做辅助线方法
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形;5三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形;6全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线7相似三角形:相似三角形有平行线型带平行线的相似三角形,相交线型,旋转型;当出现相比线段重叠在一直线上时中点可看成比为1可添加平行线得平行线型相似三角形;若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法;8特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明9半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样;二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;4.圆中常用辅助线的添法在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的;1见弦作弦心距有关弦的问题,常作其弦心距有时还须作出相应的半径,通过垂径平分定理,来沟通题设与结论间的联系;2见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题;3见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题;4两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系;5两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来;。
关于中线做辅助线的常见方法
关于中线做辅助线的常见方法1. 引言1.1 概述中线作为一种辅助线在技术分析中被广泛应用。
它是通过连接市场趋势的高低点形成的直线,可以帮助我们更准确地判断价格的走势和变化。
本文将介绍常见的中线做辅助线的方法,并探讨其优点、作用以及实际操作中需要注意的事项和技巧。
1.2 文章结构本文主要包括以下几个部分:引言、常见中线做辅助线的方法、中线作为辅助线的优点和作用、实际操作中的注意事项和技巧以及结论。
通过这样的结构,我们将全面地了解和掌握关于中线做辅助线的相关知识。
1.3 目的本文旨在介绍与中线做辅助线相关的主要内容,帮助读者理解并掌握常见方法,提高价格预测准确率、增加交易稳定性,并且能在决策过程中起到积极辅助作用。
此外,我们还会分享一些实际操作中需要注意的事项和技巧,以便读者能够更好地运用中线辅助线指导自己的交易决策。
以上是“1. 引言”部分的详细内容,希望对您的长文撰写有所帮助。
2. 常见中线做辅助线的方法2.1 方法一方法一是使用趋势线作为中线的辅助线。
趋势线可以帮助我们确定价格走势的主要方向,并在图表上绘制出相应的中线。
绘制趋势线时,我们可以选择连接价格低点或高点,以便更准确地反映当前的价格走势。
这种方法适用于分析市场长期趋势和判断价格可能发展的方向。
2.2 方法二方法二是使用移动平均线作为中线的辅助线。
移动平均线是常见的技术指标之一,用于平滑价格曲线并显示价格的趋势。
我们可以选择不同周期长度(如5日、10日或20日)来计算移动平均值,并将其作为中线绘制在图表上。
这种方法适用于短期交易和追踪价格走势变化。
2.3 方法三方法三是使用斐波那契回撤位或扩展位作为中线的辅助线。
斐波那契回撤位和扩展位是基于数列序列计算得出的重要支撑位和阻力位,在技术分析中被广泛应用。
通过根据前期价格波动的高点和低点,我们可以计算出不同的斐波那契回撤位或扩展位,并将其作为中线绘制在图表上。
这种方法适用于识别价格反转和调整的可能水平。
初中数学常见辅助线的做法
初中数学常见辅助线的做法
初中数学常见辅助线的做法
在初中数学中,辅助线是解题过程中常用的工具。
通过适当地引入辅助线,可以使问题更加清晰明了,从而更容易解决。
本文将介绍几种常见的辅助线做法。
1.平移法
平移法是一种常用的辅助线做法。
它的基本思想是将图形沿某个方向平移,使得问题更加清晰。
例如,在解决一个三角形的问题时,我们可以平移其中的一条边,使得三角形更加规则,从而更容易解决问题。
2.垂线法
垂线法也是一种常用的辅助线做法。
它的基本思想是引入垂线,将原问题转化为更简单的问题。
例如,在解决一个三角
形的问题时,我们可以引入垂线,将三角形分成两个直角三角形,从而更容易解决问题。
3.对称法
对称法是一种常用的辅助线做法。
它的基本思想是通过引入对称轴,将原问题转化为更简单的问题。
例如,在解决一个图形的问题时,我们可以引入对称轴,将图形分成对称的两部分,从而更容易解决问题。
4.相似法
相似法是一种常用的辅助线做法。
它的基本思想是通过找到相似的图形,将原问题转化为更简单的问题。
例如,在解决一个三角形的问题时,我们可以找到一个相似的三角形,从而更容易解决问题。
总之,辅助线是解决初中数学问题的常用工具。
通过灵活运用各种辅助线做法,我们可以更加轻松地解决各种数学问题。
初中数学做辅助线的方法总结
初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。
