摩擦学基础知识

合集下载

摩擦学原理知识点总结

摩擦学原理知识点总结

摩擦学原理知识点总结摩擦学是研究物体之间相对运动时所产生的摩擦现象和规律的科学。

摩擦学原理包括摩擦的定义、摩擦力的产生原因,摩擦力的类型、摩擦力的计算方法等内容。

通过了解摩擦学原理,可以更好地理解摩擦力的作用和影响,从而在工程、物理学和机械设计等领域得到应用。

一、摩擦的定义摩擦,是指两个物体相对运动时,在它们接触表面上由于微观不平整而发生的阻力,这种阻力叫做摩擦力。

摩擦力是一种非常微小的力,通常在我们的日常生活中会忽略它的存在。

摩擦力的大小取决于物体表面的光滑程度、压力大小以及接触面积等因素。

二、摩擦力的产生原因摩擦力的产生是由于物体表面的不规则微观结构,当两个物体表面接触时,这些微不足道的不规则结构会相互干涩地牵引、压迫、撞击对方而产生的一种相对运动阻力。

三、摩擦力的类型1、静摩擦力当两个物体相对运动时,接触面会产生一个阻碍相对滑动的摩擦力,这就是静摩擦力。

静摩擦力的大小与物体之间的正压力成正比,即F_s = μ_sN,其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。

静摩擦力通常比动摩擦力大,当施加在物体上的力小于静摩擦力时,物体不会发生相对滑动。

一旦施加的力达到或超过了静摩擦力,物体就会开始发生相对滑动。

2、动摩擦力当物体产生相对滑动时,接触面会产生一个与相对滑动方向相反的摩擦力,即动摩擦力。

动摩擦力的大小与静摩擦力相关,通常小于静摩擦力,通常F_k = μ_kN。

其中F_k为动摩擦力大小,μ_k为动摩擦系数,N为正压力的大小。

动摩擦力通常比静摩擦力小,所以一旦物体开始运动,需要施加的力就变小了。

四、摩擦力的计算方法1、静摩擦力的计算静摩擦力的大小与物体间的正压力成正比,即F_s = μ_sN。

其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。

静摩擦系数是一个无量纲的常数,它取决于物体表面的光滑程度。

静摩擦系数的大小可以通过实验测定或者查找资料获得。

2、动摩擦力的计算动摩擦力的大小与正压力成正比,即F_k = μ_kN。

第一章 摩擦学基础知识(润滑)

第一章 摩擦学基础知识(润滑)

三、润滑脂及其主要性能 • 组成:基础油+稠化剂+添加剂+澎润土 • 润滑脂的性能指标主要有针入度、滴点、析 油量、机械杂质、灰分、水分等
1)针入度 软硬程度 H(mm)/0.1
h
阻力大小、流动性强弱
标准锥体,150g,25 ℃ ,5s
2)滴点----固体 流体的温度转折点,表示耐热性 3)防水性能; 4)静音性能; 5)种类 A)钙基脂:抗水,适于轻中重载荷; B)钠基脂:高温,但不抗水; C)锂基脂:多用途,最好; D)铝基脂:高度耐水性,航运机械 E)其它特种润滑脂(特种合成油、添加剂、 稠化剂等)
五、添加剂 • 作用越来越大,在润滑脂、合成油中不加添加剂,
六、对润滑剂的要求
较低的摩擦系数 良好的吸附和渗入能力 有一定的黏度 有较高的纯度和抗氧化性 没有腐蚀性 有良好的导热性和较大的热容量
七、润滑装置 单体供油装置 油壶, 油杯,
油枪
油杯
压配式油杯
滴油式油杯
油芯式油杯
油环
油链
• 集中供油装置 a) 简单的少数点位集中供油 b) 设备中心、车间及工厂级集中供油 泵站+(稳压+冷却)+过滤+分配器+工位润滑
η t = η0 ( t0 / t )
m
2、润滑油的粘压特性
• 粘度和压力的关系近 似表示为:
η = η0 e
ap
粘温关系曲线
3、油性—反映在摩擦表面的吸附性能 油性 (边界润滑和粗糙表面尤其重要) 4、闪点—瞬时燃烧和碳化的温度; 闪点 燃点—长时间连续燃烧的温度(高温性能); ; 燃点 5、凝点—冷却,由液体转变为不能流动的临界 凝点 温度; (低温启动性能) 6、极压性(EP), 在重压下表面膜破裂的最大 极压性(EP) 接触载荷,用PB表示,(极限载荷) 7、酸值—限制润滑剂变质后对表面的腐蚀 酸值

