奥数-2006年广东省初中数学竞赛初赛试卷(含答案)-

合集下载

2006年全国初中数学竞赛试题参考答案

2006年全国初中数学竞赛试题参考答案

2006年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ).(A )36 (B )37 (C )55 (D )90 答:C .解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施是在55千米处. 故选C .2.已知21+=m ,21-=n ,且8)763)(147(22=--+-n n a m m ,则a 的值等于( ) (A )-5 (B )5 (C )-9 (D )9 答:C .解:由已知可得 122=-m m ,122=-n n .又8)763)(147(22=--+-n n a m m ,所以 ()()8737=-+a , 解得 9-=a .故选C .3.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2y x =上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )1<h (B )1=h (C )21<<h (D )2>h 答:B .解:设点A 的坐标为),(2a a ,点C 的坐标为),(2c c (c a <),则点B 的坐标为),(2a a -,由勾股定理,得22222)()(a c a c AC -+-=, 22222)()(a c a c BC -++=,222AB BC AC =+,所以 22222)(c a c a -=-.由于22a c >,所以221a c -=,故斜边AB 上高=h 221a c -=.故选B .4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2004 (B )2005 (C )2006 (D )2007 答:B .解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k 次后,可得(k +1)个多边形,这些多边形的内角和为(k +1)×360°.因为这(k +1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k +1)-34=k -33(个),而这些多边形的内角和不少于(k -33)×180°.所以(k +1)×360°≥34×60×180°+(k -33)×180°,解得k ≥2005.当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.于是共剪了58+33+33×58=2005(刀).故选B .5.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,DP 交AC 于点Q .若QO QP =,则QAQC的值为( ) (A )132- (B )32(C )23+ (D )23+答:D .解:如图,设⊙O 的半径为r ,m QO =,则m QP =,m r QC +=,m r QA -=.(第5题图)在⊙O 中,根据相交弦定理,得QD QP QC QA ⋅=⋅. 即 QD m m r m r ⋅=+-))((,所以 mm r QD 22-=.连结DO ,由勾股定理,得222QO DO QD +=,即 22222m r m m r +=⎪⎪⎭⎫ ⎝⎛-,解得r m 33=. 所以,231313+=-+=-+=m r m r QA QC . 故选D .二、填空题(共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b =2006,a c -=2005.若a <b ,则a +b +c 的最大值为 . 答:5013.解:由a +b =2006,a c -=2005,得a +b +c =a +4011. 因为a +b =2006,a <b ,a 为整数,所以,a 的最大值为1002. 于是,a +b +c 的最大值为5013.7.如图,面积为c b a -的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 是整数,且b 不能被任何质数的平方整除,则bc a -的值等于 .答:320-. 解:设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则342=m .由△ADG ∽ △ABC ,可得m xm m x 2323-=, 解得m x )332(-=.于是48328)332(222-=-=m x , 由题意,a =28,b =3,c =48,所以320-=-b c a . 8.正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A ,C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米∕分,乙的速度为46米∕分. 那么,出发后经过 分钟,甲、乙两人第一次开始行走在同一条边上.答:104.解:设甲走完x 条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x 米,乙走了x x 3685040046=⨯米.于是400)1(400800)1(368>--+-x x ,且 x x 400)800368(-+≤400, 所以,5.12≤x <5.13.故x =13,此时1045013400=⨯=t .9.已知<01a <,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([]x 表示不超过x 的最大整数),则[]10a 的值等于 .答:6. 解:因为 122902303030a a a <+<+<<+<,所以130a ⎡⎤+⎢⎥⎣⎦,230a ⎡⎤+⎢⎥⎣⎦,…,2930a ⎡⎤+⎢⎥⎣⎦等于0或者1.由题设知,其中有18个等于1,所以130a ⎡⎤+⎢⎥⎣⎦=230a ⎡⎤+⎢⎥⎣⎦=…=1130a ⎡⎤+⎢⎥⎣⎦=0, 1230a ⎡⎤+⎢⎥⎣⎦=1330a ⎡⎤+⎢⎥⎣⎦=…=2930a ⎡⎤+⎢⎥⎣⎦=1, 所以 130110<+<a , 1≤3012+a <2. 故18≤a 30<19,于是6≤a 10<319,所以[]10a =6. 10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是.答:282500.解:设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为bcdef a 82.根据题意,有81×abcdef =bcdef a 82. 记43210101010x b c d e f =⨯+⨯+⨯+⨯+,于是5568110812081010a x a x ⨯⨯+=⨯+⨯+,解得)71208(1250a x -⨯=.因为0≤x ≤510,所以0≤)71208(1250a -⨯<510, 故71128<a ≤71208. 因为a 为整数,所以a =2.于是82500)271208(1250=⨯-⨯=x .所以,小明家原来的电话号码为282500.三、解答题(共4题,每小题15分,满分60分)11.已知a bx =,a ,b 为互质的正整数,且a ≤8,1312-<<-x .(1)试写出一个满足条件的x ;(2)求所有满足条件的x .解:(1)12x =满足条件. ……………………5分(2)因为abx =,a ,b 为互质的正整数,且a ≤8,所以ab<-121<,即1)a b<1)a <.当a =1时,1)13(1)12(⨯-<<⨯-b ,这样的正整数b 不存在.当a =2时,2)13(2)12(⨯-<<⨯-b ,故b =1,此时12x =. 当a =3时,3)13(3)12(⨯-<<⨯-b ,故b =2,此时23x =.当a =4时,4)13(4)12(⨯-<<⨯-b ,与a 互质的正整数b 不存在.当a =5时, 5)13(5)12(⨯-<<⨯-b ,故b =3,此时35x =.当a =6时, 6)13(6)12(⨯-<<⨯-b ,与a 互质的正整数b 不存在. 当a =7时, 7)13(7)12(⨯-<<⨯-b ,故b =3,4,5,此时73=x ,74,75. 当a =8时, 8)13(8)12(⨯-<<⨯-b ,故b =5,此时58x =.所以,满足条件的所有分数为12,23,35,73,74,75,58.…………………15分 12.设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ①及 542--=a a bc , ② 求a 的取值范围.解法1:由①-2×②得2()24(1)0b c a -=+>,所以1->a .当1->a 时,222216142(1)(7)0b c a a a a +=++=++>.…………………10分又当a =b 时,由①,②得221614c a a =++, ③ 245ac a a =--, ④将④两边平方,结合③得()()2222161445a a a a a ++=--,化简得3224840250a a a +--=,故 2(65)(425)0a a a +--=, 解得65-=a ,或4211±=a .所以,a 的取值范围为1->a 且65-≠a ,4211±≠a .……………15分解法2:因为14162222++=+a a c b ,542--=a a bc ,所以)54(214162)(222--+++=+a a a a c b =4842++a a =2)1(4+a ,所以 )1(2+±=+a c b .又542--=a a bc ,所以b ,c 为一元二次方程054)1(222=--++±a a x a x ⑤的两个不相等实数根,故0)54(4)1(422>---+=∆a a a ,所以1->a .当1->a 时,222216142(1)(7)0b c a a a a +=++=++>.…………………10分另外,当a =b 时,由⑤式有054)1(222=--++±a a a a a ,即05242=--a a ,或056=--a ,解得4211±=a ,或65-=a . 所以,a 的取值范围为1->a 且65-≠a ,4211±≠a .…………………15分13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K . 求证:PE AC CE KB ⋅=⋅.证明:因为AC ∥PB ,所以KPE ACE ∠=∠.又P A 是⊙O 的切线,所以KAP ACE ∠=∠.故KPE KAP ∠=∠,于是△KPE ∽△KAP ,所以 K P K EK A K P=, 即 2K P K E K A =⋅.………………5分由切割线定理得2KB KE KA =⋅,所以, KP =KB .…………………10分因为AC ∥PB ,所以,△KPE ∽△ACE ,于是PE KPCE AC=, 故P E K BC E A C=, 即 P E A C C E K B⋅=⋅. …………………15分14.2006个都不等于119的正整数200621,,,a a a 排列成一行数,其中任意连续若干项之和都不等于119,求200621a a a +++ 的最小值.解:首先证明命题:对于任意119个正整数12119,,,b b b ,其中一定存在若干个(至少一个,也可以是全部)的和是119的倍数.事实上,考虑如下119个正整数1b ,12b b +,…,12119b b b +++, ①若①中有一个是119的倍数,则结论成立.若①中没有一个是119的倍数,则它们除以119所得的余数只能为1,2,…,118这118种情况.所以,其中一定有两个除以119的余数相同,不妨设为1i b b ++和j b b ++ 1(1≤i <j ≤119),于是1119i j b b +++,从而此命题得证.…………………5分对于200621,,,a a a 中的任意119个数,由上述结论可知,其中一定有若干个数的和是119的倍数,又由题设知,它不等于119,所以,它大于或等于2×119,又因为102119162006+⨯=,所以200621a a a +++ ≥391010223816=+⨯. ②…………………10分取1201904238119====a a a ,其余的数都为1时,②式等号成立.所以,200621a a a +++ 的最小值为3910.…………………15分。

