六年级奥数发车间隔、接送和扶梯问题(含答案)

合集下载

六年级奥数发车间隔、接送和扶梯问题(含答案)

六年级奥数发车间隔、接送和扶梯问题(含答案)

发车间隔、接送和扶梯问题知识框架一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

小学奥数 行程问题之接送问题 完整版例题讲解 后面带详细解析

小学奥数 行程问题之接送问题 完整版例题讲解 后面带详细解析

接送问题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固1】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。

模块二、汽车接送问题——接两个人或多人【例1】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固1】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例2】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例3】海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例4】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例5】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例6】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例7】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。

小学奥数 行程问题之接送问题 完整版例题讲解 带详细解析

小学奥数 行程问题之接送问题 完整版例题讲解 带详细解析

接送问题一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【解析】车下午2时从学校出发,如图,学校工厂PC BA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40÷2=20分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC要10分钟,也就是说BC=2AC.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的4×2=8倍.【巩固1】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了知识精讲接他的汽车,那么这次他比平常要提前分钟到厂。

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。

六年级下册数学试题-奥数:行程之接送问题、发车间隔、电梯问题

六年级下册数学试题-奥数:行程之接送问题、发车间隔、电梯问题

第四讲 行程之接送问题、发车间隔、电梯问题行程问题中的几种数学模型,在具体情境中还可以表现为接送问题、发车间隔、电梯问题。

我们透过具体情境,发现它仍然是行程问题中基本数学模型的变型。

行程问题是研究速度、时间和路程三量之间关系的问题,它是小学数学应用题的难点,是升学试卷中常见的压轴题。

行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意以下几点:1.尽可能采用作线段图的方法,正确反映数量之间变化关系,帮助分析思考。

2.行程问题常结合分数应用题,解答时要巧妙地假设单位“l”使问题简单化,有时还可以联系整数知识,把路程理解为若干份。

3.复杂行程问题经常运用到比例知识。

速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。

4.碰到综合性问题可先把综合问题分解成几个单一问题,然后逐个解决。

分析:甲乙两人从出发到第一次相遇合走了一个全程,第一次相遇到第二次相遇合走了两个全程,所以第二段时间间隔是第一段时间间隔的二倍,甲第一段时间共走了30公里,所以第二段时间走了60公里,而乙第二段时间走了30+40=70公里,所以第一段时间走了35公里,A 、B 两地之间的距离为30+35=65公里,两人的速度比为6:7.教学目标想挑 战吗?甲,乙二人分别从A ,B 两地同时相向出发,往返于A ,B 之间,第一次相遇在距A 地30公里处,第二次相遇地点在距A 地40公里处。

求(1)A ,B 两地距离。

(2)甲,乙的速度比。

【例1】(奥林匹克数学竞赛试题)甲、乙二人骑车分别从A 、B 两地同时出发,相向而行,乙的速度是甲的23。

二人相遇后继续行进,甲到达B 地和乙到达A 地后都立即沿原路返回。

已知二人第二次相遇的地点相距第一次相遇的地点120千米,求A 、B 两地相距多少千米?分析:根据题意,在相同时间内,甲、乙所行的路程的比是32,就是说,如果把全程看作有5份路,那么甲行3份,乙行了2份,这样,可以画出线段图,并标出第一次相遇的地点。

小学奥数教程:接送问题_全国通用(含答案)

小学奥数教程:接送问题_全国通用(含答案)

1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答【解析】 车下午2时从学校出发,如图, 学校工厂P C B A在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220÷=分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC =.走完AC ,劳模用了80分钟;走完BC ,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C 到两端A 、B 的长度关系,知识精讲教学目标接送问题再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=倍.而实际上,3000÷=米,汽车速度是劳模的10012.58米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。

小学奥数:扶梯问题.专项练习及答案解析

小学奥数:扶梯问题.专项练习及答案解析

1.对扶梯问题中顺(逆)扶梯速度、扶梯速度、人的速度的理解。

2.在扶梯的相遇与追及问题中引入消元思想。

3.解决行程问题时画线段图可以帮助解题。

一、扶梯问题说明 扶梯问题与流水行船问题十分相像,区别只在与这里的速度并不是我们常见的“千米每小时”,或者“米每秒”,而是“每分钟走多少个台阶”,或是“每秒钟走多少个台阶”。

