六年级奥数:行程问题 间隔发车

合集下载

【6年级奥数课本(上)】第11讲 间隔发车问题

【6年级奥数课本(上)】第11讲 间隔发车问题

小学奥数创新体系6年级(上册授课课本) 最新讲义小学奥数第十一讲间隔发车问题间隔发车问题的关键点是“两车之间的距离不变”,可以用相等距离连一些小物体来体会车队的等距离前进.这类问题中最重要的是理解“每隔n 分钟与一辆车相遇”的含义,理解的越透彻,越有助于解决问题.另外间隔发车问题的题目一般比较长,注意仔细、耐心、认真读题,务必分析清楚题意,之后再进行下一步的解题.本讲知识点汇总:一般间隔发车问题中,车速和发车时间固定,所以每两辆车之间的距离固定,记住以下图片:一般来说,题目中会有以下条件:“每隔x 分和一辆车相遇”,它的意思是在和某辆车相遇开始算,再过x 分钟,会遇到下一辆车,此时,需要牢记以下3个公式:1. 车距= 车速×汽车发车时间间隔.2. 车距=(车速+行人速度)× 相遇事件时间间隔;3. 车距=(车速−行人速度)× 追及事件时间间隔;例1. 小高放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.已知小高步行的速度是1米/秒,公共汽车的速度是9米/秒,每隔9分钟就有辆公共汽车从后面超过他,那么每隔多少分钟会有一辆公共汽车与小高迎面相遇? 「分析」当有公共汽车从后面超过小高时,可以将小高与公共汽车之间看做是追击问题,那么,这个追击问题的路程差是什么?当有公共汽车与小高迎面相遇时可以将小高与公共汽车之间看做是相遇问题.练习1、墨莫放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.公共汽车的速度是540米/分,墨莫步行的速度是1米/秒,每隔8分钟就有会有一辆公共汽车与墨莫迎面相遇,那么,每隔多少分钟会有一辆公共汽车从后面超过墨莫?例2. 小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.每隔30分钟就有辆公共汽车从后面超过他,每隔20分钟就遇到迎面开来车距 行人 车距 行人车距的一辆公共汽车,公共汽车的速度是小明步行速度的几倍?「分析」我们已经知道公共汽车之间的车距是解题的关键,既可以当做路程和也可以当做路程差,而本题中只有时间这个条件,即行程问题中只有一种已知条件该怎么办呢?.练习2、小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.公交车的速度是小明步行速度的3倍.那么每隔10分钟会有公共汽车从后面超过他,每隔多少分钟就会遇到迎面开来的公共汽车?例3.小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来.每隔9分钟就有一辆公共汽车从背后超过她.如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?「分析」小红的速度和公共汽车速度的倍数关系是解题的关键.练习3、一个人在平直的街边匀速行走,注意到每隔12分钟有一辆电车超过他,每隔6分钟他就遇到迎面开来的一辆电车.已知电车在起点和终点的发车间隔相同,且运动的速度相等,那么每隔几分钟就有一辆电车从终点或起点开出?例4.