个方面,均随其浓度上升而增强(直至极限值),测定方法是测定表面活性剂在一定浓度、一定温度、一定高度自由流下的一定硬度的水溶液所产生的泡沫高度/量,及此泡沫在一定时间后的泡沫高度/量。
乳化力的测定因不同的乳化对象及不同的乳化环境表面活性剂呈现出不同的乳化力,视具体情况而定,无统一的方法。
相转变温度(PIT)是测定乳液相转变的温度,是衡量乳液稳定性的重要指标。
表面活性剂的性质
![表面活性剂的性质](https://img.taocdn.com/s3/m/aa896b64b90d6c85ec3ac6e8.png)
药物制剂辅料与包装材料----考点指南(一)临界胶束浓度表面活性剂在水中低浓度时,定向排列而形成单分子层;随着浓度增加,表面活性剂表面吸附达到饱和,其分子即转入溶液内部,致使表面活性剂分子亲油基团之间相互吸引、缔合形成亲水基团朝外、亲油基团朝内的分子聚集体,称为胶束。
形成胶束的最低浓度称为临界胶束浓度(CMC )。
到达临界胶束浓度时,分散系统由真溶液变成胶体溶液,增溶作用增强,起泡性能和去污力加大,渗透压、导电度、密度和黏度等突变,出现丁达尔现象等理化性质的变化。
(二)亲水亲油平衡值1. 亲水亲油平衡值的规定 表面活性剂分子中亲水、亲油基团对油或水的综合亲和力称为亲水亲油平衡值,简称HLB 值。
HLB 值是个相对值,限定在0~40范围,其中,非离子型表面活性剂的HLB 值范围为0~20,完全由疏水碳氢基团组成的石蜡分子的HLB 值为0,表面活性剂的HLB 值越低亲油性越强,HLB 值越高亲水性越强。
2. 亲水亲油平衡值的计算 非离子型表面活性剂的HLB 值具有加和性,混合表面活性剂的HLB 值计算如下:BA B B A A W W W HLB W HLB HLB式(2-1) 式中HLB A 、HLB B 分别表示A 、B 两种表面活性剂的HLB 值,W A 、W B 表示A 、B 两种表面活性剂的重量或混合比例。
但上式不适用于离子型表面活性剂。
例1:用45﹪司盘60(HLB=4.7)和55﹪吐温60(HLB=14.9)组成的混合表面活性剂的HLB 值?解:HLB=4.7×45%+14.9×55%=10.31。
例2:将吐温80(HLB=15)和司盘80( HLB=4.3) 以2: 1的比例混合,混合后的HLB 值?解:HLB=15×2/(2+1)+4.3×1/(2+1)=11.43。
(三)昙点和克氏点1. 昙点 某些含聚氧乙烯基的非离子表面活性剂,其溶解度开始随温度上药物制剂辅料与包装材料----考点指南升而加大,到某一温度后其溶解度急剧下降,溶液出现混浊,这种现象称为起昙或起浊,此转变温度称为昙点或浊点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂的理化性质和生物学性质一、临界胶束浓度当表面活性剂的正吸附到达饱和后继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力远大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的胶束(micelles)。
在一定温度和一定的浓度范围内,表面活性剂胶束有一定的分子缔合数,但不同表面活性剂胶束的分子缔合数各不相同,离子表面活性剂的缔合数约在10~100,少数大于1000。
非离子表面活性剂的缔合数一般较大,例如月桂醇聚氧乙烯醚在25℃的缔合数为5000。
表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC),不同表面活性剂的CMC不同,见表4-2。
具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC越小。
在CMC 时,溶液的表面张力基本上到达最低值。
在CMC到达后的一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。