从而在扶梯问题中“总路程”并不是求扶梯有多少“千米”或者多少“米”,而是求扶梯的“静止时可见台阶总数”。

二、扶梯问题解题关键1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

【例 1】 小明站着不动乘电动扶梯上楼需30秒,如果在乘电动扶梯的同时小明继续向上走需12秒,那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 电梯每秒完成130,电梯加小明徒步上楼每秒完成112,小明徒步上楼每秒完成111123020-=,所以小明徒步上楼需112020÷=(秒) 【答案】20秒【巩固】 如果在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果在乘电动扶梯的同时小明逆着向下走需24秒到达楼下(千万别模仿!),那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 小明徒步走的速度是111()2122416+÷=,所以小明徒步上楼需111616÷=(秒). 【答案】16秒知识精讲教学目标扶梯问题【例 2】 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.【考点】行程问题之扶梯问题 【难度】3星 【题型】填空【解析】 小强每秒走一阶,需要20120÷=秒;每秒走2阶,需要30215÷=秒. 设电梯每秒钟需要走x 阶,由电梯长度可得:20(1)15(2)x x ⨯+=⨯+,解得2x =. 那么扶梯长度为20(12)60⨯+=(阶).本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面.问:从站台到地面有多少级台阶?”采用牛吃草问题的方法,电梯20155-=秒内所走的阶数等于小强多走的阶数:21512010⨯-⨯=阶,电梯的速度为1052÷=阶/秒,扶梯长度为20(12)60⨯+=(阶). 【答案】60阶【巩固】 在地铁车站中,从站台到地面架设有向上的自动扶梯.小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台.自动扶梯有多少级台阶?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 设50秒扶梯向上走x 级,则25秒走2x 级.由扶梯长度可得100752x x -=-. 解得50x =.扶梯长1005050-= (级)。

小学奥数 发车间隔 精选例题练习习题(含知识点拨)

小学奥数  发车间隔  精选例题练习习题(含知识点拨)

发车间隔教学目标1、熟练运用柳卡解题方法解多次相遇和追及问题2、通过左图体会发车间隔问题重点——发车间隔不变(路程不变)3、能够熟练应用三个公式解间隔问题知识精讲发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

还要理解参照物的概念有助于解题。

接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。

一、常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

(二)、在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【例 2】甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?【例 3】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【巩固】A、B是公共汽车的两个车站,从A站到B站是上坡路。

小学奥数 行程问题之接送问题 完整版例题讲解 带详细解析

小学奥数 行程问题之接送问题 完整版例题讲解 带详细解析

接送问题一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【解析】车下午2时从学校出发,如图,学校工厂PC BA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40÷2=20分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC要10分钟,也就是说BC=2AC.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的4×2=8倍.【巩固1】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了知识精讲接他的汽车,那么这次他比平常要提前分钟到厂。

奥数班六年级第13讲 行程综合

奥数班六年级第13讲 行程综合

第七讲行程综合【知识精讲】一、扶梯问题1.当人顺着扶梯的运动方向走台阶时:人的速度+扶梯速度=人在扶梯上的实际速度扶梯可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2.当人沿着扶梯逆行时:人的速度-扶梯速度=人在扶梯上的实际速度扶梯可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

二、间隔发车问题1.汽车和人方向相反:汽车间距=(汽车速度+行人速度)×相遇时间间隔2.汽车和人方向相同:汽车间距=(汽车速度-行人速度)×追及时间间隔3.汽车间距=汽车速度×汽车发车时间间隔三、汽车接送问题四、猎狗追兔问题【典型例题】模块一扶梯问题例1:自动扶梯以均匀的速度向上行驶,一男孩从自动扶梯向上走,已知扶梯露在外面的部分有20级,男孩每秒钟走3级,电梯每秒钟向上走2级,问男孩几秒钟可以到达楼上?例2:自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?模块二间隔发车问题例3:一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?例4:某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?例5:从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上反方向步行.甲沿电车发车方向每分钟步行60米,每隔20分钟有一辆电车从后方超过自己;乙每分钟步行80米,每隔10分遇上迎面开来的一辆电车.那么电车总站每隔多少分钟开出一辆电车?模块三接送问题例6:甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?例7:三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。

