2高一数学函数的奇偶性(1对1)

合集下载

函数的奇偶性第一课时课件-高一数学人教A版(2019)必修第一册

函数的奇偶性第一课时课件-高一数学人教A版(2019)必修第一册

A.-7
B.-5
C.-3
D.3
解析 ∵f(2 020)=a×2 0203+b×2 020-2=3, ∴a×2 0203+b×2 020=5, ∴f(-2 020)=-a×2 0203-b×2 020-2 =-5-2=-7. 答案 A
一个函数的部分可能 具有奇偶性,注意要 善于观察利用。
课堂精讲
已知 f(a)求 f(-a),判断 f(x)的奇偶性或构造已知奇偶性 的函数,利用奇偶性找出 f(a)与 f(-a)的关系即可.
判断函数是非奇非偶函数 ,只需找一适当的不符合 奇偶函数定义的特例即可
解 对任意 x∈(-∞,0)∪(0,+∞), f(-x)=(-x)2=x2=f(x), 则函数 f(x)为偶函数;
则 f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0, 即 f(-1)≠-f(1),f(-1)≠f(1), 则函数 f(x)既不是奇函数也不是偶函数.
②当 a≠0 时,f(x)=x2+ax(x≠0), 取 x=1,得 f(1)=1+a,取 x=-1, 得 f(-1)=1-a,
综上所述,当 a≠0 时, 函数 f(x)既不是奇函数也不是偶函数; 当 a=0 时,函数 f(x)为偶函数.
课堂精讲
角度 4 含参函数奇偶性的判断 【例 1-4】 判断下列函数的奇偶性:
求证:f(x)为偶函数;
(3)若函数 f(x)的定义域为(-l,l)(l>0),证明:f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数.
(3)∵x∈(-l,l),∴-x∈(-l,l),
又 F(-x)=f(-x)+f(x)=F(x),
可见 f(-x)的定义域也是(-l,l).
G(-x)=f(-x)-f(x)=-[f(x)-f(-x)]

高一数学《函数的奇偶性》教案设计

高一数学《函数的奇偶性》教案设计

高一数学《函数的奇偶性》教案设计高一数学《函数的奇偶性》教案设计(精选5篇)教案是教师为顺利而有效地开展教学活动,根据教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编整理的高一数学《函数的奇偶性》教案设计,希望对大家有帮助!高一数学《函数的奇偶性》教案设计篇1一、教学目标【知识与技能】理解函数的奇偶性及其几何意义【过程与方法】利用指数函数的图像和性质,及单调性来解决问题【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称说明:这也可以作为判断函数奇偶性的依据(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质课本P46 习题1.3(A组) 第9、10题, B组第2题四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数三、规律:偶函数的图象关于y轴对称;奇函数的`图象关于原点对称高一数学《函数的奇偶性》教案设计篇2教学目标:了解奇偶性的含义,会判断函数的奇偶性。

人教版高一数学必修一函数的奇偶性课件PPT

人教版高一数学必修一函数的奇偶性课件PPT

总之,他们不是老老实实地坐在座位上听讲,而是急不可耐地 挨过上课时间,显然,你已经知道,从上课铃到下课铃的整个 课堂时段中,只有那些高效教师才能保持课堂不被琐事中断, 并且保证学生能够集中注意力。在高效教师的课堂上,没有 一分钟被浪费,没有学生无事可做。也正是因为这个原因,高 效的教师很少遇到有关课堂纪律的问题。 那么,高效教师是如何让整个课堂从头到尾一直保持饱满的 状态呢?他们仔细规划课堂上的每一分钟,以保证没有时间 被浪费;他们仔细规划讲课过程,力求简明扼要(因为他们知 道长时间维持学生的注意力是件很不容易的事。)他们为领 先的学生着想,他们也为后进的学生着想。
奇函数的定义域有什么特征?
奇函数的定义域关于原点对称
理论迁移
例1 判断下列函数的奇偶性:
(1)
; (2)
.
例2 已知定义在R上的函数f(x)满足:对任
意实数,都有
成立.
(1)求f(1)和f(-1)的值;
(2)
确定f(x)的奇偶性.
例3 确定函数
y
-1 o 1
的单调区间.
x
1.3.2 奇偶性 第一课时 函数的奇偶性
f(x)=-f(-x)
思考4:我们把具有上述特征的函数叫做奇函 数,那么怎样定义奇函数?
如果对于函数f(x)定义域内的任意一个x, 都有f(-x)=-f(x)成立,则称函数f(x)为奇 函数.
思考5:等式f(-x)=-f(x)用文字语言怎样表 述?
自变量相反时对应的函数值相反
思考6:函数
是奇函数吗?
偶函数的定义域关于原点对称
知识探究(二)
考察下列两个函数:
(1)
;
(2)
.
y
y
o

