三角函数公式全解

合集下载

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。

2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。

$b^2=a^2+c^2-2ac\cos B$。

$c^2=a^2+b^2-2ab\cos C$。

3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。

其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。

4.诱导公式:奇变偶不变,符号看象限。

sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。

5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。

6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。

注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

高中数学 三角函数

高中数学 三角函数

高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。

它涉及的角度、边长、面积等,都是几何和代数的核心元素。

通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。

二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。

常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。

正切函数的周期性稍有不同,为π。

2、振幅:三角函数的振幅随着角度的变化而变化。

例如,当角度增加时,正弦函数的值也会增加。

3、相位:不同的三角函数具有不同的相位。

例如,正弦函数的相位落后余弦函数相位π/2。

4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。

5、导数:三角函数的导数与其自身函数有关。

例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。

四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。

例如,简谐振动可以用正弦或余弦函数来描述。

2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。

例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。

3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。

例如,使用正弦和余弦函数可以生成平滑的渐变效果。

4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。

例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。

三角函数公式全解

三角函数公式全解

三角函数公式全解三角函数是数学中非常重要的一个分支,它涉及到角度与弦、余弦、正弦等之间的关系。

本文将全面介绍三角函数公式的全解,并提供相关的例题进行说明。

1.正弦函数公式:正弦函数是最基本的三角函数之一,它表征了角度与其对边与斜边的比例关系。

正弦函数的公式为:sinθ = opposite/hypotenuse其中sinθ表示角度θ的正弦值,opposite表示对边的长度,hypotenuse表示斜边的长度。

2.余弦函数公式:余弦函数也是非常重要的三角函数之一,它表征了角度与其邻边与斜边的比例关系。

余弦函数的公式为:cosθ = adjacent/hypotenuse其中cosθ表示角度θ的余弦值,adjacent表示邻边的长度,hypotenuse表示斜边的长度。

3.正切函数公式:正切函数是三角函数中另一个重要的函数,它表征了角度与其对边与邻边的比例关系。

正切函数的公式为:tanθ = opposite/adjacent其中tanθ表示角度θ的正切值,opposite表示对边的长度,adjacent表示邻边的长度。

4.余切函数公式:余切函数是三角函数中较少使用的函数,它表征了角度与其邻边与对边的比例关系。

余切函数的公式为:cotθ = adjacent/opposite其中cotθ表示角度θ的余切值,adjacent表示邻边的长度,opposite表示对边的长度。

5.正割函数公式:正割函数是三角函数中较少使用的函数,它是正弦函数的倒数。

正割函数的公式为:secθ = 1/cosθ其中secθ表示角度θ的正割值,cosθ表示角度θ的余弦值。

6.余割函数公式:余割函数是三角函数中较少使用的函数,它是余弦函数的倒数。

余割函数的公式为:cscθ = 1/sinθ其中cscθ表示角度θ的余割值,sinθ表示角度θ的正弦值。

以上是三角函数的基本公式,接下来我们将通过例题进行说明。

例题1:已知一个角的正弦值为3/5,求其余弦值和正切值。

三角函数公式图解

三角函数公式图解

三角函数公式的图解三角函数的公式是出了名的多。

在学习微积分以前,“三角函数”四个字最容易吓唬人。

很多学生都为记忆这些公式头疼,不过如果在教学过程中能运用到一些图示的话,趣味性就大大地增强,因为三角函数与数形结合是永远分不开的。

在这一点上,张景中先生走在最前面,在很多场合强调图示的作用,特别是他的面积法,很有启发性。

今天就举几个例子。

1:三角函数的平方关系图2:正弦二倍角公式图解sin2θ=2sinθcosθ说明:S△ACB=1/2×1×1×sin2θ=1/2×(2sinθ)cosθ,从而得出二倍角正弦公式3:图解余弦二倍角公式和正切半角公式说明:BH⊥AD,AD为单位圆直径,O为圆心。