六年级思维专项训练13 电梯、发车与接送(原卷+解析)

六年级思维专项训练13  电梯、发车与接送(原卷+解析)

六年级思维训练13 电梯、发车与接送1.哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了80级。

在相同的时间里,妹妹沿着自动扶梯从底向上走到底,共走了40级。

如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有级。

2.全天里每个整点钟(例如6:00、7:00)由A地发出一辆巴士到B地;全天里每个半点钟(例如6:30、7:30)由B地发出一辆车子到A地。

每辆巴士都行驶在同一条道路上,由A地行使至B地及由B地行使至A地各需时5小时。

请问从A地行使至B地的巴士在途中会与多少辆由B地发出的巴士相遇(不包括在车站内相遇的巴士)?3.有一路电车的起点站和终点站分别是甲站和乙站。

每隔5分钟有一辆巴士从甲站出发开往乙站,全程要走15分钟。

有一个人从乙站出发沿电车路线骑车前往甲站。

他出发的时候,恰好有一辆电车到达乙站。

在路上他又遇到了10辆迎面开来的电车,才到达甲站。

这时候,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?4.某条道路上,每隔900米有一个红绿灯。

所有的红绿灯都按绿灯30秒、黄灯5秒、红灯25秒的时间周期同时重复变换。

一辆汽车通过第一个红绿灯后,最快可以用每小时千米的速度行驶,可以在所有的红绿灯路口都遇到绿灯。

5.忠犬小八每天都从家中跑到车站去迎接它的主人,并准时于下午5时到达车站见到它的主人后立即跑回家,它的主人搭乘的电车通常也都准时于下午五时抵达。

但是有一天,它的主人提早下班于下午四时就抵达车站,他直接由车站步行回家。

在半途中他见到正从家中朝车站方向跑的小八,两者相遇后,小八立即以与平常相同的速度跑回家。

当小八到家时比平常到家时间提早10分钟。

请问小八跑步的速度是他主人步行速度的几倍?6.自动扶梯匀速向上运行,甲、乙两人都从顶部逆行走到底部。

甲每秒走3级,用100秒;乙每秒走2级,用200秒。

如果甲仍用原来的速度从底部走到顶部,需要秒。

7.小淘气乘正在下降的自动扶梯下楼,如果他一级一级地走下去,从扶梯的上端走到下端需要走36级。

小学奥数 发车间隔 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  发车间隔 精选练习例题 含答案解析(附知识点拨及考点)

发车间隔教学目标1、熟练运用柳卡解题方法解多次相遇和追及问题2、通过左图体会发车间隔问题重点——发车间隔不变(路程不变)3、能够熟练应用三个公式解间隔问题知识精讲发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

还要理解参照物的概念有助于解题。

接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。

一、常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

(二)、在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【考点】行程问题之发车间隔【难度】2星【题型】解答【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【答案】15艘【例 2】甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