2006年全国初中数学竞赛试题及参考答案

2006年全国初中数学竞赛试题及参考答案

2006年全国初中数学竞赛试题及参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是().(A)36 (B)37 (C)55 (D)90答:C.解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施是在55千米处.故选C.2.已知,,且,则的值等于()(A)-5 (B)5 (C)-9 (D)9答:C.解:由已知可得,.又,所以,解得.故选C.3.Rt△ABC的三个顶点,,均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为,则()(A)(B)(C)(D)答:B.解:设点A的坐标为,点C的坐标为(),则点B的坐标为,由勾股定理,得,,,所以.由于,所以,故斜边AB上高.故选B.4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是()(A)2004 (B)2005 (C)2006 (D)2007答:B.解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过次后,可得(+1)个多边形,这些多边形的内角和为(+1)×360°.因为这(+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(+1)-34=-33(个),而这些多边形的内角和不少于(-33)×180°.所以(+1)×360°≥34×60×180°+(-33)×180°,解得≥2005.当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.于是共剪了58+33+33×58=2005(刀).故选B.5.如图,正方形内接于⊙ ,点在劣弧上,连结,交于点.若,则的值为()(A)(B)(C)(D)(第5题图)答:D.解:如图,设⊙ 的半径为,,则,,.在⊙ 中,根据相交弦定理,得.即,所以.连结DO,由勾股定理,得,即,解得.所以,.故选D.二、填空题(共5小题,每小题6分,满分30分)6.已知,,为整数,且+=2006,=2005.若<,则++的最大值为.答:5013.解:由+=2006,=2005,得++=+4011.因为+=2006,<,为整数,所以,的最大值为1002.于是,++的最大值为5013.7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c 是整数,且b不能被任何质数的平方整除,则的值等于 .(第7题图)答:.解:设正方形DEFG的边长为x,正三角形ABC的边长为m,则.由△ADG ∽ △ABC,可得,解得.于是,由题意,a=28,b=3,c=48,所以 .8.正五边形广场ABCDE的周长为2000米.甲、乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米∕分,乙的速度为46米∕分. 那么,出发后经过分钟,甲、乙两人第一次开始行走在同一条边上.答:104.解:设甲走完x条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x米,乙走了米.于是,且≤ ,所以,≤ <.故x=13,此时.9.已知,且满足(表示不超过x的最大整数),则的值等于.答:6.解:因为,所以,,…,等于0或者1.由题设知,其中有18个等于1,所以==…==0,==…==1,所以,≤ <.故≤ <,于是≤ <,所以 6.10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是.答:282500.解:设原来电话号码的六位数为,则经过两次升位后电话号码的八位数为.根据题意,有81× =.记,于是,解得.因为≤ ≤ ,所以≤ <,故<≤ .因为为整数,所以=2.于是.所以,小明家原来的电话号码为282500.三、解答题(共4题,每小题15分,满分60分)11.已知, , 为互质的正整数,且≤ ,.(1)试写出一个满足条件的x;(2)求所有满足条件的.解:(1)满足条件.……………………5分(2)因为, , 为互质的正整数,且≤ ,所以,即.当a=1时,,这样的正整数b不存在.当a=2时,,故b=1,此时.当a=3时,,故b=2,此时.当a=4时,,与互质的正整数b不存在.当a=5时,,故b=3,此时.当a=6时,,与互质的正整数b不存在.当a=7时,,故b=3,4,5,此时,,.当a=8时,,故b=5,此时.所以,满足条件的所有分数为,,,,,,.…………………15分12.设,,为互不相等的实数,且满足关系式①及,②求的取值范围.解法1:由①-2×②得,所以.当时,.…………………10分又当=时,由①,②得,③,④将④两边平方,结合③得,化简得,故,解得,或.所以,的取值范围为且,.……………15分解法2:因为,,所以==,所以.又,所以,为一元二次方程⑤的两个不相等实数根,故,所以.当时,.…………………10分另外,当=时,由⑤式有,即,或,解得,或.所以,的取值范围为且,.…………………15分13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:.(第13题图)证明:因为AC∥PB,所以.又PA是⊙O的切线,所以.故,于是△KPE∽△KAP,所以,即.………………5分由切割线定理得,所以, KP=KB.…………………10分因为AC∥PB,所以,△KPE∽△ACE,于是,故,即.…………………15分14.2006个都不等于119的正整数排列成一行数,其中任意连续若干项之和都不等于119,求的最小值.解:首先证明命题:对于任意119个正整数,其中一定存在若干个(至少一个,也可以是全部)的和是119的倍数.事实上,考虑如下119个正整数,,…,,①若①中有一个是119的倍数,则结论成立.若①中没有一个是119的倍数,则它们除以119所得的余数只能为1,2,…,118这118种情况.所以,其中一定有两个除以119的余数相同,不妨设为和(≤ <≤ ),于是,从而此命题得证.…………………5分对于中的任意119个数,由上述结论可知,其中一定有若干个数的和是119的倍数,又由题设知,它不等于119,所以,它大于或等于2×119,又因为,所以≥ .②…………………10分取,其余的数都为1时,②式等号成立.所以,的最小值为3910.…………………15分。

初三奥数竞赛题及答案

初三奥数竞赛题及答案

全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为 A, B, C, D 的四 个选项,其中有且只有一个选项是正确的•请将正确选项的代号填入题后的括号里,不填、 多填或错填都得0分)1如果a =-2 2,那么1 ―1的值为【C 1 2 -- 3 +a2、在平面直角坐标系xOy 中,满足不等式x 2• y 2乞2x - 2y 的整数点坐标(x ,y )的个数为【 】 (A ) 10( B ) 9(C ) 7( D ) 5解:B 解法一:x 2y^2x 2y 化为 x-1 2• y -1 2乞 2因为 X 、y 均为整数,因此 X-1 2■ y —1 2=0 或 x_1 2■ y_1 2=1 或 x_1 2■ y_1 2=2解法二:x 2 • y 2空2x 2y 化为x -1 2• y -1 2乞2它表示以点(1,1 )为圆心,.2为半径的 圆内,画图可知,这个圆内有 9 个 (0,2 )、(0,1 ) (0,0 ), (1,0 ), (1,1 ), (1,2 ), (2,0 ),(2,1 ),(2,2 )X =1\=0 x = 2 X=1 X =1'x = \ = 2 'x = 0或€或€ ■:y=1 7=1 y=1 y = 0 y = 2 片2 y = 2 :y =分别解得 x = 2 所以共有9个整点y = 0(A) -.2(B ) '.2(C )(D ) 2 2 解:时 3 a^ 2:九「2",2 九「2 12"因此原式=23、如图,四边形 ABC 冲,AC, BD 是对角线,△ ABC 是等边三角形.• ADC = 30 , AD = 3 , BD = 5,则CD 的长为【】 (A ) 3 2(B ) 4(C 2.5( D ) 4.5解:图,以CD 为边作等边△ CDE 连接AE 由于AC = BC, CD = CE,NBCD =NBCA+NACD =NDCE+NACD =NACE .所以 △ BCD^AACE BD = AE .又因为.ADC =30,所以 ADE =90 .在 Rt △ ADE 中, AE =5,AD =3, 于是 DE= AE -AD =4,所以 CD = DE = 4 .4、如果关于x 的方程x 2- px -q =0 (p, q 是正整数)的正根小于3,那么这样的方程的个数是【 】解:C a b a^(a 1)(b 1)-1v计算结果与顺序无关(A ) 5(B ) 6(C ) 7 (D ) 8解:Cv p 、q 是正整数二 p =1 <p = 1 € p =1 "1』 "1』 * p = 2 Q=1, 、q=2, —3, 0=4, 、q=5, W=1 ,.5、黑板上写有1,然后删去a , b , 并在黑板上写上数 a ab ,贝燈过99次操作后,黑板上剩下的数是(A ) 2012(B ) 101(C ) 100 (D 99解得 q ::: 9 -3pp =21 12 '3 —共100个数字.每次操作先从黑板上的数中选取 2个数a, b ,1002p + J p 2 + 4q:二 p 4q 0 , X 1 X 2 二-q :: 0 .正根为 31 1 1•••顺次计算得:(1 1)(3 1)-仁 2 , (2 1)(3 1)—仁3 , (3 1)(; 1)-仁 4 ,2 3 41(99 1)( 1) -1 =100100、填空题(共5小题,每小题7分,共35 分)6、如果a, b, c 是正数,且满足a b ^9 , —丄 =1°,那么旦 •丄 •二a+b b+c c+a 9 b+c c+a a+b的值为 ________ .7 在—1— - -^― =10 两边乘以 a b 9 得 3 ―—=10 即a b b c c a 9a b b c c a」 「旦=7a b b c c a7、如图,。

2006年全国初中数学竞赛预选赛试题(含答案)

2006年全国初中数学竞赛预选赛试题(含答案)

初中数学竞赛辅导资料(19)因式分解甲内容提要 和例题我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。

下面再介紹两种方法1. 添项拆项。

是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x 4+x 2+1 ②a 3+b 3+c 3-3abc①分析:x 4+1若添上2x 2可配成完全平方公式解:x 4+x 2+1=x 4+2x 2+1-x 2=(x 2+1)2-x 2=(x 2+1+x)(x 2+1-x) ②分析:a 3+b 3要配成(a+b )3应添上两项3a 2b+3ab 2 解:a 3+b 3+c 3-3abc =a 3+3a 2b+3ab 2+b 3+c 3-3abc -3a 2b -3ab 2 =(a+b )3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3 ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -ac -bc)例2因式分解:①x 3-11x+20 ② a 5+a+1① 分析:把中项-11x 拆成-16x+5x 分别与x 5,20组成两组,则有公因式可提。

(注意这里16是完全平方数)② 解:x 3-11x+20=x 3-16x+5x+20=x (x 2-16)+5(x+4)=x(x+4)(x -4)+5(x+4) =(x+4)(x 2-4x+5)③ 分析:添上-a 2 和a 2两项,分别与a 5和a+1组成两组,正好可以用立方差公式解:a 5+a+1=a 5-a 2+a 2+a+1=a 2(a 3-1)+ a 2+a+1=a 2(a -1)( a 2+a+1)+ a 2+a+1= (a 2+a+1)(a 3-a 2+1)2. 运用因式定理和待定系数法定理:⑴若x=a 时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x -a ⑵若两个多项式相等,则它们同类项的系数相等。

