风机盘管型号选型及设计

合集下载

风机盘管国标型号选型表

风机盘管国标型号选型表
30
40
50
30×2
40×2
50×2
60×2
噪音
dB(A)
12Pa

≦37
≦39
≦41
≦43
≦45
≦46
≦48
≦50
≦52
30Pa

≦40
≦42
≦44
≦46
≦47
≦48
பைடு நூலகம்≦50
≦52
≦54
50Pa

≦42
≦44
≦46
≦47
≦49
≦50
≦52
≦54
≦56
换热器
纯紫铜管发卡式U型弯管、开窗式铝翅片
三排供水量kg/h
324
482
655
814
936
1278
1602
1915
2178
水阻力kpa
30
30
30
30
40
40
40
40
50
工作压力
1.6MPa
配管尺寸
进水管
3/4"内螺纹
出水管
3/4"内螺纹
冷凝水管
3/4"内螺纹
注:表中数据为《风机盘管机组》(GB/T 19232-2003)国家标准规定的试验工况下的测定值:
供冷工况参数:进风干球温度DB=27℃,湿球温度WB=19.5℃;
18900

2350
3520
4530
6040
6850
9260
11740
14140
16360

1620
2470
3130
4170

004-空调末端(风机盘管)的计算与选择

004-空调末端(风机盘管)的计算与选择

空调末端(风机盘管)的计算与选择(1)根据风量:房间吊顶后的体积×房间气体循环次数=房间面积×层高(吊顶后)×房间气体循环次数=房间的循环风量。

其对应的风机盘管高速风量,即可确定风机盘管型号。

(2)根据冷负荷:单位面积冷负荷指标×房间面积=房间所需的冷负荷值。

利用房间冷负荷对应风机盘管的中速风量时的制冷量即可确定风机盘管型号。

一般采用第二种方法——根据冷负荷选择风机盘管,在特殊场合如对噪音要求较高的场所,可用第一种方法进行校核。

确定型号以后,还需确定风机盘管的安装方式(明装或安装),送回风方式(底送底回,侧送底回等)以及水管连接位置(左或右)等条件。

房间面积较大时应考虑使用多个风机盘管;房间单位面积负荷较大,对噪音要求不高时可考虑使用风量和制冷量较大的风机盘管。

注意:对于风盘风管超过一定长度的风盘,应采用中、高静压的风盘,且出风管道上不宜多于两个出风口。

(3)风机盘管的选择风机盘管分类按形式:卧式暗装、卧式明装、立式暗装、立式明装、卡式五种按厚度:超薄型、普通型按有无冷凝水泵:普通型、豪华型按机组静压:0Pa、12Pa、30Pa、50Pa、80Pa (机外静压)按排管数量:两排管、三排管按制式:两管制、四管制确定型号以后,还需确定风机盘管的安装方式(明装或安装),送回风方式(底送底回,侧送底回等)以及水管连接位置(左或右)等条件。

房间面积较大时应考虑使用多个风机盘管,房间单位面积负荷较大,对噪音要求不高时可考虑使用风量和制冷量较大的风机盘管。

考虑所接风管的沿程阻力、出风口的阻力、软接的阻力,低静压(12pa)直接接风口或接不超过1米的风管,中静压的风盘(30pa)接不超过四米的风管,高静压(50pa)的风盘接不超过七米的风管。

风机盘管型号选型

风机盘管型号选型

46(48
(30Pa)
08-2S(H) 1360 1030 690 7.11 5.44 12.22 0.35 0.35 17.9 16.8 140(154) 2
46(
10-2S(H) 1740 1310 870 8.57 6.73 15.12 0.42 0.42 21.7 18.6 154(178) 2
点图进入相册 立柱式水温空调柜机的型号规格:14LZ、16LZ、20LZ、25LZ、30LZ、35LZ、40LZ、45LZ
★风量 340-2380m3/h;★一般为三管制,可根据用户需要制造两管制和四管制;★构紧凑的薄型设计,厚度为 246mm; 超薄型厚度为 185mm。★无回风箱,可通过天花板开回风口,清洗维修方便;★冷凝水盘可根据要求加长,保证阀门在 水盘之内;冷凝水盘可根据要求采用不锈钢材料。
卧式安装风机盘管
机组型号
风量(M3/h) 高中低
供冷能力 供暖能
(kw) 力(kW)
全热量 显热量
水压降 水流量(L/S)
(kpa) 制冷 供暖 供冷 供暖
电机
噪声
输入功率
数量
(W)
(dB<A>)
02-2S(H)
360 270 180 1.78 1.28 3.06 0.09 0.09 8.2 7.5 35(40) 1
≤52 ≤54 ≤56
6
7.5
32
35.5
注:1、供应工况进风干球温度 270C,温球温度 19.50C,进水温度 70C,出水温度 120C 2、供应工况进风干球温度 210C,进水温度 600C 3、表中水流量、水阻力是指告诉风量下的参数 4、表中燥声值是指在消声室离机组出风口 1m 的位置测定的值 5、执行标准:GB/T19232-2003 约克空调参数