高斯小学奥数六年级上册含答案第11讲 间隔发车问题

高斯小学奥数六年级上册含答案第11讲 间隔发车问题

第十一讲间隔发车问题间隔发车问题的关键点是“两车之间的距离不变”,可以用相等距离连一些小物体来体会车队的等距离前进.这类问题中最重要的是理解“每隔n分钟与一辆车相遇”的含义,理解的越透彻,越有助于解决问题.另外间隔发车问题的题目一般比较长,注意仔细、耐心、认真读题,务必分析清楚题意,之后再进行下一步的解题.本讲知识点汇总:一般间隔发车问题中,车速和发车时间固定,所以每两辆车之间的距离固定,记住以下图片:一般来说,题目中会有以下条件:“每隔x 分和一辆车相遇”,它的意思是在和某辆车相遇开始算,再过x 分钟,会遇到下一辆车,此时,需要牢记以下3个公式:1. 车距= 车速×汽车发车时间间隔.2. 车距=(车速+行人速度)× 相遇事件时间间隔;3. 车距=(车速−行人速度)× 追及事件时间间隔;例1. 小高放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.已知小高步行的速度是1米/秒,公共汽车的速度是9米/秒,每隔9分钟就有辆公共汽车从后面超过他,那么每隔多少分钟会有一辆公共汽车与小高迎面相遇? 「分析」当有公共汽车从后面超过小高时,可以将小高与公共汽车之间看做是追击问题,那么,这个追击问题的路程差是什么?当有公共汽车与小高迎面相遇时可以将小高与公共汽车之间看做是相遇问题.练习1、墨莫放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.公共汽车的速度是540米/分,墨莫步行的速度是1米/秒,每隔8分钟就有会有一辆公共汽车与墨莫迎面相遇,那么,每隔多少分钟会有一辆公共汽车从后面超过墨莫?例2. 小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.每隔30分钟就有辆公共汽车从后面超过他,每隔20分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小明步行速度的几倍?行人行人「分析」我们已经知道公共汽车之间的车距是解题的关键,既可以当做路程和也可以当做路程差,而本题中只有时间这个条件,即行程问题中只有一种已知条件该怎么办呢?.练习2、小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.公交车的速度是小明步行速度的3倍.那么每隔10分钟会有公共汽车从后面超过他,每隔多少分钟就会遇到迎面开来的公共汽车?例3.小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来.每隔9分钟就有一辆公共汽车从背后超过她.如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?「分析」小红的速度和公共汽车速度的倍数关系是解题的关键.练习3、一个人在平直的街边匀速行走,注意到每隔12分钟有一辆电车超过他,每隔6分钟他就遇到迎面开来的一辆电车.已知电车在起点和终点的发车间隔相同,且运动的速度相等,那么每隔几分钟就有一辆电车从终点或起点开出?例4.小强骑自行车从家赶往体育场去看比赛,一路上不断有公交车经过,小强注意到每10分钟就有一辆公交车从对面驶来,每30分钟就有一辆公交车从后边超过小强,半路上小强的自行车坏了,他只能以原来三分之一的速度往体育场赶,已知公交车的速度固定,且发车时间间隔相同,那么这时候他每隔多少分钟被后面驶来的公交车赶上?「分析」小强前后骑车的速度关系其实是知道的,若在知道骑车的速度与公交车速度的关系这道题就变的简单了.练习4、卡莉娅驾驶一辆北极狐高级轿车从家赶往体育场去看比赛,一路上不断有公交车经过,卡莉娅注意到每10分钟就有一辆公交车从对面驶来,每12.5分钟就有一辆公交车被卡莉娅超过,那么公交车的发车间隔是多少分钟?例5.从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上沿着同一方向步行.甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.那么电车总站每隔多少分钟开出一辆电车?「分析」有甲、乙的速度以及他们分别与电车相遇的时间,那么电车的速度便是解题的突破口.例6.电车发车站每隔固定的时间发出一辆电车.小王骑自行车每隔14分钟就被一辆后面开来的电车追上;如果小王车速提高20%,则每隔15分钟就被一辆后面开来的电车追上.那么相邻两辆电车的发车时间相差多少分钟?「分析」小王的速度与电车速度的关系是解题的关键,那么如何寻找其中的关系呢?公共汽车的发展公共汽车,指在城市道路上循固定路线,有或者无固定班次时刻,承载旅客出行的机动车辆.一般外形为方型,有窗,设置座位.公共汽车时速一般在20~30公里,不会超过40公里.为公交车、公汽或巴士,其中“公交”是公共交通的简称;公交车台湾地区又称为公车、客运或巴士;在香港和澳门,则多称为巴士(英语中“Bus”的音译).公共交通的起源至少可追溯至1826年.当时一位退休军官在法国西北部的南特(Nantes )市郊开办磨面坊,将蒸汽机排出的热水供人洗澡而兴建公众浴场,并提供接驳市中心的四轮马车服务.巴黎是公车的先行城市,伦敦继之.1829年7月4日,英国人George Shillibeer 的公车(Omnibus )出现于伦敦街头,沿新建的“新路”(New Road )往返柏丁顿Paddington 与银行地带,经停约克郡Yorkshire Stingo ,每日每个方向4班.不到十年,这一服务法国、英国及美国东岸各大城市(如巴黎、里昂、伦敦、纽约)得到普及.1827年,法兰西共和国巴黎一家浴室的老板用公共汽车接送顾客,最初的公共汽车像长长的箱子是用马拉的.1831年,英国人沃尔特·汉考克为他的国家制造出了世界上第一辆装有发动机的公共汽车.