摩擦学基础知识综述

摩擦学基础知识综述

剪切强度)和屈服极限。
(2)粘着理论基本要点:
摩擦表面处于塑性接触状态:实际接触面只 占名义面积很小部分,接触点处应力达到受 压屈服极限产生塑性变形后,接触点的应力 不再改变,只能靠扩大接触面积承受继续增 加的载荷。 滑动摩擦是粘着与滑动交替发生的跃动过程: 接触点处于塑性流动状态,在摩擦中产生瞬 时高温,使金属产生粘着,粘着结点有很强 的粘着力,随后在摩擦力作用下,粘结点被 剪切产生滑动。
属摩擦副摩擦系数较大;二者之间容易发生 粘着,而互溶性差的金属不易发生粘着。
2.摩擦副表面特性:
(1)表面粗糙度:非常粗糙的表面,表面须
越过另一表面的微凸体,摩擦系数高。非常 光滑的表面摩擦系数甚至更高:实际接触面 积大,分子作用增强。在塑性接触下,实际 接触面积总是与载荷成正比,表面粗糙度的 实际影响并不大。
(4)无法解释脆性材料具有的和金属材料相
似的摩擦性能。
(5)粘着理论很好解释了“相溶性较大的金
属之间容易发生黏着,摩擦系数较大”现象.
对于大多数金属, τb =0.2σs ,计算的摩擦系数 为 0.2左右.正常大气中测的摩擦系数都高达 0.5 ,在真空中更高.
5.机械—粘着—犁沟综合作用理论 粘着理论的基础上提出“机械—粘着—犁沟”
摩擦学基础知识
概述
1. 摩擦的定义:
两个接触物体表面在外力 作用下相互接触并作相对 运动或有运动趋势时,在 接触面之间产生的切向运 动阻力称为摩擦力,这种 现象就是摩擦。
2 . 摩擦的分类 1. 摩擦按摩擦副运动状态可分为: 静摩擦:两物体表面产生接触,有相对运动趋势但 尚未产生相对运动时的摩擦。 动摩擦:两相对运动表面之间的摩擦。 2. 按相对运动的位移特征分类: 滑动摩擦:两接触物体接触点具有不同速度和(或) 方向时的摩擦。 滚动摩擦:两接触物体接触点的速度之大小和方向 相同时的摩擦。 自旋摩擦:两接触物体环绕其接触点处的公法线相 对旋转时的摩擦。

摩擦学基础知识

摩擦学基础知识

(1)表面被污染,摩擦系数主要取决于材料 组合、表面特征和环境条件。
(2)粘着起作用,摩擦系数开始上升,假如 微凸体断裂,产生旳磨粒将产生犁沟作用, 使摩擦系数升高。
(3)滑动表面旳磨粒数增长,犁沟作用增大, 摩擦系数急剧上升。
(4)进入和离开界面旳磨粒数相等时,摩擦 系数保持不变,即稳定摩擦状态。
摩擦学基础知识
概述
1. 摩擦旳定义:
2. 两个接触物体表面在外力 3. 作用下相互接触并作相对 4. 运动或有运动趋势时,在 5. 接触面之间产生旳切向运 6. 动阻力称为摩擦力,这种 7. 现象就是摩擦。
2 . 摩擦旳分类
1. 摩擦按摩擦副运动状态可分为:
静摩擦:两物体表面产生接触,有相对运动趋势但 还未产生相对运动时旳摩擦。 动摩擦:两相对运动表面之间旳摩擦。 2. 按相对运动旳位移特征分类:
(2)具有牵引力旳滚动---滚动元件受到法向 载荷和牵引力旳作用产生旳滚动形式。
(3)伴随滑动旳滚动---几何形状造成接触面 上切向速度不等时,必将伴有滑动。
3. 滚动摩擦系数
(1)有量纲滚动摩擦系数: 驱动力矩与法向载荷之比,即: μ=FR/W=W´e/W=e
(2)无量纲滚动摩擦系数:
称为滚动阻力系数,数值上等于驱动力矩 在单位距离所作旳功与法向载荷之比,即:
(4)无法解释脆性材料具有旳和金属材料相 同旳摩擦性能。
(5)粘着理论很好解释了“相溶性较大旳金 属之间轻易发生黏着,摩擦系数较大”现象.
对于大多数金属, τb =0.2σs ,计算旳摩擦系数 为 0.2左右.正常大气中测旳摩擦系数都高达 0.5 ,在真空中更高.
5.机械—粘着—犁沟综合作用理论
(了解)当刚性滚轮沿弹性平面滚动时,在 一整周内滚轮走过旳距离要不不小于圆周长。 (了解)当弹性滚轮沿刚性平面滚动时,在 一整周内滚轮走过旳距离要不小于圆周长。

摩擦学基本知识

摩擦学基本知识

H
4. 润 滑
• 是减少机械零部件磨损、延长使用寿命的有效措施。 • 为了减少机器的磨损和发热,保证安全运转,延长使用寿 命和降低能源的消耗,摩擦副表面间进行润滑。主要的 润滑剂为液体润滑油。 • 据推算,全世界用于动力的能源,约有30%~40%消耗在无
损就是一种复合磨损形式。在实际工程中,应抓住主 要的磨损形式,才能采取有效措施,以减少磨损,延 长寿命。 • 3.2 磨损规律及影响因素 • 机器零件的工作过程分为三个阶段:跑合阶段、稳定 磨损阶段、急剧磨损阶段。应尽可能延长稳定磨损阶 段。
• 磨损的影响因素主要有:材料、表面硬度、滑动速度
、载荷、表面温度、表面粗糙度、表面粘附物以及润 滑等。
(a) 一般情况;(b) 表面平行时
流体摩擦(润滑)
H • ③.边界摩擦:相对运动的表面之间存在极薄分子膜。
• 特点:极薄边界膜(厚度20纳米左右)起润滑作用,有 能力防止表面微凸体之间相互接触而不破坏,起良好的 润滑作用。但强度低,易破裂。
(a) 单分子层边界润滑模型;(b) 边界润滑机理模型 边界摩擦(润滑)
料的极限使用温度;f∝1/Pg,f∝V,而碳石墨和铸铁由于自
润滑性好,其规律与塑性相反。
H
摩擦工况
润滑状态 粘度影响 (μ)
表:各种摩擦状态及其特征对比
干摩擦