小强骑自行车从家赶往体育场去看比赛,一路上不断有公交车经过,小强注意到每10分钟就有一辆公交车从对面驶来,每30分钟就有一辆公交车从后边超过小强,半路上小强的自行车坏了,他只能以原来三分之一的速度往体育场赶,已知公交车的速度固定,且发车时间间隔相同,那么这时候他每隔多少分钟被后面驶来的公交车赶上?「分析」小强前后骑车的速度关系其实是知道的,若在知道骑车的速度与公交车速度的关系这道题就变的简单了.练习4、卡莉娅驾驶一辆北极狐高级轿车从家赶往体育场去看比赛,一路上不断有公交车经过,卡莉娅注意到每10分钟就有一辆公交车从对面驶来,每12.5分钟就有一辆公交车被卡莉娅超过,那么公交车的发车间隔是多少分钟?例5.从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上沿着同一方向步行.甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.那么电车总站每隔多少分钟开出一辆电车?「分析」有甲、乙的速度以及他们分别与电车相遇的时间,那么电车的速度便是解题的突破口.例6.电车发车站每隔固定的时间发出一辆电车.小王骑自行车每隔14分钟就被一辆后面开来的电车追上;如果小王车速提高20%,则每隔15分钟就被一辆后面开来的电车追上.那么相邻两辆电车的发车时间相差多少分钟?「分析」小王的速度与电车速度的关系是解题的关键,那么如何寻找其中的关系呢?公共汽车的发展公共汽车,指在城市道路上循固定路线,有或者无固定班次时刻,承载旅客出行的机动车辆.一般外形为方型,有窗,设置座位.公共汽车时速一般在20~30公里,不会超过40公里.为公交车、公汽或巴士,其中“公交”是公共交通的简称;公交车台湾地区又称为公车、客运或巴士;在香港和澳门,则多称为巴士(英语中“Bus”的音译).公共交通的起源至少可追溯至1826年.当时一位退休军官在法国西北部的南特(Nantes )市郊开办磨面坊,将蒸汽机排出的热水供人洗澡而兴建公众浴场,并提供接驳市中心的四轮马车服务.巴黎是公车的先行城市,伦敦继之.1829年7月4日,英国人George Shillibeer 的公车(Omnibus )出现于伦敦街头,沿新建的“新路”(New Road )往返柏丁顿Paddington 与银行地带,经停约克郡Yorkshire Stingo ,每日每个方向4班.不到十年,这一服务法国、英国及美国东岸各大城市(如巴黎、里昂、伦敦、纽约)得到普及.1827年,法兰西共和国巴黎一家浴室的老板用公共汽车接送顾客,最初的公共汽车像长长的箱子是用马拉的.1831年,英国人沃尔特·汉考克为他的国家制造出了世界上第一辆装有发动机的公共汽车.这辆公共汽车以蒸汽机为动力装置,可载客10人,当年被命名为“婴儿号”并在伦敦到特拉福之间试运营.不久,以汽油发动机为动力的公共汽车代替了蒸汽机公共汽车.最早制造出汽油发动机公共汽车的是德国的奔驰汽车公司,长途公共汽车则源于美国.1910年---1925年间,美国开辟了许多长途公共汽车路线,连接没有铁路的地区.早期的公共汽车一般可载客20余人比较舒适.公车对社会影响巨大,对城市发展起着最基本的推动作用的.公车使市民体验到彼此间前所未有的接近,也缩短城市和邻近村镇间的距离、往来频繁.19世纪的公车以马匹拉行.当时的路面使公车的舒适度受到限制.有轨电车的发明使公车遇上了面世以来的第一个劲敌,因为公车行走于凹凸不平的石路上,电车却在平滑的铁轨上运行.至20世纪初,机动交通的试验取得成功,公车亦开始改以引擎驱动.现在绝大部分公车仍以柴油引擎为动力. 课 堂 内 外第一辆公共汽车 豪华巴士。