这辆公共汽车以蒸汽机为动力装置,可载客10人,当年被命名为“婴儿号”并在伦敦到特拉福之间试运营.不久,以汽油发动机为动力的公共汽车代替了蒸汽机公共汽车.最早制造出汽油发动机公共汽车的是德国的奔驰汽车公司,长途公共汽车则源于美国.1910年---1925年间,美国开辟了许多长途公共汽车路线,连接没有铁路的地区.早期的公共汽车一般可载客20余人比较舒适.公车对社会影响巨大,对城市发展起着最基本的推动作用的.公车使市民体验到彼此间前所未有的接近,也缩短城市和邻近村镇间的距离、往来频繁.19世纪的公车以马匹拉行.当时的路面使公车的舒适度受到限制.有轨电车的发明使公车遇上了面世以来的第一个劲敌,因为公车行走于凹凸不平的石路上,电车却在平滑的铁轨上运行.至20世纪初,机动交通的试验取得成功,公车亦开始改以引擎驱动.现在绝大部分公车仍以柴油引擎为动力. 课 堂 内 外第一辆公共汽车 豪华巴士作业1.某人沿着电车道旁的便道步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行,电车的发车间隔是多少分?2.某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过,问公共汽车每隔多少分钟发车一辆?3.从电车总站每隔一定时间开出一辆电车,甲与乙两人在一条街上沿着同一方向行走.甲每隔10分钟遇上一辆迎面开来的电车;乙每隔15分钟遇上迎面开来的一辆电车.且甲的速度是乙的速度的3倍,那么,电车总站每隔多少分钟开出一辆电车?4.从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上沿着同向步行.甲沿电车发车方向每分钟步行60米,每隔20分钟有一辆电车从后方超过自己;乙每分钟步行40米,每隔18分钟有一辆电车从后方超过自己.那么电车总站每隔多少分钟开出一辆电车?5.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已走了多少分钟?第十一讲 间隔发车问题例题:例1. 答案:7.2详解:发出的相邻两车之间的距离总是固定的,由这一条件,我们可以得到:()9604320⨯⨯=公车速度-小高速度米.所以每隔4320(19)432=7.2÷+=秒分钟有公车与小高迎面相遇.例2. 答案:5详解:发出的相邻两车之间的距离总是固定的,由这一条件,我们可以得到:()20+⨯公车速度小明速度()30=⨯公车速度-小明速度,可得:=5公车速度小明速度,所以公车速度是小明步行速度的5倍.例3. 答案:7.2详解:发出的相邻两车之间的距离总是固定的,由这一条件,我们可以得到:()6+⨯公车速度小红速度()9=⨯公车速度-小红速度,可得:=公车速度5小红速度.把小红每分钟骑过的路程看做1份,相邻两公车之间的距离是()51636+⨯=份,它们的发车时间相差3657.2÷=分钟.例4. 答案:18详解:发出的相邻两车之间的距离总是固定的,由这一条件,我们可以得到:()10+⨯电车速度小强速度()30=⨯电车速度-小强速度,可得:=电车速度2小强速度.把小强每分钟骑过的路程看做1份,相邻两电车之间的距离是()211030+⨯=份.现在小强的速度为13,所以现在所求的时间间隔为130(2)183÷-=分钟.例5. 答案:11详解:同一方向发出的相邻两车之间的距离总是固定的,由这一条件,我们可以得到:()10+⨯电车速度甲的速度()1+104=⨯电车速度乙的速度,可得:820=电车速度米/分钟.相邻两电车之间的距离是()82082109020+⨯=米,它们的发车时间相差902082011÷=分钟.例6. 答案:10.5详解:同一方向发出的相邻两车之间的距离总是固定的,由这一条件,我们可以得到:()14-⨯电车速度小王速度()1.215=-⨯⨯电车速度小王速度,可得:4=⨯电车速度小王速度,所以电车与小王的速度比为4:1,设小王每分钟骑1份路程,则电车每分钟走4份路程.相邻两电车之间的距离是()411442-⨯=份路程,它们的发车时间相差42410.5÷=分钟.练习:1. 答案:102. 答案:53. 答案:84. 答案:100作业:1. 答案:9分钟简答:因为电车的发车间隔相等,则每辆电车间的间隔也相等,设电车速度为v ,人的速度是a ,可知,得,所以发车间隔是9分钟.2. 答案:12分钟简答:因为公共汽车的发车间隔相等,则每辆公共汽车间的间隔也相等,设公共汽车速度为a ,行人的速度为b ,可知,得a =5b ,则可以计算发车间隔为分钟.3. 答案:20分钟简答:因为电车的发车间隔相等,则每辆电车间的间隔也相等,设电车速度为a ,甲的速度为3b ,乙的速度为b ,可知,得a =3b ,则可以计算发车间隔为分钟.4. 答案:15分钟简答:因为电车的发车间隔相等,则每辆电车间的间隔也相等,设电车速度为v ,可知,得v =240米/分,发车间隔为分钟.5. 答案:60分钟简答:因为电车的发车间隔相等,则每辆电车间的间隔也相等,设电车速度为x ,小张的速度为a ,小王的速度为b ,可知,可得,,因为总的路程为56x ,则两人相遇所花的时间为分钟.3156()6053x x x ÷+= 13b x = 35a x = 456x x x a x b +⨯=+⨯=+⨯()()() 240602024015-⨯÷=() 60204018v v -⨯=-⨯()() 3101020a b a a a a +⨯÷=+⨯÷=()() 31015a b a b +⨯=+⨯()() 10510512a b a b b b +⨯÷=+⨯÷=()() 1015a b a b +⨯=-⨯()() 4v a = 7.212v a v a +⨯=-⨯()()。