表4-2 常用表面活性剂的临界胶束浓度CMC/molL-1 名称测定温度/℃CMC/molL-1 名称测定温度/℃辛烷基磺酸钠25 1.50×10-1氯化十二烷基25 1.6×10-2铵辛烷基硫酸钠40 1.36×10-1月桂酸蔗糖2.38×10-6酯十二烷基硫酸钠40 8.60×10-3棕榈酸蔗糖酯9.5×10-5十四烷基硫酸钠40 2.40×10-3硬脂酸蔗糖酯6.6×10-5十六烷基硫酸钠40 5.80×10-4吐温20 25 6.0×10-2(g/L,以下同)十八烷基硫酸钠40 1.70×10-4吐温40 25 3.1×10-2硬脂酸钾50 4.50×10-45吐温60 25 2.8×10-2油酸钾50 1.20×10-3吐温65 25 5.0×10-2月桂酸钾25 1.25×10-2吐温80 25 1.4×10-2十二烷基磺酸钠25 9.0×10-3吐温85 25 2.3×10-2(二)胶束的结构在一定浓度范围的表面活性剂溶液中,胶束呈球形结构(图4-1a),其碳氢链无序缠绕构成内核,具非极性液态性质。
碳氢链上一些与亲水基相邻的次甲基形成整齐排列的栅状层。
亲水基则分布在胶束表面,由于亲水基与水分子的相互作用,水分子可深入到栅状层内。
对于离子型表面活性剂,则有反离子吸附在胶束表面。
随着溶液中表面活性剂浓度增加(20%以上),胶束不再保持球形结构,则转变成具有更高分子缔合数的棒状胶束(图4-1b),甚至六角束状结构(图4-1c),表面活性剂浓度更大时,成为板状或层状结构(图4-1d和e)。
从球形结构到层状结构,表面活性剂的碳氢链从紊乱分布转变成规整排列,完成了从液态向液晶态的转变,表现出明显的光学各向异性性质,在层状结构中,表面活性剂分子的排列已接近于双分子层结构。
在高浓度的表面活性剂水溶液中,如有少量的非极性溶剂存在,则可能形成反向胶束,即亲水基团向内,亲油基团朝向非极性液体。
油溶性表面活性剂如钙肥皂、丁二酸二辛基磺酸钠和司盘类表面活性剂在非极性溶剂中也可形成类似反向胶束。
(三)临界胶束浓度测定当表面活性剂的溶液浓度达到临界胶束浓度时,除溶液的表面张力外,溶液的多种物理性质,如摩尔电导、粘度、渗透压、密度、光散射等多种物理性质发生急剧变化。
或者说,溶液物理性质发生急剧变化时的浓度即该表面活性剂的CMC。
利用这些性质与表面活性剂浓度之间的关系,可推测出表面活性剂的临界胶束浓度。
但测定的性质不同以及采用不同的测定方法得到的结果可能会有差异。
另外,温度、浓度、电解质、pH等因素对测定结果也会产生影响。
二、亲水亲油平衡值(一)HLB值的概念表面活性剂分子中亲水和亲油基团对油或水的综合亲和力称为亲水亲油平衡值(hydrophile-lipophile balance,HLB)。
根据经验,将表面活性剂的HLB 值范围限定在0~40,其中非离子表面活性剂的HLB值范围为0~20,即完全由疏水碳氢基团组成的石蜡分子的HLB值为0,完全由亲水性的氧乙烯基组成的聚氧乙烯的HLB值为20,既有碳氢链又有氧乙烯链的表面活性剂的HLB值则介于两者之间。
亲水性表面活性剂有较高的HLB值,亲油性表面活性剂有较低的HLB值。
亲油性或亲水性很大的表面活性剂易溶于油或易溶于水,在溶液界面的正吸附量较少,故降低表面张力的作用较弱。
表面活性剂的HLB值与其应用性质有密切关系,HLB值在3~6的表面活性剂适合用做W/O型乳化剂,HLB值在8~18的表面活性剂,适合用做O/W型乳化剂。
作为增溶剂的HLB值在13~18,作为润湿剂的HLB值在7~9等,一些常用表面活性剂的HLB值列于表4-3。
非离子表面活性剂的HLB值具有加和性,例如简单的二组分非离子表面活性剂体系的HLB值可计算如下:(4-1)如,用45%司盘60(HLB=4.7)和55%吐温60(HLB=14.9)组成的混合表面活性剂的HLB值为4.31。
但上式不能用于混合离子型表面活性剂HLB值的计算。
表4-3 常用表面活性剂的HLB值表面活性剂HLB值表面活性剂HLB值阿拉伯胶8.0 吐温20 16.7西黄蓍胶13.0 吐温21 13.3明胶9.8 吐温40 15.6 单硬脂酸丙二酯 3.4 吐温60 14.9 单硬脂酸甘油酯 3.8 吐温61 9.6 二硬脂酸乙二酯 1.5 吐温65 10.5 单油酸二甘酯 6.1 吐温80 15.0 十二烷基硫酸钠40.0 吐温81 10.0 司盘20 8.6 吐温85 11.0 司盘40 6.7 卖泽45 11.1 司盘60 4.7 卖泽49 15.0 司盘65 2.1 卖泽51 16.0 司盘80 4.3 卖泽52 16.9 司盘83 3.7 聚氧乙烯400单月桂酸酯13.1 司盘85 1.8 聚氧乙烯400单硬脂酸酯11.6 油酸钾20.0 聚氧乙烯400单油酸酯11.4 油酸钠18.0 苄泽35 