高中生物基因工程知识详解

合集下载

高中生物基因工程考点精选全文完整版

高中生物基因工程考点精选全文完整版

可编辑修改精选全文完整版高中生物基因工程考点基因工程专题在高中生物中处于重要的地位,我们在生物考试时会遇到哪些相关考点?下面店铺给大家带来高中生物基因工程考点,希望对你有帮助。

高中生物基因工程考点1. 作为运载体必须具备的特点是:能够在宿主细胞中复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选.质粒是基因工程最常用的运载体,它存在于许多细菌以及酵母菌等生物中,是能够自主复制的很小的环状DNA分子.2.基因工程的一般步骤包括:①提取目的基因②目的基因与运载体结合③将目的基因导入受体细胞④目的基因的检测和表达.3.重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程.4.区别和理解常用的运载体和常用的受体细胞,目前常用的运载体有:质粒、噬菌体、动植物病毒等,目前常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等.5.基因诊断是用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本的遗传信息,达到检测疾病的目的.6.基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的.高中生物基因工程知识点(1)基因工程的概念标准概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组细胞在受体细胞内表达,产生出人类所需要的基因产物.通俗概念:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状.(2)基因操作的工具A.基因的剪刀——限制性内切酶(简称限制酶).①分布:主要在微生物中.②作用特点:特异性,即识别特定核苷酸序列,切割特定切点.③结果:产生黏性未端(碱基互补配对).B.基因的针线——DNA连接酶.①连接的部位:磷酸二酯键,不是氢键.②结果:两个相同的黏性未端的连接.C.基困的运输工具——运载体①作用:将外源基因送入受体细胞.②具备的条件:a、能在宿主细胞内复制并稳定地保存.b、具有多个限制酶切点.c、有某些标记基因.③种类:质粒、噬菌体和动植物病毒.④质粒的特点:质粒是基因工程中最常用的运载体.(3)基因操作的基本步骤A.提取目的基因目的基因概念:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等.提取途径:B.目的基因与运载体结合用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒)C.将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞D.目的基因检测与表达检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒.表达:受体细胞表现出特定性状,说明目的基因完成了表达过程.如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等.(4)基因工程的成果和发展前景A.基因工程与医药卫生B.基因工程与农牧业、食品工业C.基因工程与环境保护高中生物基因工程核心知识点1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程的概念基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

二、基因工程的工具1、限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。

2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端的 DNA 片段连接起来,形成磷酸二酯键。

常用的 DNA 连接酶有 E·coli DNA 连接酶和 T4 DNA 连接酶。

3、载体常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。

载体需要具备的条件包括:能够在宿主细胞中稳定保存并自我复制;具有一个或多个限制酶切点,以便与外源基因连接;具有标记基因,便于进行筛选。

三、基因工程的基本操作程序1、目的基因的获取目的基因可以从自然界已有的物种中分离出来,也可以通过人工合成的方法获得。

常用的方法有从基因文库中获取、利用 PCR 技术扩增目的基因、通过化学方法人工合成等。

2、基因表达载体的构建基因表达载体的构建是基因工程的核心步骤。

目的是使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。

一个基因表达载体包括目的基因、启动子、终止子、标记基因等部分。

3、将目的基因导入受体细胞将目的基因导入受体细胞的方法因受体细胞的不同而有所不同。

例如,将目的基因导入植物细胞可以采用农杆菌转化法、基因枪法和花粉管通道法;将目的基因导入动物细胞常用的方法是显微注射法;将目的基因导入微生物细胞通常采用感受态细胞法。

4、目的基因的检测与鉴定目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,需要进行检测与鉴定。

人教版高中生物专题一基因工程详细知识点

人教版高中生物专题一基因工程详细知识点

生物选修三易考知识点背诵专题1 基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA 重组技术。

(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物(微生物)中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端(中心轴线的两侧)和平末端(中心轴线)EcoRⅠ)能识别GAATTC序列,SmaI识别CCCGGG序列:他们识别的核苷酸序列不同,但是切点都是在G↓C之间。

(4)比较有关的DNA酶(1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基(2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。

注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。

(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。

(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。

注意比较DNA聚合酶和DNA连接酶的异同点。

2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4D NA连接酶来自T4噬菌体,能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

第3章 基因工程 期末复习知识点总结【新教材】人教版高中生物选择性必修三

第3章  基因工程 期末复习知识点总结【新教材】人教版高中生物选择性必修三

第3章基因工程1、什么是基因工程:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。

2、基因工程的诞生(三个理论和三个技术):基因工程是在生物化学、分子生物学和微生物学等学科基础上发展起来的,正是这些学科的基础理论和相关技术的发展催生了基因工程,具体有三大理论发现和三个技术突破。

1)理论基础:DNA是遗传物质;DNA分子的双螺旋结构和半保留复制;遗传密码的通用性和遗传信息传递的方式;2)技术基础:限制性核酸内切酶的发现与DNA的切割;DNA连接酶的发现与DNA片段的连接;基因工程载体的构建与应用●理论上的三大发现⑴、发现了遗传物质——DNA1944年,艾弗里(O.T.Avery)的肺炎双球菌转化实验⑵、揭示了遗传物质的分子机制:DNA分子的双螺旋结构和半保留复制1953年,沃森(J.D.Watson)和克里克(F.Crick)的DNA双螺旋结构模型、半保留复制图,获1958年诺贝尔奖。