以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。
例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。
2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。
例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。
3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。
例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。
4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。
例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。
总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。
需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。
初中三角形最常见26种做辅助线做法及思路.doc
初中三角形最常见26种做辅助线做法及思路1、在利用三角形三边关系证明线段不等关系时,如果不能直接证明结果,可以接连两点或延长一边构造三角形,使结论中出现的线段在一个或几个三角形中,然后利用三边关系定理及不等式性质证明。
(注意:利用三角形三边关系定理及推论证明时,常通过做辅助线,将求证量或与求证相关的量移到同一个或几个三角形中)2、利用三角形外角大于任何与它不相邻的内角证明角的不等关系式,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证明。
3、有角平分线时常在角两边截取相等的线段,构造全等三角形4、有线段中点为端点的线段时,常加倍延长此线段构造全等三角形5、在三角形中有中线时,常加倍延长中线构造全等三角形6、截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段补短法:延长较短线段和较长线段相等7、证明两条线段相等的步骤:①观察要证明线段在那两个可能全等的三角形中,然后证明这两个三角形全等;②若图中没有全等三角形,可以把求证线段用和它相等的线段代替,再证明它们所在三角形的全等;③如果没有相等的线段替换,可作辅助线构造全等三角形。
8、在一个图形中,有多组垂直关系时,常用同角(等角)的余角相等来证明两个角相等。
9、三角形一边的端点到这边的中线所在的直线的距离相等10、条件不足时延长已知边构造三角形11、连接四边形的对角线。
把四边形问题转化成三角形来解决12、有和角平分线垂直的线段时,通常把这条线段延长,可归纳为“角分垂等腰归”13、当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形。
14、当证题中缺少线段相等条件时,可取某条线段中点,为证题提供条件。
15、有角平分线时,常过平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证明。
16、有等腰三角形时常用的辅助线:①作顶角的平分线、底边中线、底边高线②有底边中点时,常作底边中线③将腰延长一倍,构造直角三角形解题④常过一腰上的某一已知点做另一腰的平分线⑤常过某一腰上的某一已知点作底边的平行线⑥常将等腰三角形转换成特殊等腰三角形――等边三角形17、有二倍角时常用的辅助线:①构造等腰三角形使二倍角是等腰三角形的顶角的外角②平分二倍角③加倍小角18、有垂直平分线时常把垂直平分线抢的点与线段两端点连接起来19、有垂直时长构造垂直平分线20、有中点时常构造垂直平分线21、当涉及到线段平分的关系时常构造直角三角形,利用勾股定理证题22、条件中出现特殊角时常做高把特殊角放在直角三角形中23、三角形中一个内角平分线与一个外角平分线相交所称的锐角,等于第三个内角的一半24、三角形中的两个内角平分线相交所成的钝角等于90°加上第三个内角的一半25、三角形的两个外角平分线相交所成的锐角等于90°减去第三个内角的一半26、从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差的绝对值的一半。
数学作辅助线的方法
作辅助线的方法一:中点、中位线,延线,平行线.如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的.二:垂线、分角线,翻转全等连.如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生.其对称轴往往是垂线或角的平分线.三:边边若相等,旋转做实验.如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生.其对称中心,因题而异,有时没有中心.故可分“有心”和“无心”旋转两种.四:造角、平、相似,和、差、积、商见.如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关.在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移.