六年级下册数学试题-奥数专练:发车间隔(含答案)全国通用

六年级下册数学试题-奥数专练:发车间隔(含答案)全国通用

小学奥数(含答案)1.原型在这里两辆车是紧挨着的,那么两车间隔距离(发车间隔)=发车时间×车速2.车从后面追上人的时候这种情况的特点⑴人车方向相同,是个追击问题⑵人所在的位置和前一辆相同。

和下一辆的距离就是两车的发车间隔,下辆车想追上人的话,就要比人多走这个发车间隔;这时,人车距离=发车间隔=追击距离=(车速-人速)×追及时间;其中追及时间常说成是多少分钟从后面来一辆车。

3.人和车迎面相遇的时候这种情况的特点:1.人车方向相反,是个相遇问题2.人所在的位置和前一辆相同,和下一辆的距离是两车的发车间隔,下辆车想和人相遇的话,就要比人合走这个发车间隔;这时,人车距离=发车间隔=相遇距离=(车速+人速)×相遇时间;其中追及时间常说成是多少分钟迎面来一辆车。

总结,发车时间间隔的难点主要在于发车时间的把握,只要知道这个时间从什么时候开发车间隔始到什么时候结束,那么发车时间间隔问题就变成很简单的相遇和追击问题了。

小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行。

每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车。

问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。

有一个人从乙站出发沿电车线路骑车前往甲站。

他出发的时候,恰好有一辆电车到达乙站。

在路上他又遇到了10辆迎面开来的电车。

到达甲站时,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?小峰沿公交车的路线从终点站往起点站走,他出发时恰好有一辆公交车到达终点,在路上,他又遇到了14辆迎面开来的公交车,并于1小时18分后到达起点站,这时候恰好又有一辆公交车从起点开出。

小学奥数教程之-扶梯问题 (含答案)

小学奥数教程之-扶梯问题 (含答案)

1.对扶梯问题中顺(逆)扶梯速度、扶梯速度、人的速度的理解。

2.在扶梯的相遇与追及问题中引入消元思想。

3.解决行程问题时画线段图可以帮助解题。

一、扶梯问题说明扶梯问题与流水行船问题十分相像,区别只在与这里的速度并不是我们常见的“千米每小时”,或者“米每秒”,而是“每分钟走多少个台阶”,或是“每秒钟走多少个台阶”。