⑶、确立了遗传信息的传递方式:以密码形式传递1963年,美国尼伦伯格(M.W.Nirenberg)和马太(H.Matthaei)确立了遗传信息以密码形式传递,破译了编码氨基酸的遗传密码(3个核苷酸=1个密码子=1个aa)。

●技术上的三大突破⑴、世界上第一个重组DNA实验:实现不同来源DNA的体外重组1972年斯坦福大学化学家伯格(P.Berg)借助内切酶和连接酶将猴病毒SV40的DNA 和大肠杆菌λ噬菌体的DNA在试管中连接在了一起,第一次成功地实现了DNA的体外重组。

⑵、第一个基因克隆实验:重组DNA表达实验,是世界上第一个基因工程实验1973年美国斯坦福大学医学院遗传学家科恩(S.Cohen)将体外构建的含有四环素和卡那霉素抗性基因的重组质粒导入大肠杆菌,获得了具有双抗性的大肠杆菌转化子,成功完成了第一个基因克隆实验。

高二生物基因工程知识点讲解

高二生物基因工程知识点讲解

高二生物基因工程知识点讲解一、基因工程的概念和背景介绍基因工程是指利用生物技术手段对生物体遗传物质进行人为的操纵和调控的过程。

它可以通过基因的克隆、转移、修饰等手段,改变生物体的遗传特性。

基因工程技术的发展为人们解开生命奥秘、改良农作物品质、治疗疾病等方面提供了有力的工具。

二、基因工程的重要概念1. DNA:脱氧核糖核酸,是构成生物体遗传物质的主要成分,携带着生物体的遗传信息。

2. 基因:指导生物体一种特定的遗传特征的DNA片段。

3. 重组DNA技术:通过人为手段将不同来源的DNA片段组合起来形成新的序列。

三、常见的基因工程技术1. 基因的克隆:通过在体外将DNA片段插入到载体DNA中,然后将该重组DNA导入宿主细胞中,实现基因的复制和扩增。

2. 限制性内切酶:通过识别和切割DNA链的特定序列,实现对DNA片段的剪切,为基因的克隆提供基础。

3. DNA连接酶:通过连接DNA链断裂的两端,将DNA片段与载体DNA连接起来。

4. 转基因技术:将异源基因导入目标生物体中,使其具有外源基因所赋予的特征或功能。

5. 基因编辑技术:利用CRISPR/Cas9等工具直接编辑生物体的基因序列,实现对基因的精确修饰。

四、基因工程在农业领域的应用1. 转基因植物的培育:通过转基因技术向农作物中导入抗虫、耐旱等基因,提高农作物的产量和质量。

2. 抗病虫害作物的培育:通过转基因技术向作物中导入抗病虫害的基因,提高作物的抗病虫害能力。

3. 生物农药的开发:利用基因工程技术改良微生物,生产能够有效控制害虫和病原菌的生物农药,减少化学农药的使用。

五、基因工程在医学领域的应用1. 基因诊断技术:通过检测个体的基因序列,确定其患某种疾病的可能性。

2. 基因治疗:将缺陷基因替换或修复为正常基因,治疗一些遗传病。

3. 基因药物研发:利用基因工程技术生产嵌合蛋白、抗体药物等,用于治疗癌症、糖尿病等疾病。

六、基因工程的伦理与风险1. 伦理问题:涉及个体隐私、生物多样性、人类尊严等,需要科学家和决策者谨慎权衡利弊。

高中生物基因工程核心知识点总结

高中生物基因工程核心知识点总结

高中生物基因工程核心知识点总结
一、生物工程基本概念
1、生物工程:是以生物学知识、生物技术手段,对细胞、微生物、生物分子和其它生物材料进行改造,以及利用工程原理和技术解决或优化生物学问题的学科。

2、分子工程:建立、组装和修饰分子,应用分子的变化来把控和调整生命过程的学科。

3、基因工程:建立、组装和改变基因,应用基因的变化来把控和调整生命过程的学科。

二、基因工程的基本理论和实践
1、基因工程的概念:基因工程是对物种细胞的基因结构进行改变,使细胞依据调控的要求合成想要的物质或达到目的的技术。

2、基因组:基因组指细胞或组织中基因组成的细胞总和,它可以表达出一种物种所拥有的特性并参与各种活动。

3、转基因技术:利用质粒载体从一种生物体中取出基因,放入另一种生物体中,实现基因重组来改变生物遗传特性。

4、基因测序:利用核酸聚合酶酶切基因片段,用多种技术和设备测定其结构,分析基因的种类、数目、排布、重组等相关内容。

5、基因扩增技术:利用催化剂体外实现DNA的复制,改变或增加基因的数量,从而改变功能,调控细胞表达活动,引入新功能。

6、蛋白质工程:合成、结晶和组装蛋白质,改变其结构和性质,以达到改造表型的目的,从而实现新的功能。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结基因工程是现代生物技术的核心内容之一,对于我们理解生命的奥秘和解决现实中的许多问题具有重要意义。