高中数学函数的奇偶性(解析版)

高中数学函数的奇偶性(解析版)

1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。

数学高一函数知识点

数学高一函数知识点

数学高一函数知识点各个科目都考试内容有自己的学习方法,但其实其实全都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。

下面是给大家整理的一些高一函数知识点的研读资料,希望对大家有所能够帮助。

高一数学必修数论一函数高等数学1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)线性判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调上升通道性;偶函数在对称的单调区间内有功能性相反的单调性;2. 复合函数的有关风险问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究课题函数的问题一定要注意定义域优先优先权的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意两点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x)(a&gt;0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图形又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;五年级数学必修一函数知识点总结一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

高一数学函数的奇偶性1

高一数学函数的奇偶性1
(7) h( x ) x
3
x;
1 (8) k ( x ) 2 . x 1
练 习 1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;(偶) (3) h (x)=x3+1; (非奇非偶) 1 (4) k ( x ) 2 x [ 1, 2]; (非奇非偶) x 1 (5) f (x)=(x+1) (x-1); (6) g (x)=x (x+1);
(7) h( x ) x
3
x;
1 (8) k ( x ) 2 . x 1
练 习 1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;(偶) (3) h (x)=x3+1; (非奇非偶) 1 (4) k ( x ) 2 x [ 1, 2]; (非奇非偶) x 1 (5) f (x)=(x+1) (x-1); (偶 ) (6) g (x)=x (x+1); (非奇非偶)
(7) h( x ) x
3
x;
1 (8) k ( x ) 2 . x 1
练 习 1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;(偶) (3) h (x)=x3+1; (非奇非偶) 1 (4) k ( x ) 2 x [ 1, 2]; (非奇非偶) x 1 (5) f (x)=(x+1) (x-1); (偶 ) (6) g (x)=x (x+1); (非奇非偶)
(7) h( x ) x
3
x;
1 (8) k ( x ) 2 . x 1
(奇 )
(偶 )
练 习 2. 判断下列论断是否正确
(1)如果一个函数的定义域关于坐标原点 对称,则这个函数关于原点对称且这 个函数为奇函数; (2)如果一个函数为偶函数,则它的定义 域关于坐标原点对称. (3)如果一个函数定义域关于坐标原点对 称,则这个函数为偶函数; (4)如果一个函数的图象关于y轴对称,则 这个函数为偶函数.

高一数学函数的基本性质

高一数学函数的基本性质

第 1 页共13 页函数的基本性质一、知识梳理1.奇偶性(1)定义:设函数y =)(x f 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x f =-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x g =)(x g ,那么这个函数叫做偶函数.(2)如果函数)(x f 不具有上述性质,则)(x f 不具有奇偶性.如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数.函数是奇函数或是偶函数的性质称为函数的奇偶性,函数的奇偶性是函数的整体性质.(3)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x 也一定在定义域内.即定义域是关于原点对称的点集.(4)图象的对称性质:一个函数是奇函数当且仅当它的图象关于原点对称;一个函数是偶函数的当且仅当它的图象关于y 轴对称.(5)奇偶函数的运算性质:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(6)奇(偶)函数图象对称性的推广:若函数)(x f 的图象关于直线a x 对称,则)2()(a x f x f ;若函数)(x f 的图象关于点)0,(a 对称,则)2()(a xf x f .2.单调性(1)定义:一般地,设函数()y f x 的定义域为A ,区间I A .如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调增函数,I 称为()yf x 的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调减函数,I 称为()yf x 的单调减区间.(2)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.。

高一数学必修2 函数的基本性质——奇偶性

高一数学必修2 函数的基本性质——奇偶性

高一数学必修2函数的基本性质——奇偶性(一)、基本概念及知识体系:教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。

教学重点:熟练判别函数的奇偶性。

教学难点:理解奇偶性。

教学过程:一、复习准备:1.提问:什么叫增函数、减函数?★2.指出f(x)=2x 2-1的单调区间及单调性。

→变题:|2x 2-1|的单调区间★3.对于f(x)=x 、f(x)=x 2、f(x)=x 3、f(x)=x 4,分别比较f(x)与f(-x)。

二、讲授新课:1.教学奇函数、偶函数的概念:①给出两组图象:()f x x =、1()f x x=、3()f x x =;2()f x x =、()||f x x =. 发现各组图象的共同特征 → 探究函数解析式在函数值方面的特征② 定义偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).③ 探究:仿照偶函数的定义给出奇函数(odd function )的定义.(如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。