2006年广东省实验区初中学业考试数学试卷(含答案)-

2006年广东省实验区初中学业考试数学试卷(含答案)-

2006年广东省实验区初中学业考试数 学 试 卷说明:1.全卷共8页,考试时间为90分钟,满分120分。

2.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在密封线左边的空格内。

3.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷上,但不能用铅笔或红笔。

4.考试结束时,将试卷交回。

一、选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内。

1.下列计算正确的是( )A .-1+1=0B .- 2-2=0C .3÷31=1 D .52=10 2.函数11+=x y 中自变量x 的取值范围是 ( ) A .x ≠-l B .x >-1 C .x =- 1 D .x <- 13.据广东信息网消息,2006年第一季度,全省经济运行呈现平稳增长态势.初步核算,全省完成生产总值约为5206亿元,用科学记数法表示这个数为 ( ) A .5.206×102亿元 B .0.5206×103亿元C .5.206× 103亿元D .0.5206×104亿元4.如图所示,在□ABCD 中,对角线AC 、BD 交于点O ,下列式子中一定成立的是 ( ) A .AC ⊥BD B .OA=0C C .AC=BD D .A0=OD5.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( ) A .O B . 6 C .快 D .乐二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上。

6.在数据1,2,3,1,2,2,4中,众数是 .7.分解因式2x 2-4xy +2y 2= ________.8.如图,若△OAD ≌△OBC ,且∠0=65°,∠C=20°, 则∠OAD= .9.化简777-= _______.10.如图,已知圆柱体底面圆的半径为π2,高为2,AB 、CD 分别是两底面的直径,AD 、BC 是母线若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短D 路线的长度是 (结果保留根式). 三、解答题(本大题共5小题,每小题6分,共30分)11.求二次函数y=x 2- 2x-1的顶点坐标及它与x 轴的交点坐标.12.按下列程序计算,把答案写在表格内:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.13.如图所示,AB 是OD 的弦,半径OC 、OD 分别交AB 于点E 、 F ,且AE=BF ,请你找出线段OE 与OF 的数量关系,并给予证明.14.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?(3)妞妞和爸爸出相同手势的概率是多少?15.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点0;(2)求出△ABC与△A′B′C′的位似比;(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.四、解答题(本大题共4小题。

广东省中考数学试题与答案(2006年)

广东省中考数学试题与答案(2006年)

2006年广东省初中毕业生学业考试数 学 试 卷一、选择题(本大题共5小题,每小题3分,共15分)1.下列计算正确的是( ) A .110-+= B .220--= C .1313÷= D .2510= 2.函数11y x =+中自变量x 的取值范围是( )A .1x ≠- B .1x >- C .1x =- D .1x <- 3.据广东信息网消息,2006年第一季度,全省经济运行呈现平稳增长态势.初步核算,全省完成生产总值约为5206亿元,用科学记数法表示这个数为( )A .25.20610⨯亿元 B .30.520610⨯亿元C .35.20610⨯亿元 D .40.520610⨯亿元 4.如图所示,在ABCD 中,对角线AC BD ,交于点O ,下列式子中一定成立的是( ) A .AC BD ⊥ B .OA OC = C .AC BD = D .AO OD =5.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( ) A .0 B .6 C .快 D .乐 二、填空题(本大题共5小题,每小题4分,共20分) 6.在数据1,2,3,1,2,2,4中,众数是 . 7.分解因式22242x xy y -+= .8.如图,若OAD OBC △≌△,且6520O C ==,∠∠ ,则OAD =∠ .9= . 10.如图,已知圆柱体底面圆的半径为2π,高为2,AB CD ,分别是两底面的直径,AD BC ,是母线.若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短路线的长度是 (结果保留根式). 三、解答题(一)(本大题共5小题,每小题6分,共30分) 11.求二次函数221y x x =--的顶点坐标及它与x 轴的交点坐标. 12.按下列程序计算,把答案写在表格内:(1)填写表格:(213请你找出线段14(1(2BABCDEO B(3)妞妞和爸爸出相同手势的概率是多少?15.如图,图中的小方格都是边长为1的正方形,ABC △与A B C '''△是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点O ;(2)求出ABC △与A B C '''△的位似比;(3)以点O 为位似中心,再画一个111A B C △,使它与ABC △的位似比等于1.5.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项: A .1.5小时以上 B .1~1.5小时 C .0.5~1小时 D .0.5小时以下图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题: (1)本次一共调查了多少名学生?(2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.17.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果.求这一箱苹果的个数与小朋友的人数.18.直线1y k x b =+与双曲线2k y x=只有一个交点(12)A ,,且与x 轴、y 轴分别交于B C ,两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式. 19.已知:O 的半径是8,直线PA ,PB 为O 的切线,A ,B 两点为切点,(1)当OP 为何值时,90APB =∠.(2)若50APB =∠,求AP 的长度(结果保留三位有效数字).(参考数据sin 500.7660= ,cos500.6428= ,tan 50 1.1918= ,sin 250.4226= ,cos 250.9063= ,tan 250.4663= )五、解答题(三)(本大题共3小题,每小题9分,共27分)20.如图,在ABCD 中,60DAB =∠,点E ,F 分别在CD,AB的延长线上,且AE AD =,CF CB =. (1)求证:四边形AFCE 是平行四边形.图2图1选项ED COA BF(2)若去掉已知条件的“60DAB =∠”,上述的结论还成立吗?若成立,请写出证明过程:若不成立,请说明理由.21.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于217cm ,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于212cm 吗?若能,求出两段铁丝的长度;若不能,请说明理由. 22.如图所示,在平面直角坐标系中,四边形OABC 是等腰梯形,BC OA ∥,7460OA AB COA === ,,∠,点P 为x 轴上的一个动点,点P 不与点O 、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,OCP △为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得CPD OAB =∠∠,且58BD AB =,求这时点P 的坐标.2006年广东省初中毕业生学业考试数学试卷参考答案一、1.A2.A3.C 4.B 5.B 二、6.2 7.22()x y - 8.959110.三、11.解:221y x x =--2212x x =-+-2(1)2x =--.∴二次函数的顶点坐标是(12)-,. 设0y =,则2210x x --=, 2(1)20x --=,2(1)21x x -=-=,1211x x ==.二次函数与x轴的交点坐标为(1.12.解:(1)(2)2()(0)n n n n n +÷-≠ n n=-1n n =+-1=.13.解:OE OF =.证明:连结OAOB ,, OA OB ,是O 的半径,OA OB OBA OAB ∴=∴=,∠∠.又AE BF = , OAE OBF ∴△≌△,OE OF ∴=.14.解:(1)13 (2)13 (3)13。