接下来,让我们一起深入学习高中生物中基因工程的相关知识点。

一、基因工程的概念基因工程,又称为 DNA 重组技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

二、基因工程的基本工具1、限制性核酸内切酶(简称限制酶)这是基因工程中的“剪刀”,能够识别特定的核苷酸序列,并在特定的切点上切割 DNA 分子。

限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。

2、 DNA 连接酶它是基因工程中的“针线”,能将两个具有相同末端的 DNA 片段连接起来。

3、运载体常见的运载体有质粒、噬菌体和动植物病毒等。

运载体需要具备的条件包括:能够在宿主细胞中稳定保存并自我复制;具有多个限制酶切点,以便与外源基因连接;具有标记基因,便于筛选含有目的基因的受体细胞。

三、基因工程的基本操作程序1、目的基因的获取目的基因可以从自然界中已有的物种中分离出来,也可以通过人工合成的方法获取。

常用的方法有从基因文库中获取、利用 PCR 技术扩增目的基因等。

2、基因表达载体的构建这是基因工程的核心步骤。

目的基因与运载体结合形成重组 DNA 分子,这个过程需要用到限制酶和 DNA 连接酶。

重组 DNA 分子除了包含目的基因外,还需要有启动子、终止子和标记基因等元件。

3、将目的基因导入受体细胞将目的基因导入植物细胞常用的方法有农杆菌转化法、基因枪法和花粉管通道法;导入动物细胞常用的方法是显微注射法;导入微生物细胞则常用感受态细胞法。