风机盘管选型原则

风机盘管选型原则

风机盘管选型原则1. 引言风机盘管是一种常见的中央空调系统中的组件,主要负责空气循环和调节室内温度。

在选择风机盘管时,需要考虑多个因素,包括制冷/制热能力、空气流量、噪音水平等。

本文将介绍风机盘管的选型原则,帮助读者了解如何选择适合的风机盘管。

2. 制冷/制热能力制冷/制热能力是选择风机盘管时最重要的考虑因素之一。

它直接影响到盘管的冷却或加热效果。

通常,制冷/制热能力通过单位时间内传热或制冷能力来衡量,单位为千瓦(KW)。

在选择风机盘管时,需要根据所需的制冷/制热能力来确定适当的型号。

3. 空气流量空气流量是指单位时间内通过风机盘管的空气量,通常以立方米/小时(m³/h)来衡量。

选择适当的空气流量是确保空气循环良好和室内均匀供暖的关键。

低空气流量可能导致室内温度不均匀,而高空气流量则可能导致能耗过高。

因此,在选型时需要根据房间的大小和所需的空气流动量考虑适当的风机盘管型号。

4. 噪音水平噪音水平是选择风机盘管时需考虑的重要因素之一。

盘管的噪音主要来自于风机和制冷系统的运行。

过高的噪音可能对居住者的生活和休息造成干扰。

因此,在选择盘管时应注意其噪音水平。

通常,制造商会提供噪音等级指标,如分贝(dB)。

建议选择噪音水平较低的风机盘管,以提供更舒适的室内环境。

5. 能效比能效比是一个衡量设备能效的指标,通常用制冷/制热能力和耗电量之比来表示。

能效比越高,设备的能效就越好。

在选择盘管时,可以参考其能效比来评估其能源消耗情况。

此外,一些盘管可能具有额外的能效改进功能,如能耗监测和自动调节等。

这些功能可以帮助用户更好地管理能源消耗和降低运营成本。

6. 适用场景不同的风机盘管适用于不同的场景。

例如,一些盘管适合于办公室或商业建筑,而其他盘管则更适合于住宅使用。

在选择盘管时,需要考虑场景的具体要求,包括空调需求,空间限制和使用环境等。

因此,在选型前,建议与专业人员协商,以确保选择的盘管完全符合特定场景的需求。

[风机盘管的选型与安装施工]风机盘管型号

[风机盘管的选型与安装施工]风机盘管型号

[风机盘管的选型与安装施工]风机盘管型号卧式暗装风机盘管机组选用主要控制参数额定风量、出口静压、输入功率、额定供冷量、额定供热量、噪声、水阻等。

对于双管制水系统(适用于只按季节或只按空调区域供热或进行或供冷转换的空调系统)的风机盘管机组,只配置一组盘管,冬夏供热/ 供冷兼用机型。

对于四课税水系统(适用于供热/ 供冷频繁转换的空调系统内) 的风机盘管机组,应配置加热和冷却两组盘管的组合式机型。

选用要点1.机组选用风量主要李树荣额定风量、出口静压、输入功率、额定供冷量、额定供热量、噪声、水阻等。

2.风机盘管机组送风量约为250~2500m/h,出口静压小于100Pa(出口静压大于30Pa为高静压型)。

3.选用机组规格应由房间贫、热负荷以及空气的热湿比等风险因素确定:1) 当新风与房间空气参数等焓时,风机盘管仅负担围护结构和房间内部产生的冷、热负荷;2) 当新风焓值大于或小于值为房间空气焓值时,风机盘管机组应加上或扣除部分新风冷、热负荷;3) 当新风的绝对含湿量低于房间空气含湿量、可全部负担房间温热负荷时,风机盘管可仅负担房间显热负荷,宜按干工况配置;4) 当房间显热负荷占有较大比重时,应通过显热平衡算出,校核风机盘管机组的风量。

4. 机组在高档转速下的基本规格应符合国标规定。

额定风量(m3/h)额定供冷量(kW)额定供热量(kW) FP-343401.802.70FP-515102.704.05FP-686803.605.40FP-858504.506.75FP-1025.408.10FP-13613607.2010.80FP-17017009.0013.50FP-204204010.8016.20FP-238238012.6018.905.在选用机组时,应需要考虑实际性能与额定值的偏差,并注意以下特点:1) 机组额定供冷量一般为在空气焓降值等于15.9kJ/kg 条件下的测试值;2) 单盘管机组额定供热量一般为额定供冷量的1.5 倍;3) 额定值各项参数均为风机在高档转速下才的值,设计时一般宜按产品样本的中档风速下的数值选用。

风机盘管选型与安装注意事项

风机盘管选型与安装注意事项

一、风机盘管如何选型风机盘管有两个主要参数:制冷(热)量和送风量,因此选择的方法有两种:一、根据房间循环风量选:房间面积、层高(吊顶后)和房间换气次数三者的乘积即为房间的循环风量。