奥数基础_一次函数(含解答)-

奥数基础_一次函数(含解答)-

第一节一次函数例题剖析例1 (2006年“信利杯”全国初中数学竞赛(广西赛区))已知直线L•经过(2,0)和(0,4),把直线L沿x轴的反方向向左平移2个单位,得到直线L′,则直线L′的解析式为_______.分析:先求出直线解析式y=kx+b,再抓住平移k不变,进行求解.解:因为过(2,0)和(0,4)的直线L解析式是y=-2x+4,设向左平移2•个单位得到的直线L′解析式是y=-2x+m,将它与x轴的交点坐标(0,0)代入得m=0,所以直线L′的解析式为y=-2x.评注:直线y=kx+b平移时k值不变,上下平移时再抓住与y轴的交点变化,•左右平移时再抓住与x轴的交点变化就能得解.例2 (2000年全国初中数学竞赛试题)一个一次函数图象与直线y=54x+954平行,•与x轴、y轴的交点分别为A、B,并且过点(-1,-25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有().(A)4个(B)5个(C)6个(D)7个分析:根据所求一次函数图象与直线y=54x+954平行且过点(-1,-25),即可确定该函数的解析式,然后采用列举法进行分析.解:设与直线y=54x+954平行的直线的方程为y=54x+k,又(-1,-25)在直线y=54x+k上,得k=-954.因为A、B为y=54x-与x轴、y轴的交点,所以A(19,0),B(0,-954).又y=54x-954=54(x-19),0≤x≤19,x-19必须是4的整数倍,只有当x=3,7,11,15,19时,y为整数,因此在线段AB上(包括端点A、B),横、纵坐标都是整数的点有5个,选B.评注:所谓横坐标、纵坐标都是整数的点,•即求该函数解析式(二元一次方程)在某范围内的整数解.例3 (2005年富阳市初二数学竞赛)不论k为何值,解析式(2k-1)x-(k+3)y-•(k-11)=0表示的函数的图象经过一定点,则这个定点是_______.分析:该题是“直线束”问题,可在k•的取值范围内取两个定值两条特殊直线求得交点,再证明其他直线必过此点.解:因为已知函数是一次函数,故k+3≠0,分别令k=1与k=2,得41003590x y x y -+=⎧⎨-+=⎩解得23x y =⎧⎨=⎩ ,即两特殊直线相交于点A (2,3), 而当x=2时,函数式为2(2k-1)-(k+3)y-(k-11)=0.整理得(k+3)y=3(k+3),所以k 取不等于-3的任何值时,y=3.当x=2时,必得y=3.不论k 为何值该一次函数的图象恒过定点(2,3).评注:利用“不论”性,取k 的任意两个特殊值,代入函数关系式,求出x 、•y 的值,再验证所求得的x 、y 值适合函数关系式,从而确定函数图象恒过定点,这是解决这类问题常用的方法.此外本题还可利用一次方程ax=b 有无数解的条件来解,同学们不妨一试.例4 (2005年富阳市初二数学竞赛)在一次函数y=-x+3的图象上取一点P ,•作PA ⊥x 轴,垂足为A ,作PB ⊥y 轴,垂足为B ,且矩形OAPB 的面积为94,则这样的点P 共有( ) (A )4个 (B )3个 (C )2个 (D )1个 分析:设点P 的坐标为(x ,-x+3),则矩形OAPB 的面积表示为│x │×│-(-x+3)│=│x 2-3x │=94,然后分两种情况进行讨论.解:选(B ).评注:本题通过数形互动,结合一元二次方程实根个数来确定符合条件的点的个数,这是解决这类问题常用方法.此外,由点的坐标表示距离时,不能忘记加绝对值.例5 (2006年全国初中数学竞赛(浙江赛区)复赛试题)设0<k<1,关于x 的一次函数y=kx+1k (1-x ),当1≤x ≤2时的最大值是( )(A )k (B )2k-1k (C )1k (D )k+1k分析:y=(k-1k)x+1k,∵0<k<1,∴k-1k=(1)(1)k kk+-<0,该一次函数的值随x的增大而减小,当1≤x≤2时,最大值为k-1k+1k=k.解:选(A).评注:对于自变量有限范围的一次函数极值问题,应结合一次函数的增减性来确定.例6 (2006年全国初中数学竞赛(浙江赛区)初赛试题)设直线y=kx+k-1•和直线y=(k+1)x+k(k是正整数)与x轴围成的三角形面积为S k,则S1+S2+S3+…+S2006的值是_______.分析:先求出直线y=kx+k-1和直线y=(k+1)x+k的交点,再求出这两条直线与x•轴围成的三角形面积S k 的表达式.解:因为方程组1(1)y kx ky k x k=+-⎧⎨=++⎩的解为11.xy=-⎧⎨=-⎩所以这两直线的交点(-1,-1),直线y=kx+k-1和直线y=(k+1)x+k(k是正整数)与x轴的交点分别是(1,0),(1k kk k--+,0),S k=12|-1|×|11k kk k---+|=12|1k-11k+|.所以S1+S2+S3+…S2006=12(1-12+12-13+13-14+…+11111003)(1)20062007220072007-=⨯-=.评注:本题在求解过程中的关键是:将1(1)k k+拆成1k-11k+,这是常用技巧.例7 (1997年江苏省初中数学竞赛试题)有一个附有进、出水管的容器,•每单位时间进、出的水量都是一定的.设从某时该开始5min内只进水不出水,•在随后的15min内既进水又出水,得到时间x(min)与水量y (L)之间的关系如图.若20min后只放水不进水,则这时(x≥20时)y与x的函数关系是________.分析:据图象可知:开始5min,只进水不出水,共进了20L水,每分钟进水4L.•随后的15min内既进水又出水,实际水量增加了35-20=15L,每分钟水量增加1L,•说明出水管每分钟出水3L.因为水量是固定的,每分钟3L,所以20min后,总水量为35L.解:y=35-3(x-20),即y=-3x+95(20≤x≤953).评注:仔细审题,观察图象,应弄清进水时,每分钟4L;既进又放时,每分钟净增水1L,故每分钟放水为3L,这是解本题的关键.例8 (2006年全国初中数学竞赛(海南赛区))在平面直角坐标系中,已知A(2,•-2),点P是y轴上一点,则使AOP为等腰三角形的点P有()(A)1个(B)2个(C)3个(D)4个分析:分三种情况来讨论,即:如图所示,①以O为顶点的等腰三角形有:△OP1A,△OP2A;②以A为顶点的等腰三角形是△OP3A;③以P为顶点的等腰三角形是△OP4A.因此,•满足条件的点P有4个.解:选(D).评注:分类讨论是重要的数学思想方法,竞赛题中经常出现需要分类的考题,•这类问题的求解,既要有扎实的基础知识,也要有一定的分析问题和综合解决问题的能力,要强化这方面的训练.例10 (2006年四川省数学竞赛初二初赛试题)平面直角坐标系内有A(2,-1),B(3,3)两点,点P 是y轴上一动点,求P到A、B距离之和最小时的坐标.分析:根据几何模型,得出点A关于y轴对称点A′的坐标,再由待定系数法求出直线A′B解析式,就可得解.解:如图,点A关于y轴对称的点为A′(-2,-1),设过A′、B•两点的直线的一次函数为y=kx+b,有1233k bk b-=-+⎧⎨=+⎩解得4535kb⎧=⎪⎪⎨⎪=⎪⎩∴y=45x+35.当x=0时,y=35,即直线A′B与y轴交于点(0,35),•可得所求点P的坐标为(0,35).评注:本题把几何中最短距离问题代数化,解题关键是应用轴对称和一次函数相关知识来求解.此类问题还可改为在x轴上或在坐标轴上求一点P,同学们不妨思考一下.巩固练习一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg 时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t (分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y 随x 的增大而减小,故B 正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C 错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D 错误.8.C 9.D 提示:根据y=kx+b 的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像. 10.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例, ∴5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即 ∴m=-14,故应选C . 11.B 12.C 13.B 提示:∵a b b c c a c a b+++===p , ∴①若a+b+c ≠0,则p=()()()a b b c c a a b c+++++++=2; ②若a+b+c=0,则p=a b c c c+-==-1, ∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A .。

2006中国数学奥林匹克试题及详细解答

2006中国数学奥林匹克试题及详细解答

2006中国数学奥林匹克(第二十一届全国中学生数学冬令营)第一天每题21分一、 实数12,,,n a a a 满足120n a a a +++= ,求证:()122111max ()3n ki i k n i na a a -+≤≤=≤-∑.证明 只需对任意1k n ≤≤,证明不等式成立即可.记1,1,2,,1k k k d a a k n +=-=- ,则k k a a =,1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=---- , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++ ,把上面这n 个等式相加,并利用120n a a a +++= 可得11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++= .由Cauchy 不等式可得()2211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------11222111k n k n i i i i i i d ---===⎛⎫⎛⎫≤+ ⎪⎪⎝⎭⎝⎭∑∑∑111222111(1)(21)6n n n i i i i i n n n i d d ---===--⎛⎫⎛⎫⎛⎫≤= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑ 31213n i i n d -=⎛⎫≤ ⎪⎝⎭∑, 所以 ()122113n ki i i na a a -+=≤-∑ .二、正整数122006,,,a a a (可以有相同的)使得200512232006,,,a a a a a a 两两不相等.问:122006,,,a a a 中最少有多少个不同的数?解 答案:122006,,,a a a 中最少有46个互不相同的数.由于45个互不相同的正整数两两比值至多有45×44+1=1981个,故122006,,,a a a 中互不相同的数大于45.下面构造一个例子,说明46是可以取到的. 设1246,,,p p p 为46个互不相同的素数,构造122006,,,a a a 如下:11213231434241,,,,,,,,,,,,,,p p p p p p p p p p p p p p , 11221,,,,,,,,,,,k k k k k k k p p p p p p p p p p -- , 14544454345452451,,,,,,,,,,p p p p p p p p p p , 4645464446462246,,,,,,,,p p p p p p p p ,这2006个正整数满足要求.所以122006,,,a a a 中最少有46个互不相同的数.三、正整数m ,n ,k 满足:23mn k k =++,证明不定方程22114x y m +=和 22114x y n +=中至少有一个有奇数解(,)x y .证明 首先我们证明如下一个引理:不定方程22114x y m += ①或有奇数解00(,)x y ,或有满足00(21)(mod )x k y m ≡+ ②的偶数解00(,)x y ,其中k 是整数.引理的证明 考虑如下表示(21)x k y ++ ,x x y ≤≤0为整数,且,02y ≤≤,则共有()112m ⎛⎫⎡++> ⎪⎢⎣ ⎪⎣⎦⎝⎭个表示,因此存在整数12,0,x x ⎡∈⎣,12,0,2y y ⎡∈⎢⎣⎦,满足1122(,)(,)x y x y ≠,且1122(21)(21)(mod )x k y x k y m ++≡++,这表明(21)(mod )x k y m ≡+, ③这里1221,x x x y y y =-=-。