4、目的基因的检测与鉴定目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,需要进行检测与鉴定。

检测的方法包括分子水平的检测和个体水平的鉴定。

基因工程知识点全

基因工程知识点全

第一章基因工程概述1.什么是基因工程,基因工程的基本流程基因工程Genetic engineering原称遗传工程;从狭义上讲,基因工程是指将一种或多种生物体供体的基因与载体在体外进行拼接重组,然后转入另一种生物体受体内,使之按照人们的意愿遗传并表达出新的性状;因此,供体、受体和载体称为基因工程的三大要素;1.分离目的基因2.限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5.选择、筛选含目的基因的克隆6.培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件➢具有对受体细胞的可转移性或亲和性;➢具有与特定受体细胞相适应的复制位点或整合位点;➢具有多种单一的核酸内切酶识别切割位点;➢具有合适的筛选标记;➢分子量小,拷贝数多;➢具有安全性;2. 质粒载体有什么特征,有哪些主要类型1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建1删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量;一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定;2灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数3加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞;4在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头Polylinker,便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入;5根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件;4. 什么是人工染色体载体将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体5. 什么是穿梭载体人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体;6.入-噬菌体载体及构建-DNA为线状双链DNA分子,长度为,在分子两端各有12个碱基的单链互补粘性末端;➢1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点➢引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性➢灭活某些与裂解周期有关基因;➢使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现象的发生;➢加装选择标记,便于重组体的检测单链噬菌体DNA载体➢过定点诱变技术封闭重复的重要限制性酶切口;➢引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列lacZ’的乳糖操纵子片段lac、组氨酸操纵子片段his以及抗生素抗性基因等;➢将人工合成的多克隆位点接头片段插在 lacZ’标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体 DNA 的混浊噬菌斑呈蓝色;➢4在多克隆位点接头片段的两侧区域改为统一的 DNA 测序引物序列,使得重组 DNA 分子的单链形式经分离纯化后,可直接进行测序反应;8. II类限制性内切核酸酶的特点限制性核酸内切酶 Restriction endonucleases是一类能在特异位点上催化双链DNA 分子的断裂,产生相应的限制性片段的核酸水解酶;➢识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成的特定序列靶序列;➢识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构;➢切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称可形成粘性末端或平末端的DNA分子;同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶;同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶Isocandamers:识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶;9.甲基化酶Ⅱ类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识别序列内使某位碱基甲基化,从而封闭该酶切口;甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口➢甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内切酶的切割;➢甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点;连接酶连接作用的特点:①DNA连接酶需要一条DNA链的3’末端有一个游离的羟基-OH,另一条DNA链的5’末端有一个磷酸基-P的情况下,只有在这种情况下,才能发挥连接DNA分子的作用;②只有当3’-OH和5’-P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键;③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是双螺旋DNA分子的一部分;④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口nick,而不能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口gap;⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连接反应时,还需要提供一种能源分子NAD+或ATP11.大肠杆菌 DNA聚合酶和Klenow大片段各有什么作用DNA聚合酶作用的特点:➢要有底物4种dNTP为前体催化合成DNA;➢接受模板指导;➢需要有引物3’羟基的存在;➢不能起始合成新的DNA链;➢催化dNTP加到生长中的DNA链3’-OH末端;➢催化DNA的合成方向是5’→3’;Klenow酶的基本性质:➢大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个氨基酸残基片段,即Klenow酶;分子量为76kDa;➢Klenow酶仍拥有5’→3’的DNA聚合酶活性和5’→3’的核酸外切酶活性,但失去了5’→3’的核酸外切酶活性;Klenow酶的基本用途:➢修复由限制性核酸内切酶造成的 3’凹端,使之成为平头末端;➢以含有同位素的脱氧核苷酸为底物,对DNA片段进行标记;➢用于催化 cDNA 第二链的合成;➢用于双脱氧末端终止法测定 DNA 的序列;聚合酶T4-DNA聚合酶酶的基本特性:➢有3’→5’的核酸外切酶活性和5’→3’的DNA聚合酶活性;➢在无dNTP时,可以从任何3’-OH端外切;➢在只有一种dNTP时,外切至互补核苷酸;➢在四种dNTP均存在时,聚合活性占主导地位;T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的3’粘性末端13. 影响连接效率的因素有:➢温度最主要的因素离子浓度➢ATP的浓度 10μM - 1μM➢连接酶浓度平末端较粘性末端要求高➢反应时间通常连接过夜➢插入片段和载体片段的摩尔比➢DNA末端性质➢DNA片段的大小14.如何将不同DNA分子末端进行连接1.相同粘性末端的连接如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA分子 2.平头末端的连接T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用;3.不用粘性末端的连接3’端的粘性末端用T4-DNA聚合酶切平5’端的粘性末端用klenow酶补平,或者用S1核酸酶切平最后用T4-DNA连接酶进行平末端连接15. 碱性磷酸酶有什么作用1.该酶用于载体 DNA的5’末端除磷操作,以提高重组效率;2.用于外源DNA片段的5’端除磷,则可有效防止外源 DNA 片段之间的连接;16. 末端脱氧核苷酸转移酶有哪些作用➢给载体或目的DNA加上互补的同聚物尾;➢DNA片段3’末端的同位素标记;17. 2、细菌转化的步骤:∙感受态的形成;感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、切割及加工;感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质如细菌溶素的合成,使细菌胞壁部分溶解,局部暴露出细胞膜上的 DNA 结合蛋白和核酸酶等;∙转化因子的结合;受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA结构特异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上;∙转化因子的吸收;双链 DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中;∙整合复合物前体的形成;进入受体细胞的单链 DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,并将其引导至受体菌染色体DNA处;∙转化因子单链DNA的整合;供体单链DNA片段通过同源重组,置换受体染色体DNA的同源区域,形成异源杂合双链 DNA结构;+诱导转化原理:①在0℃的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态;②Ca2+能与加入的DNA分子结合,形成抗DNA酶DNase的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上;当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道;③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细胞,可以提高DNA的转化效率;∙但该法要求条件高,对外界污染物极为敏感,通常很少采用;介导细菌的原生质体转化∙PEG是乙二醇的多聚物, 存在不同分子量的多聚体,它可改变各类细胞的膜结构, 使两细胞相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两细胞的胞质沟通成为可能,从而造成细胞之间发生融合;20.电穿孔法是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法;P52 接合转化,入噬菌体感染未归纳21.转化率的影响因素.载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同;载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体; 插入片段大小:对质粒载体而言,插入片段越大,转化效率越低;重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响22.转化细胞的扩增转化细胞的扩增操作:指转化完成之后细胞的短时间培养;在实验时,扩增操作往往与转化操作偶联在一起,如:∙Ca2+诱导转化后的37℃培养一个小时∙原生质体转化后的再生过程∙λ噬菌体转染后的30℃培养等,均属扩增操作扩增操作的目的∙增殖转化细胞,使得有足够数量的转化细胞用于筛选程序;∙扩增和表达载体分子上的标记基因,便于筛选;∙表达外源基因,便于筛选和鉴定;23.抗药性筛选法这是利用载体DNA分子上的抗药性选择标记进行的筛选方法;抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcr将外源DNA片段插在BamHI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcs抗药性筛选法的基本操作:先将转化液涂布含有Ap的平板再将Ap平板上的转化子影印至含有Tc的平板上在Ap平板上生长,但在Tc平板上不长的转化子即为重组子 P56抗药性标记插入失活选择法∙经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子;为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选;如果外源基因插入在载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性重组子;24. 什么是蓝白斑筛选法这种方法是根据组织化学的原理来筛选重组体;主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷X-gal平板上形成浅蓝色的噬菌斑;外源基因插人lac或lac基因部分被取代后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 X-gal平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑;筛选法利用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR,通过对PCR产物的电泳分析,确定目的基因是否插入到载体中;由于在载体DNA分子中,外源DNA插入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子;第三章基因工程的常规技术1. 探针有哪些类型探针标记有哪些方法类型:同源或部分同源探针cDNA探针人工合成的寡核苷酸探针标记方法:①5’端标记法②反转录标记法③缺刻前移标记法④ABC标记法4.什么是ABC荧光显色酶标记法ABC 标记法;∙A为Avidin生物素抗性蛋白,每个Avidin分子可结合3 - 4个生物素分子;∙B为Biotin生物素,每个Biotin分子可结合2个Avidin分子;∙C为Complex,首先将Biotin共价结合在探针分子上,荧光胺标记在Avidin上,两者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光;如果将某一生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术5.亚克隆法∙亚克隆:是将克隆片段进一步片段化后再次进行的克隆;∙一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子;此时,该重组分子中的无关DNA区域以被大量删除;6. 菌落嗜菌斑原位杂交的基本原理、流程∙该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落;∙操作步骤:∙①菌落生长∙②转移到NC膜上∙③DNA释放和变性∙变成单链DNA:∙ 10%SDS NaOH∙④中和 Tris-HCl pH∙⑤固定 80 ℃ 120’∙⑥杂交包括预杂交,加探针DNA杂交∙⑦放射自显影∙⑧对照比较,选出重组克隆7.鸟枪法∙鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的 DNA 片段,分别连接到载体 DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子;鸟枪法制备目的基因的主要步骤∙①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端;原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达100Kb以上;全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切:片段长度可控,含有粘性末端,目的基因完整;∙②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体;∙③重组DNA分子导入受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞;∙④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法筛选模型的建立;∙⑤目的基因的定位利用鸟枪法获得的期望重组子只是含有目的基因的 DNA 片段,必须通过次级克隆或插入灭活,在已克隆的 DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列;法酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因;这种方法以目的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA,即cDNA,然后在DNA聚合酶的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA克隆; 的分离纯化绝大多数的真核生物mRNA在其3’端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱即可分离10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;过程:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火复性:模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍;11. 什么是基因组文库其构建方法是怎样的是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库;基因组文库构建的一般步骤①载体的选择和制备;②高纯度、大分子量基因组 DNA 的提取;③基因组 DNA 的部分酶切与分级分离;④载体与DNA片段的连接;⑤转化或侵染宿主细胞;⑥筛选鉴定基因组及保存;12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA文库应具备下列条件:∙重组克隆的总数不宜过大,以减轻筛选工作的压力∙载体的装载量最好大于基因的长度,避免基因被分隔克隆;∙克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序;∙克隆片段易于从载体分子上完整卸下;∙重组克隆能稳定保存、扩增、筛选;基因文库的构建通常采用鸟枪法和cDNA法13.外源DNA片段的切割原则片段之间要有一定的重叠序列片段大小要均一文库构建的步骤∙细胞总RNA的提取和mRNA的分离∙第一链cDNA合成∙第二链cDNA合成∙双链cDNA的分级分离∙双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖∙重组体的筛选与鉴定第四章基因在大肠杆菌、酵母的高效表达1. 启动子∙启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20~300个碱基,是控制基因转录的重要调控元件;在一定条件下mRNA的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达;∙启动子的特征:①序列特异性②方向性③位置特性④种属特异性2.启动子类型∙组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异;∙组织特异启动子:又称器官特异性启动子;在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性;∙诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平;目前已经分离了光诱导表达基因启动子、热诱导表达基因启动子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子等;3.终止子终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA的一部分,并形成特殊的二级结构,由此终止基因的转录;序列SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从起始密码子处开始5.密码子不同生物对密码子的偏爱性1.生物体基因组中的碱基含量2.密码子与反密码子的相互作用的自由能3.细胞内tRNA的含量6. 密码子偏爱性对外源基因表达的影响∙由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择;一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:∙外源基因全合成∙同步表达相关tRNA编码基因7. 包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体8. 包涵体的形成机理∙①折叠状态的蛋白质集聚作用;∙②非折叠状态的蛋白质集聚作用∙③蛋白折叠中间体的集聚作用;9. 包涵体的分离检测∙包涵体的分离主要包括菌体破碎、离心收集以及清洗三大操作步骤;10. 分泌型目的蛋白表达系统的构建∙包括大肠杆菌在内的绝大多数革兰氏阴性菌不能将蛋白质直接分泌到胞外,但有些革兰氏阴性菌能将细菌的抗菌蛋白细菌素分泌到培养基中,这一过程严格依赖于细菌素释放蛋白,它激活定位于内膜上的磷酸酯酶A,导致细菌内外膜的通透性增大∙因此,只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞;此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌;11融合蛋白表达质粒的构建原则:∙受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化;。