很容易看出来,OH=cos2θ。

另一方面,OH=AH-AO=ABcosθ-1=(2cosθ)cosθ-1=2cos2θ-1,而且OH=DO-DH就可以得出另一个公式。

tanθ=BH/AH=sin2θ/(1+cos2θ)4:图解和角公式说明:也是一单位圆,要用到一点向量,AC⊥OC,所以AC=sinα,OC=cosα。

为了方便,下面的黑体就表示向量sin(α+β)=AB=AE+EB=AE+CD=ACcosβ+OCsinβ=sinαcosβ+cosαsinβ同理,相信上面右边的图可以解释差角公式,就交给各位自己了5:图解正弦二倍角三倍角公式说明:sin2θ=BF=ABsinθ=2AEsinθ=2cosθsinθcos2θ=OF=AF-AO=ABcosθ-1=2AEcosθ-1=2cosθcosθ-1=2cos2θ-1sin3θ=CD=ADsinθ=(AO+2OF)sinθ=(1+2cos2θ)sinθ,化简即可cos3θ=BC=AC-AB=ADcosθ-2AE,按照前面的带入相应的数值即可。

高中三角函数公式汇总与解析

高中三角函数公式汇总与解析

高中三角函数公式汇总与解析三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin 2ba +cos 2b a -sina-sinb=2cos 2ba +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2)2(tan 12tan 2aa+ cosa=22)2(tan 1)2(tan 1aa+-tana=2)2(tan 12tan 2aa- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1sec(a) =a cos 1双曲函数 sinh(a)=2e-e -a a cosh(a)=2ee -a a + tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -co tα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b ≤a ≤b|a-b|≥|a|-|b| -|a|≤a ≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA•tanB•tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)•sin(B/2)•sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA•sinB•sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

三角函数公式大全图解

三角函数公式大全图解

三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a -cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

高中数学三角函数的万能公式与应用解析

高中数学三角函数的万能公式与应用解析

高中数学三角函数的万能公式与应用解析在高中数学的学习中,三角函数是一个重要的概念。

它们广泛应用于各个领域,包括物理、工程和计算机科学等。

而在解题过程中,我们经常会遇到各种复杂的三角函数方程,这时候万能公式就派上了用场。

一、万能公式的推导与定义万能公式是指将三角函数中的任意一个函数用其他三个函数来表示的公式。

它的推导过程基于勾股定理和三角函数的定义,通过将三角函数互相转化,可以得到以下三个万能公式:1. 正弦函数的万能公式:$$\sin A = \frac{2\tan \frac{A}{2}}{1+\tan^2\frac{A}{2}}$$2. 余弦函数的万能公式:$$\cos A = \frac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}$$3. 正切函数的万能公式:$$\tan A = \frac{2\tan \frac{A}{2}}{1-\tan^2\frac{A}{2}}$$这三个万能公式是相互关联的,通过其中一个公式,可以推导出其他两个公式。

二、万能公式的应用解析万能公式在解题中的应用非常广泛,下面我将通过具体的题目来说明其应用。

例题1:已知 $\sin A = \frac{3}{5}$,求 $\cos A$ 和 $\tan A$ 的值。

解析:根据万能公式,我们可以利用正弦函数的万能公式来求解。

首先,根据正弦函数的定义,我们可以得到 $\sin^2 A + \cos^2 A = 1$,将已知条件代入得到$\frac{9}{25} + \cos^2 A = 1$,解得 $\cos A = \pm \frac{4}{5}$。

然后,利用余弦函数的万能公式,可以得到 $\cos A = \frac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}$,代入已知条件,解得 $\tan A = \pm\frac{3}{4}$。

这个例题中,我们通过利用正弦函数的万能公式和余弦函数的万能公式,成功求解了 $\cos A$ 和 $\tan A$ 的值。

三角函数公式全解

三角函数公式全解

视线
仰角 水平线 俯角
h
i h:l
视线
二:初中三角函数公式及其定理 ‫ﻩ‬
1、勾股定理:直角三角形两直角边 a 、 b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):