边界摩擦
分子吸附膜
混合摩擦
部分
流体摩擦
全部


部分
起决定作用
过程特征
微凸起接触
分子层、分子机 械作用
混合
流体动静压效 应
摩擦系数大小
0.1~0.6
• ④.微动磨损:两个表面之间由于振幅很小的相对运 动而产生的磨损。

一 摩擦学基础

一 摩擦学基础

摩擦学基础(l)近年来,摩擦学研究在物理学、材料学、机械工程学等领域取得了重要进展,成为应用广泛、理论基础扎实的学科。

本论文将从基础理论入手,系统介绍摩擦学的基本原理、研究方法和应用现状。

一、摩擦学的基本原理摩擦是物体相对运动时,由于接触面间互相作用而产生的阻力。

摩擦力的大小与接触面间的压力、材料性质等因素有关。

在物体相对运动状态下,摩擦力始终与运动方向相反,这是摩擦学的基本特点。

实际上,摩擦力不仅与运动状态有关,还与接触面之间的相互作用力密切相关。

摩擦力的大小、方向和稳定性均可由接触面微观结构的特点决定。

例如,当两个光滑的硬表面相互接触时,由于表面微观结构的特殊性质,摩擦力可近似为零;而两个粗糙的表面接触时,则有较大的摩擦力产生。

二、摩擦学的研究方法为了更好地研究摩擦学,我们需要寻找摩擦力的特点,从而确定相应的研究方法。

目前,常见的研究方法如下:(1)摩擦学实验。

该方法通过建立摩擦学模型,模拟实际摩擦条件,通过实验观察和测试,研究摩擦学中的影响因素、作用原理及其宏观特征。

(2)摩擦力理论分析。

该方法通过力学、热力学和统计物理等理论方法,建立数学模型,推导摩擦力公式,研究摩擦力大小、方向和稳定性等性质。

(3)摩擦学表征技术。

该方法通过各种表征手段,如扫描电镜、电子探针、拉力试验机等,分析和表征摩擦学中的微观特征,研究摩擦学行为和机制。

三、摩擦学的应用现状摩擦学的应用领域广泛,包括机械工程、材料工程、表面学、纳米技术及生物医学等。

其中,摩擦学在机械工程领域中的应用尤为广泛,如锅炉、汽车、机床等领域,均需要摩擦学研究的支持。

同时,在材料工程领域,稳定的摩擦是材料性能评价的关键。

总之,摩擦学的研究和应用对于各行各业都具有重要的意义,这一学科的发展必将推动现代技术和工业的进步。

同时,我们也期望今后能有更多的研究工作者加入到这一学科的研究中来。

在表面学领域,摩擦学可应用于摩擦学表征技术、自润滑材料的设计和表面改性等方面。

物理摩擦专业知识点总结

物理摩擦专业知识点总结

物理摩擦专业知识点总结摩擦是一种常见的物理现象,它在我们日常生活中随处可见。

从推车行驶到书本翻动,从摩擦力车辆制动到工业生产中的摩擦材料选择,摩擦都起着重要的作用。

因此,摩擦力的研究和理解对于工程、物理学、材料学等领域都具有重要意义。

本文将从摩擦力的概念、原理、计算方法、影响因素、应用等方面进行详细总结。

一、摩擦力的概念摩擦力是指两个接触表面相互相对运动或相对运动的物体之间的阻力。

在接触面上,由于微观不平整的凸起和凹陷,导致了分子间的相互作用,从而产生了摩擦力。

摩擦力是一种非常微观的力,一般是沿着两个接触表面相对运动的方向的,它的大小和方向是由接触面和相对运动的速度、压力、材料性质等因素决定的。

1.1 静摩擦力和动摩擦力摩擦力可以分为静摩擦力和动摩擦力。

静摩擦力是指当物体之间的相对运动速度为零时的摩擦力,而动摩擦力是指当物体之间有相对运动时产生的摩擦力。

在许多情况下,静摩擦力大于动摩擦力,这就是为什么需要克服一定的初阻力才能使物体开始运动的原因。

1.2 摩擦系数摩擦系数是一个衡量两个表面间摩擦程度的物理量。

在一个物体相对另一个物体表面滑动的情况下,通过观察得到滑动的速度以及对两者表面直接压力的大小,可以得到静摩擦力和动摩擦力的比例值。

这个比例值就是摩擦系数。

摩擦系数是由于两个表面之间的粗糙程度、材料的种类和温度等因素影响的。

二、摩擦力的原理摩擦力的产生是由于接触表面上的不规则凸起和凹陷在相互作用下产生了阻尼力。

在两个表面接触时,由于凹凸不平,两个物体的接触面并不是完全平滑的,这导致了在相互接触的分子之间发生了相互的摩擦阻力。

同时,随着物体相对运动速度的增加,相互作用的形式也会随之发生变化,从而产生了动摩擦力。

在微观尺度上,摩擦力可以通过摩擦系数的定义进行描述。

对于两个表面间的相对运动,当静摩擦力最大时的条件可以用来计算静摩擦力的大小。

当物体开始运动时,由于动摩擦力始终小于静摩擦力,物体开始具有了动能,动摩擦力的计算则需要通过动摩擦力的计算公式进行。

摩擦学的基本原理及其应用

摩擦学的基本原理及其应用

摩擦学的基本原理及其应用摩擦是我们日常生活中经常遇到的现象。

车辆行驶时的轮胎与路面摩擦,人行走时的脚与地面摩擦,任何实体在相互接触时都会产生摩擦。

而摩擦学正是研究物体在相互接触时产生的力的学科,其基本原理和应用非常重要。

一、摩擦的基本原理1. 摩擦力的定义摩擦力是指阻碍物体相对运动的力。

在物体相互接触时,由于表面间的不规则性,阻碍物体相对运动的力就会产生。

摩擦力可以分为静摩擦力和动摩擦力两种,它们通常都是与物体间接触的表面粗糙程度和材料特性等因素有关。