故作歌诀:“造角、平、相似,和差积商见.”(托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦.如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦.六:两圆相切、离,连心,公切线.如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线.七:切线连直径,直角与半圆.如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线.即切线与直径互为辅助线.如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线.即直角与半圆互为辅助线.八:弧、弦、弦心距;平行、等距、弦.如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线.如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立.如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立.有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线.九:面积找底高,多边变三边.如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键.如遇多边形,想法割补成三角形;反之,亦成立.另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
做数学怎么懂得做辅助线方法
做数学怎么懂得做辅助线方法几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面给大家分享一些关于做数学怎么懂得做辅助线方法,希望对大家有所帮助。
一.三角形中常见辅助线的添加1. 与角平分线有关的(1) 可向两边作垂线。
(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °二.四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。
下面介绍一些辅助线的添加方法。
1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1) 利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线三.圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
8种辅助线做法
8种辅助线做法辅助线是绘画时候常用的一种技巧。
使用辅助线能够帮助我们更加准确地捕捉物体的形状和比例关系,从而更精细地表现出绘画作品。
在这里,我们介绍八种常用的辅助线做法。
1. 十字交叉线这是最基本、最常用的辅助线做法。
将画布中心定位到目标位置,然后在目标位置上画一条竖线和一条横线,形成一个十字交叉线,这样可以帮助我们更好地控制物体的位置和相对大小。
2. 比例线比例线是辅助线中最常见的一种,它可以帮助我们准确把握物体的大小和比例关系。
在画布中心点上方和下方分别画两条等距离的竖线,并在相应位置上画上水平的横线,这样就形成了一组交叉的比例线。
3. 对角线对角线是常用的构图方式。
从画布的一个角开始,画一条斜向另一个角的直线,可以用来帮助我们判断物体的方向和大小,并提高构图的韵律感。
4. 构图线构图线可以帮助我们更准确地构建作品的整体结构。
在画布上绘制一个基本形状(例如正方形或矩形),然后按照特定的比例来画出各种斜线和弧线,形成一个基本的构图框架。
5. 圆形辅助线圆形辅助线可以帮助我们更好地掌握物体的曲线和圆弧部分。
在画布上绘制一个基本的圆形或椭圆形,然后在里面描绘出物体的具体轮廓,这样可以更准确地控制物体的形态和比例。
6. 多边形辅助线多边形辅助线可以帮助我们更准确地构建立体物体的形状。
在画布上绘制一个基本的多边形,然后在里面填充物体的具体形状,并根据需要增加纵向或横向的几何线条,这样可以更好地控制物体大小和立体感。
7. 曲线辅助线曲线辅助线适用于需要描绘许多曲线和弧线的艺术作品。
在画布上绘制出基本形状,然后在其内部描绘曲线和弧线,这样可以更好地掌握曲线部分的比例和方向。
8. 透视辅助线透视辅助线能够帮助我们更好地控制画面的空间感和透视感。
在画布上绘制出基本的三维空间框架,并增加仰视或俯视的角度,这样可以更好地表现空间感和透视感。
结语以上八种辅助线做法是绘画中常用的技巧,它们可以帮助我们更加精准地表现出物体的形态和比例。
初中数学辅助线常用做法
初中数学辅助线常用做法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
初二做辅助线的技巧
初二做辅助线的技巧初二时学习数学,辅助线是一个非常重要的技巧。
辅助线可以帮助我们更好地理解和解决各种数学问题。
下面我将介绍一些初二做辅助线的技巧。
我们来看一下如何在几何图形中使用辅助线。
在求解几何问题时,辅助线可以帮助我们找到一些隐藏的几何关系,从而简化问题。
比如,在求解平行线问题时,我们可以通过画一条与已知直线平行的辅助线,来找到与所求直线平行的线段。