16.9 油酸三乙醇胺12.0 苄泽30 9.5 卵磷脂 3.0 西土马哥16.4 蔗糖酯5~13 聚氧乙烯氢化蓖麻油12~18(二)HLB值的理论计算法如果把表面活性剂的HLB值看成是分子中各种结构基团贡献的总和,则每个基团对HLB值的贡献可以用数值表示,这些数值称为HLB基团数(group number),将各个HLB基团数代入下式,即可求出表面活性剂的HLB值,该计算值与一些实验测定法的结果有很好的一致性:HLB=Σ(亲水基团 HLB数)-Σ(亲油基团HLB数)+7如十二烷基硫酸钠的HLB值为:HLB=38.7-(0.475×12)+7=40.0表面活性剂的一些常见基团及其HLB基团数列于表4-4。
表4-4 用于计算HLB值的基团数亲水基团基团数亲油基团基团数-SO4Na 38.7 -CH-0.475-SO3Na 37.4 -CH2-0.475-COOK 21.1 -CH30.475-COONa 19.1 =CH- 0.476-N= 9.4 -CH2-CH2-CH2-O-0.15酯(失水山梨醇环) 6.8 -CH-CH2-O- 0.15酯(自由) 2.4 CH3-COOH 2.1 苯环1.662-OH(自由) 1.9 -CF2- 0.870-O- 1.3 -CF30.870-OH(失水山梨醇环) 0.5 CH3-(CH2CH2O)- 0.33 -CH2-CH-O-0.15三、Krafft点与昙点(一)Krafft点对于离子型表面活性剂,例如十二烷基硫酸钠在水中的溶解度随温度变化曲线AKB,如图9-10。
可以看出随温度升高,其溶解度在某一温度K点急剧升高,转折点K对应的温度称克拉费特点(Krafft point)。
而此点对应的溶解度即为该离子型表面活性剂的临界胶团浓度(图中虚线对应浓度)。
当溶液中表面活性剂的浓度未超过溶解度时,在区域Ⅰ为溶液状态AK线以下;当继续加入表面活性剂时,则有表面活性剂析出,在区域ⅡAKB线以上;此时再升高温度,体系又成为澄明溶液,KB曲线以下(区域Ⅲ),但与Ⅰ相不同,相是表面活性剂的胶束溶液。
Krafft点是离子型表面活性剂的特征值,Krafft点越高的表面活性剂,临界胶团浓度越小。
Krafft点也是表面活性剂应用温度的下限,或者说,只有在温度高于Krafft点表面活性剂才能更好的发挥作用。
如十二烷基硫酸钠的Krafft 点为8℃,而十二烷基磺酸钠的Krafft点为70℃,在室温条件下使用,前者作增溶剂为好,后者的Krafft点高就不够理想。
(二)昙点(Cloud Point)对非离子型表面活性剂在水溶液中得溶解度随温度升高而下降,使溶液变浊,称此变浊温度为昙点(Cloud point),亦称浊点。
昙点是非离子型表面活性剂的特征值。
此类表面活性剂的昙点在70~100℃,例如吐温20为90℃;吐温60为76℃;吐温80为93℃。
吐温类产生昙点的原因是温度升高,聚氧乙烯链与水之间的氢键断裂,水合能力下降,溶解度反而减小,溶液变浊出现昙点,冷却时氢键重新形成,又澄明。
在聚氧乙烯链相同时,碳氢链越长,则昙点越低;在碳氢链长相同时,聚氧乙烯链越长则昙点越高。
四、表面活性剂的生物学性(一)表面活性剂对药物吸收的影响研究发现表面活性剂的存在可能增进药物的吸收也可能降低药物的吸收,取决于多种因素的影响。
如药物在胶束中的扩散、生物膜的通透性改变、对胃排空速率的影响、粘度等,很难作出预测。
如果药物被增溶在胶束内,药物从胶束中扩散的速度和程度及胶束与胃肠生物膜融合的难易程度具有重要影响。
如果药物可以顺利从胶束内扩散或胶束本身迅速与胃肠粘膜融合,则增加吸收,例如应用吐温80明显促进螺内酯的口服吸收。
表面活性剂溶解生物膜脂质增加上皮细胞的通透性,从而改善吸收,如十二烷基硫酸钠改进头孢菌素钠、四环素、磺胺脒、氨基苯磺酸等药物的吸收。
吐温80和吐温85增加一些难溶性药物的吸收则是因其在胃肠中形成高粘度团块降低了胃排空速率。
但当聚氧乙烯类或纤维素类表面活性剂增加胃液粘度而阻止药物向粘膜面的扩散时,则吸收速率随粘度上升而降低。
许多表面活性剂对胰岛素鼻粘膜吸收有促进作用,例如分别将含有1%Poloxamer108、1%Brij35或癸酸钠(NaCap)的胰岛素溶液,经大鼠鼻腔给药半小时后,即可引起血糖较大幅度的降低。
以8U/kg剂量给药半小时后血糖可降为给药前血糖值的60%左右,这说明含1%表面活性剂的胰岛素溶液从鼻粘膜吸收迅速而有效。