六年级奥数发车间隔、接送和扶梯问题(含答案)

六年级奥数发车间隔、接送和扶梯问题(含答案)

发车间隔、接送和扶梯问题知识框架一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

六年级奥数发车间隔、接送和扶梯问题(含答案)

六年级奥数发车间隔、接送和扶梯问题(含答案)

发车间隔、接送和扶梯问题知识框架一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。

有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。

(完整版)六年级奥数:行程问题_(1)间隔发车

(完整版)六年级奥数:行程问题_(1)间隔发车

行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题Revised on November 25, 2020间隔发车问题发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了【解析】这个题可以简单的找规律求解【解析】时间车辆【解析】4分钟9辆【解析】6分钟10辆【解析】8分钟9辆【解析】12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少电车之间的时间间隔是多少【解析】设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x+⨯=-⨯,解得300x=,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】间隔发车问题发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了【解析】这个题可以简单的找规律求解【解析】时间车辆【解析】4分钟9辆【解析】6分钟10辆【解析】8分钟9辆【解析】12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少电车之间的时间间隔是多少【解析】设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x+⨯=-⨯,解得300x=,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

六年级奥数行程问题 间隔发车

六年级奥数行程问题 间隔发车

行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题

间隔发车问题发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】这个题可以简单的找规律求解【解析】时间车辆【解析】4分钟9辆【解析】6分钟10辆【解析】8分钟9辆【解析】12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【解析】设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x+⨯=-⨯,解得300x=,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题

间隔发车问题发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】这个题可以简单的找规律求解时间车辆4分钟9辆6分钟10辆8分钟9辆12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【解析】 设电车的速度为每分钟x 米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】 某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

小学奥数 典型行程问题 发车间隔.学生版

小学奥数  典型行程问题   发车间隔.学生版

1、 熟练运用柳卡解题方法解多次相遇和追及问题2、通过左图体会发车间隔问题重点——发车间隔不变(路程不变)3、 能够熟练应用三个公式解间隔问题发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

还要理解参照物的概念有助于解题。

接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。

一、 常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

(二)、在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s 全程=v ×t -结合植树问题数数。

(3) 当出现多次相遇和追及问题——柳卡知识精讲 教学目标发车间隔途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【例2】甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?【例3】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【巩固】A、B是公共汽车的两个车站,从A站到B站是上坡路。

六年级奥数:行程问题-(1)间隔发车汇编

六年级奥数:行程问题-(1)间隔发车汇编

行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速反向时电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题

间隔发车问题发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】这个题可以简单的找规律求解【解析】时间车辆【解析】4分钟9辆【解析】6分钟10辆【解析】8分钟9辆【解析】12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【解析】设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x+⨯=-⨯,解得300x=,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

2022-2023年小学奥数-行程问题中的间隔发车

2022-2023年小学奥数-行程问题中的间隔发车

1、从电车总站每隔一点时间开出一辆电动车,每分钟形式600米,小强沿着电车路线散步,每分钟走100米,每隔12分钟就有一辆电车超过她,总站每隔多少分钟就会发一辆电车?
2、某城市每隔2小时有一趟车到b地,速度为90千米每小时,有一个老师自驾游,每小时行40千米从某城出发到b地,当旅游者行驶两个小时刚好有一趟班车赶上并超过这位老师,当老师行驶一定得距离后,正好与第三趟班车同时到达b地,求某城与b地之间的距离?
3、张华从甲地走往乙地,甲乙两地之间有公交车往返,而且两地的发车时间是一样的,张华发现每隔6分钟就会开过来一趟去甲地的公共汽车,每隔12分钟就有一辆开往乙地的公交车,则公共汽车每隔多少分钟发一趟车?
4、在一条马路上,小明与小光同乡而行,小明的速度是小光的3倍,每隔10分钟有一辆公共汽车超过小光,每隔20分钟又一辆公共汽车超过小明,如果公共汽车从出发站每次间隔时间一样发一辆,则相隔两车的距离?。

六年级奥数:行程问题_(1)间隔发车

六年级奥数:行程问题_(1)间隔发车

行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

六年级奥数行程问题专题:发车问题的要点及解题技巧

六年级奥数行程问题专题:发车问题的要点及解题技巧

六年级奥数行程问题专题:发车问题的要点及解题技巧一、发车问题的基本解题思路空间理解稍显困难,证明过程对快速解题没有帮助。

一旦掌握了3个基本公式,一般问题都可以迎刃而解。

在班车里。

即柳卡问题。

不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

二、对“发车问题”的化归与优化“发车”是一个有趣的数学问题。

解决“发车问题”需要一定的策略和技巧。

本文重点解决这样两个问题:一是在探索过程中,如何揭示“发车问题”的实质?二是在建模的过程中,如何选择最简明、最严谨和最易于学生理解并接受的方法或情景?为便于叙述,现将“发车问题”进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。