通过这样的辅助线,我们可以很容易地得到所求的答案。
在代数中,辅助线同样可以发挥重要的作用。
比如,在解方程的过程中,我们可以通过引入一个新的变量来构造一个辅助方程,从而简化问题。
通过这个辅助方程,我们可以得到原方程的解。
在解决分数运算问题时,辅助线也是一个非常有用的工具。
当我们需要对两个分数进行比较或运算时,可以通过引入一个相同的分母来简化计算。
这个相同的分母就是我们引入的辅助线,通过它,我们可以将分数转化为整数,从而更方便地进行计算。
在解决几何问题时,辅助线还可以帮助我们证明定理。
通过引入一些辅助线,我们可以得到一些额外的几何关系,从而证明所要证明的定理。
这种方法在解决几何证明问题时非常常用。
除了上述的几种情况,辅助线还可以用于解决其他类型的数学问题。
无论是代数、几何还是其他数学领域,辅助线都是一个非常有用的工具。
通过合理地使用辅助线,我们可以将原来复杂的问题简化为易于理解和解决的问题。
初二做辅助线是一个非常重要的技巧。
通过合理地使用辅助线,我们可以更好地理解和解决各种数学问题。
在几何中,辅助线可以帮助我们找到隐藏的几何关系;在代数中,辅助线可以简化方程的解法;在分数运算中,辅助线可以简化计算;在几何证明中,辅助线可以帮助我们证明定理。
在解决其他类型的数学问题时,辅助线同样是一个非常有用的工具。
通过合理地使用辅助线,我们可以更好地理解和解决各种数学问题。
希望以上的介绍能够帮助到大家,提高大家的数学水平。
初二做辅助线的技巧
初二做辅助线的技巧初二数学学习中,辅助线是一个非常重要的技巧,它可以帮助我们更好地解决各种数学问题。
下面我将介绍几种常用的辅助线技巧。
一、辅助线的作用辅助线是一种在解题过程中画出的额外线段,它可以帮助我们更好地理解问题和解决问题。
通过合理地运用辅助线,我们可以发现问题的规律和特点,简化问题的复杂度,从而更快地找到解题的思路和方法。
二、等腰三角形的辅助线在解决与等腰三角形相关的问题时,我们可以通过画出等腰三角形的辅助线来简化问题。
例如,在求解等腰三角形的高和底边之间的关系时,我们可以画出一个等腰三角形,将问题转化为求解等腰三角形的两条边之间的关系。
这样一来,问题就变得更加清晰和简单了。
三、相似三角形的辅助线在解决与相似三角形相关的问题时,我们可以通过画出相似三角形的辅助线来寻找解题思路。
例如,在求解相似三角形的比例时,我们可以通过画出两个相似三角形的一条边和相应的比例线段,从而直观地找到两个三角形的比例关系。
这样一来,我们就可以更方便地进行计算和推导。
四、矩形的辅助线在解决与矩形相关的问题时,我们可以通过画出矩形的辅助线来简化问题。
例如,在求解矩形的对角线长度时,我们可以通过画出矩形的两条对角线,将问题转化为求解两条直线段的长度。
这样一来,问题就变得更加直观和易于计算了。
五、平行线的辅助线在解决与平行线相关的问题时,我们可以通过画出平行线的辅助线来找到问题的规律和性质。
例如,在求解平行线切割的梯形面积时,我们可以通过画出平行线与梯形两条腰的交点,将梯形分割为两个平行四边形和一个三角形,从而更容易计算出梯形的面积。
辅助线是初二数学学习中非常重要的技巧。
通过合理地运用辅助线,我们可以更好地解决各种数学问题,简化问题的复杂度,找到解题的思路和方法。
希望同学们在学习数学的过程中能够灵活运用辅助线技巧,提高解题的效率和准确性。
初中数学做辅助线的方法总结
初中数学做辅助线的方法总结初中数学中,辅助线是解题的一种重要方法,可以帮助我们清晰地理解题意和问题,并找到解题的思路。
下面是关于初中数学做辅助线的方法总结。
一、直线法1.作垂线:当题目中出现垂直关系时,我们可以通过作垂线来解决问题。
例如,求两个直线的垂直平分线、两个线段的中垂线等。
2.作平行线:当需要证明两条直线平行时,可以通过作一条与已知直线平行的辅助线,再应用平行线的性质进行证明。
二、角度法1.作角平分线:当需要求一个角平分线时,可以通过作一个角的辅助线将该角分成两个相等的角,进而求出角平分线。
2.作等角:当题目中需要证明两个角相等时,可以通过作一条等角的辅助线,将两个角变成等角,然后再应用等角的性质进行证明。
三、三角形法1.作高:当需要求一个三角形的高时,可以通过作条辅助线,形成一个矩形或直角三角形,从而利用高的性质求解。
2.作中线:当需要求一个三角形的中线时,可以通过作条辅助线,形成一个平行四边形或直角三角形,从而利用中线的性质求解。
3.作角平分线:当需要求一个三角形的角平分线时,可以通过作条辅助线,将该角分成两个相等的角,进而求出角平分线。
四、平行四边形法1.作对角线:当题目中出现平行四边形时,可以通过作对角线来将该平行四边形分成两个相等的三角形,进而利用三角形的性质进行求解。
五、轴对称法1.关于对称轴作对称点:当题目中出现轴对称图形时,可以通过作关于对称轴的对称点,将原图形和对称点所成的线段连结起来,形成对称图形,从而利用对称性进行求解。
六、相似三角形法1.作比例:当需要求解两个三角形相似的比例时,可以通过作条辅助线,形成相似三角形,并利用相似三角形的性质求解。
七、图形拓展法1.分割图形:当需要对一个复杂的图形进行分析时,可以通过作一些辅助线,将复杂图形分割成若干个简单的图形,进而分别求解。
总之,在初中数学中,辅助线是解题的有力工具,可以帮助我们合理分析题目,找到解题的思路,解决数学问题。
(完整版)初中数学添加辅助线的方法汇总
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