表达式
取值范围
关系
正 弦
sin
A
A的对边 斜边
sin A a c
0 sin A 1
(∠A为锐角)
余 弦
cos
A
A的邻边 斜边
cos A b c
0 cosA 1
(∠A 为锐角)
正 切
tan
A
A的对边 A的邻边∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
ss= +ciαnα-o‫)(ﻫ‬stπi(cn=/α2πo-‫ﻫ‬/cs+2(to+αaπt)nαα/()2=πc+o/2α)c ot αcso a oαtn(sπ((π++πα+)α)α=)==co-ttcaαn
=-tanα
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ‫ ﻫ‬s in(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ‫ ﻫ‬cos
三角函数

30°
45°
60°
90°

高中三角函数公式大全与经典习题解答

高中三角函数公式大全与经典习题解答

用心辅导中心 高二数学三角函数知识点梳理:⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形切圆半径)⒌同角关系:⑴商的关系:①θtg =xy =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且ab tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T =ωπ2, 频率f =T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图 ⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 例题:1.已知x ∈(-π2 ,0),cos x =45,则tan2x 等于 ( )A. 724B.-724C. 247D.-2472. 3 cosπ12-sinπ12的值是( )A.0B.- 2C.2D.23.已知α,β均为锐角,且sin α=55,cos β=31010,则α+β的值为 ( ) A. π4 或3π4B.3π4 C. π4D.2kπ+π4(k ∈Z )4.sin15°cos30°sin75°的值等于( )A. 34B.38 C. 18D. 145.若f (cos x )=cos2x ,则f (sinπ12)等于( )A. 12B.-12C.-32D.326.sin(x +60°)+2sin(x -60°)- 3 cos(120°-x )的值为( )A. 12B. 32C.1D.07.已知sin α+cos α=13,α∈(0,π),那么sin2α,cos2α的值分别为 ( )A. 89 ,179B.-89 ,179C.-89 ,-179D.-89 ,±1798.在△ABC 中,若tan A tan B >1,则△ABC 的形状是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.化简cos (π4 +α)-sin (π4+α)cos (π4 -α)+sin (π4-α)的结果为( )A.tan αB.-tan αC.cot αD.-cot α10.已知sin α+sin β+sinγ=0,cos α+cos β+co sγ=0,则cos(α-β)的值为 ( )A.-12B. 12C.-1D.1二、填空题(本大题共6小题,每小题5分,共30分) 11.sin70+cos150sin80cos70-sin150sin80 的值等于_____________.12.若1-tan A 1+tan A =4+ 5 ,则cot( π4+A )=_____________.13.已知tan x =43 (π<x <2π),则cos(2x -π3 )cos(π3 -x )-sin(2x -π3 )sin(π3-x )=_____.14.sin(π4 -3x )cos(π3 -3x )-cos(π6 +3x )sin(π4 +3x )=_____________.15.已知tan(α+β)=25 ,tan(β-π4 )=14 ,则sin(α+π4 )·sin(π4 -α)的值为____________.16.已知5cos(α-β2 )+7cos β2 =0,则tan α-β2 tan α2=_____________.1.下列函数中,最小正周期为π的偶函数是 ( )A.y =sin2xB.y =cos x2C.y =sin2x +cos2xD.y =1-tan 2x 1+tan 2x2.设函数y =cos(sin x ),则 ( )A.它的定义域是[-1,1]B.它是偶函数C.它的值域是[-cos1,cos1]D.它不是周期函数3.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移π4 个单位.则所得图象表示的函数的解析式为( )A.y =2sin2xB.y =-2sin2xC.y =2cos(2x +π4)D.y =2cos(x 2 +π4)4.函数y =2sin(3x -π4)图象的两条相邻对称轴之间的距离是 ( )A. π3 B.2π3C.πD.4π35.若sin α+cos α=m ,且- 2 ≤m <-1,则α角所在象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限17.已知cos(α-π6 )=1213 ,π6 <α<π2,求cos α.18.已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),求sin α、tan α.19.在△ABC 中,已知A 、B 、C 成等差数列,求tan A 2 +tan C 2 + 3 tan A 2 tan C2的值.20.已知cos α=-1213 ,cos(α+β)=17226,且α∈(π,32 π),α+β∈(32 π,2π),求β.。