利用循环风量对应风机盘管高、中速风量,即可确定风机盘管型号。

二、根据房间所需的冷负荷选择:根据单位面积负荷和房间面积,可得到房间所需的冷负荷值,利用房间冷负荷对应风机盘管的制冷量即可确定风机盘管型号。

二、风机盘管的选型注意事项1、冷量冷量不足是目前用户投诉最多的一个问题。

造成这种问题的原因主要是很多企业没有自己的测试手段,样本上的参数也是从其它厂家抄袭,自己生产的盘管热工性能又较差(主要是由翅片形式、胀管质量、生产工艺等造成)。

因此建议在进行项目考察时应注意该厂家的测试设施与手段,很难想象一个没有自己测试装置的厂家能产生出好产品来。

2、风量如何考虑盘管的风量是一个问题。

国内市场上多数厂家的盘管都只有一种三排管,也有厂家提供二排管的盘管。

实际上,对于大多数民用建筑空调系统而言选择二排管的盘管更为有利(对高湿度场合例外)。

这是因为二排管的产品在同样冷量下风量较大,这将增大空调房间的换气次数,有利于提高空调精度及舒适性。

同样冷量下,采用小温差、大风量送风,会取得比大温差、小风量送风更佳的空调效果。

3、外余压目前国家标准规定风机盘管的风量、冷量及噪声等参数的测试均是在机外静压为O的条件下进行。

而实际使用中盘管出风口前往往要接一小段风管及出风百叶,有的工程中还设有回风箱,因此在实际使用中会发现盘管的实际风量要小于其名义风量,这样的后果就是房间风量减小,送风温差增大,空调的舒适性下降。

有的设计人员为避免这种情况就在选型时按盘管的中档风量选取,以避免风量不足,但却增大工程的初投资。

因而建议在国内测试标准尚未改变的情况下,盘管选型时应该优先选择有余压(一般应为10-15Pa)的机组。

4、噪音这是目前国内产品与国外产品差距较大的一个地方,也是目前盘管因质量问题而被投诉的一个要点。

风机盘管选型,看这篇就够了

风机盘管选型,看这篇就够了

风机盘管选型,看这篇就够了一、风机盘管介绍风机盘管是空气源热泵理想的末端产品,由热交换器,水管,过滤器,风扇,接水盘,排气阀,支架等组成。

风机盘管主要依靠风机的强制作用,使空气通过加热器表面时被加热,因而强化了散热器与空气间的对流换热作用,能够迅速加热房间的空气。

风机盘管是热泵系统的末端装置,其工作原理是机组内不断的再循环所在房间的空气,使空气通过冷水(热水)盘管后被冷却(加热),以保持房间温度的恒定。

通常,新风通过新风机组处理后送入室内,以满足房间新风量的需要。

二、空调系统分类(一)根据介质的形式分类1、氟系统2、水系统3、风系统4、气—水系统5、各系统之间的对比(二)根据送风温度分类1、水1)低温2)常温3)高温2、风1)低温2)常温(三)按照空气处理设备的位置分类1、集中系统2、半集中系统3、分散系统4、各系统之间的对比(四)按照集中处理空气的来源分类1、封闭系统2、直流系统3、混合系统4、各系统之间的对比(五)根据风速分类1、低速2、高速(六)根据设备安装形式分类1、明装2、暗装三、风机盘管选型(一)风机盘管的分类:风机盘管种类有:卧式暗装(带回风箱) 风机盘管、卧式暗装(不带回风箱) 风机盘管、卧式明装风机盘管、立式暗装风机盘管、立式明装风机盘管、卡式二出风风机盘管、卡式四出风风机盘管及壁挂式风机盘管等多种。

风机盘管的形式有立式和卧式两种;安装形式为明装和暗装两种;按其出风方式可分为顶出风、斜出风和前出风三种;按其进水方式可分为左进水、右进水和后进水三种。

立式和卧式之分主要是对暗装风机而言.目的我国生产的明装风机盘管一般都是立式的。

它主要安装在窗台下,使用比较普遍。

卧式暗装风机盘管是将立式暗装卧放,在结构上与立式有较多差异。

卧式暗装风机盘管通常吊装在房间天棚上,冷风自上而下,回风口设在天棚另一端。

立式明装风机盘管明装和暗装是按风机盘管结构型式来分的。

明装是将风机盘管放在室内可见部位,暗装是将风机盘管放在室内不可见部位,一般放在窗台下、大棚上或夹墙里。

风机盘管的选择

风机盘管的选择

风机盘管的选择一般来说,根据显热负荷、全热负荷并在校核风量之后所选择的风机盘管更适合空调房间的实际需要。

选择风机盘管时应注意下列事项:1)从实际使用情况来看,国产风机盘管的实际工况风量往往比名义工况(名牌参数工况)风量小20%~30%。

暗装机组由于加装进、回风隔栅、过滤网、短风管等使空气流动阻力增大,实际风量下降幅度更大些,所以选择时可参照中速档参数选择,但就不再考虑安全系数了。

按高速档选也是可以的,但应该考虑积尘,结垢等的修正系数。

2)目前国内许多厂家生产2排管,3排管和4排管机组。

为提高空调效果,选用的风机盘管最好是大风量、小焓差的2排管机组,但是2排管机组焓差小、除湿能力较差,因此在一些高湿负荷的场合宜采用大焓差的3排管和4排管机组。

风盘的承压能力有1.0MPa 、1.6MPa 的,最高有2.1MPa ,所选风盘的承压能力应大于系统的最大工作压力。

3)低嗓声和大风最是很难同时满足的,国内生产的一些低噪声机组往往都是以降低风量为代价来实现的;而单一的低噪声不能反映机组的综合性能,因此选用机组时不宜片面追求低噪声。