初中数学常见辅助线的做法
初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。
是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。
等腰三角形中做辅助线的七种常用方法典中典数学
等腰三角形中做辅助线的七种常用方法典中典数学
等腰三角形中做辅助线的七种常用方法如下:
1.作腰的平行线:根据“平行线分线段成比例”定理,得出线段之间的关系,然后利用等腰三角形的性质可得出结论。
2.作底边上的高:利用“面积法”或“全等法”进行证明,利用等腰三角形的“三线合一”性质可得出线段之间的关系。
3.作腰的延长线:根据等腰三角形的性质,利用“三角形中位线”定理或“全等”得出线段之间的关系。
4.作底边的中线:根据“等腰三角形底边上的中线与顶角的平分线重合”的性质,利用“全等法”或“面积法”进行证明。
5.过顶点作底边的平行线:根据“平行线分线段成比例”定理和“等腰三角形底边上的中线与顶角的平分线重合”的性质,可得出线段之间的关系。
6.过一腰上的某一点作另一腰的平行线:根据“平行线分线段成比例”定理和等腰三角形的性质,可得出线段之间的关系。
7.作一角平分线:利用角平分线的性质,可得出线段和角度之间的关系,然后利用等腰三角形的性质可得出结论。
几何证明之常见辅助线做法--
几何证明常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等.1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3、遇到角平分线在三种添辅助线的方法.(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形.(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形.4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.例题精讲第一部分:常见构造全等三角形方法例1、已知:如图,在四边形ABCD中,BC AB>,AD CD=,BD平分ABC∠.求证:180A C∠+∠=︒.例2、已知:如图所示,△ABC中,90C∠=︒,AC BC=,AD DB=,AE CF=.求证:DE DF=.相关练习:D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM、DN分别交BC、CA于点E、F.(1)当MDN∠绕点D转动时,求证:DE DF=;(2)若2AC=,求四边形DECF的面积.FEC AMD第二部分:倍长中线作法 【夯实基础】例:△ABC 中,AD 是BAC ∠的平分线,且BD CD =.求证:AB AC =.【方法精讲】常用辅助线添加方法——倍长中线△ABC 中方式1: 延长AD 到E ,AD 是BC 边中线 使DE=AD , 连接BE方式2:间接倍长作CF ⊥AD 于F , 延长MD到N ,作BE ⊥AD 的延长线于E 使DN=MD ,连接BE 连接CD【经典例题】例1、△ABC 中,5AB =,3AC =,求中线AD 的取值范围.例2、已知在△ABC 中,AB AC =,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF EF =.求证:BD CE =.例3、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F .求证:AF EF =.例4、已知:如图,在△ABC 中,AB AC ≠,D 、E 在BC 上,且DE EC =,过D 作DF ∥BA 交AE 于点F ,DF AC =. 求证:AE 平分BAC ∠.例5、已知CD AB =,BDA BAD ∠=∠,AE 是△ABD 的中线.求证:C BAE ∠=∠.第 1 题图ABFDECEDCBA【融会贯通】1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,BAE EAF ∠=∠,AF 与DC 的延长线相交于点F .试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.2、如图,AD 为△ABC 的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F . 求证:BE CF EF +>.3、已知:如图,△ABC 中,90C ∠=︒,CM ⊥AB 于M ,AT 平分BAC ∠交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E .求证:CT BE =.备选例题例1、如图,AD ∥BC ,EA 、EB 分别平分DAB ∠、CBA ∠,CD 过点E ,求证:AB AD BC =+.FEABCDDABCMTE例2、以的两边AB 、AC 为腰分别向外作等腰Rt △ABD 、Rt △ACE ,90BAD CAE ∠=∠=︒,连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当△ABC 为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.