④ 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) ⑤ 练习:已知f(x)是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。

2.教学奇偶性判别:●例1:判别下列函数的奇偶性:f(x)=34x 、f(x)=43x 、f(x)=-4x 6+5x 2、f(x)=3x +31x 、f(x)=2x 4-+3。

★ 判别下列函数的奇偶性:f(x)=|x +1|+|x -1| f(x)=23x 、f(x)=x +x 1、 f(x)=21xx +、f(x)=x 2,x ∈[-2,3] ③ 小结奇偶性判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法判别f(x)与f(-x)的关系。

高一函数奇偶性常考知识点

高一函数奇偶性常考知识点

高一函数奇偶性常考知识点函数的奇偶性是高中数学中的一个重要概念,也是函数性质分析中经常出现的题型。

了解函数的奇偶性特点,可以帮助我们简化计算和解题过程。

本文将介绍高一函数奇偶性的常考知识点。

一、函数的奇偶性概念函数的奇偶性是指函数关于坐标原点的对称性。

具体而言,如果对于任意的x,函数f(x)满足f(-x) = f(x),则函数f(x)称为偶函数;如果对于任意的x,函数f(x)满足f(-x) = -f(x),则函数f(x)称为奇函数。

二、奇偶性的性质1. 偶函数的性质- 偶函数关于y轴对称,即图像关于y轴对称;- 偶函数的定义域可以是全体实数,也可以是一个区间;- 偶函数的图像在y轴上对称,即对于图像上的每一点(x, y),也存在相应的点(-x, y),在图像上对应的两点关于y轴对称。

2. 奇函数的性质- 奇函数关于原点对称,即图像关于原点对称;- 奇函数的定义域可以是全体实数,也可以是一个区间;- 奇函数的图像关于原点对称,即对于图像上的每一点(x, y),也存在相应的点(-x, -y),在图像上对应的两点关于原点对称。

三、计算函数的奇偶性1. 利用函数表达式判断奇偶性- 当函数表达式中只含有偶指数幂的项且系数非零时,函数为偶函数;- 当函数表达式中只含有奇指数幂的项且系数非零时,函数为奇函数;- 当函数表达式中含有奇数个奇指数幂的项且系数非零时,函数既不是偶函数也不是奇函数。

2. 利用函数的性质判断奇偶性- 若函数的图像关于原点对称,则函数为奇函数;- 若函数的图像关于y轴对称而不关于原点对称,则函数为偶函数;- 若函数既不关于y轴对称也不关于原点对称,则既不是奇函数也不是偶函数。

四、常见函数的奇偶性1. 偶函数的例子- 幂函数:y = x^n(n为正整数且为偶数)- 余弦函数:y = cos(x)- 绝对值函数:y = |x|- 常函数:y = k(k为常数)2. 奇函数的例子- 正弦函数:y = sin(x)- 正切函数:y = tan(x)- 反正比函数:y = cot(x)- 倒数函数:y = 1/x(x ≠ 0)五、应用函数的奇偶性在数学题目中有广泛的应用,常见的应用包括:1. 确定函数的对称中心:根据函数的奇偶性,可以确定函数图像的对称中心,帮助我们更好地绘制函数图像;2. 确定函数的性质:根据函数的奇偶性,可以快速判断函数的性质,如极值点、零点等;3. 简化计算过程:根据函数的奇偶性,可以简化函数的计算过程,并帮助我们更快地求解问题。

高一函数知识点总结奇偶性

高一函数知识点总结奇偶性

高一函数知识点总结奇偶性函数是高中数学中的重要知识点之一,而函数的奇偶性则是函数理论中的一个重要概念。

在高一阶段,学生需要学习和掌握函数的奇偶性相关的知识,本文将对高一函数的奇偶性进行总结。

1. 函数的奇偶性概念函数的奇偶性是指函数在定义域内的奇偶性质。

如果对于在定义域内的任意x值,f(-x) = f(x),那么这个函数就是偶函数;如果对于在定义域内的任意x值,f(-x) = -f(x),那么这个函数就是奇函数;如果一个函数既不满足偶性质也不满足奇性质,那么这个函数就是既非偶函数也非奇函数。