从而在扶梯问题中“总路程”并不是求扶梯有多少“千米”或者多少“米”,而是求扶梯的“静止时可见台阶总数”。

二、扶梯问题解题关键1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

【例 1】 小明站着不动乘电动扶梯上楼需30秒,如果在乘电动扶梯的同时小明继续向上走需12秒,那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 电梯每秒完成130,电梯加小明徒步上楼每秒完成112,小明徒步上楼每秒完成111123020-=,所以小明徒步上楼需112020÷=(秒) 【答案】20秒【巩固】 如果在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果在乘电动扶梯的同时小明逆着向下走需24秒到达楼下(千万别模仿!),那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 小明徒步走的速度是111()2122416+÷=,所以小明徒步上楼需111616÷=(秒). 【答案】16秒【例 2】 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.【考点】行程问题之扶梯问题 【难度】3星 【题型】填空【解析】 小强每秒走一阶,需要20120÷=秒;每秒走2阶,需要30215÷=秒.设电梯每秒钟需要走x 阶,由电梯长度可得:20(1)15(2)x x ⨯+=⨯+,解得2x =.知识精讲 教学目标扶梯问题那么扶梯长度为20(12)60⨯+=(阶).本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面.问:从站台到地面有多少级台阶?”采用牛吃草问题的方法,电梯20155-=秒内所走的阶数等于小强多走的阶数:21512010⨯-⨯=阶,电梯的速度为1052÷=阶/秒,扶梯长度为20(12)60⨯+=(阶).【答案】60阶【巩固】 在地铁车站中,从站台到地面架设有向上的自动扶梯.小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台.自动扶梯有多少级台阶?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 设50秒扶梯向上走x 级,则25秒走2x 级.由扶梯长度可得100752x x -=-. 解得50x =.扶梯长1005050-= (级)。

高斯小学奥数六年级上册含答案第11讲间隔发车问题

高斯小学奥数六年级上册含答案第11讲间隔发车问题

第十一讲间隔发车问题
来体会车队的等距离前进.这类问题中最重要的是理解“每隔n 分钟与一辆车相遇”的
牟什幺时诞能氈堆?
Ij n
我束了侮tt 苻不上去I
.■ 3

F1 间隔发车问题的关键点是“两车之间的距离不变” ,可以用相等距离连一些小物体
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解
两车之间的距离不变” ,可以用相等距离连一些小物体间隔发车问题的关键点是
来体会车队的等距离前进.这类问题中最重要的是理解。

六年级下册数学讲义-奥数讲与练:行程.发车间隔、接送和扶梯问题(ABC级)-全国通用

六年级下册数学讲义-奥数讲与练:行程.发车间隔、接送和扶梯问题(ABC级)-全国通用

发车间隔、接送和扶梯问题知识框架一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发车间隔、接送和扶梯问题知识框架一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

重难点(1)能够熟练运用柳卡解题方法解多次相遇和追及问题;熟练应用三个公式解间隔问题(2)对扶梯问题中顺(逆)扶梯速度、扶梯速度、人的速度的理解。

(3)准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清(4)运用行程中的比例关系进行解题例题精讲一、发车间隔【例 1】俩兄弟要将两车西瓜运到城里去卖,但由人来拉太累,雇拖拉机太贵,所以租了头毛驴,两兄弟计划先由哥哥拉车,弟弟赶毛驴拉另一辆车,然后在中途弟弟让毛驴返回去帮哥哥拉车,自个儿拉着车行走完最后一段路,已知兄弟俩人的拉车速度相同,毛驴拉车或行走的速度为人拉车的速度的3倍,那么弟弟应该在哪儿将毛驴赶回去?【巩固】甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?【例 2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【巩固】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行。

每隔30分钟就有辆公共汽车从后面超过他,每隔20分钟就遇到迎面开来的一辆公共汽车。

问:该路公共汽车每隔多少分钟发一次车?【例 3】在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?【巩固】从电车总站每隔一定时间开出一辆电车。

甲与乙两人在一条街上沿着同一方向步行。

甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

那么电车总站每隔多少分钟开出一辆电车?【例 4】某人乘坐观光游船沿顺流方向从A港到B港。

发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟。

【巩固】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行。

每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车。

问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?【例 5】甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?【巩固】甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔6分钟遇到迎面开来的一辆电车;小张每隔8分钟遇到迎面开来的一辆电车;小王每隔9分钟遇到迎面开来的一辆电车.已知电车行驶全程是45分钟,那么小张与小王在途中相遇时他们已行走了分钟.二、接送问题【例 6】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。