自我测试1、在△ABC 中,高AD 和BE 交于H 点,且BH AC =,则ABC ∠= .2、如图,已知AE 平分BAC ∠,BE ⊥AE 于E ,ED ∥AC ,36BAE ∠=︒,那么BED ∠= .第2题 第3题3、如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E ,给出三个论断:①DE EF =;②AE CE =;③FC ∥AB ,以其中一个论断为结论,其余两个论断为条件,可作出三个命题,其中正确命题的个数是 .4、如图,在△ABC 中,AD 为BC 边上的中线,若5AB =,3AC =,则AD 的取值范围是 .第4题 第5题 第6题5、如图,在△ABC 中,AC BC =,90ACB ∠=︒.AD 平分BAC ∠,BE ⊥AD 交AC 的延长线于F ,E 为垂足.则结论:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1;B .2;C .3;D .4.6、如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AD >,下列结论中正确的是( )A .AB AD CB CD ->-; B .AB AD CB CD -=-;C .AB AD CB CD -<-; D .AB AD -与CB CD -的大小关系不确定. 7、考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有( ). A .4个; B .3个; C .2个; D .1个.8、如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE ⊥AB 于E ,并且1()2AE AB AD =+,求ABC ADC ∠+∠的度数.9、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE CF +与EF 的大小关系,并证明你的结论.10、如图,已知2AB CD AE BC DE ===+=,90ABC AED ∠=∠=︒,求五边形ABCDE 的面积.11、如图,在△ABC 中,60ABC ∠=︒,AD 、CE 分别平分BAC ∠、ACB ∠. 求证:AC AE CD =+.12、如图,已知90ABC DBE ∠=∠=︒,DB BE =,AB BC =. (1)求证:AD CE =,AD ⊥CE ;(2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明.。
等腰三角形中做辅助线的八种常用方法
等腰三角形中做辅助线的八种常用方法以等腰三角形中做辅助线的八种常用方法为标题,写一篇文章。
一、连接底边中点和顶点的直线在等腰三角形中,连接底边中点和顶点的直线是最常见的辅助线之一。
通过连接底边中点和顶点的直线,可以将等腰三角形分为两个等边三角形,从而为解决问题提供了更多可能性。
二、平分底角另一种常见的辅助线是平分底角。
通过连接底边两个顶点与底角的平分线,可以将等腰三角形分成两个相等的小三角形,从而使得问题的解决更加简单明了。
三、平分顶角平分顶角也是一种常用的辅助线方法。
通过连接顶点与底边中点的直线,可以将等腰三角形分为两个相等的小三角形,从而使得问题的解决更加方便。
四、连接底边两个顶点与三角形顶点的直线通过连接底边两个顶点与三角形顶点的直线,可以形成一个内切等边三角形。
这个内切等边三角形可以为解决问题提供更多线索。
五、连接底边两个顶点与顶角平分线的交点通过连接底边两个顶点与顶角平分线的交点,可以形成一个四边形。
这个四边形可以为解决问题提供更多线索。
六、连接底边两个顶点与底边中点的连线通过连接底边两个顶点与底边中点的连线,可以形成一个等腰梯形。
这个等腰梯形可以为解决问题提供更多线索。
七、连接底边两个顶点与对边中点的连线通过连接底边两个顶点与对边中点的连线,可以形成一个平行四边形。
这个平行四边形可以为解决问题提供更多线索。
八、连接对边中点的连线通过连接对边中点的连线,可以形成一个等腰三角形的中线。
这个中线可以为解决问题提供更多线索。
在解决等腰三角形相关问题时,可以灵活运用以上八种常用的辅助线方法。
通过合理选择辅助线,可以使问题的解决更加简单明了。
当然,在运用辅助线的过程中,需要注意辅助线与等腰三角形的关系,确保辅助线的引入能够帮助解决问题,而不会导致问题的复杂化。
总结起来,通过连接底边中点和顶点的直线、平分底角、平分顶角、连接底边两个顶点与三角形顶点的直线、连接底边两个顶点与顶角平分线的交点、连接底边两个顶点与底边中点的连线、连接底边两个顶点与对边中点的连线以及连接对边中点的连线这八种常用的辅助线方法,我们可以更加灵活地解决等腰三角形相关问题。
做辅助线的技巧 口诀
做辅助线的技巧口诀做辅助线是绘画中非常重要且必不可少的技巧之一。
它可以帮助我们在绘画时更好地控制形状、比例和位置,使得画面更加精准、立体和生动。
但是,很多人在使用辅助线时会遇到困难,无法学会有效的技巧。
因此,我们需要掌握一些口诀来帮助我们更好地使用辅助线。
以下是一些有用的技巧和口诀,帮助您可以更成功、更高效地使用辅助线。
一、线条不要过重使用辅助线时,我们需要画出许多的线条,这些线条需要做到不过重,以免画面太杂乱,也会影响绘画的美感。
因此,在绘画过程中,我们可以选择用一支较细的笔或者使用淡色笔渐渐浓积,这样可以让画面更加清晰,更加整洁。