4)选用风机盘管时,应进行设计工况和名义工况修正 一般按夏季负荷选用风机盘管,冬季校核所选风机盘管的实际(设计工况)供热量是否满足要求。

步骤如下:采用风机盘管设计工况焓差与标准工况(名义工况)焓差的比值m 进行修,计算风机盘管的实际制冷量(你的设计工况),再根据实际制冷量选择风机盘管。

Q=Q H (△i m /△i H )式中:Q ——风机盘管(你的设计工况)实际制冷量,W ;Q H ——风机盘管标准工况(名义工况)下额定制冷量,W ;△i m ——风机盘管实际(你的设计工况)空气处理焓差,W/kg ;△i h ——风机盘管标准工况(名义工况)下空气处理焓差,W/kg ;设计工况与名义工况的换算可按样本修正,或按下式换算:Q 、Qx —设计工况下风机盘管全热制冷量和显热制冷量,kW ;Q 0、Q x0—名义工况下风机盘管全热制冷量和显热制冷量,kW ;t g 、 t s —设计工况下的干球温度和湿球温度,取设计参数,℃;M 、M 0—分别为设计和名义工况下的水流量,kg/s ;t w —名义工况下的水温度,℃。

风机盘管选择方法

风机盘管选择方法

风机盘管选择方法风机盘管是建筑物中常用的暖通设备,用于空气调节和热交换。

正确选择适合的风机盘管对于建筑物的舒适度和能源效率至关重要。

本文将介绍如何选择适合的风机盘管的方法和注意事项。

1. 确定设计需求在选择风机盘管之前,首先需要明确建筑物的空调系统的设计需求。

以下是需要考虑的关键因素:•建筑物的用途和面积:不同类型的建筑物对温度和湿度的需求不同。

例如,住宅、商业办公室和工业建筑的需求差异很大。

•设备的运行时间:建筑物的每天运行时间和每年运行时间都会影响到风机盘管的选择。

例如,商业建筑通常需要全天候运行,而住宅则需要根据居民的需求来调节。

•环境条件:建筑物所在地的气候条件、海拔高度、空气质量等因素也会影响风机盘管的选择。

•音量要求:某些场合对风机盘管的噪音要求非常高,因此需要选择低噪音运行的设备。

2. 选择合适的型号和规格根据建筑物的设计需求,接下来需要选择合适的风机盘管型号和规格。

以下是一些需要考虑的因素:•风量要求:根据建筑物的需求,计算所需要的送风、回风和新风的风量。

这将决定所选风机盘管的风机功率和风量调节性能。

•温度调节范围:确定建筑物所需的最低和最高温度范围,确保所选风机盘管具有适当的制冷和供暖性能。

•热交换效率:风机盘管的热交换效率会影响能源消耗和运行成本。

选择具有高效热交换器的设备可以提高能源利用效率。

•控制方式:确定所需的控制方式,例如手动控制、定时控制或自动控制。

选择具有相应控制功能的风机盘管。

•维护和保养:选择易于维护和保养的设备,可以减少运营成本和维修时间。

3. 参考厂家和产品可靠性在选择风机盘管时,可靠性是非常重要的考虑因素。

以下是一些参考厂家和产品可靠性的方法:•通过与相关行业专家和经销商进行咨询,了解厂家的声誉和产品质量。

•查阅产品说明书和规格表,了解产品的技术参数和性能指标。

特别注意产品的质保和售后服务政策。

•查找并比较不同厂家和产品的用户评价和反馈,了解实际使用情况和用户体验。

风机盘管选型设计计算公式

风机盘管选型设计计算公式

风机盘管选型设计计算公式一、引言。

风机盘管是一种集中供暖和空调系统中常用的设备,其作用是通过风机将空气吹入盘管中进行加热或降温,然后再通过管道将加热或降温后的空气输送到室内各个区域。

在设计风机盘管系统时,需要进行选型计算,以确保系统能够满足室内空调需求,同时也要考虑能耗和成本等因素。

本文将介绍风机盘管选型设计计算公式,以帮助工程师们更好地设计和选择风机盘管系统。

二、风机盘管选型设计计算公式。

1. 风机盘管热量计算公式。

在设计风机盘管系统时,首先需要计算系统的热量负荷,以确定所需的风机盘管的尺寸和能力。

热量计算公式如下:Q = V ×ρ× Cp ×ΔT。

其中,Q为热量负荷(W),V为空气流量(m³/s),ρ为空气密度(kg/m ³),Cp为空气比热(J/kg·K),ΔT为温度差(K)。

2. 风机盘管风量计算公式。

在确定了热量负荷后,需要计算所需的风量,以确定风机盘管的风机尺寸和能力。

风量计算公式如下:V = Q / (ρ× Cp ×ΔT)。

其中,V为空气流量(m³/s),Q为热量负荷(W),ρ为空气密度(kg/m ³),Cp为空气比热(J/kg·K),ΔT为温度差(K)。

3. 风机盘管压力损失计算公式。

在确定了风量后,需要计算系统的压力损失,以确定所需的风机盘管的风机尺寸和能力。

压力损失计算公式如下:ΔP = (f × L/D + ξ) × (ρ× V²) / 2。

其中,ΔP为压力损失(Pa),f为摩擦阻力系数,L为管道长度(m),D为管道直径(m),ξ为局部阻力系数,ρ为空气密度(kg/m³),V为空气流速(m/s)。

4. 风机盘管功率计算公式。

最后,需要计算所需的风机功率,以确定风机盘管的能力和能耗。