2. 摩擦力与接触面积的关系摩擦力与物体间接触面积成正比例关系。

接触面积越大,摩擦力越大;反之,接触面积越小,摩擦力越小。

这是因为物体直接接触的表面积越大,表面之间的微小凹凸就越大,摩擦力就越大。

3. 摩擦力与物体间压力的关系摩擦力与物体间压力成正比例关系。

即当物体间的压力增大时,摩擦力也随之增大,反之亦然。

这是因为物体间的压力越大,表面间的不规则性就越小,微小凹凸就进一步压缩,摩擦力就会增大。

二、摩擦学的应用1. 制动系统摩擦制动是利用静摩擦力使车轮停止转动的一种制动方式。

汽车、自行车等的制动系统都是靠摩擦制动来实现的。

在制动过程中,制动器上的刹车片与转动的车轮表面接触,产生静摩擦力使转轮停止转动。

而刹车片与车轮的表面摩擦系数大与小的不同,就会影响到制动效能和制动距离的长度。

2. 螺纹连接螺纹连接是常用的一种紧固连接方式,它通常用于连接杆件、面板、封板等部件。

在螺纹连接时,利用螺纹外螺距不等的原理,使螺栓和螺母之间相互旋转,从而将拼接的两个构件紧密地连接在一起。

在设计时,需要根据要求计算螺栓和螺母的摩擦力,以保证连接牢固。

3. 轴承轴承是一种广泛应用于机器设备中的组件,主要用于支撑机器转动部件,并在其旋转过程中承受轴向和径向的载荷。

它的基本原理就是利用滚动体或滑动体之间的摩擦来实现支承转动。

因此,轴承性能的好坏与其摩擦力有着密不可分的关系。

4. 润滑油润滑油作为目前普遍使用的润滑材料,被广泛应用于各种机械设备中,其作用是减小机械件表面的摩擦,以达到降低能耗、延长机器使用寿命的效果。

《摩擦力》 知识清单

《摩擦力》 知识清单

《摩擦力》知识清单一、什么是摩擦力摩擦力,简单来说,就是当两个物体相互接触并相对运动(或有相对运动的趋势)时,在接触面上产生的一种阻碍相对运动的力。

想象一下,你在地面上推一个很重的箱子,如果没有摩擦力,箱子会毫不费力地一直滑动下去。

但实际情况是,你需要用很大的力气才能推动它,这就是摩擦力在“捣乱”。

二、摩擦力的分类摩擦力主要分为三类:静摩擦力、滑动摩擦力和滚动摩擦力。

1、静摩擦力当你试图推动一个静止的物体,但还没有推动它时,物体所受到的摩擦力就是静摩擦力。

静摩擦力的大小会随着你施加的推力的增大而增大,直到推力超过了一个特定的值,物体开始运动,此时静摩擦力达到最大值。

例如,放在斜面上静止的物体,它不会自动下滑,就是因为静摩擦力平衡了重力沿斜面的分力。

2、滑动摩擦力当物体在表面上滑动时产生的摩擦力就是滑动摩擦力。

滑动摩擦力的大小与接触面的粗糙程度、压力的大小有关。

接触面越粗糙,压力越大,滑动摩擦力就越大。

比如,在粗糙的地面上拖动一个箱子比在光滑的地面上更费力。

3、滚动摩擦力一个物体在另一个物体上滚动时产生的摩擦力就是滚动摩擦力。

在相同条件下,滚动摩擦力通常比滑动摩擦力小得多。

我们常见的车轮就是利用滚动摩擦力来减小阻力,使车辆能够更轻松地移动。

三、影响摩擦力大小的因素1、接触面的粗糙程度接触面越粗糙,摩擦力越大。

比如,在冰面上行走比在粗糙的水泥地面上行走更容易滑倒,就是因为冰面比较光滑,摩擦力小。

2、压力的大小压力越大,摩擦力越大。

用手压着橡皮在纸上擦,越用力压,橡皮移动就越困难。

3、接触面积一般情况下,接触面积的大小对摩擦力的大小影响较小。

但在某些特定的情况下,比如接触面的材质和压力等条件固定时,接触面积的增大可能会导致摩擦力略有增加。

四、摩擦力的作用摩擦力并不总是坏的,它在我们的生活中既有好处也有坏处。

1、好处(1)行走和跑步:我们能够在地面上行走和跑步,是因为鞋底与地面之间的摩擦力提供了向前的推动力。

摩擦学原理知识点

摩擦学原理知识点

绪论1、摩擦学定义:是对于相对运动的互相作用表面的科学技术,包含摩擦、润滑、磨损和冲蚀。

2、摩擦学研究内容主要包含:摩擦、磨损、润滑以及表面工程技术。

3、摩擦:是抵挡两物体接触表面在外力作用下发生切向相对运动的现象。

4、磨损:侧重研究与剖析资料和机件在不一样工况下的磨损机理、发生规律和磨损特征。

5、润滑:研究内容包含流体动力润滑、静力润滑、界限润滑、弹性流体动力润滑等在内的各样润滑理论及其在实践中的应用。

6、表面工程技术:将表面与摩擦学有机联合起来,解决机器零零件的减摩、耐磨,延伸使用寿命的问题。

第一章1、表面容貌:微观粗拙度、宏观粗拙度(即涟漪度)和宏观几何形状误差。

2、表面参数:(1)算术均匀误差 Ra是在一个取样长度lr内纵坐标值Z(x)绝对值的算术均匀值。

(2)轮廓的最大高度 Rz 是在一个取样长度 lr 内最大轮廓峰高 Zp 和最大轮廓谷深 Zv 之和的高度。

( 3)均方根误差 Rq是在一个取样长度 lr 内纵坐标值 Z( x)的均方根值。

3、对于液体,表层中所有分子所拥有的额外势能的总和,叫做表面能。

表面能越高,越易粘着。

4、物理吸附:当气体或液体与固体表面接触时,因为分子或原子互相吸引的作使劲而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。