二、线条最好直接画在纸上使用辅助线的最大优势就在于能够让我们更加轻松地掌握形状、比例和位置,从而使画面更加精准、立体和生动。
因此,我们可以先在纸上画出原型,然后再在其上画出辅助线。
这样可以避免在使用辅助线时破坏画面的整体性。
三、移动中心点在绘画前将原型位置明确,将画面中心点定位在对称轴与中轴线的交点上,然后再移动,能够更好地把握画面的比例状况。
这样不仅能够使画面更加饱满,且能够保证画面的整体性,使得作品更加的立体、生动。
四、观察图形全貌做辅助线的一大技巧就是需要多观察原型图形的全貌。
例如,我们在画人物时,需要观察大脑袋、短颈、三角肩等特征,这样才能对比画出辅助线,再根据原型图形进行描画。
五、辅助线掌握基本规律在绘画中,我们需要掌握辅助线的基本规律。
例如:绘制一组平行线时,我们需要正确地利用平移方式完成布线与移动工作,从而保证最终的画面整体性。
总之,在使用辅助线的过程中,我们需要掌握一定的技巧。
除了上述这些口诀,我们还需要认真观察原型图形、应用形状和比例规律、注意画线清晰、一步步地进行绘制等,这些都是做辅助线不可缺少的技巧。
只有掌握这些技巧,我们才能真正的成为一名优秀的画家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、截长补短
一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.
例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.
分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.
证明:在AC上截取AF=AE,连接OF.
∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°
∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.
显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC
∴△DOC≌△FOC, CF=CD
∴AC=AF+CF=AE+CD.
二、中线倍长
三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.
例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().
分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.
解:如图2所示,设AB=7,AC=5,BC上中线AD=x.
延长AD至E,使DE = AD=x.
∵AD是BC边上的中线,∴BD=CD
∠ADC=∠EDB(对顶角)∴△ADC≌△EDB
∴BE=AC=5
∵在△ABE中 AB-BE<AE<AB+BE
即7-5<2x<7+5 ∴1<x<6
三、作平行线
当三角形问题中有相等的角或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.
例3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.
分析:要证DF=EF,必须借助三角形全等.而现有图形中没有全等三角形.由等腰三角形条件,可知∠B=∠ACB,作DH∥AE,可得∠DHB=∠ACB.则△DBH为等腰三角形.
证明:作DH∥AE交BC于H.
∴∠DHB=∠ACB,
∵AB=AC,∴∠B=∠ACB
∴∠DHB=∠B,DH=BD
∵CE=BD ∴DH= CE
又DH∥AE,∠HDF=∠E
∠DFH=∠EFC(对顶角)
∴△ DFH≌△EFC(AAS)∴DF=EF
四、补全图形
在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.
例4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A 点到直线BD的距离AD为a,求BE的长.
分析:题设中只有一条已知线段AD,且为直角边,而要求的BE为斜边.要找到它们之间的关系,需设法构造其他的全等三角形.
证明:延长AD、BC相交于F.
由BD为∠ABC的平分线,BD⊥AF.
易证△ADB≌△FDB ∴FD= AD=a AF=2a ∠F=∠BAD
又∠BAD+∠ABD=90°,∠F+∠FAC=90°
∴∠ABD=∠FAC
∵BD为∠ABC的平分线∴∠ABD=∠CBE
∴∠FAC=∠CBE,而∠ECB=∠ACF=90°,AC=BC
∴△ACF≌△BCE(ASA)∴BE=AF=2a
五、利用角的平分线对称构造全等
角的平分线是角的对称轴,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.
例5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.
分析:由角的平分线条件,在BC上截取BE=BA,可构造△ABD≌△EBD,从而AD=DE.则只要证明DE=CD.
证明:在BC上截取BE=BA,连接DE.
由BD平分∠ABC,易证△ABD≌△EBD
∴AD=DE ∠A=∠BED
又∠A+∠C=180°,∠BED+∠DEC=180°∴∠DEC=∠C,∴DE=CD
∴AD=CD。