功率计算公式如下:P = (ΔP × V) / η。

日立风机盘管型号及参数表

日立风机盘管型号及参数表

日立风机盘管型号及参数表引言日立风机盘管是空调系统中的重要组成部分,其型号及参数表对于正确选择和配置空调设备至关重要。

本文将深入介绍日立风机盘管的各种型号以及详细参数,为用户提供全面的信息支持。

1. 型号分类及特点1.1 型号概述日立风机盘管系列涵盖了多种型号,包括但不限于中央空调用盘管、分体空调用盘管等。

每个型号都有其独特的特点,用户在选择时需要根据具体需求进行合理搭配。

1.2 不同型号的适用场景不同型号的日立风机盘管适用于不同的场景,例如高层写字楼、商场、酒店等。

用户需要根据具体使用环境和空调系统的要求选择适用的型号,以达到最佳的制冷、供暖效果。

2. 主要性能参数说明2.1 制冷性能参数日立风机盘管的制冷性能参数包括制冷量、制冷效能系数等。

用户在了解这些参数的基础上,可以更好地评估盘管的制冷能力,确保其能够满足系统的需求。

2.2 供暖性能参数供暖性能是在寒冷季节中尤为重要的参数。

用户需要关注日立风机盘管的供暖功率、制热效果等性能参数,以确保系统在冷暖转换时能够迅速、稳定地完成。

2.3 风机性能参数风机性能直接关系到空气流通效果,影响整个空调系统的工作。

风机性能参数包括风量、静压等,用户需要选择适用的参数以获得良好的通风效果。

3. 使用注意事项3.1 安装要求不同型号的日立风机盘管在安装时可能有一些特殊的要求,如安装空间、支撑结构等。

用户在安装前需要仔细阅读安装手册,确保安装过程符合要求,以免影响设备的正常运行。

3.2 维护保养定期的维护保养对于延长日立风机盘管的使用寿命至关重要。

用户需要按照维护手册中的要求进行定期检查、清洁和润滑,确保设备长时间稳定运行。

3.3 常见故障及排除方法在使用过程中,可能会遇到一些常见的故障。

用户需要了解日立风机盘管的常见故障及排除方法,以提高故障处理的效率,减少停机时间。

总结1. 选择合适型号是关键用户在选择日立风机盘管时,要充分了解各个型号的特点,并根据具体需求进行合理选择,以保证系统运行的高效稳定。

风机盘管选型原则

风机盘管选型原则

风机盘管选型原则1. 简介风机盘管是一种常见的供暖、通风和空调系统中的重要设备,用于将冷热空气通过风扇循环到室内空间。

在选择风机盘管时,有一些重要的原则需要考虑,以确保正确的选型和高效的运行。

2. 选型原则2.1 整体设计和安装条件在选型过程中,需要考虑整体设计和安装条件。

这包括风机盘管的尺寸、重量、布置和连接方式等。

确保选型符合建筑物或空间的要求,并能够方便安装和维修。

2.2 风量和静压风量是指风机盘管每单位时间内供应的空气体积。

静压是指风机盘管对空气流动施加的压力。

正确选择风量和静压对于确保室内空气的流动和舒适至关重要。

根据空间大小、热负荷和通风要求等因素,选择适当的风量和静压。

2.3 能效能效是评估风机盘管性能的重要指标之一。

在选择风机盘管时,需要关注其能效等级。

通常,能效等级越高,能源消耗越低,运行成本越少。

确保选择具有较高能效等级的风机盘管可以减少能源浪费并节约运行成本。

2.4 噪音级别噪音级别是指风机盘管在运行时产生的噪音水平。

在选择风机盘管时,需要考虑其噪音级别是否符合室内环境的要求。

特别是在需要安装在噪音敏感的区域时,如办公室、酒店客房等。

选择噪音较低的风机盘管可以提供更舒适的室内环境。

2.5 维护和保养在选型过程中,需要考虑风机盘管的维护和保养要求。

这包括易于清洁、易于维修和易于更换零部件等因素。

确保选择的风机盘管能够提供方便快捷的维护和保养,减少运营中的停机时间和维修成本。

3. 选型方法3.1 确定需求首先,需要明确风机盘管的使用环境和要求。

这包括室内空间的大小、使用功能、通风要求等。

确切地了解需求可以帮助我们更准确地选择适合的风机盘管型号。

3.2 查找厂家技术资料通过查找厂家提供的技术资料,了解不同风机盘管型号的技术参数和性能特点。

这包括风量、静压、能效等级、噪音级别和维护要求等。

比较不同型号的技术参数,找到与需求相匹配的风机盘管型号。

3.3 考虑预算和总成本在选型过程中,还需要考虑预算和总成本。

风机盘管型号选型及设计

风机盘管型号选型及设计

风机盘管型号选型及设计风机盘管机组作为半集中式空调系统的末端装置,其工程应用特别广泛。

从总体上看,目前国内的风机盘管在名义供冷量、噪音、电机输入功率等项指标上,已接近于或优于国外产品,而风量则普遍低于国外同型号产品。

但是,真正影响空调效果的,并不只是这些参数的肯定值大小,还取决于这些参数之间的配匹是否合理。

由于我国的行业标准?中,对供冷量、噪声、输入功率等都有严格规定,因而形成了国产风机盘管高冷、低噪、小风量的总体特点,而风量与冷量的搭配(焓差)则不合理,这给选型工作的合理性和经济性带来问题。