2. 奇函数的性质奇函数的特点是关于原点对称,即图象关于原点对称。

此外,奇函数在坐标系的第一象限和第三象限的函数值相等,即f(x) = -f(-x)。

3. 偶函数的性质偶函数的特点是关于y轴对称,即图象关于y轴对称。

此外,偶函数在坐标系的第一象限和第二象限的函数值相等,即f(x) = f(-x)。

4. 奇偶函数的判定方法要判定一个函数是奇函数还是偶函数,可以通过以下方法:- 方法1:利用函数的定义,对于任意给定的x,计算f(-x)和f(x)的值是否相等或相反。

- 方法2:观察函数图象关于x轴的对称性。

如果函数的图象关于x 轴对称,则函数是偶函数;如果函数的图象关于原点对称,则函数是奇函数。

- 方法3:利用导函数的性质。

若函数的导函数是奇函数,则原函数是偶函数;若函数的导函数是偶函数,则原函数是奇函数。

5. 奇偶函数的性质应用奇偶函数在数学和物理中具有重要的应用。

在数学中,奇偶函数在积分计算时可以简化计算过程,同时在函数图象的对称性证明中也起到重要作用。

在物理中,奇函数和偶函数可用于描述对称和非对称的现象,如电荷分布的对称性、波函数的对称性等。

6. 奇偶函数的例子以下是一些常见的奇偶函数例子:- 正弦函数:sin(x)是奇函数,它在区间[-π, π]内关于原点对称。

- 余弦函数:cos(x)是偶函数,它在区间[-π, π]内关于y轴对称。

高一函数的奇偶性知识点

高一函数的奇偶性知识点

高一函数的奇偶性知识点函数是数学中一个非常重要的概念,它描述了数值之间的关系。

在高中数学中,函数受到了广泛的研究和运用。

其中,函数的奇偶性是一个很重要的概念。

本文将介绍高一函数的奇偶性知识点,并探讨其应用。

一、奇函数和偶函数的定义函数f(x)是定义在一个对称区间上的函数。

如果对任意的x∈该区间,都有f(-x)=-f(x)成立,那么函数f(x)就被称为奇函数;如果对任意的x∈该区间,都有f(-x)=f(x)成立,那么函数f(x)就被称为偶函数。

二、奇函数和偶函数的性质1. 奇函数的图像关于原点对称,即在平面直角坐标系中,关于原点对称。

2. 奇函数的定义域包括原点,而奇函数在原点处取零值。

3. 偶函数的图像关于y轴对称,即在平面直角坐标系中,关于y轴对称。

4. 偶函数的定义域包括y轴,而偶函数在y轴上的任意点处取相等的函数值。

三、奇偶性的判断方法对于一个给定的函数,我们如何确定它是奇函数还是偶函数呢?有以下几种判断方法:1. 利用定义进行判断:根据奇函数和偶函数的定义进行判断。

2. 利用恒等式进行判断:对于一些特定的函数形式,我们可以通过代入x和-x,利用恒等式判断函数的奇偶性。

例如,对于幂函数y=x^n,如果n为偶数,则函数为偶函数;如果n为奇数,则函数为奇函数。

3. 利用图像进行判断:通过观察图像,我们可以发现奇函数的图像具有对称性,而偶函数的图像则具有轴对称性。

四、奇函数和偶函数的应用奇偶性在函数的研究和应用中扮演着重要的角色。

以下是一些常见的应用:1. 函数图像的绘制:通过了解函数的奇偶性,我们可以在绘制函数的图像时,仅仅绘制出对称区间上的一部分,然后通过对称性得到整个图像。

2. 函数性质的研究:通过奇偶性的判断,我们可以推论出一些重要的函数性质。

例如,奇函数与奇函数的和仍然是奇函数;奇函数与偶函数的积是一个偶函数。

3. 函数的积分计算:对于定义在对称区间上的奇函数,其在该区间上的积分等于零。

人教版高中数学必修1《函数的奇偶性》教案

人教版高中数学必修1《函数的奇偶性》教案

§1.3.2函数的奇偶性(1)教学目标:知识目标——理解函数的奇偶性并能熟练应用数形结合的数学思想解决、推导问题;能应用奇偶性的知识解决简单的函数问题。

能力目标——通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想;培养学生从特殊到一般的概括归纳问题的能力。

情感目标—— 通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性;养成积极主动,勇于探索,不断创新的学习习惯和品质。