物理吸附薄膜形成的特色是吸附和解吸附拥有可逆性,无选择性。

5、化学吸附:极性分子与金属表面的电子发生互换形成化学键吸附在金属表面上,且极性分子呈定向摆列。

化学吸附的吸附能较高,比物理吸附稳固,且是不完整可逆的,拥有选择性。

6、粘附:是指两个发生接触的表面之间的吸引。

7、影响粘附的要素:①湿润性,②粘附功,③界面张力,④亲和力。

8、金属表面的实质构造:(1)表面层:①污染层,②吸附气体层,③氧化层;( 2)内表层:①加工硬化层,②金属基体。

第二章1、固体表面的接触分类:(1)点接触和面接触。

(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。

摩擦学的研究与应用

摩擦学的研究与应用

摩擦学的研究与应用第一章摩擦学的基础概念摩擦学是机械工程的一个分支学科,研究物体之间相互作用力的特性和规律。

在现代工业生产和日常生活中,摩擦是不可避免的。

因此,理解和控制摩擦成为降低能量损失、提高机械效率和稳定性的关键。

摩擦可分为干摩擦、润滑摩擦和粘着摩擦三种。

干摩擦是指在无润滑条件下的摩擦,物体表面间直接相互接触而产生的摩擦力。

润滑摩擦则是在物体表面间插入合适的润滑剂,以使物体表面间接触,减小摩擦力的一种摩擦。

粘着摩擦则是指物体表面间出现的一种间接摩擦,例如吸附、化学反应过程等。

第二章摩擦学的研究方法摩擦学的研究方法主要有试验研究和理论研究两种。

试验研究是对不同材质、不同接触条件下作用力、摩擦力、表面变形、表面磨损等进行实验测量,从而研究摩擦学规律。

而理论研究则是采用数学模型,通过对摩擦力、表面变形、表面磨损等进行分析、推导,从而探究摩擦过程的本质规律。

常用的摩擦试验仪器有摩擦副试验机、转动摩擦试验机等。

然而,由于摩擦过程十分复杂,无法通过单一的试验方法完全揭示其规律。

因此,研究摩擦学必须综合应用多种试验方法,如红外光谱、电子显微镜、原子力显微镜等。

第三章摩擦学的应用摩擦学在生产和日常生活中有广泛的应用。

在工业生产中,研究摩擦学规律是提高机械制造工艺和产品质量的重要手段。

例如,在汽车工业中,人们通过涂覆表面润滑剂或使用液压升降器、减震器等装置,有效地降低了摩擦力、延长了试验机器的寿命。

在机械加工过程中,更是广泛应用于干式切削、高速切削、摩托车启动器、机械密封等领域。

此外,摩擦学还被应用于运动学领域。

在竞技运动中,摩擦与运动员体能、运动装备的接触有着密切的关系。

例如,针对冰上运动的摩擦力学研究,在保持足够附着力的同时减小空气阻力,从而提高滑行轨迹和速度。

总之,摩擦学作为一门交叉性强的学科,对于提高生产效率、保障生活安全、提升机械性能等领域都有着重要的意义。

摩擦学基础知识

摩擦学基础知识
F= Wτb /σs μ=F/W= τ b /σs
τb、σs分别是较软材料的剪切强度极限(或界面 剪切强度)和屈服极限。
精品文档
(2)粘着理论基本要点:
摩擦表面处于塑性接触状态:实际接触面只 占名义面积很小部分,接触点处应力达到受 压屈服极限产生塑性变形后,接触点的应力 不再改变,只能靠扩大接触面积承受继续增 加的载荷。
当两表面的材料分子接近时,分子之间的吸引作 用是产生摩擦阻力的假说,利用分子力与分子之 间距离的关系导出了摩擦系数与接触面积成正比:
F=f(N+pAr) p为分子引力,Ar为真实接触面积
精品文档
3. 分子—机械理论
克拉盖尔斯基1939年提出分子-机械摩擦理论,认 为摩擦阻力是由机械变形抗力和分子引力的综合, 并非常量,用摩擦二项式定律表示:
精品文档
.
精品文档
表面膜效应:
当摩擦副表面生成氧化膜或被污染形成污染 膜时,摩擦系数将降低。污染膜的剪切强度 较底时,粘着结点增长不明显。当剪切应力 达到污染膜的剪切强度时,表面膜被剪断, 摩擦副开始运动,摩擦系数表示为:
μ= τ f /σy
只τ f适界用面与膜金的属剪摩切擦强副度。, σy金属副的屈服强度,
Stribeck曲线表现了这些摩擦状态,u、η、p 分别表示速度、润滑剂粘度和压力。
精品文档
摩擦的基本特性
1. 古典摩擦定律 (称为阿蒙顿-库仑定律):
(1)摩擦力和载荷成正比,即 F= f N 。除了在重载 荷下实际接触面积接近表观面积外,都是正确的。 (2)摩擦系数与(名义)接触面积无关。一般仅对 具有屈服极限的材料如金属材料是满足的,不适于 弹性和粘弹性材料。 (3)静摩擦系数大于动摩擦系数。不适于粘弹性材 料,尽管改材料究竟是否具有静摩擦系数还没定论。 (4)摩擦系数与滑动速度无关。金属材料基本符合, 粘弹性显著的弹性材料,与滑动速度有关。