生物基因工程高中知识点

生物基因工程高中知识点

生物基因工程高中知识点
一、基因工程
1、什么是基因工程
基因工程是指通过精确的技术,改变有机体内基因的组成或排列,从而使有机体的特定基因表达产生变化,从而改变有机体的遗传性质以及表型的一种生物学作用。

2、基因工程的步骤
(1)取得基因:通常需先取得需要改造的基因;
(2)定向改造基因:利用基因重组技术及其他技术精确地改造基因;
(3)细胞载体克隆:将改造后的基因插入到某种有机体内,以便
复制变异后的基因;
(4)筛选结果:最后依靠环境因素及遗传因素,从已变异生物中
筛选出有用的突变体。

二、遗传工程
1、什么是遗传工程
遗传工程是指利用分子遗传学和生物技术,向目标有机体插入一个或几个外源基因,从而改变原有的遗传因素、遗传型和表型的活动。

2、遗传工程的核心技术
(1)克隆技术:是指从一个有机体的体细胞中取出某特定的基因,用复制机制,使其重复增殖,称之为克隆;
(2)基因重组技术:是指在双脱氧核糖核酸(DNA)或者核糖体
RNA(rRNA)的基础上,通过酶促反应、有序组装各部分成一个新的配列,制备出含有新的遗传信息的新的基因或者基因组的技术;
(3)生物工程技术:是指对有机体的基因组进行检测、编辑、载体克隆和细胞集落分离等技术。

高中生物选修三基因工程主要知识点

高中生物选修三基因工程主要知识点

高中生物选修三基因工程主要知识点(1.1、1.2)一、基因工程:按照人们的意愿,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

一、基因工程的三大工具:限制性核酸内切酶—“分子手术刀”;DNA连接酶—“分子缝合针”;基因进入受体细胞的载体—“分子运输车”。

二、限制性核酸内切酶的特点:能够识别双链DNA分子的某种特定核苷酸序列,并且是每一条链中特定部位的两个核苷酸之间的磷酸二酯键。

三、限制酶识别序列的特点:反向对称,重复排列。

四、限制酶在原核生物中的作用:切割外源DNA,保护细菌细胞。

五、为什么限制酶不剪切原核生物自身的DNA分子?原核生物本身不含相应特异性序列;对DNA分子进行甲基化修饰。

六、两种常见的DNA连接酶:E·coli DNA连接酶:源自大肠杆菌,只连接黏性末端;T4DNA连接酶:提取自T4噬菌体,两种末端均可连接,连接平末端效率低。

七、DNA连接酶和DNA聚合酶的相同点:都是蛋白质;都能生成3'磷酸二酯键。

不同:前者在两个片段之间形成3'磷酸二酯键,后者只能将单个核苷酸连接到已有片段上;前者不需要模版,后者需要。

八、载体需要满足的条件:有一到多个限制酶切点;对受体细胞无害;导入基因能在受体细胞内复制和表达;有某些标记基因;分子大小合适。

九、质粒:一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的很小的双链环状DNA分子。

十、标记基因的作用:鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。

十一、三类载体:质粒;λ噬菌体的衍生物;动植物病毒。

十二、获取目的基因的方法:说法一:从自然界已有的物种中分体(鸟枪法、反转录法)、用人工的方法合成;说法二:从基因文库中获取(鸟枪法、反转录法)、利用PCR技术合成、用化学方法人工合成。