教学分析:教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性的步骤; 教学难点:对函数奇偶性概念的理解与认识 教学方法:诱思引探鼓励法 教学工具:多媒体课件 教学过程一、 创设情景,激发兴趣(多媒体投放图片) 二、 实例引入,初步感知请比较下列两组函数图象,从对称的角度,你发现了什么 ?2()f x x = ||)(x x f =y 轴对称师:再观察表1和表2,你看出了什么? 表1x -3 -2 -1 0 1 2 3 f(x)=|x|321 0123表2生:当自变量x 取一对相反数时,相应的两个函数值相等。

三、实验体验,加以体会 【探究】图象关于轴对称的函数满足:对定义域内的任意一个,都有。

反之也成立吗?(超级链接几何画板演示)师:从以上的讨论,你能够得到什么?(师生讨论,共同完善,形成概念,老师板书偶函数定义)一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数;师:仿此请观察下面两组图象,你能给出关于原点对称的函数图象与式子之间的关系,进而给出奇函数的定义吗?一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数。

问题1:具有奇偶性函数的图象的对称如何?师:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称。

问题2:函数的奇偶性是怎样的一个性质?与单调性有何区别?师:函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 。

高一函数奇偶性知识点总结

高一函数奇偶性知识点总结

高一函数奇偶性知识点总结在高中数学中,函数是一个非常重要的概念。

而函数的奇偶性是我们在学习和研究各类函数时需要了解和掌握的一项基本特性。

本文将从定义、性质和应用三个部分对高一函数的奇偶性知识点进行总结。

1.定义函数的奇偶性是指函数在定义域内某一点的改变是否与该点的自变量的改变符号相同。

具体来说,如果对于函数f(x)在定义域内的任意x值,有f(-x) = f(x),则函数f(x)为偶函数;如果对于函数f(x)在定义域内的任意x值,有f(-x) = -f(x),则函数f(x)为奇函数。

2.性质2.1 偶函数与奇函数的性质(1) 奇函数在原点对称,即关于原点中心对称;(2) 偶函数关于y轴对称,即关于y轴中心对称;(3) y = f(x)的图像关于原点对称时,则f(x)必为奇函数;(4) y = f(x)的图像关于y轴对称时,则f(x)必为偶函数;(5) 两个奇函数的和(或差)必为偶函数;(6) 两个偶函数的和必为偶函数,差必为偶函数或奇函数。

2.2 常见函数的奇偶性(1) 偶函数:常数函数f(x) = c;幂函数f(x) = x^2;三角函数f(x) = cos(x)等。

(2) 奇函数:零函数f(x) = 0;反比例函数f(x) = 1/x;正弦函数f(x) = sin(x)等。

3.应用3.1 约束条件的简化在解题过程中,函数的奇偶性可以用来简化约束条件。

例如,当一个函数满足奇函数的性质时,我们只需要在定义域的非负部分进行研究,即可以得到整个函数的性质。

3.2 函数图像的判断通过函数的奇偶性,我们可以推断函数图像在平面上的对称性质。

当函数为奇函数时,图像关于原点对称;当函数为偶函数时,图像关于y轴对称。

这样的判断可以帮助我们更直观地理解和绘制函数的图像。

3.3 积分计算中的应用在一些积分计算中,函数的奇偶性可以被用来简化积分式子。

根据奇偶函数的性质,我们可以将积分区间缩小一半,便于求解。

例如,当被积函数为奇函数时,可直接将积分区间由[-a,a]缩小为[0,a],简化计算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

师:什么是函数的奇偶性呢? 生:回答师:我们在函数奇偶性的知识点上重点考察的题型有哪些呢? 生:回答师:我们通过今天的学习一起来回顾一下函数奇偶性的重点题目。

一、函数奇偶性定义 1、图形描述:函数()f x 的图像关于y 轴对称⇔()f x 为偶函数;函数()f x 的图像关于原点轴对称⇔()f x 为奇函数 定量描述一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,则称()f x 为偶函数;如果都有()()--f x f x =,则称()f x 为奇函数;如果()()f x f x -=与函数的奇偶性()()--f x f x =同时成立,那么函数()f x 既是奇函数又是偶函数;如果()()f x f x -=与()()--f x f x =都不能成立,那么函数()f x 既不是奇函数又不是偶函数,称为非奇非偶函数。

如果函数()f x 是奇函数或偶函数,则称函数()y f x =具有奇偶性。

特别提醒: 1、函数具有奇偶性的必要条件是:函数的定义域在数轴上所表示的区间关于原点对称。

换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具备奇偶性。

2、用函数奇偶性的定义判断函数是否具有奇偶性的一般步骤:(1)考察函数的定义域是否关于原点对称。

若不对称,可直接判定该函数不具有奇偶性;若对称,则进入第二步;(2)判断()()f x f x -=与()()f x f x -=-这两个等式的成立情况,根据定义来判定该函数的奇偶性。