摩擦学基本知识

摩擦学基本知识

摩擦学基本知识目录1. 摩擦学简介 (3)1.1 摩擦学的定义和学科范围 (4)1.2 摩擦学的重要性与应用领域 (5)2. 摩擦的分类与机制 (6)2.1 摩擦的分量和类型 (7)2.2 摩擦机理的基本概念 (8)2.3 不同表面相互作用的摩擦特性 (9)3. 摩擦因数的测定与预测 (10)3.1 摩擦因数的测定方法 (13)3.2 摩擦因数的预测模型 (14)3.3 摩擦因数的理论与实验研究 (16)4. 接触力与接触压力 (17)4.1 接触力产生的基本原理 (18)4.2 接触压力分布分析 (19)4.3 表面纹理与非线性接触压力 (21)5. 摩擦系数与磨损 (22)5.1 摩擦系数的影响因素 (23)5.2 磨损理论与磨损机制 (25)5.3 表面损伤与摩擦副寿命 (26)6. 润滑理论与技术 (27)6.1 润滑的基本原理 (29)6.2 润滑剂的种类与性能 (29)6.3 润滑技术的应用与发展 (30)7. 润滑与摩擦学研究进展 (32)7.1 高温润滑与表面化学 (33)7.2 纳米润滑与摩擦纳米技术 (34)7.3 非传统润滑方法 (36)8. 摩擦与润滑系统分析 (37)8.1 摩擦与润滑系统的建模 (38)8.2 系统分析和仿真方法 (39)8.3 设计原则与优化方法 (42)9. 摩擦与润滑材料 (43)9.1 摩擦与润滑基体材料 (44)9.2 摩擦系数与材料特性 (46)9.3 摩擦与磨损材料的研究 (47)10. 表面工程与表面特征对摩擦的影响 (48)10.1 表面工程技术 (50)10.2 表面特征与摩擦性质 (51)10.3 表面处理与润滑原理 (52)11. 摩擦与润滑的可持续性与环境考量 (54)11.1 环境保护与绿色润滑 (55)11.2 可持续设计与材料选择 (56)11.3 摩擦与润滑的节能减排 (57)12. 摩擦与润滑的科技伦理与社会责任 (58)12.1 专利与知识产权保护 (59)12.2 技术创新与科技伦理 (61)12.3 摩擦与润滑的社会责任 (62)13. 摩擦与润滑的未来趋势 (63)13.1 新兴技术的应用前景 (64)13.2 智能化与信息化在摩擦学中的应用 (65)13.3 摩擦学与当代科技发展的交融 (66)1. 摩擦学简介摩擦学是一门研究涉及相互接触并相对运动的物体间相互作用的科学。