十三、基因库:一个物种中全部个体的全部基因的总和;基因文库:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,个个受体菌分别含有这种生物的不同的基因;基因组文库:含有某种生物全部基因的基因文库;部分基因文库:只含有一种生物部分基因的基因文库;cDNA文库:用某种生物发育的某个时期的mRNA反转录产生的多种互补DNA片段,与载体连接后储存在一个受体菌群中。

人教版高中生物选修3专题一基因工程详细知识点

人教版高中生物选修3专题一基因工程详细知识点

人教版高中生物选修3专题一基因工程详细知识点生物选修三易考知识点背诵专题1 基因工程基因工程的概念基因工程是指按照人们的愿望,通过体外DNA重组和转基因技术,严格设计生物,赋予其新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程在DNA分子水平上进行设计和施工,又称为DNA重组技术。

一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)1)来源:主要从原核生物(微生物)中分离纯化出来。

2)功能:能够识别双链DNA分子的特定核苷酸序列,并使特定部位的两个核苷酸之间的磷酸二酯键断开,具有专一性。

3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端(中心轴线的两侧)和平末端(中心轴线)。

大肠杆菌的一种限制酶(EcoRⅠ)能识别GAATTC序列,SmaI识别CCCGGG序列。

它们识别的核苷酸序列不同,但切点都在G↓C之间。

4)比较有关的DNA酶1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基。

2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用部位是碱基和碱基之间的氢键。

注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。

3)DNA聚合酶:能将单个核苷酸通过磷酸二酯键连接成DNA长链。

4)DNA连接酶:通过磷酸二酯键连接双链DNA的缺口。

注意比较DNA聚合酶和DNA连接酶的异同点。

2.“分子缝合针”——DNA连接酶1)两种DNA连接酶(E.coli DNA连接酶和T4 DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:E.coli DNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4 DNA连接酶来自T4噬菌体,能缝合两种末端,但连接平末端的之间的效率较低。

2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

高中生物基因工程

高中生物基因工程

(一)、获取目的基因的常用方法有哪些?
初始目的基因的来源 1. 从生物中直接获取 2. 人工合成
注意:要保持基因的完整性
目的基因的核苷酸序列未知 目的基因的核苷酸序列已知
从基因文 库中直接 获取
聚合酶链式反应 (PCR)扩增化学合成法1、从基因中直接获取目的基因基因
将含有某种生物不同基因的许多DNA片断,导 入到受体菌的群体中,各个受体化 • 常用的受体细胞: 有大肠杆菌、枯草杆菌、土壤农杆菌、 酵母菌和动植物细胞等。
• 将目的基因导入受体细胞的原理 借鉴细菌或病毒侵染细胞的途径。
1、将目的基因导入植物细胞
①农杆菌转化法:Ti质粒的t DNA ②基因枪法 ③花粉管通道法
2、将目的基因导入动物细胞
显微注射技术:将基因表达载体提纯,用显微仪 注射到受精卵中
种类 项目
作用 底物
作用 部位
限制酶
D分子 片段
磷酸二 酯键
DNA 聚合酶
脱氧核苷酸
磷酸二 酯键
解旋酶
DNA 分子 碱基对间 的氢键
作用 特点
切割目的基因及载体, 能专一性识别双链DNA 分子的某种特定的核 苷酸序列,并且使每 一条链中特定部位的 两个核苷酸之间的磷 酸二酯键断开
将腺苷酸脱氨酶基因转入取自患者的淋 巴细胞中,再将这种淋巴细胞转入患者体内。
4、基因治疗的类型 体外基因治疗:先从病人体内获得某种细 胞,进行培养,然后在体外完成基因转移, 再筛选成功转移的细胞扩增培养,最后重 新输入患者体内。
体内基因治疗:直接向人体组织细胞中转 移的治病方法。(如将治疗囊性纤维病的 正常基因转入患者肺组织)
“分子手术刀” ——限制酶
1、来源: 主要是从原核生物中分离纯化出来的一

高中基因工程总结的知识点

高中基因工程总结的知识点

高中基因工程总结的知识点
一、基因工程
1、什么是基因工程
基因工程是指将一种生物体的基因插入另一种生物体,从而改变另一种生物体的性状,利用它们来改造和改变生物物种的一种技术。

2、基因工程的意义
基因工程可以帮助人们改善现有的农作物品种,以便获得更高的产量;同时也能够生产药物,如胰岛素,以治疗糖尿病等疾病。

3、基因工程的基本步骤
(1)获取基因序列:科学家首先获取目标基因的结构特征,以
及基因的排列顺序;
(2)构建基因组:科学家将基因拆分为多个碱基对,构建基因组;
(3)转化:将基因注入受体生物体,使之获得新的基因;
(4)表达:把插入的基因转录成mRNA,再转录成蛋白质,从而在受体生物体内表达出新的基因。