二、函数具有奇偶性的几个结论1、()y f x =是偶函数⇔()y f x =的图像关于y 轴对称;()y f x =是奇函数⇔()y f x =的图像关于原点对称。

2、奇函数()f x 在0x =有定义,必有()00f =。

3、偶函数在定义域内关于原点对称的两个区间上单调性相反;奇函数在定义域内关于原点对称的两个区间上单调性相同。

4、()(),f x g x 是定义域为12,D D 且12D D 要关于原点对称,那么就有以下结论:奇±奇=奇 偶±偶=偶 奇⨯奇=偶 偶⨯偶=偶 奇⨯偶=奇5、复合函数的奇偶性特点是:“内偶则偶,内奇同外”。

6、多项整式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项的系数和常数项全为零; 多项式函数()P x 是偶函数⇔()P x 的奇次项的系数全为零。

(20-40分钟)类型一 函数奇偶性的判断例1:判断下列函数是否具有奇偶性:(1)f (x )=2x 4+3x 2; (2)f (x )=1x+x ;练习1:判断下列函数的奇偶性: (1)f (x )=x 2+1;考点(2)f (x )=|x +1|-|x -1|;练习2:(2014~2015学年度山东枣庄第八中学高一上学期期中测试)下列函数中,既是奇函数又是增函数的是( )A .y =x +1B .y =-x 2C .y =1xD .y =x |x |类型二 分段函数奇偶性的判定例2:用定义判断函数f (x )=⎩⎪⎨⎪⎧-x 2+1x >0x 2-1x <0的奇偶性.练习1:判断函数f (x )=⎩⎪⎨⎪⎧x 2+2 x >00x =0-x 2-2 x <0的奇偶性.练习2:如果F (x )=⎩⎪⎨⎪⎧2x -3 x >0fxx <0是奇函数,则f (x )=________.的单调性类型三 利用奇(偶)函数图象的对称特征,求关于原点对称的区间上的解析式例3:若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求:当x ≥0时,函数f (x )的解析式.练习1:(2014~2015学年度安徽宿州市十三校高一上学期期中测试)已知函数f (x )是R 上的奇函数,当x >0时,f (x )=2x +1,则函数f (x )的解析式为________________.练习2:(2014~2015学年度济南市第一中学高一上学期期中测试)函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的表达式为( )A .f (x )=x +1B .f (x )=x -1C .f (x )=-x +1D .f (x )=-x -1类型四 抽象函数奇偶性的证明例4:已知函数y =f (x )(x ∈R ),若对于任意实数a 、b 都有f (a +b )=f (a )+f (b ),求证: f (x )为奇函数.练习1:已知函数y =f (x )(x ∈R ),若对于任意实数x 1、x 2,都有f (x 1+x 2)+f (x 1-x 2)=2f (x 1)·f (x 2),求证: f (x )为偶函数.2:已知()f x 是定义在R 上的任意一个增函数,()()()G x f x f x =--,则()G x 必定为( )A 、增函数且为奇函数B 、增函数且为偶函数C 、减函数且为奇函数D 、减函数且为偶函数类型五 含有参数的函数的奇偶性的判断例5:设a 为实数,讨论函数f(x)=x2+|x -a|+1的奇偶性.练习1:(2014~2015学年度河南省实验中学高一月考)已知函数f (x )=x 2+a x,常数a ∈R ,讨论函数f (x )的奇偶性,并说明理由.练习2:(2014~2015学年度潍坊市四县市高一上学期期中测试)已知函数f (x )=ax +b x(其中a 、b 为常数)的图象经过两点(1,2)和(2,52).(1)求函数f (x )的解析式; (2)判断函数f (x )的奇偶性.类型六 利用奇偶性确定函数中字母的值例6: 已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.求实数a 、b 的值;练习1: (2014~2015学年度济南市第一中学高一上学期期中测试)已知函数f (x )=x +b1+x2为奇函数.求b 的值;练习2: 若函数(0)y kx b k =+≠是奇函数,则b = ;若函数2(0)y ax bx c a =++≠为偶函数,则b = 。