2006年全国各地九年制义务教育初三数学竞赛试题及参考答案解析决赛试卷

2006年全国各地九年制义务教育初三数学竞赛试题及参考答案解析决赛试卷

2006年全国九年级义务教育初中中考数学联赛决赛试卷一、选择题(本题满分42分,每小题7分)1.已知四边形ABCD 为任意凸四边形,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,用S ,P 分别表示四边形ABCD 的面积和周长;1S ,1P 分别表示四边形EFGH 的面积和周长,设1S K S =,11PK P =,则下面关于K ,1K 的说法正确的是( ) A.K ,1K 均为常值B.K 为常值,1K 不为常值C.K 不为常值,1K 为常值D.K ,1K 均不为常值 【解析】 B .如图,易知14AEH ABD S S =△△,14CFG CBD S S =△△,故14AEH CFG S S S +=△△.同理,14BEF DHG S S S +=△△.故112S S =,即K 2=为常值.又易知1P AC BD =+,特别的,若取邻边长分别为1、2的矩形,则1K =;再取邻边长分别为1、3的矩形,则1K ==故1K 不是常值.GHFEDCBA2.已知m 为实数,且sin α,cos α是关于x 的方程2310x mx -+=的两根,则44sin cos αα+的值为( )A.29B.13C.79 D,1 【解析】 C .由根与系数的关系知1sin cos 3αα=,则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-⋅=.3.关于x 的方程21x a x =-仅有两个不同的实根,则实数a 的取值范围是( ) A.0a > B.4a ≥C.24a <<D.04a <<【解析】 D .当0a <时,无解;当0a =时,0x =,不合题意;当0a >时,方程化为21x a x =±-,整理得20x ax a -+=或20x ax a +-=.这两个方程的判别式分别为214a a =-△和224a a =+△.∵20>△,原方程仅有两个不同实根,所以2140a a =-<△,从而04a <<.4.设0b >,2220a ab c -+=,2bc a >,则实数a ,b ,c 的大小关系是( ) A.b c a >> B.c a b >> C.a b c >> D.b a c <<【解析】 A .由2bc a >及0b >,知0c >.由222ab a c =+及0b >,知0a >.由2220a ab c -+=,知()2220b c a b -=-≥,从而b c ≥.若b c =,由2220a ab c -+=知a b =,从而a b c ==与2bc a >矛盾,故b c >. 由22b bc a >>,知b a >;又由22222a c ab a +->,知c a >.5.设a ,b 为有理数,且满足等式a +则a b +的值为( ) A.2 B.4 C.6 D.8 【解析】 B .3==,所以3a +=+即()(310a b -+-. 由a 、b 为有理数,则3a =,1b =,即4a b +=.6.将满足条件“至少出现一个数字0,且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,……,则这列数中的第158个数为( ). A.2000 B.2004 C.2008 D.2012 【解析】 C .在正整数中,是4的倍数的特征为末两位数字是4的倍数,其中包含数字0的7种情形:00,04,08,20,40,60,80和包括数字0的18种情形.显然,满足条件的两位数仅有4个;满足条件的三位数共有9763⨯=个;满足条件千千位数字为1的四位数共有71018188⨯+⨯=个.因为46388155++=,则从小到大的第155个满足条件的数为1980.下面满足条件的数依次为2000,2004,2008.故这列数中的第158个数为2008.二、填空题(本题满分28分,每小题7分)1.函数220062008y x x =-+的图象与x 轴交点的横坐标之和等于 . 【解析】 0.原方程可转化为求方程2200620080x x -+=的所有实根之和.若实数0x 为方程的根,则其相反数0x -也为该方程的根,所以,方程的所有实根之和为0,即与x 轴交点的横坐标之和为0.2.在等腰Rt ABC △中,1AC BC ==,M 是BC 的中点,CE AM ⊥于E 交AB 于F ,则MBF S =△ .【解析】 112.如图,作BG BC ⊥交CF 的延长线于点G ,易证Rt Rt ACM CBG △≌△.故BG CM =,12CBG ACM ABC S S S =-△△△.由易证BFM BFG △≌△,故BGF BMF CMF S S S ==△△△.从而1113612MBF CBG ABC S S S ===△△△.MGF ECBA3.x 取值为 .【解析】 83.在直角坐标系xOy 中,设()0,2A -,()8,4B ,(),0P x ,有PAPB则10PA PB AB +=≥.当且仅当A 、P 、B 三点共线时,上式等号成立.因此,当且仅当A 、P 、B 三点共线时,原式取最小值.此时,易知BCP AOP △∽△,有2CP BCPO AO==.从而,1833OP OC ==.故原式取最小值时,83x =.4.在平面直角坐标系中,正方形OABC 的顶点坐标分别为()00O ,、()1000A ,、()100100B ,、()0100D ,.若正方形OABC 内部(边界及顶点除外)一格点P 满足:POA PBC PAB POC S S S S ⋅=⋅△△△△,就称格点P 为“好点”,则正方形OABC 内部“好点”的个数为 .(注:所谓“格点”是指在平面直角坐标系中横、纵坐标均为整数的点.) 【解析】 如图,过点P 分别作PD 、PE 、PF 、PG 垂直于点OA 、AB 、BC 、OC 于点D 、E 、F 、G .易知100PF PD +=,100PE PG +=.由POA PBC PAB POC S S S S ⋅=⋅△△△△,知PD PF PE PG ⋅=⋅,即()()100100PD PD PG PG -=-.化简为()()1000PD PG PD PG -+-=,故PD PG =或100PD PG +=,即PD PG =或PG PF =. 于是P 为对角线OB 上的点或P 为对角线AC 上的点.因此,当且仅当P 为对角线OB 或对角线AC 内部的格点时,点P 为好点.易知OB 内部有99个好点,AC 内部也有99个好点,又知对角线OB 与AC 的交点也为好点,于是满足条件的好点个数为99991197+-=个.三、解答题(本题共三小题,第1题20分,第2、3题各25分)1.如图,D 为等腰ABC △底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知90EDF ∠=o ,1ED DF ==,5AD =.求线段BC 的长.DEC FBA【解析】 如图,过点E 作EG AD ⊥于点G ,过点F 作FH AD ⊥于点H ,则EDG DFH ∠=∠.故Rt Rt EDG DFH △≌△.设EG x =,DG y =,则DH x =,FH y =,且221x y +=.又Rt Rt AEG AFH △∽△,则EG AGFH AH=.即55x y y x -=+. 化简为()225x y y x +=-. 由上述两式解得35x =,45y =. 又因为Rt Rt AEG ACD △∽△,则CD EGAD AG=. 故35554755EG CD AD AG =⋅=⨯=-.所以,1027BC CD ==.FEDC B A2.在平行四边形ABCD 中,A ∠的平分线分别与BC 及DC 的延长线交于E 、F ,点O 、1O 分别为CEF △、ABE △的外心.⑴ 求证:O 、E 、1O 三点共线; ⑵ 求证:若70ABC ∠=o ,求OBD ∠的度数.【解析】 ⑴如图,连结OE 、OF 、1O A 、1O E .因为四边形ABCD 为平行四边形,所以ABE ECF ∠=∠.又因为点O 、1O 分别为CEF △、ABE △的外心,所以OE OF =,11O A O E =,122EOF ECF ABE AO E ∠=∠=∠=∠. 于是有1OEF O EA △∽△.故1OEF AEO ∠=∠,所以O 、E 、1O 三点共线.⑵连接OD 、OC .因为四边形ABCD 为平行四边形,所以,CEF DAE BAF CFE ∠=∠=∠=∠. 故CE CF =.又因为点O 为CEF △的外心,所以OE OF OC ==. 则OCE OCF △≌△,有OEC OFC OCF ∠=∠=∠.故OEB OCD ∠=∠.又BAE EAD AEB ∠=∠=∠,则EB AB DC ==. 因此OCD OEB △≌△.所以,ODC OBE ∠=∠,OD OB =,ODC OBC ∠=∠,OBD ODB ∠=∠,OBD OBC CBD ∠=∠+∠ODC BDA =∠+∠ADC BDO =∠-∠ABC OBD =∠-∠.故12OBD ABC ∠=∠.DO 1O FEDCBA3.设p 为正整数,且2p ≥.在平面直角坐标系中,连结点()0A p ,和点()0B p ,的线段通过1p -个格点()111C p -,,…,()i C i p i -,,…,()111p C p --,. 证明:⑴ 若p 为索数,则在原点()00O ,与点()i C i p i -,的连线段()11i OC i p =-L ,,上除端点外无其它格点;⑵ 若在原点()00O ,与点()1i C i p -,的连线段()11i OC i p =-L ,,上除端点外无其它格点,则p 为索数.【解析】 ⑴用(),P a b 表示OAB △内的格点,a 、b 为正整数.假设结论不成立,则点P 位于某条线段1OC 内部(如图9).过点P 作PE OB ⊥于点E ,过点i C 作i C F OB ⊥于点F .由i OEP OFC △∽△,知b p ia i-=,其中11i p -≤≤. 易知1a i <≤,1b p i <-≤. 由b p ia i-=知()a b i ap +=,从而|i ap . 因为p 为质数,且11i p <-≤,则i 与p 互质.从而|i a ,故i a ≤,这与a i <矛盾. 所以,假设不成立,从而原结论成立. ⑵假设结论不成立,即p 为合数.故p xy =,其中x 、y ∈N ,且2,1x y p -≤≤.因为OAB △内部的格点的横、纵坐标之和可以是从2到1p -之间的任何整数,故必存在一格点(),P a b ,满足a b x +=,于是()a b y xy p +==,即ay by p +=.因此点(),ay by 必是()11,1C p -,()22,2C p -,…,()11,1p C p --中的一个点,设为(),i C i p i -.从而有ya i =,by p i =-,故b p ia i-=. 所以,点(),P a b 在线段i OC 内部,即在线段i OC 上除端点外还有其他格点,这与已知矛盾. 故原结论成立.。

2006年全国初中数学联赛试题及解答

2006年全国初中数学联赛试题及解答

2006年全国初中数学联赛试题第一试一、选择题(每小题7分,共42分)1.已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、EF 、GH 、CD 、DA 的中点,用S,P 分别表示四边形的面积和周长;S 1,P 1分别表示四边形的面积和周长.设,1S S K =,11P P K =则下面关于K 、K 1的说法中,正确的是( ). A. K 、K 1均为常值 B. K 为常值,K 1不为常值C. K 1为常值,K 不为常值D. K 、K 1均不为常值2.已知m 为实数,且sin α、cos α是关于x 的方程 3x 2-mx +1=0的两根.则sin 4α+cos 4α的值为( ).A. 29B. 13C. 79D. 13.关于x 的方程a x x =−|1|2仅有两个不同的实根,则实数a 的取值范围是( ). a A. a > 0 B. a ≥4 C. 2<a <4 D. 0<a <44. 设b > 0,,则实数a 、b 、c 的大小关系是( ).,0222=+−c ab a 2a bc >A.b>c> a B. c >a >b C. a >b >c D. b >a >c5. a 、b 为有理数,且满足等式 324163++⋅=+b a ,则a +b 的值为( ).A. 2B. 4C. 6D. 86.将满足条件“至少出现一个数字0且是4的倍数的正整数”从小到大排成一列数:20,,40,60,80,100,104,….则这列数中的笫158个数为( ).A. 2000B. 2004C. 2008D. 2012二、填空题(每小题7分,共28分)1.函数的图像与x 轴交点的横坐标之和等于________. 2008||20062+−=x x y2.在等腰Rt ΔABC 中,AC=BC=1,M 是BC 的中点,CE ⊥AM 于点E ,交AB 于点F .则S ΔMBF =________.3.使16)8(422+−++x x 取最小值的实数x 的值为________.4.在平面直角坐标系中,正方形OABC 的顶点坐标分别为O (0,0),A (100,0),B (100,100),C (0,100). 若正方形OABC 内部(边界及顶点除外)一格点P 满足: S ΔPO A ·S ΔPBC = S ΔPAB ·S ΔPOC , 就称格点为“好点”.则正方形内部好点的个数为_______.(注:所谓格点,是指在平面直角坐标系中横、纵坐标均为整数的点.)第二试(A)一、(20分)已知关于x 的一元二次方程无相异两实根.则满足条件的有序正整数组(a ,b )有多少组?0)994()32(2222=++++++b a x b a x二、(25分)如图,D 为等腰ΔABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.已知∠EDF =90º,ED = DF =1,AD =5,求线段BC 的长.三、(25分)如图,在平行四边形ABCD 中,∠A 的平分线分别与BC 、DC 的延长线交于点E 、F ,点O 、O 1分别为ΔCEF 、ΔABE 的外心.求证:(1)O 、E 、O 1三点共线;(2)∠OBD =21∠ABC .第二试(B)一、(20分)同A 卷第一题.二、(25分)同A 卷第二题.三、(25分)如图,在平行四边形ABCD 中,∠A 的平分线分别与BC 、DC 的延长线交于点E 、F ,点O 、O 1分别为ΔCEF 、ΔABE 的外心.(1)求证:O 、E 、O 1三点共线;(2)若21∠ABC =70º,求∠OBD 的度数.第二试(C)一、(20分)同A 卷第二题.二、(25分)同B 卷第三题.三、(25分)设p 为正整数,且p ≥2.在平面直角坐标系中,点A (0,p )和点B (p ,0)的连线段通过p-1个格点, C 1 (1, p −1),…, C i (i ,p −i ),…,C p −1 (p −1,1). 证明: (1)若p 为质数,则在原点(0,0)与点C i (i ,p −i ) 的连线段OC i (i =1,2,…,p −1)上除端点外无其他格点;(2)若在原点O (0,0)与点C i (i ,p −i )的连线段OC i (i =1,2,…,p −1)上除端点外无其他格点,则p 为质数.2006年全国初中数学联赛答案第一试一、选择题1.B如图,易知 S ΔAEH =41S ΔABD , S ΔCFG=41S ΔCBD , 于是 S ΔAEH + S ΔCFG = 41S ABCD , 同理,故S ΔBEF + S ΔDHG = 41S ABCD ,故S ΔEFGH = 21S ABCD 即 k =2为常值. 又易知,P 1=AC +BD,特别地,若取邻边长分别为1、2的矩形,则k 1=;53 再取邻边长分别为1、的矩形,则k 1=,104故k 不是常值. 2. C 由根与系数的关系知 sin α·cos α =31 , 则有sin 4α+cos 4α = (sin 2α+cos 2α)2 -2(sin α·cos α)2 = ,97 3. D当a<0时,无解; 当a=0时,x=0; 不合题意;当a >0时,原方程化为a x x ±=−12整理得 x 2-ax+a=0(1)或x 2+ax-a=0(2)因为方程(2)的判别式⊿2=a 2+4a>0, 即方程(2)有两个不同实根。