他发现从背后每隔a分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来。

问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。

)1、把“发车问题”化归为“和差问题”因为车站每隔相等的时间发一次车,所以同向的、前后的两辆公交车间的距离相等。

这个相等的距离也是公交车在发车间隔时间内行驶的路程。

我们把这个相等的距离假设为“1”。

根据“同向追及”,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a,1/a就是公交车与行人的速度差。

根据“相向相遇”,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b,1/b就是公交车和行人的速度和。

这样,我们把“发车问题”化归成了“和差问题”。

根据“和差问题”的解法:大数=(和+差)÷2,小数=(和-差)÷2,可以很容易地求出公交车的速度是(1/a+1/b)÷2。

又因为公交车在这个“间隔相等的时间”内行驶的路程是1,所以再用“路程÷速度=时间”,我们可以求出问题的答案,即公交车站发车的间隔时间是1÷【(1/a+1/b)÷2】=2÷(1/a+1/b)。

小学奥数之车站间隔发车问题

小学奥数之车站间隔发车问题

间隔发车问题发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】这个题可以简单的找规律求解【解析】时间车辆【解析】4分钟9辆【解析】6分钟10辆【解析】8分钟9辆【解析】12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】某人沿着电车道旁的便道以每小时千米的速度步行,每分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【解析】设电车的速度为每分钟米.人的速度为每小时千米,相当于每分钟75米.根据题意可列方程如下:,解得,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:(米),所以电车之间的时间间隔为:(分钟).【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速反向时电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

小峰沿公交车的路线从终点站往起点站走,他出发时恰好有一辆公交车到达终点,在路上,他又遇到了14辆迎面开来的公交车,并于1小时18分后到达起点站,这时候恰好又有一辆公交车从起点开出。

已知起点站与终点站相距6000米,公交车的速度为500米/分钟,且每两辆车之间的发车间隔是一定的。

求这个发车间隔是几分钟?解析:发车间隔为6分钟。

6000÷500=12(分).(78+12)=90(分).90÷(16-1)=6(分).公交车走完全程的时间为6000÷500=12(分)。

小峰前后一共看见了16辆车,并且第16辆车是他走了1小时18分即78分钟后在起点站遇上的。

如果我们让小峰站在终点站不动,他可以在(78+12)=90(分钟)后看见第16辆车恰好到达终点。

第1辆车和第16辆车中间有(16-1)=15(个)发车间隔,所以一个发车间隔为90÷15=6(分).列车每天18:00由上海站出发,驶往乌鲁木齐,经过50小时到达,每天10:00从乌鲁木齐站有一列火车返回上海,所用时间也为50小时,为保证在上海与乌鲁木齐乘车区间内每天各有一辆火车发往对方站,至少需要准备这种列车多少列?在原题的前提下,正常运行后,每天18:00从上海站开往乌鲁木齐的火车在途中,将会遇到几趟回程车从对面开来?在车速不变的前提下,为了实现有五列车完成这一区段的营运任务,每天两站互发车辆时间间隔至少需要相差多长时间?(假定乘客上下车及火车检修时间为一小时)解:(1)设上海到乌鲁木齐的车第一天晚18:00出发,到乌鲁木齐为第三天晚20:00,该车可于第四日早10:00从乌鲁木齐出发,于第六日中午12:00到上海,当日晚18:00可出发往乌鲁木齐。

因此,第六日开始重复是同一辆车,所以至少需要5辆列车。

(2)正常运行后,每天都会有一趟车从乌鲁木齐出发开往上海,在18:00从上海站开往乌鲁木齐的火车到达乌鲁木齐这段时间,从乌鲁木齐出发的车它都会遇到,共是2辆。

(3)在车速不变的前提下,为了实现有五列车完成这一区段的营运任务,则第一日从乌鲁木齐发出的车需在第六日再从同一个站开出,设每天上海发车时间比乌鲁木齐晚x(x〉2,若x<2则来不及在第六天开出前回去)小时,则该车最快回到乌鲁木齐为48+x+50小时后,即至少为第六天的开车前1小时。

列方程如下:24*5-1-(48+(24-x)+50)>0解得:x>3为便于叙述,现将“发车问题”进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。