类型七:利用奇偶性解不等式例7:已知函数f(x)是定义在(-2,2)上的奇函数且是减函数,若f(m -1)+f(1-2m)≥0,求实数m 的取值范围.练习1:定义在[-2,2]上的偶函数f(x),当x ≥0时单调递减,设f(1-m)<f(m),求m 的取值范围.练习2:(2014~2015学年度河南省实验中学高一上学期月考)已知偶函数f (x )在区间(-∞,0]上单调递减,则满足f (2x -1)<f (13)的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23类型八 利用奇偶性求函数值例8:已知函数f(x)与g(x)满足f(x)=2g(x)+1,且g(x)为R 上的奇函数,f(-1)=8,求f(1).练习1:已知f(x)为奇函数,在区间[3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f(-6)+f(-3)=( )A .-15B .-13C .-5D .5练习2: (2014~2015学年度广东肇庆市高一上学期期中测试)设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1C .52 D .5(20-40分钟)1、判断下列函数的奇偶性:(1)()11f x x x =+--; (2)()()1f x x =-•2、已知函数()f x 是奇函数,定义域为{}0x x R x ∈≠且,又()f x 在()0,+∞上为增函数,且()10f -=,则满足()0f x >的x 的取值范围是 。

3、若2)(24+-=bx ax x f ,且5)(=c f ,求)(c f -的值;4、已知()f x 是R 上的奇函数,且当0x >时,()(1f x x =,求()f x 的解析式。