摩擦学第四章

摩擦学第四章

(二)变形-犁削-粘着理论 *
要点如下:
滑动表面之间的摩擦是由微凸体的变形、磨粒和微凸体对表面的犁削 以及粘着三者综合作用的结果。
这三者对摩擦系数影响的程度取决于滑动界面的状态,而后者又受到 滑动前材料的性质、表面状态以及环境等因素的影响。 1981年N.P.Suh在《Wear》发表关于摩擦机理新观点:微凸体变形阻力、 刻槽阻力、粘着阻力。 Fn Fn Fn
4、混合摩擦 又可分为半干摩擦和半流体摩擦两种。前者是指同时存在干摩擦和边 界摩擦的一种混合状态的摩擦。而后者则是指同时存在边界摩擦和流体摩 擦的一种混合状态的摩擦。
按照摩擦副的运动形式,可以将摩擦分为以下两大类:
1.滑动摩擦
如在各种滑动轴承和机床导轨以及钻机中的刹车与气动离合器中相 对滑动表面上产生的摩擦。
(二) 分子吸引理论
德萨古利埃(J.T.Desaguliers,1683-1744) 哈迪(W.B.Hardy,1864-1934)
这种理论认为摩擦的产生是由于表面滑动时,表面上的分子运动键 断裂而消耗了一定的能量。 (三)库仑摩擦定律 (由库仑最后完成,许多人完善的结果)
目前库仑摩擦定律这种表达形式,这在摩擦理论与技术的发展史上, 具有划时代的意义。
2.滚动摩擦 如各种滚动轴承中产生的摩擦。
按照摩擦副的运动状态,还可以将摩擦分为以下两种类型:
1、静摩擦 这是指物体在外力作用下,还不足以克服摩擦表面上产生的切向阻力, 因而还没有产生相对运动的一种摩擦状态。对于外力刚好能克服摩擦表面 上的切向阻力,使物体刚刚产生相对运动的那一瞬间的摩擦状态,称为极 限静摩擦。 2、动摩擦 这是指物体已经产生相对运动后的一种摩擦状态。动摩擦系数一般小 于静摩擦系数。这两个数值如果相差太大,将会使离合器的挂合过程和刹车 的制动过程不稳定。对于机床导轨,会产生抖动,即所谓‘爬行’现象,它 会严重影响到工件的加工精度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验证明 uhex<ufcc<ubcc 2.晶体的各向异性 同一种金属,在不同的晶面和晶向会表现出不同的摩擦系数,如在真空中钨对钨的摩 擦系数在(110)面为1.33,在(210)面为1.90,在(100)面为3.00。
28
摩擦学基础知识
3.晶粒度 晶粒越细,摩擦系数越低,这可能与晶粒度对材料硬度的影响有关。随硬度提高, 摩擦系数下降。
26
摩擦学基础知识
三、摩擦系数及其影响因素 (一)摩擦系数与这些材料参数有关????
晶粒度
晶体结构
各向异性
硬度
层错能
弹性模量
27
摩擦学基础知识 三、摩擦系数及其影响因素 (一)摩擦系数与材料参数有关
1.晶体结构 具有密排六方结构的钴,表现出较低的摩擦系数,当在高温转变成立方结构时,摩擦 系数迅速上升。
4.层错能 层错能决定了材料位错交滑移的难易程度。层错能越高,交滑移和攀移越容易进行, 摩擦系数越低。 5.弹性模量 它是拉伸金属内部结构所需应力的度量。原子之间结合力越强,弹性模量越大,摩 擦系数也就越低。
29
摩擦学基础知识 6.材料强度与硬度 强度与硬度越高,塑性变形抗力越大,越不容易在接触点形成焊合,摩擦系数也 越低。 除去材料参数外,大量试验证明,摩擦系数还受到很多其它因素的影响,如化学 环境,载荷,速度,润滑条件,温度等等。所有这些表明,摩擦现象是一个非常复杂 的系统问题,摩擦系数并非材料的属性,认为摩擦系数是个常数,只有当材料及其它 条件完全固定情况下才成立。
(二)焊合、剪切及犁削理论 比较新的摩擦理论是Bowden和Tabor于1950年提出,即焊合剪切及犁削理论:当接
触表面相互压紧时.它们只在微凸体的顶端接触,由于接触面积很小,微凸体上的压力 很高,足以引起塑性变形和“冷焊”现象。这样形成的焊合点因表面的相对滑动而被剪 断。这一部分力量构成摩擦力的粘着分量
µ = F/P = A·S/A·p = S/p
式中 p为材料的屈服压力,
A为剪切的总面积;S为焊合点的平均剪切强度
23
摩擦学基础知识 (三)摩擦的能量理论
固体之间的摩擦是非常复杂的表面物理化学现象。一些简单的摩擦理论, 只能解释局部的个别的现象,而且多数是单纯从力学角度进行研究,而没有考 虑到摩擦过程中可能产生的各种物理的、化学的、电学的、热学的等等现象。 近年来,发展了摩擦的能量理论,即从能量平衡的观点综合分析摩擦过程。这 个理论目前不够成熟,还只限于定性分析。
摩擦学基础知识
摩擦学基础知识
摩擦力是指两个相互接触的物体在外力作用下发生相对运动(或具有相对运动趋 势)时在接触面间产生的切向运动阻力。摩擦力方向沿接触面的切线方向, 与物体间的相对运动或相对运动趋势相反,阻碍物体间的相对运动 。
摩擦造成大量能耗,世界能源的1/2-1/3消耗在克服摩擦上;摩擦使相对运动的零 件表面发生磨损,导致配合间隙增大,影响机器的精度、寿命和可靠性。摩擦使摩擦 副工作温度升高,将发生咬死;或过热使润滑剂失效,加剧磨损。
请依次举出静摩擦和动摩擦的实例 5
摩擦学基础知识 一、摩擦的分类
(二) 按摩擦副的运动方式分 (1)滑动摩擦:两物体接触表面作相对运动(或具有相对滑动趋势)的摩 擦。 (2)滚动摩擦:一物体在力矩作用下沿着另 一个物体表面滚动时接触表 面间的摩擦。
6
摩擦学基础知识 (三) 按摩擦副的表面润滑状况分
16
摩擦学基础知识
二、摩擦的机理 (一)早期摩擦理论
( 最早提出摩擦基本概念的是15世纪的Leonado da Vinci(1452—1519)。他的 著名假说启发了法国科学家Amontons进行大量摩擦的试验研究,于1699年发表了 他的试验结果:
发现摩擦力总是等于法向载荷的1/3,而与摩擦表面的面积无关。 后来Coulumb于1785年,继续进行了仔细的试验研究,不但肯定Amontons的 结论,而且发展了他的工作。 )