【例 7】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 8】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【巩固】海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?【例 9】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?【巩固】甲、乙两班同学到42千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为5千米/小时,汽车载人速度是45千米/小时,空车速度是75千米/小时.如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?【例 10】有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?【巩固】(2008年台湾小学数学竞赛选拔赛决赛)甲、乙二人由A地同时出发朝向B地前进,A、B两地之距离为36千米.甲步行之速度为每小时4千米,乙步行之速度为每小时5千米.现有一辆自行车,甲骑车速度为每小时10千米,乙骑车的速度为每小时8千米.出发时由甲先骑车,乙步行,为了要使两人都尽快抵达目的地,骑自行车在前面的人可以将自行车留置在途中供后面的人继续骑.请问他们从出发到最后一人抵达目的地最少需要多少小时?【例 11】(第八届全国“华罗庚金杯”少年数学邀请赛)A、B两地相距120千米,已知人的步行速度是每小时5千米,摩托车的行驶速度是每小时50千米,摩托车后座可带一人.问:有三人并配备一辆摩托车从A地到B地最少需要多少小时?(保留—位小数)【巩固】两辆同一型号的汽车从同一地点同时出发,沿同一方向同速直线前进,每车最多能带20桶汽油(连同油箱内的油)。

每桶汽油可以使一辆汽车前进60千米,两车都必须返回出发地点,两辆车均可借对方的油,为了使一辆车尽可能地远离出发点,那么这辆车最远可达到离出发点多少千米远的地方?三、扶梯问题【例 12】小明站着不动乘电动扶梯上楼需30秒,如果在乘电动扶梯的同时小明继续向上走需12秒,那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【巩固】如果在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果在乘电动扶梯的同时小明逆着向下走需24秒到达楼下(千万别模仿!),那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【例 13】在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有级台阶.【巩固】小丁在捷运站搭一座电扶梯下楼.如果他向下走14阶,则需时30秒即可由电扶梯顶到达底部;如果他向下走28阶,则需时18秒即可由电扶梯顶到达底部.请问这座电扶梯有几阶?【例 14】在商场里,小明从正在向上移动的自动楼梯顶部下120级台阶到达底部,然后从底部上90级台阶回到顶部.自动楼梯从底部到顶部的台阶数是不变的,假设小明单位时间内下的台阶数是他上的台阶数的2倍.则该自动楼梯从底到顶的台阶数为.【巩固】自动扶梯以均匀的速度由下往上行驶着,两位性急的孩子要从扶梯上楼,已知男孩每分走20级,女孩每分走15级,结果男孩用了5分到达楼上,女孩用了6分到达楼上.问该扶梯露在外面的部分共有多少级?【例 15】小淘气乘正在下降的自动扶梯下楼,如果他一级一级的走下去,从扶梯的上端走到下端需要走36级.如果小淘气沿原自动扶梯从下端走到上端(很危险哦,不要效仿!),需要用下楼时5倍的速度走60级才能走到上端.请问这个自动扶梯在静止不动时有多少级?【巩固】甲在商场中乘自动扶梯从一层到二层,并在顺扶梯运行方向向上走,同时乙站在速度相等的并排扶梯从二层到一层.当甲乙处于同一高度时,甲反身向下走,结果他走了60级到达一层.如果他到了顶端再从“上行扶梯”返回,则要往下走80级.那么,自动扶梯不动时甲从下到上要走多少级?课堂检测【随练1】小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?【随练2】有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?【随练3】商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下.如果男孩单位时间内走的扶梯级数是女孩的3倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?家庭作业【作业1】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车.到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆.如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?【作业2】一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?【作业3】小志与小刚两个孩在电梯上的行走速度分别为每秒2个台阶和每秒3个台阶,电梯运行后,他俩沿电梯运行方向的相同方向从一楼走上二楼,分别用时28秒和20秒,那么如果小志攀登静止的电梯需要用时多少秒?【作业4】李经理的司机每天早上7点30分到达李经理家接他去公司。

相关文档
最新文档