5、已知()()2111x af x x x bx +=-≤≤++奇函数,求,a b 的值。

课后作业可以在练习题里选,题量根据学生接受能力而定,建议完成时间控制30分钟以内基础巩固1.设函数f(x)是定义在R上的奇函数,且f(-3)=-2,则f(3)+f(0)=( ) A.3 B.-3C.2 D.72.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定经过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是( )A.1 B.2C.3 D.43.若二次函数f(x)=x2+(b-2)x在区间[1-3a,2a]上是偶函数,则a、b的值是( ) A.2,1 B.1,2C.0,2 D.0,14.(2014·湖南理,3)已知f(x)、g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( )A.-3 B.-1C.1 D.35.(2014·全国新课标Ⅰ理,3)设函数f(x)、g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,则函数f(x)在R上的解析式是( )A.f(x)=-x(x-2) B.f(x)=x(|x|-2)C.f(x)=|x|(x-2) D.f(x)=|x|(|x|-2)7.若f(x)=(x+a)(x-4)为偶函数,则实数a=______.能力提升8.偶函数f(x)在[0,+∞)上是减函数,则f(-4)______f(a2+4)(a∈R).(填:>、<、≥、≤)9.(2014~2015学年度青海师范大学附属第二中学高一上学期月考)设函数f(x)=x2-2|x|(-3≤x≤3).(1)证明:f(x)是偶函数;(2)画出此函数的图象,并指出函数的单调区间.10.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=(x2+1)(x+1),求f(x)、g(x).参考答案类型一函数奇偶性的判断例1:判断下列函数是否具有奇偶性:(1)f (x )=2x 4+3x 2; (2)f (x )=1x+x ;解析:(1)函数f (x )的定义域为R ,又∵f (-x )=2(-x )4+3(-x )2=2x 4+3x 2=f (x ),∴函数f (x )=2x 4+3x 2是偶函数.(2)函数f (x )的定义域为(-∞,0)∪(0,+∞), 又∵f (-x )=1-x -x =-(1x +x )=-f (x ),∴函数f (x )=1x+x 是奇函数.答案:(1)偶函数 (2)奇函数 练习1:判断下列函数的奇偶性: (1)f (x )=x 2+1;(2)f (x )=|x +1|-|x -1|;答案:(1)偶函数 (2)奇函数 练习2:(2014~2015学年度山东枣庄第八中学高一上学期期中测试)下列函数中,既是奇函数又是增函数的是( )A .y =x +1B .y =-x 2C .y =1xD .y =x |x |答案:D类型二 分段函数奇偶性的判定例2:用定义判断函数f (x )=⎩⎪⎨⎪⎧-x 2+1x >0x 2-1x <0的奇偶性.解析:任取x >0,则-x <0. ∴f (-x )=(-x )2-1=x 2-1 =-(-x 2+1)=-f (x ). 又任取x <0,则-x >0.∴f (-x )=-(-x )2+1=-x 2+1 =-(x 2-1)=-f (x ).对x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x )成立.∴函数f (x )为奇函数. 答案:奇函数练习1:判断函数f (x )=⎩⎪⎨⎪⎧x 2+2 x >00x =0-x 2-2 x <0的奇偶性.答案:奇函数.练习2:如果F (x )=⎩⎪⎨⎪⎧2x -3x >0f x x <0是奇函数,则f (x )=________.的单调性答案:2x +3类型三 利用奇(偶)函数图象的对称特征,求关于原点对称的区间上的解析式例3:若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求:当x ≥0时,函数f (x ) 的解析式.解析:当x >0时,-x <0, ∵当x <0时,f (x )=x (1-x ), ∴f (-x )=-x (1+x ),又f (x )为奇函数,∴f (-x )=-f (x ), ∴-f (x )=-x (1+x ),∴f (x )=x (1+x ), 又f (0)=f (-0)=-f (0),∴f (0)=0, ∴当x ≥0时,f (x )=x (1+x ). 答案:x (1+x ) 练习1:(2014~2015学年度安徽宿州市十三校高一上学期期中测试)已知函数f (x )是R 上的奇函数,当x >0时,f (x )=2x +1,则函数f (x )的解析式为________________.答案: f (x )=⎩⎪⎨⎪⎧2x +1 x >00x =02x -1x <0练习2:(2014~2015学年度济南市第一中学高一上学期期中测试)函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的表达式为( )A .f (x )=x +1B .f (x )=x -1C .f (x )=-x +1D .f (x )=-x -1答案:D类型四 抽象函数奇偶性的证明例4:已知函数y =f (x )(x ∈R ),若对于任意实数a 、b 都有f (a +b )=f (a )+f (b ),求证: f (x )为奇函数.解析:令a =0,则f (b )=f (0)+f (b ),∴f (0)=0,再令a =-x ,b =x ,则f (0)=f (-x )+f (x ),∴f (-x )=-f (x ),且定义域x ∈R 关于原点对称,∴f (x )是奇函数.答案:见解析练习1:已知函数y =f (x )(x ∈R ),若对于任意实数x 1、x 2,都有f (x 1+x 2)+f (x 1-x 2)=2f (x 1)·f (x 2),求证: f (x )为偶函数.答案:令x 1=0,x 2=x , 得f (x )+f (-x )=2f (0)·f (x ),① 令x 1=x ,x 2=0,得f (x )+f (x )=2f (0)·f (x ),②由①②得, f (-x )=f (x ),且定义域x ∈R 关于原点对称, ∴函数f (x )为偶函数.2:已知()f x 是定义在R 上的任意一个增函数,()()()G x f x f x =--,则()G x 必定为( )A 、增函数且为奇函数B 、增函数且为偶函数C 、减函数且为奇函数D 、减函数且为偶函数答案:A类型五 含有参数的函数的奇偶性的判断例5:设a 为实数,讨论函数f(x)=x2+|x -a|+1的奇偶性.解析:当a =0时,f(x)=x2+|x|+1, ∴f(-x)=(-x)2+|-x|+1 =x2+|x|+1=f(x),∴当a =0时,函数f(x)为偶函数. 当a ≠0时,f(1)=2+|1-a|, f(-1)=2+|1+a|, 假设f(1)=f(-1),则|1-a|=|1+a|,(1-a)2=(1+a)2, ∴a =0,这与a ≠0矛盾,假设f(-1)=-f(1),则2+|1+a|=-2-|1-a|这显然不可能成立(∵2+|1+a|>0,-2-|1-a|<0),∴f(-1)≠f(1),f(-1)≠-f(1), ∴当a ≠0时,函数f(x)是非奇非偶函数. 答案:非奇非偶.练习1:(2014~2015学年度河南省实验中学高一月考)已知函数f (x )=x 2+a x,常数a ∈R ,讨论函数f (x )的奇偶性,并说明理由.答案:偶函数练习2:(2014~2015学年度潍坊市四县市高一上学期期中测试)已知函数f (x )=ax +b x(其中a 、b 为常数)的图象经过两点(1,2)和(2,52).(1)求函数f (x )的解析式; (2)判断函数f (x )的奇偶性.答案:(1)f (x )=x +1x.(2)f (x )为奇函数.类型六 利用奇偶性确定函数中字母的值例6: 已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.求实数a 、b 的值;解析:∵f(x)为奇函数, ∴f(-x)+f(x)=0, ∴ax 2+2-3x +b =-ax 2+23x +b , ∴-3x +b =-3x -b ,∴b =0. 又f(2)=53,∴4a +26=53,∴a =2.答案:a =2.b =0.练习1: (2014~2015学年度济南市第一中学高一上学期期中测试)已知函数f (x )=x +b1+x2为奇函数.求b 的值; 答案:b=0练习2: 若函数(0)y kx b k =+≠是奇函数,则b = ;若函数2(0)y ax bx c a =++≠为偶函数,则b = 。

相关文档
最新文档