初中奥赛考试题及答案

初中奥赛考试题及答案

初中奥赛考试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=ax^2+bx+c,若f(1)=2,f(-1)=0,f(0)=-1,则a 的值为()。

A. 1B. -1C. 0D. 22. 如果一个三角形的三边长分别为a、b、c,且满足a^2+b^2=c^2,那么这个三角形是()。

A. 等腰三角形B. 直角三角形C. 等边三角形D. 任意三角形3. 一个数列的前四项为1, 2, 3, 5,且每一项都是前两项之和,那么第五项是()。

A. 8B. 7C. 6D. 54. 一个圆的直径是10cm,那么它的面积是()。

A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2二、填空题(每题5分,共20分)1. 已知一个等差数列的前三项分别为2, 5, 8,那么它的第五项是______。

2. 如果一个数的立方根等于它本身,那么这个数可以是______。

3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是______ cm^3。

4. 一个分数的分子是7,分母是比分子大3的数,那么这个分数化简后是______。

三、解答题(每题10分,共60分)1. 已知一个二次函数的图像经过点(1, 2)和(-1, 10),求这个二次函数的解析式。

2. 一个等腰三角形的顶角是80度,求它的底角。

3. 一个数列的前三项为2, 4, 6,且每一项都是前一项的两倍加2,求这个数列的第10项。

4. 一个圆的半径是5cm,求它的周长和面积。

四、证明题(每题10分,共20分)1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明三角形内角和定理:一个三角形的三个内角之和等于180度。

答案:一、选择题1. B2. B3. A4. B二、填空题1. 112. 0, 1, -13. 244. 7/10三、解答题1. 经过点(1, 2)和(-1, 10)的二次函数可以表示为f(x) = 3x^2 + 2x - 5。

初三奥数竞赛试题及答案

初三奥数竞赛试题及答案

全国初中数学竞赛试题及参考答案一、选择题(共 5 小题,每小题 6 分,满分 30 分。

)1、如图,有一块矩形纸片ABCD, AB=8,AD=6。

将纸片折叠,使得AB边上,折痕为 AE,再将△ AED沿 DE向右翻折, AE与 BC的交点为的面积为()A、2B、4C、6D、8AD 边落在F,则△ CEFA B A D D B ABFD CE C E C答: A解:由折叠过程知, DE= AD=6,∠ DAE=∠ CEF= 45°,所以△ CEF 是等腰直角三角形,且 EC= 8- 6= 2,所以, S△CEF=22、若 M=3x28xy9y 24x 6 y13(,是实数),则M 的值一定是()x yA、正数B、负数C、零D、整数解:因为 M=3x28x y9 y24x 6 y 13 = 2( x2y) 2( x2) 2( y3)2≥0且 x 2y , x 2 , y3这三个数不能同时为0,所以 M≥0BA 13、已知点 I 是锐角三角形 ABC的内心, A , B ,C 分别是C1D111点 I 关于边 BC, CA,AB的对称点。

若点 B 在△ A1B1C1的外接I圆上,则∠ ABC等于()AC A、30°B、45°C、60°D、 90°答: C B 1解:因为 IA 1=IB 1= IC1= 2r (r 为△ ABC的内切圆半径),所以点 I 同时是△ A1B1C1的外接圆的圆心,设 IA 1与 BC的交点为 D,则 IB =IA 1=2ID,所以∠ IBD= 30°,同理,∠ IBA=30°,于是,∠ ABC=60°4、设 A=48(111) ,则与A最接近的正整数为()32442410024A、18B、20C、24D、25答: D解:对于正整数 mn ≥ 3 ,有n 21 1 (1 1 ),所以 A =4 4 n2n2481(1 11)(111) 12 (1 1 1 1111 1 )42985610223499100101102=25 12(1111)99100101102因为12 (11 11)<12 4 < 1 ,所以与 A 最接近的正整数为 25。

全国初中数学竞赛试题及答案(2006年).doc

全国初中数学竞赛试题及答案(2006年).doc

2006 年全国初中数学比赛试题考试时间2006年4月2日上午9∶ 30-11∶30满分120分一、选择题(共 5 小题,每题 6 分,满分30 分。

以下每道小题均给出了代号为A,B, C, D 的四个选项,此中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里。

不填、多填或错填均得0 分)1.在高速公路上,从 3 千米处开始,每隔 4 千米经过一个限速标记牌;而且从10 千米处开始,每隔9 千米经过一个速度监控仪.恰幸亏19 千米处第一次同时经过这两种设备,那么第二次同时经过这两种设备的千米数是()(A)36 (B)37 (C)55 (D)902.已知m 1 2 , n 1 2 ,且 (7m 2 14m a)(3n 2 6n 7) =8,则a的值等于()(A)-5 (B)5 (C)- 9 (D)93. Rt△ABC 的三个极点 A,B, C 均在抛物线y x 2上,而且斜边AB平行于x 轴.若斜边上的高为 h,则()(A )h<1 (B)h=1 (C)1<h<2 (D)h>24.一个正方形纸片,用剪刀沿一条可是任何极点的直线将其剪成两部分;取出此中一部分,再沿一条可是任何极点的直线将其剪成两部分;又从获得的三部分中取出此中之一,仍是沿一条可是任何极点的直线将其剪成两部分这样下去,最后获得了 34 个六十二边形和一些多边形纸片,则起码要剪的刀数是()(A)2004 (B)2005 (C)2006 (D)20075.如图,正方形 ABCD 内接于⊙ O,点 P 在劣弧 AB 上,连接 DP,交 AC 于点 Q.若QP=QO,则QC的值为()D C QA(A )2 3 1O(B) 2 3 Q(C) 3 2 A BP(D)3 2二、填空题(共5小题,每题6分,满分30分)6.已知 a, b, c 为整数,且 a+ b=2006,c- a=2005.若 a<b,则 a+b+c 的最大值为. A7.如图,面积为 a b c 的正方形DEFG内接于D G面积为 1 的正三角形 ABC,此中 a, b,c 为整数,且 b 不可以被任何质数的平方整除,则 a c 的值BE F Cb等于.(第 7 题图)8.正五边形广场 ABCDE 的周长为 2000 米.甲、乙两人分别从A、C 两点同时出发,沿 A→B→ C→ D→E→A→ 方向绕广场行走,甲的速度为50 米/分,乙的速度为 46 米/分.那么出发后经过分钟,甲、乙两人第一次行走在同一条边上.1a 2 299.已知 0<a<1,且知足 a a 18 ,则 10a 的值等于30 30 30.( x表示不超出 x 的最大整数 )10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字 8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,正是本来电话号码的六位数的81 倍,则小明家本来的电话号码是.三、解答题(共 4 题,每题 15 分,满分 60 分)11.已知x b,a,b为互质的正整数(即a,b是正整数,且它们的最大条约a数为 1),且a≤ 8,2 1 x3 1 .(1)试写出一个知足条件的x;(2)求全部知足条件的x.12.设a, b ,c为互不相等的实数,且知足关系式b 2c 2 2a 2 16a 14 ①bc a2 4a 5 ②求 a 的取值范围.13.如图,点 P 为⊙ O 外一点,过点 P 作⊙ O 的两条切线,切点分别为 A,B.过点 A 作 PB 的平行线,交⊙ O 于点 C.连接 PC,交⊙ O 于点 E;连接 AE,并延伸AE 交 PB 于点 K.求证: PE· AC=CE·KB.PKEBAO14.10 个学生参加 n 个课外小组,每一个小组至多 5 个人,每两个学生起码参加某一个小组,随意两个课外小组,起码能够找到两个学生,他们都不在这两个课外小组中.求 n 的最小值.2006 年全国初中数学比赛试题参照答案一、选择题(共 5 小题,每题 6 分,满分30 分。