10
摩擦学基础知识 (2)边界润滑摩擦
在载荷作用下,实际接触表面会发生弹塑性变形而使微凸体互相挤入,滑动的 阻力来自边界膜的剪切和互相挤入微凸体“耕犁”作用的抗力。此外,在某些遭受 最大塑性变形,或产生局部高温的接触点上,可能引起边界膜的破坏,导致金属的 直接接触,增加滑动的阻力。
11
摩擦学基础知识 边界膜必须具有较高抗压强度和较低剪切强度,才能起润滑作用。可采用石墨、 MoS2和软金属作为固体润滑膜。
15
摩擦学基础知识 (在润滑油中的表面活性分子吸附在 固体表面形成单分子层-边界层-微紊流区层流区(见右图)。 为实现流体润滑,最小油膜厚度必须 不小于两接触表面轮廓高度算术平均值之 和,同时还要考虑在载荷作用下表面的变 形程度,零件加工与装配的误差,以及润 滑油中出现硬杂质的可能性。油膜有足够 厚度才能避免金属直接接触。)
19
摩擦学基础知识 用于阐明干摩擦特性的早期摩擦理论主要是: 1.机械联结理论 1699年Amontons和de la Hire提出,金属的摩擦可能是由于粗糙表面的微凸体之间 的互锁作用所引起。这个理论对静摩擦的存在作了解释,同时它把动摩擦解释为使上表 面的微凸体越过下表面微凸体所需的力。
20
摩擦学基础知识 2.分子吸引理论
7
摩擦学基础知识 分子力都垂直于表面.在表面发生切向位移时不会作功。但由于发生了粘着, 切向位移会引起材料的变形,要消耗一定能量,即必须施加较大的切向力,才能造 成位移。因此,摩擦力F决定于分子的和机械的作用:
F = a·Ar + b·P 式中 :a 为摩擦力分子作用分量的平均强度,
Ar 为实际接触面积, b 为反映摩擦力机械作用分量的系数, P 为载荷。
1929年Tomlinson及1936年Hardy先后提出,当一种材料的原子从它们 的配合表面上的吸力范围内被拉出时,要消耗一定能量,构成了摩擦力。 后来的研究认为,摩擦是由于分子运动键的断裂过程所引起.在这个过程 中。由于表面及次表面分子周期性地拉伸、破裂及松弛,导致能量的消耗。
21
摩擦学基础知识
32
摩擦学基础知识 3. 润滑油粘度—— 润滑油的粘度越高,摩擦系数越低。因为粘度越高,油膜厚度越大, 使剪切应力集中在油膜内,金属微凸体之间接触减少,摩擦系数下降。
33
摩擦学基础知识 4. 载荷 —— 一般来说载荷增加,摩擦系数上升
34
摩擦学基础知识 4. 载荷 ——
载荷增加,油膜厚度减少,吸附层及氧化层受到压缩,金属表面层发生加 工硬化,微凸体变平,使接触面积增大,结果使摩擦系数上升。 但这个趋势只在一定的载荷条件下存在,当载荷再增大时,摩擦系数不再增加。
35
摩擦学基础知识
四、摩擦引起的各种效应 (一)温度效应 金属在互相摩擦过程中,由于产生弹性变形.特别是塑性变形,将消耗很大的能量,
而这些能量至少有90%转变成热。如果这些热量保留在金属表面层,则瞬时温度可以 达到相当高的程度。
因为金属的加工表面都具有一定的粗糙度.实际的接触面积只分布在少数微凸体上, 因此在微凸体处将发生更大程度的塑性变形和断裂.出现更高的能量集中.从而形成比 整个表面层更高的温度。为了区分这两种情况,一般把表面层的温度称为平均温度。把 微凸体处瞬时(10-6~10-3s)形成的温度称为闪温。
软金属常用材料是铅、锡、铟等,它们都具有很低的剪切强度。
12
思考题 : 请从晶体结构 的角度解释具有固体润 滑特性的原因?
13
摩擦学基础知识 石墨、MoS2都具有六方结构,沿c轴的晶格常数均大于a轴,因此层与层原子间 结合强度低于层内原子间结合强度,层与层之间剪切强度较弱。
具有层状结构的常用固体润滑材料
17
摩擦学基础知识
(由这些初期研究中得出的摩擦规律,可概括为以下几个摩擦的基本定律:) 第一定律:摩擦力与两接触体之间的法向载荷成
正比。 F∝P 或 F=µ·P 式中µ称为摩擦系数。
第二定律:摩擦系数与两接触体之间的表观接触 面积无关。
第三定律:摩擦系数与滑动速度无关。
18
摩擦学基础知识 这些基本定律经历了许多年,一直到近代没有重大修改,因而理应承认它 们是能够成立的。但是根据后来的研究,发现这些定律在很多情况下是不正确 的。 例如第二定律(摩擦系数与两接触体之间的表观接触面积无关)。仅对有 一定屈服点的材料(如金属)才能成立,它不适用于弹性及粘弹性材料。第三定 律(摩擦系数与滑动速度无关),则完全不适用于任何材料。
30
摩擦学基础知识 (二)摩擦系数的影响因素
1、接触点的生长( 接触面积生长) —— 切向力的效果,造成摩擦系数上升,但受污染层限制
主要是摩擦初始阶段
31
摩擦学基础知识 2. 表面膜的存在 大多数表面污染都是由于暴露在空气中的金属表面上迅速生成的氧化膜所构 成。因此金属之间的接触,实际上是被氧化膜所隔开。 除去氧化膜外,还可能形成表面的气体吸附膜和润滑油吸附膜。在油润滑条 件下,由于吸附油膜的存在,实际发生金属与金属接触的面积只占真实接触面积 的一部分。
14
摩擦学基础知识 (3)流体润滑摩擦
流体润滑的特点是摩擦表面完全被油膜隔开,靠油膜的压力平衡外载荷,油 膜厚度越大,固体表面对远离它的油分子影响越小。在流体润滑中,摩擦阻力决 定于润滑油的内摩擦(粘度)。
这种摩擦条件具有最小摩擦系数。从节能、延长寿命和减少磨损考虑,流体 润滑ห้องสมุดไป่ตู้擦是最理想的条件,摩擦力也与接触表面的状况无关。
Fadh= A·S 式中,A为剪切的总面积。S为焊合点的平均剪切强度。
22
摩擦学基础知识
除焊合、剪切外.较硬表面的微凸体对较软材料会造成犁削作用。它构成摩擦力的 犁削分量Fpl,
总的摩擦力 F = Fadh+ Fpl = A·S + Fpl
大多数情况,Fpl与Fadh相比很小,可忽略不计。

F ≈ A·S
相关文档
最新文档