一、目前风机盘管选型中常见的问题(1)按冷负荷选型的弊端按空调房间的最大冷负荷选用风机盘管是空调系统设计中常见的做法,其目的是保证高峰负荷时的房间温度。

而实际上空调房间运行的绝大部分时间都不会处于高峰负荷,使供冷量过剩,而切换到中、低档运行以降低冷量输出,从而维持房间的热平衡。

可见机组实际输出冷量取决于空调负荷的变化,与机组的名义供冷量关系不大。

故供冷量只是实现空调的必要条件,但不能决议空调的使用效果。

评价空调效果好坏,一是房间平均温度与设定温度的接近程度;二是室温分布(梯度)和变化(波动)幅度。

送风温差越大,换气次数越少,室温梯度和波动幅度也越大,故送风温差和换气次数才是影响空调精度和舒适性的重要因素。

文献[2]中明确规定了不同精度空调房间的最大送风温差和最低换气次数。

空调精度越高,要求送风温差越小、换气次数越多。

可见按最大冷负荷选型,仅充足高峰负荷时的房间温度是不够的,还需充足适当的送风温差和换气次数,才能保证房间的舒适性要求。

(2)不能保证充足的送风量因送风温差、换气次数是决议空调精度和舒适性的重要因素,故保证充足的风量是实现预期空调效果的先决条件。

这里所说的风量是指机组使用时的实际送风量,而不是产品样本中的名义风量(GB/T192322023规定:名义风量须在盘管不通水、空气14—27℃,风机转速为高档,对低静压机组不带风口和过滤器等出口静压为12Pa测得的风量值)。

风机盘管选型

风机盘管选型

风机盘管机组选型及设计1 前言风机盘管机组作为半集中式空调系统的末端装置,其工程应用非常广泛。

从总体上看,目前国内的风机盘管在名义供冷量、噪音、电机输入功率等项指标上,已接近于或优于国外产品,而风量则普遍低于国外同型号产品。

但是,真正影响空调效果的,并不只是这些参数的绝对值大小,还取决于这些参数之间的配匹是否合理。

因为我国的行业标准?中,对供冷量、噪声、输入功率等都有严格规定,因而形成了国产风机盘管高冷、低噪、小风量的总体特点,而风量与冷量的搭配(焓差)则不合理,这给选型工作的合理性和经济性带来问题。

2 目前风机盘管选型中常见的问题2.1 按冷负荷选型的弊端按空调房间的最大冷负荷选用风机盘管是空调系统设计中常见的做法,其目的是保证高峰负荷时的房间温度。

而实际上空调房间运行的绝大部分时间都不会处于高峰负荷,使供冷量过剩,而切换到中、低档运行以降低冷量输出,从而维持房间的热平衡。

可见机组实际输出冷量取决于空调负荷的变化,与机组的名义供冷量关系不大。

故供冷量只是实现空调的必要条件,但不能决定空调的使用效果。

评价空调效果好坏,一是房间平均温度与设定温度的接近程度;二是室温分布(梯度)和变化(波动)幅度。

送风温差越大,换气次数越少,室温梯度和波动幅度也越大,故送风温差和换气次数才是影响空调精度和舒适性的主要因素。

文献[2]中明确规定了不同精度空调房间的最大送风温差和最低换气次数。

空调精度越高,要求送风温差越小、换气次数越多。

可见按最大冷负荷选型,仅满足高峰负荷时的房间温度是不够的,还需满足适当的送风温差和换气次数,才能保证房间的舒适性要求。

2.2 不能保证足够的送风量因送风温差、换气次数是决定空调精度和舒适性的主要因素,故保证足够的风量是实现预期空调效果的先决条件。

这里所说的风量是指机组使用时的实际送风量,而不是产品样本中的名义风量(GB/T 19232-2003规定:名义风量须在盘管不通水、空气14—27℃,风机转速为高档,对低静压机组不带风口和过滤器等出口静压为12Pa测得的风量值)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风机盘管型号选型及设计风机盘管机组作为半集中式空调系统的末端装置,其工程应用非常广泛。

从总体上看,目前国内的风机盘管在名义供冷量、噪音、电机输入功率等项指标上,已接近于或优于国外产品,而风量则普遍低于国外同型号产品。

但是,真正影响空调效果的,并不只是这些参数的绝对值大小,还取决于这些参数之间的配匹是否合理。

因为我国的行业标准?中,对供冷量、噪声、输入功率等都有严格规定,因而形成了国产风机盘管高冷、低噪、小风量的总体特点,而风量与冷量的搭配(焓差)则不合理,这给选型工作的合理性和经济性带来问题。