二、遗传工程
1、什么是遗传工程
遗传工程是通过改变某一物种的基因组结构而获得意想不到的
新突变,并利用这些突变来改良物种的一种技术。

2、遗传工程的意义
遗传工程可以帮助人们改良农作物品种,提高农作物的生长效率;
同时也可以用于育种,改良家禽种类,以提高食品的品质。

3、遗传工程的基本步骤
(1)获取基因:科学家首先获取和研究目标物种中的基因;
(2)基因分离:将基因拆分为多个碱基对,构建基因组;
(3)基因转移:将基因转移到另一物种中,进行基因转换;
(4)效果评估:使用遗传分析和实验测试,评估遗传工程所产生的效果。

高中生物选修三《基因工程》知识点归纳

高中生物选修三《基因工程》知识点归纳

高中生物选修三《基因工程》知识点归纳1. 遗传工程:狭义:基因工程广义:把一种生物的遗传物质移到另一种生物的细胞中。

2. 基因工程的核心是构建重组DNA分子。

3. 基因工程诞生的理论基础:DNA是生物遗传物质的发现,DNA双螺旋结构的确立以及遗传信息传递方式的认定。

4. 实施基因工程的条件:工具酶(限制性内切酶、连接酶、聚合酶) 目的基因:基因载体:要求:①能自我复制。

②含限制性内切酶位点。

③含筛选标记(一般为抗性基因)。

④能启动外源目的基因的转录、翻译。

⑤在细菌中,质粒有较高的拷贝数与稳定性。

受体细胞:微生物、动植物细胞(用氯化钙处理大肠杆菌可增加其细胞壁通透性,方便重组质粒进入。

)5. 基因工程的工具:①限制性核算内切酶可作为切割DNA分子的手术刀,使DNA重组成为可能②DNA连接酶具有缝合DNA的作用,可以将外源基因和载体DNA连接在一起。

③载体:最常见的载体为大肠杆菌质粒,质粒常含抗生素抗性基因。

(质粒是能自主复制的双链环状DNA,在细菌中独立于染色体存在的特殊遗传物质)。

除常用细菌和酵母的质粒外,改造和修饰后的噬菌体和病毒DNA均可作为基因载体。

向双子叶植物导入基因时,常用土壤农杆菌的Ti质粒。

6. 基因工程的基本操作步骤:目的基因的获得、重组DNA的形成、重组DNA 导入受体细胞、筛选含有目的基因的受体细胞、目的基因的表达。

7. 获得目的基因的方法:若化学序列已知,则可用化学方法合成目的基因或用PCR扩增目的基因。

若序列未知,则应建立包含目的基因的基因文库后,从中寻找。

8. 转基因植物解决了传统育种中远缘亲本难以杂交的缺陷,并可以定向的改变植物的性状。

9. 基因工程在医药工业和医学领域的应用主要包括基因工程药物和基因治疗。

10. 基因工程药物有胰岛素,干扰素(病毒入侵细胞后产生的糖蛋白,有抗病毒,抗细胞分裂和免疫调节等多种生物学功能,是治疗病毒性肝炎和肿瘤的药物),乙型肝炎疫苗等。

11. 基因治疗是向目标细胞中引入正常功能的基因,以纠正或补偿基因的缺陷,达到治疗的目的。

高中生物选修三基因工程常考知识点归纳

高中生物选修三基因工程常考知识点归纳

1.基因工程的概念(1)供体:提供目的基因。

(2)操作环境:体外。

(3)操作水平:分子水平。

(4)原理:基因重组。

(5)受体:表达目的基因。

(6)本质:性状在受体体内的表达。

(7)优点:克服远缘杂交不亲和的障碍,定向改造生物的遗传性状。

2.基础理论和技术的发展催生了基因工程(1)20世纪中叶,基础理论取得了重大突破①DNA是遗传物质的证明:1944年,艾弗里等人通过不同类型肺炎双球菌的转化实验,不仅证明了生物的遗传物质是DNA,还证明了DNA可以从一种生物个体转移到另一种生物个体。

艾弗里等人的工作可以说是基因工程的先导。

②DNA双螺旋结构和中心法则的确立:1953年,沃森和克里克建立了DNA双螺旋结构模型。

1958年,梅塞尔松和斯塔尔用实验证明DNA的半保留复制。

随后不久确立的中心法则,解开了DNA复制、转录和翻译过程之谜,阐明了遗传信息流动的方向。

③遗传密码的破译:1963年,尼伦伯格和马太破译编码氨基酸的遗传密码。

1966年,霍拉纳用实验证实了尼伦伯格提出的遗传密码的存在。

这些成果不仅使人们认识到,自然界中从微生物到人类共用一套遗传密码,而且为基因的分离和合成等提供了理论依据。

(2)技术发明使基因工程的实施成为可能①基因转移载体的发现:1967年,罗思和赫林斯基发现细菌拟核DNA之外的质粒有自我复制能力,并可以在细菌细胞间转移,这一发现为基因转移找到了一种运载工具。

②工具酶的发现:1970年,阿尔伯、内森斯、史密斯在细菌中发现了第一个限制性内切酶(简称限制酶)后,20世纪70年代初相继发现了多种限制酶和连接酶,以及逆转录酶,这些发现为DNA的切割、连接以及功能基因的获得创造了条件。

③DNA合成和测序技术的发明:自1965年,桑格发明氨基酸序列分析技术后,1977年,科学家又发明了DNA序列分析的方法,为基因序列图的绘制提供了可能,之后,DNA 合成仪的问世又为引物、探针和小分子量DNA基因的获得提供了方便。