广东奥校初中入学考试数学试卷(第一试)样题答案

广东奥校初中入学考试数学试卷(第一试)样题答案

解: 男生比女生多 7-1=6 人, 男生有: (100+6)÷2=53(人)
9、一天,师徒二人接到一项生产零件的任务,先由师傅单独做 5 小时,剩下的任务由徒弟 单独做,3 小时做完。第二天,他们又接到一项生产任务,工作量是第一天所接任务的 2 倍。 这项任务先由师徒二人合做 8 小时,剩下的由徒弟完成。已知师傅第二天比徒弟多做 24 个。 4 如果徒弟每小时的生产数量是师傅的 ,那么第二天师徒一共做了___296_________个。 5
23 三角形三条边的中点,则阴影部分面积占长方形面积的比例____ 240 ________(用分数表示)
1
解:设长为 a,宽为 b S 三角形 ABC 为
3 2 1 4 1 1 ab a b 2 a b 2 — ( b b) a 2 4 3 4 5 5 3 1 1 4 ab — ab — ab — ab 4 10 15 23 ab 60
广东奥校初中入学考试数学试卷(样题)
第一试
一、 1、 1 填空题
26 5 1 5 12 3 2 11 3 1 1 4 1 ________ 4 (用带分数表示) 35 13 3 6 13 26 7 14 26 35
解:第二只小狗要比第一只小狗多追小王跑 6 分钟的路 ,也就是 2×60×3=360 米 360÷(5—3)=180 秒 , 来回一共 360 秒。 即两只小狗回到 A 地的时间隔为 360 秒。
7、一个有弹性的球从点 A 下落到地面,弹起到点 B 后又落到高为 10cm 的平台上,再弹起到 点 C,最后落到地面。每次弹起的高度都是落下高度的 50%,已知点 A 离地面比点 C 离地面 高出 70cm,那么点 A 离地面的高度是____100_______cm。 解:设点 A 离地面的高度是 X cm (50%X—10)50%=X—70—10 X=100

2006年全国初中数学竞赛试题参考答案

2006年全国初中数学竞赛试题参考答案

2006年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ).(A )36 (B )37 (C )55 (D )90 答:C .解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施是在55千米处. 故选C .2.已知21+=m ,21-=n ,且8)763)(147(22=--+-n n a m m ,则a 的值等于( ) (A )-5 (B )5 (C )-9 (D )9 答:C .解:由已知可得 122=-m m ,122=-n n .又8)763)(147(22=--+-n n a m m ,所以 ()()8737=-+a , 解得 9-=a .故选C .3.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2y x =上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )1<h (B )1=h (C )21<<h (D )2>h 答:B .解:设点A 的坐标为),(2a a ,点C 的坐标为),(2c c (c a <),则点B 的坐标为),(2a a -,由勾股定理,得22222)()(a c a c AC -+-=, 22222)()(a c a c BC -++=,222AB BC AC =+,所以 22222)(c a c a -=-.由于22a c >,所以221a c -=,故斜边AB 上高=h 221a c -=.故选B .4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2004 (B )2005 (C )2006 (D )2007 答:B .解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k 次后,可得(k +1)个多边形,这些多边形的内角和为(k +1)×360°.因为这(k +1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k +1)-34=k -33(个),而这些多边形的内角和不少于(k -33)×180°.所以(k +1)×360°≥34×60×180°+(k -33)×180°,解得k ≥2005.当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.于是共剪了58+33+33×58=2005(刀).故选B .5.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,DP 交AC 于点Q .若QO QP =,则QAQC的值为( ) (A )132- (B )32(C )23+ (D )23+答:D .解:如图,设⊙O 的半径为r ,m QO =,则m QP =,m r QC +=,m r QA -=.(第5题图)在⊙O 中,根据相交弦定理,得QD QP QC QA ⋅=⋅. 即 QD m m r m r ⋅=+-))((,所以 mm r QD 22-=.连结DO ,由勾股定理,得222QO DO QD +=,即 22222m r m m r +=⎪⎪⎭⎫ ⎝⎛-,解得r m 33=. 所以,231313+=-+=-+=m r m r QA QC . 故选D .二、填空题(共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b =2006,a c -=2005.若a <b ,则a +b +c 的最大值为 . 答:5013.解:由a +b =2006,a c -=2005,得a +b +c =a +4011. 因为a +b =2006,a <b ,a 为整数,所以,a 的最大值为1002. 于是,a +b +c 的最大值为5013.7.如图,面积为c b a -的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 是整数,且b 不能被任何质数的平方整除,则bc a -的值等于 .答:320-. 解:设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则342=m .由△ADG ∽ △ABC ,可得m xm m x 2323-=, 解得m x )332(-=.于是48328)332(222-=-=m x , 由题意,a =28,b =3,c =48,所以320-=-b c a . 8.正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A ,C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米∕分,乙的速度为46米∕分. 那么,出发后经过 分钟,甲、乙两人第一次开始行走在同一条边上.答:104.解:设甲走完x 条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x 米,乙走了x x 3685040046=⨯米.于是400)1(400800)1(368>--+-x x ,且 x x 400)800368(-+≤400, 所以,5.12≤x <5.13.故x =13,此时1045013400=⨯=t .9.已知<01a <,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([]x 表示不超过x 的最大整数),则[]10a 的值等于 .答:6. 解:因为 122902303030a a a <+<+<<+<,所以130a ⎡⎤+⎢⎥⎣⎦,230a ⎡⎤+⎢⎥⎣⎦,…,2930a ⎡⎤+⎢⎥⎣⎦等于0或者1.由题设知,其中有18个等于1,所以130a ⎡⎤+⎢⎥⎣⎦=230a ⎡⎤+⎢⎥⎣⎦=…=1130a ⎡⎤+⎢⎥⎣⎦=0, 1230a ⎡⎤+⎢⎥⎣⎦=1330a ⎡⎤+⎢⎥⎣⎦=…=2930a ⎡⎤+⎢⎥⎣⎦=1, 所以 130110<+<a , 1≤3012+a <2. 故18≤a 30<19,于是6≤a 10<319,所以[]10a =6. 10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是.答:282500.解:设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为bcdef a 82.根据题意,有81×abcdef =bcdef a 82. 记43210101010x b c d e f =⨯+⨯+⨯+⨯+,于是5568110812081010a x a x ⨯⨯+=⨯+⨯+,解得)71208(1250a x -⨯=.因为0≤x ≤510,所以0≤)71208(1250a -⨯<510, 故71128<a ≤71208. 因为a 为整数,所以a =2.于是82500)271208(1250=⨯-⨯=x .所以,小明家原来的电话号码为282500.三、解答题(共4题,每小题15分,满分60分)11.已知a bx =,a ,b 为互质的正整数,且a ≤8,1312-<<-x .(1)试写出一个满足条件的x ;(2)求所有满足条件的x .解:(1)12x =满足条件. ……………………5分(2)因为abx =,a ,b 为互质的正整数,且a ≤8,所以ab<-121<,即1)a b<1)a <.当a =1时,1)13(1)12(⨯-<<⨯-b ,这样的正整数b 不存在.当a =2时,2)13(2)12(⨯-<<⨯-b ,故b =1,此时12x =. 当a =3时,3)13(3)12(⨯-<<⨯-b ,故b =2,此时23x =.当a =4时,4)13(4)12(⨯-<<⨯-b ,与a 互质的正整数b 不存在.当a =5时, 5)13(5)12(⨯-<<⨯-b ,故b =3,此时35x =.当a =6时, 6)13(6)12(⨯-<<⨯-b ,与a 互质的正整数b 不存在. 当a =7时, 7)13(7)12(⨯-<<⨯-b ,故b =3,4,5,此时73=x ,74,75. 当a =8时, 8)13(8)12(⨯-<<⨯-b ,故b =5,此时58x =.所以,满足条件的所有分数为12,23,35,73,74,75,58.…………………15分 12.设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ①及 542--=a a bc , ② 求a 的取值范围.解法1:由①-2×②得2()24(1)0b c a -=+>,所以1->a .当1->a 时,222216142(1)(7)0b c a a a a +=++=++>.…………………10分又当a =b 时,由①,②得221614c a a =++, ③ 245ac a a =--, ④将④两边平方,结合③得()()2222161445a a a a a ++=--,化简得3224840250a a a +--=,故 2(65)(425)0a a a +--=, 解得65-=a ,或4211±=a .所以,a 的取值范围为1->a 且65-≠a ,4211±≠a .……………15分解法2:因为14162222++=+a a c b ,542--=a a bc ,所以)54(214162)(222--+++=+a a a a c b =4842++a a =2)1(4+a ,所以 )1(2+±=+a c b .又542--=a a bc ,所以b ,c 为一元二次方程054)1(222=--++±a a x a x ⑤的两个不相等实数根,故0)54(4)1(422>---+=∆a a a ,所以1->a .当1->a 时,222216142(1)(7)0b c a a a a +=++=++>.…………………10分另外,当a =b 时,由⑤式有054)1(222=--++±a a a a a ,即05242=--a a ,或056=--a ,解得4211±=a ,或65-=a . 所以,a 的取值范围为1->a 且65-≠a ,4211±≠a .…………………15分13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K . 求证:PE AC CE KB ⋅=⋅.证明:因为AC ∥PB ,所以KPE ACE ∠=∠.又P A 是⊙O 的切线,所以KAP ACE ∠=∠.故KPE KAP ∠=∠,于是△KPE ∽△KAP ,所以 K P K EK A K P=, 即 2K P K E K A =⋅.………………5分由切割线定理得2KB KE KA =⋅,所以, KP =KB .…………………10分因为AC ∥PB ,所以,△KPE ∽△ACE ,于是PE KPCE AC=, 故P E K BC E A C=, 即 P E A C C E K B⋅=⋅. …………………15分14.2006个都不等于119的正整数200621,,,a a a 排列成一行数,其中任意连续若干项之和都不等于119,求200621a a a +++ 的最小值.解:首先证明命题:对于任意119个正整数12119,,,b b b ,其中一定存在若干个(至少一个,也可以是全部)的和是119的倍数.事实上,考虑如下119个正整数1b ,12b b +,…,12119b b b +++, ①若①中有一个是119的倍数,则结论成立.若①中没有一个是119的倍数,则它们除以119所得的余数只能为1,2,…,118这118种情况.所以,其中一定有两个除以119的余数相同,不妨设为1i b b ++和j b b ++ 1(1≤i <j ≤119),于是1119i j b b +++,从而此命题得证.…………………5分对于200621,,,a a a 中的任意119个数,由上述结论可知,其中一定有若干个数的和是119的倍数,又由题设知,它不等于119,所以,它大于或等于2×119,又因为102119162006+⨯=,所以200621a a a +++ ≥391010223816=+⨯. ②…………………10分取1201904238119====a a a ,其余的数都为1时,②式等号成立.所以,200621a a a +++ 的最小值为3910.…………………15分。