2 目前风机盘管选型中常见的问题2.1 按冷负荷选型的弊端按空调房间的最大冷负荷选用风机盘管是空调系统设计中常见的做法,其目的是保证高峰负荷时的房间温度。

而实际上空调房间运行的绝大部分时间都不会处于高峰负荷,使供冷量过剩,而切换到中、低档运行以降低冷量输出,从而维持房间的热平衡。

可见机组实际输出冷量取决于空调负荷的变化,与机组的名义供冷量关系不大。

故供冷量只是实现空调的必要条件,但不能决定空调的使用效果。

评价空调效果好坏,一是房间平均温度与设定温度的接近程度;二是室温分布(梯度)和变化(波动)幅度。

送风温差越大,换气次数越少,室温梯度和波动幅度也越大,故送风温差和换气次数才是影响空调精度和舒适性的主要因素。

文献[2]中明确规定了不同精度空调房间的最大送风温差和最低换气次数。

空调精度越高,要求送风温差越小、换气次数越多。

可见按最大冷负荷选型,仅满足高峰负荷时的房间温度是不够的,还需满足适当的送风温差和换气次数,才能保证房间的舒适性要求。

2.2 不能保证足够的送风量因送风温差、换气次数是决定空调精度和舒适性的主要因素,故保证足够的风量是实现预期空调效果的先决条件。

这里所说的风量是指机组使用时的实际送风量,而不是产品样本中的名义风量(GB/T 19232-2003规定:名义风量须在盘管不通水、空气14—27℃,风机转速为高档,对低静压机组不带风口和过滤器等出口静压为12Pa测得的风量值)。

而实际使用中,暗装机组因要加进、回风格栅、过滤器和短风管,加上盘管表面凝水、积尘、滤网堵塞等诸多因素影响,会导致风阻增大、风量下降,使得实际风量远低于名义风量(笔者通过大量实验证明:一般低l5—25%)。

由于风量的明显减少,影响空调效果,主要带来以下问题:1)换气次数少;2)送风速度低,影响送风射流射程;3)送风温度低,影响空调舒适度和可能造成送风格栅结露等。

另一方面,对于风机盘管机组本身而言,风量的下降直接影响盘管的换热效果,使盘管的制冷量下降,这样就会形成机组的实际性能(风量、冷量)都要低于名义值的不合理现象。

因此,产品样本上的名义风量、冷量只能作为选型时的参考,而不能作为选型的依据。

加大风量不仅能增加换气次数、降低送风温差、改善空调效果,而且由于冷量也会提高,可相应地缩小机组的体积。

故提高风量是风机盘管的发展方向之一。

当然,风量的提高也要受空调区域允许风速的制约。

另一方面,为控制送风温差,冷量与风量之间应保持适当的匹配关系。

全冷量与风量(质量流量)之比就是盘管进出口空气的焓差,它决定了机组供冷能力和送风温差的大小。

从控制送风温差角度,焓差过高不利,而国内的风机盘管的焓差和送风温差普遍偏高。

按GB/T 19232-2003规定的名义参数计算,焓差为15.88k.1/kg,送风温差约为l2℃。

若按风量下降20%计算,实际的焓差将超过19.85kJ/kg,实际的送风温差会高达l5℃,显然已超出文献[2]中规定的允许送风温差(6_-lO℃),也就无法保证空调精度和舒适性要求。

2.3忽略风系统的阻力计算一般地风机盘管空调系统的风系统规模较小,构成简单,阻力不大,约在l5—5OPa范围内,但仅仅这一点阻力就足以对风机盘管系统的实际送风量有至关重要的影响。

风机盘管分为低静压机组和高静压机组两类,在GB/T19232-2003中,对于低静压机组,带风口和过滤器等出口静压为OPa,不带风口和过滤器等出口静压为12Pa,也就是说,风口及过滤器等构成的阻力为12Pa。

而美国空调与制冷学会标准《房间风机盘管空调器》hRI 440— 84中明确规定:出厂时不带送、回风格栅或过滤器的风机盘管,应在12.4Pa机外静压下测试风量u 。

这一规定正是为了保证实际风量与名义风量相符。

而我国大气含尘量较高,滤网易堵塞,理应机外静压比12.4Pa高,相比之下,我国的行业标准中规定的测试条件合理性有待商榷。

以客房中卧式暗装、吊顶回风FCU为例,附加阻力至少应包括回风格栅、回风滤网、送风短管及送风格栅阻力。

若回风风速为1.Om/s,送风风速为1.5 m/s,经计算此时机外阻力为16Pa,若选用低静压机组肯定也会造成风量下降,此例在工程应用中应属于附加阻力较小的一例,对风量影响尚且如此,可见FCU风系统附加阻力不可忽视。

再者,对于高静压机组,若不经过阻力计算,而是认为选用一个高静压机组就能满足要求的做法也是不合理的。

再举一例,图l为某办公楼安装于吊顶内的卧式暗装FCU及相应的风系统,FCU 的名义风量为750 m/h,散流器喉部风速2.5 m/s,回风风速1.5 m/s,经计算知FCU本体之外总阻力约为61Pa,其中散流器、回风口滤网阻力占总阻力的80%。

此时即便采用机外静压30Pa或50Pa的高静压型FCU,风量也会下降15%左右。

因此,在具体工程中笼统地提出高静压要求和认为只要采用高静压机组就不必进行相关风系统分析的做法是不可取的。

3 风机盘管机组改进设计的途径3.1 保证风量的“名”“实”相符造成机组风量“名”“实”不符的根本原因就在于:1)湿工况下翅片管表面的水膜和水滴大大地增加了空气的流动阻力,这是主要原因;2)名义测试工况与实际使用工况不同。

因此,解决风量的“名”“实”不符问题,设计时可从以下几方面入手:(1)盘管排数的选择目前国内风机盘管多采用9.53mrn管径的三排盘管,这种结构型式的盘管空气阻力较大。