高中生物选修三专题一基因工程知识点

高中生物选修三专题一基因工程知识点

专题一基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。

(一)基因工程的基本工具1。

“分子手术刀”—-限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端.黏性末端:当限制酶从识别序列的中心轴线两侧切开时,被限制酶切开的DNA两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端.平末端:当限制酶从识别序列的中心轴线处切开时,切开的DNA两条单链的切口,是平整的,这样的切口叫平末端.2.“分子缝合针”-—DNA连接酶(1)两种DNA连接酶(E·coli DNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键.②区别:E·coli DNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键.DNA连接酶是(1)载体具备的条件:①能在受体细胞中复制并稳定保存。

②具有一至多个限制酶切点,供外源DNA片段插入。

③具有标记基因,供重组DNA的鉴定和选择.④对受体细胞无害.(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子.(3)其它载体:λ噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1。

高中生物基因工程知识详解

高中生物基因工程知识详解

高中生物基因工程知识详解高中生物基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。

2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA 片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同:¬¬¬DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

DNA 连接酶是连接两个DNA片段的末端,形成磷酸二酯键。

3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。

②具有一至多个限制酶切点,供外源DNA片段插入。

③具有标记基因,供重组DNA的鉴定和选择。

(2)最常用的载体是¬¬质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA 分子。

(3)其它载体:噬菌体的衍生物、动植物病毒高中生物基因工程的应用1.植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。

2.动物基因工程:提高动物生长速度、改善畜产品品质、用转基因动物生产药物。

3.基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。

误区提醒①动物基因工程主要是为了改善畜产品的品质,而不是为了产生体型巨大的个体。

②DNA分子作探针进行检测时应检测单链,即将待测双链DNA 分子打开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中生物基因工程知识详解
高中生物基因工程的基本工具
1. “分子手术刀”——限制性核酸内切酶( 限制酶)
(1) 来源:主要是从原核生物中分离纯化出来的。

(2) 功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3) 结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。

2. “分子缝合针” 一一DNA连接酶
(1) 两种DNA1 接酶(E•coliDNA 连接酶和T4-DNA 连接酶) 的比较:
①相同点:都缝合磷酸二酯键。

②区别:E•coliDNA 连接酶来源于T4 噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起
来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2) 与DNA聚合酶作用的异同:¬¬¬DNA 聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。

3. “分子运输车”——载体
(1) 载体具备的条件:①能在受体细胞中复制并稳定保
存。

②具有一至多个限制酶切点,供外源DNA片段插入。

③具有标记基因,供重组DNA的鉴定和选择。

(2) 最常用的载体是¬¬ 质粒, 它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

(3) 其它载体:噬菌体的衍生物、动植物病毒高中生物基因
工程的应用
1. 植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。

2. 动物基因工程:提高动物生长速度、改善畜产品品质、用转基因动物生产药物。

3. 基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。

误区提醒
①动物基因工程主要是为了改善畜产品的品质,而不是为了产生体型巨大的个体。

② DNA分子作探针进行检测时应检测单链,即将待测双链DNA分子打开。

③ Bt毒蛋白基因控制合成的Bt毒蛋白并无毒性,进入昆虫
消化道被分解成多肽后产生毒性。

高中生物基因工程的基本操作程序
第一步:目的基因的获取
1. 目的基因是指:编码蛋白质的结构基因。

2. 原核基因采取直接分离获得,真核基因是人工合成。

人工合成目的基因的常用方法有反转录法_和化学合成法_
3. PCR技术扩增目的基因
⑴原理:DNA双链复制
(2)过程:第一步:加热至90〜95C DNA解链;第二步: 冷却到55〜60C,引物结合到互补DNA链;第三步:加热至70〜
75C,热稳定DNA聚合酶从引物起始互补链的合成。

第二步:基因表达载体的构建
1. 目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。

2. 组成:目的基因+启动子+终止子+标记基因
(1) 启动子:是一段有特殊结构的DNA片段,位于基因
的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA最终获得所需的蛋白质。

(2) 终止子:也是一段有特殊结构的DNA片段,位于基
因的尾端。

(3) 标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。

常用的标记基因是抗生素基因。

第三步:将目的基因导入受体细胞
1. 转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。

2. 常用的转化方法:将目的基因导入植物细胞:采用最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等。

将目的基因导入动物细胞:最常用的方法是显微注射技术。

此方法的受体细胞多是受精卵。

将目的基因导入微生物细胞:原核生物作为受体细胞的原因是繁殖快、多为单细胞、遗传物质相对较少,最常用的原核细胞是大肠杆菌,其转化方法是:先用Ca2+ 处理细胞,使其成为感受态细胞,再将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。

3. 重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。

第四步:目的基因的检测和表达
1. 首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。

2. 其次还要检测目的基因是否转录出了mRN,A 方法是
采用用标记的目的基因作探针与mRNA杂交。

3. 最后检测目的基因是否翻译成蛋白质,方法是从转
基因生物中提取蛋白质,用相应的抗体进行抗原- 抗体杂
4. 有时还需进行个体生物学水平的鉴定。

如转基因抗虫植物是否出现抗虫性状。

看了< 高中生物基因工程知识详解> 的人还看了:
1. 高二生物基因工程知识点梳理
2. 高中生物选修3 基因工程知识点
3. 高中生物选修3 知识点汇总
4. 高中生物必修2 基因工程及其应用知识点
5. 高中生物基因工程复习练习及答案
6. 高中生物基因工程考点
7. 高中生物选修三基因工程基本操作程序。

相关文档
最新文档