2006年广东省初中数学竞赛初赛试卷

2006年广东省初中数学竞赛初赛试卷

沙子变凉了
中午
水很暖和
傍晚
六、交流与合作
为什么海水和沙子在同一时刻的 温度不一样?
因为海水与砂石受光照的时间完 全相同,所以它们吸收的热量相同, 但是海水的比热容比砂石的大,所以 海水升温比沙子慢;没有日照时,海 水降温比沙子慢。使沿海地区的气温 变化不像内陆沙漠地区那样显著。
水的比热容较大 质量相等的水和其 它物质升高(降低) 相同温度,水比其他 物质吸收(放出)的 多 多 /少) 热量___.(
二、做出猜想:
可能是沙子吸热升温比水快的缘故。
三、设计实验
1、如何使水和煤油温度升高?
2、如何比较水和煤油哪个吸热多?
3、在实验中所取水和煤油的质量是什么 关系?
信息快递
如果加热方法完全相同,就可以认为相 同时间内物质吸收的热量相同
实验
五、分析与论证
质量相等的水和煤油吸收相同的热量时, 快 水比煤油升温_____ 推理:升高相同温度时水比煤油吸收的 多 热量____ 这说明: 质量相等的不同物质在升高相同温度时, 不相等 的。 吸收的热量 ____
用水来取暖
质量相等的水和 其他物质吸收(放 出)相同的热量,水 比其他物质升温 慢 快/慢) (降温)___(
用水冷却汽车的发动机
例题1:在20℃室温下,烧开一壶5Kg的水,大约需要吸收
多少热量? 已知:t0=20℃,t=100℃,m=5kg,c=4.2X103J/(kg.0C)
求:Q吸 解: Q吸=cm(t-t0) =4.2X103J/(kg.0C)X5kgX800C =1.68X106J Q吸 答:… c m(t t0 ) Q吸=cm(t-t0)
1.水的比热容最大 2.不同物质的比热容一般不同 3.同种物质状态不同,比热容不同
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年广东省初中数学竞赛初赛试卷
说明:考试时间:60分钟。

总分120分。

每小题4分。

在每小题给出的四个选项中,只有 一项是符合题目要求的,并将答案填在下面的答题卡上。

题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 题号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 答案
1.直角坐标平面上将二次函数y=-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )。

A. (0,0)
B. (1,-2)
C. (0,-1)
D.(-2,1) 2.下列的计算正确的是( ).
A .(ab 4)4=ab 8; B.(-3pq)2
=-6p 2
q 2
C. x 2

21x +41=( x -2
1)2
;D.3(a
2
)3-6a
6
=-3a
6
3.如图1.以直角三角形ABC 三边为直径的半圆面积分别是S 1、S 2、S 3,直角三角形ABC 面积是S ,则它们之间的关系为( ). A. S= S 1+S 2+S 3 B. S 1= S 2+S 3 C. S= S 1+S 2
C. S= S 1
4. 一辆公共汽车从车站开出,加出速行驶一段时间后匀速行驶,过了一段时间,汽车到达下
一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的是( ).
(A)
时间
速度
(B)
时间
速度
S 3
S 2
S 1
S
(C)
时间
速度0
(D)
时间
速度
5.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分 的面积,验证了一个等式是( ).
A. a 2-b 2=(a+b )(a-b )
B. (a+b )2
= a 2
+2ab+ b 2
C. (a-b )2= a 2-2ab+ b 2
D.(a+2b )(a-b )= a 2+ab-2b 2
6.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图.你能根据三视图,帮他清点一下箱子的数量吗?这些正方体箱的个数是( ). A. 6 B. 7 C. 8 D. 9
主视图 左视图 俯视图
7.在Rt △ABC 中,∠C=90°,则下列式子中不一定成立的是( ).
A.sinA=sinB
B. cosA=cosB
C.sinA=cosB
D. sin(A+B)=sinC
8.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中正号表示成绩大于18秒,负号成表示绩小于18秒,则这组女生的达标率是( ).
-1
+0.8 0
-1.2
-0.1
**
-0.6
A.41
B.21
C.4
3 D.83
9.函数y=kx 和y=x
k
(k ﹤0)在同一坐标系中的图象是( ).
b a b
a
b
b b a
A 0x y
B 0x y
C 0x y 0x y
D A C
B
P
10.将一张正方形纸按图所示的方式二次折叠,折叠后再按图所示沿MN 裁剪,则可得( ). A.多个等腰直角三角形; B.一个等腰直角三角形和一个正方形;
C.四个相同的正方形;
D.两个相同的正方形。

C
B A
D C B A D
C
B A
N
D
C
B
A
N
M D
11.某地2001年外贸收入为m 亿元,若每年的增长率为1,则2003年外贸收入达到n 亿元,则可以列出方程式( ).
A. m(1+x)2=n
B. (m +x%)2=n
C. m(1+x)(1+2x)=n
D. m(1+x%)2=n
12.如图.小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )
.
A
C
B
C
B
A
D
13.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ). **元 B.105元 C.118元 D.108元
14.若分式4
412
322++-x x x 的值为0,则x 的值为( ).
** B.±2 C.-2 D.±4 15.若x 2
-2(k+1)x+4是完全平方式,则k 的值为( ). A.±1 B.±3 C.-1或3 D.1或-3 16.已知:如图, △ABC 中,P 为AB 上一点,在下列四个条件中:①
∠ACP=∠B;②∠APC=∠ACB;③AC 2=AP ·AB;④AB ·CP=AP ·CB,能满足△APC 和△ACB 相似的条件是( ).
A .①②④ B.①③④ C.②③④ D.①②③ 17.已知在半径为2的⊙O 中,内接三角形ABC 的边AB=23,则∠C 的度数为( ). A.60° B.30° C.60°或120° D.30°或150°
18.如果一直角三角形的三边长为a,b,c,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根情况是( ).
A.有两个相等的实数根;
B. 有两个不相等的实数根;
C.没有实数根;
D. 无法确定 19.点P(9+a -,-3+a),则点P 所在象限为( ).
A.第一象限
B. 第二象限
C. 第三象限 D 第四象限. 20.如果函数y=kx 2
22-+k k 的图象是双曲线,而且在第二、四象限,那么k=( ).
A.
21 B.-1 C.- 2
3
D.1 21.若梯形上底的长为L,两腰中点连线的线段的长为m,那么连结两条对角线中点的线段长是( ).
A.m-2L
B.
2
m
-L C.2m-L D.m-L 22.菱形的一边和等腰直角三角形的直角边相等,若菱形的一角为60°,则菱形和等腰直角三角形的面积比是( ). A.3:2 B. 3:1 C.1: 3 D. 3:4
23.若方程8x 2
+2kx+k-1=0的两个实数根是x 1, x 2且满足x 2
1+x 2
2=1,则k 的值为( ). A.-2或6 B.-2 C.6 D.4
24. ⊙O 的半径为10㎝,A 是⊙O 上一点,B 是OA 中点,点B 和点C 的距离等于5㎝,则点C 和⊙O 的位置关系是( ).
A.点C 在⊙O 内
B. 点C 在⊙O 上
C. 点C 在⊙O 外
D. 点C 在⊙O 上或⊙O 内 25.⊙O 1和⊙O 2相交于A,B 两点,公共弦与连心线O 1 O 2交于G,若AB=48, ⊙O 1和⊙O 2的半径分别是30和40,则△A O 1 O 2的面积是( ).
A.600
B.300或168
C.168
D.600或168
26.在2004 2005 2006 2007 这四个数中,不能表示为两个整数平方差的数是( ). ** B.2005 C.2006 D.2007 27.如图,BC 是半圆O 的直径,EF ⊥BC 于点F ,
FC
BF
=5,又AB=8,AE=2,则AD 的长为( ).A **+ B. C. D. 1+
A C
B F E
D
C '
B '
A 'A
C
B q 2p 2
A
C
B
D
(27题) (28题) (29题)
28.把△ABC 沿AB 边平移到△A 'B 'C '的位置,它们的重叠部分(即图11中阴影部分)的面积是△ABC 的面积的一半,若AB=2,则此三角形移动的距离A A '是( ). A. 2-1 B.
22 C.1 D. 2
1
29.若梯形ABCD 的两条对角线与两底所围成的两个三角形的面积为P 2和q 2(如图12),则梯形的面积为( )
A.2(P 2
+ q 2
) B.(p+q)2
C. P 2
+ q 2
+pq D. P 2
+ q 2
+2
22
2q
p q p + 30.菱形的两条对角线之和为L,面积为S,则它的边长为( ). A.2
124L S -; B.
2
124L S +; C.
2
1S L 42-; D.
2
1S L 42+
答案:
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 C D B B A B A C C C A B D A D 题号16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 答案 D C A D B D B B D D C B A B C。

相关文档
最新文档