根据大量的盘管试验结果表明:相同结构参数的表冷器排数由三排减至二排,空气阻力约降30%t圳,这样在机组输入功率不变的条件下增加风量,以此来解决机组名义风量与实际风量相差太大的问题,而且又保证达到标准规定的供冷量要求。

其理论依据是:虽然盘管由三排减至二排,传热面积减少,但盘管的空气阻力下降,风量明显增加使盘管传热性能增强的原理。

并且2排管风机盘管省料、节能,多数场合使用效果要优于3排管机组,经济效益显著。

(2)翅片间距的确定翅片间距的大小是影响风机盘管传热性能和空气阻力的主要因素之一。

由理论分析和实验结论可知,翅片间距对风机盘管传热性能的影响是很复杂的。

一般说来,换热系数会随着间距的增大而增大,而阻力则会随着间距的增加而减小。

但是,当翅片间距变小时,单位体积的换热面积增加。

因此,虽然换热系数变小了,但换热量却有可能是增加的。

因此,合理确定翅片间距的大小使得换热量相同时空气的阻力最小,即单位阻力换热量最大应是优化的翅片间距。

实验研究结果表明lJ 0J:对于水冷式盘管,在常用的翅片间距范围内,3.3mm左右较好。

(3)翅片形状和表面亲水处理盘管在供冷工况时,对空气的处理是一个降焓析湿过程,在盘管翅片的表面会不断形成水珠,大部分水珠在重力作用下,沿着翅片由上往下流淌至凝结水盘,也有一部分挂贴在翅片表面,这部分水珠使得盘管的阻力增大,从而减少了出风量。

对于相同规格的盘管来说,翅片的析水速度与翅片的形状有关,同时也与翅片表面是否做亲水处理有关。

有实验数据表明:相同情况下,湿/干工况风量比由条缝型翅片的75%提高到无缝型翅片的90%;由翅片表面未做亲水处理的88%提高到亲水处理的99%t制,可见,翅片的形状和表面亲水处理对机组的出风量有重要影响。

3.2 保证机外静压和风量因盘管(特别是暗装机组)在使用中风量会有大幅度衰减,因此为克服送风阻力必须具备一定的机外静压,以保证所需的风量。

为满足用户的不同使用要求,国外厂家提供有低噪声、标准型、高静压三种机型供用户选择。

低噪声机组的机外静压一般低于lOPa:标准型机组为15—25Pa;高静压机组高达30—5oPa。

一般空调场合宜使用标准型机组,高精度及大面积房间则应考虑选用高静压机组,低噪声机组一般仅用于对噪声水平要求严格的场合,如高星级饭店中的豪华客房。

因此,在选用国产暗装风盘管时,建议选择机外静压不低于20Pa的产品,当采用散流器送风且回风带滤网时,FCU 的机外余压不宜小于50Pa,方可取得较好的使用效果,当然,生产厂家最好在产品样本上附上机组的风量一机外静压曲线,以方便于机组选型时参考;并且应生产高低不同的机外静压机型以供不同的使用场合选用。

3.3 提供多样化焓差的机组按照我国行业标准,对于某一型号的机组只能提供单一焓差(因供冷量和风量一定),并且焓差偏高,使得机组送风温差偏大,用在高精度、要求严格的空调场合还必须采取一定的补救措施,比如可采用改变新风参数来进行调节。

而国外的风机盘管具有多种焓差,一般会提供2排管和3排管两种不同冷量的盘管,分别配上低噪声、标准型或高静压三种不同风量的风机,形成名义风量相同,但实际风量、冷量、焓差都不相同的6种机型,可以满足不同地区、不同围护结构、不同精度要求空调房间的使用要求。

因此,国内生产厂家也应从实际使用情况出发,研制出多样化焓差的新型机组,以满足不同空调场合的灵活选用。

3.4 合理的水路流程目前,多数厂家风机盘管的水路流程采用单一的3进3出的接法。

合理的水路设计应满足:1)较高的水流速,以保证较高的换热系数;2)较低的水阻力,保证水泵较低的能耗,尤其是高层建筑空调系统:3)水和空气的逆交叉流动,以保证最大的换热温差。

然而实际水通路设计中,增强换热系数往往会带来水阻力的增加。

因此,优化的水通路设计应做到:1)不同长度的盘管应采用不同的水路设计,如大长度盘管采用多路并联、加大过水截面积,既能保证换热量又能有效地降低水阻力;2)保证进、回水之间5℃温差,以保证合适的流量、合适的水流速,从而保证换热性能,同时又不会使水阻过大。

3)不同使用工况的盘管,其水路应区别设计。

若进风参数不同,空气处理过程必然不同,因此,水通路设计应有所不同,以保证冷量、水阻力的合理。

4)为冬季防冻放水及防止管内空气滞留,水路应设计成由下至上的单向行程比较合理、可行。

3.5 提供全冷量焓效率和显冷量效率的计算公式由于样本上提供的风量、冷量是名义工况下测定的,而在实际使用中,名义风量和名义冷量一般都不会出现,依此作为选型依据是不合理的。

因此,厂家在产品样本上除了标明名义风量、名义冷量外,还应提供每一种型号机组的全冷量焓效率和显冷量效率的计算公式,以供设计人员选型时根据不同的设计工况进行设计风量、设计冷量的计算,以便合理选用风机盘管,这样既保证满意的空调效果,又能节省初投资和运行能耗,一举两得,应是业内人士共同追求的目标。

相关文档
最新文档