他发现从背后每隔a 分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来。

问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。

)一、把“发车问题”化归为“和差问题”因为车站每隔相等的时间发一次车,所以同向的、前后的两辆公交车间的距离相等。

这个相等的距离也是公交车在发车间隔时间内行驶的路程。

我们把这个相等的距离假设为“1”。

根据“同向追及”,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a,1/a就是公交车与行人的速度差。

根据“相向相遇”,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b,1/b就是公交车和行人的速度和。

这样,我们把“发车问题”化归成了“和差问题”。

根据“和差问题”的解法:大数=(和+差)÷2,小数=(和-差)÷2,可以很容易地求出公交车的速度是(1/a+1/b)÷2。

又因为公交车在这个“间隔相等的时间”内行驶的路程是1,所以再用“路程÷速度=时间”,我们可以求出问题的答案,即公交车站发车的间隔时间是1÷【(1/a+1/b)÷2】=2÷(1/a+1/b)。

二、把“发车问题”优化为“往返问题”如果这个行人在起点站停留m分钟,恰好发现车站发n辆车,那么我们就可以求出车站发车的间隔时间是m÷n分钟。

但是,如果行人在这段时间内做个“往返运动”也未尝不可,那么他的“往返”决不会影响答案的准确性。

因为从起点站走到终点站,行人用的时间不一定被a和b都整除,所以他见到的公交车辆数也不一定是整数。

故此,我们不让他从起点站走到终点站再返回。

那么让他走到哪再立即返回呢?或者说让他走多长时间再立即返回呢?取a和b的公倍数(如果是具体的数据,最好取最小公倍数),我们这里取ab。

假如刚刚有一辆公交车在起点站发出,我们让行人从起点站开始行走,先走ab分钟,然后马上返回;这时恰好是从行人背后驶过第b辆车。

当行人再用ab分钟回到起点站时,恰好又是从迎面驶来第a辆车。

也就是说行人返回起点站时第(a+b)辆公交车正好从车站开出,即起点站2ab分钟开出了(a+b)辆公交车。

这样,就相当于在2ab分钟的时间内,行人在起点站原地不动看见车站发出了(a+b)辆车。

于是我们求出车站发车的间隔时间也是2ab÷(a+b)=2÷(1/a+1/b)。

这样的往返假设也许更符合“发车问题”的情景,更简明、更严谨,也更易于学生理解和接受。

如果用具体的时间代入,则会更加形象,更便于说明问题。

三、请用上述两种方法,试一试,解答下面两题:1、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。

如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?2、小明从东城到西城去,一共用了24分钟。

两城之间同时并且每隔相等的时间对发一辆公共汽车。

他出发时恰好有一辆公共汽车从东城发出,之后他每隔4分钟看见一辆公共汽车迎面开来,每隔6分钟有一辆公共汽车从背后超过。

问小明从东城出发与到达西城这段时间内,一共有多少辆公共汽车从东城发出?四、下面三题也是发车问题,试一试,揭示问题实质。

3、从电车总站每隔一定时间开出一辆电车。

甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82千米,每隔10分钟遇上一辆迎面而来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

电车总站每隔__分钟开出一辆电车。

[题说] 1997年小学数学奥林匹克决赛A卷第12题答案:11(分钟)4、有一路电车的起点站和终点站分别是甲站和乙站。

每隔5分钟有一辆电车从甲站出发开往乙站。

全程要走15分钟。

有一个人从乙站出发沿电车路线骑车前往甲站。

他出发的时候,恰好有一辆电车到达乙站。

在路上他又遇到了10辆迎面开来的电车,才到达甲站。

这时候,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?[题说] 第一届“华杯赛”初赛第16题答案:40(分钟)5、一条双向铁路上有11个车站。

相邻两站都相距7公里。

从早晨7点开始,有18列货车由第十一站顺次发出,每隔5分钟发出一列,都驶向第一站,速度都是每小时60公里。

早晨8点,由第一站发出一列客车,向第十一站驶去,时速是100公里,在到达终点站前,货车与客车都不停靠任何一站,问:在哪两个相邻站之间,客车能与3列货车先后相遇?[题说] 第三届“华杯赛”决赛二试第6题答案:在第5个站与第6个站之间,客车与三列货车相遇。

从几个不变来找方法,比如人步行的速度不变.比如车的速度和发车时间间隔不变等等.就会比较容易找到已知数量与问题之间的关系.从而找到解题方法。

相关文档
最新文档