三角函数公式大全

三角函数公式大全

三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。

现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

本文将三角函数公式列举出来,方便大家查阅。

一两角和三角函数公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB二倍角三角函数公式三三倍角三角函数公式五和差化积三角函数公式六积化和差三角函数公式八万能三角函数公式九其他三角函数公式十双曲函数公式十一其他三角函数公式01三角函数公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα02三角函数公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαtan(π+α)= tanαcot(π+α)= cotα03三角函数公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα04三角函数公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα05三角函数公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanα06三角函数公式六:07公式七:。

三角函数公式大全详解

三角函数公式大全详解

三角函数公式大全详解一、什么是三角函数?三角函数是一类函数,它们以三角形为基本图形,通过三角形任意两条边和它们之间的夹角代表某一比例关系。

它们是以平面角度(θ)来描述某一比例关系,可以将角度θ在特定范围内运用到具有实际意义的函数中,比如描述的是三角形的大小或形状。

二、三角函数的九大公式(正弦定理、余弦定理、正切定理)1. 正弦定理:a2=b2+c2-2bccosA(a、b、c分别表示三角形的三边的长度,A表示夹角);2. 余弦定理:a2=b2+c2-2accosB(a、b、c分别表示三角形的三边的长度,B表示夹角);3. 正切定理:tanA/tanB=tan(A+B)/tan(A-B)(A、B分别表示三角形两个内角的大小);4. 正弦函数:y=sinx(x为角度,sinx表示一个三角形的第三边与夹角的长度的比率);5. 余弦函数:y=cosx(x为角度,cosx表示一个三角形的第二边与夹角的长度的比率);6. 正切函数:y=tanx(x为角度,tanx表示一个三角形第一边与夹角的长度的比率);7. 余切函数:y=cotx(x为角度,cotx表示一个三角形第一边与夹角的长度相反的比率);8. 正割函数:y=secx(x为角度,secx表示一个三角形第二边与夹角的长度的比值的倒数);9. 余割函数:y=cscx(x为角度,cscx表示一个三角形第三边与夹角的长度的比值的倒数)。

三、三角函数的反函数1. 反正弦函数:y=arcsinx(x表示一个三角形的第三边与夹角的长度之比,arcsinx表示求三角形夹角的大小θ);2. 反余弦函数:y=arccosx(x表示一个三角形的第二边与夹角的长度之比,arccosx表示求三角形夹角的大小θ);3. 反正切函数:y=arctanx(x表示一个三角形第一边与夹角的长度之比,arctanx表示求三角形夹角的大小θ);4. 反余切函数:y=arccotx(x表示一个三角形第一边与夹角的长度相反的比率,arccotx表示求三角形夹角的大小θ);5. 反正割函数:y=arcsecx(x表示一个三角形第二边与夹角的长度的倒数,arcsecx表示求三角形夹角的大小θ);6. 反余割函数:y=arccscx(x表示一个三角形第三边与夹角的长度的倒数,arccscx表示求三角形夹角的大小θ)。

三角函数公式大全及解析

三角函数公式大全及解析

三角函数公式大全及解析倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。

三角函数的和差角公式解析与应用

三角函数的和差角公式解析与应用

三角函数的和差角公式解析与应用三角函数是数学中的重要概念,它在几何、物理、电路等领域都有广泛的应用。

其中,和差角公式是三角函数中的重要内容之一。

本文将对三角函数的和差角公式进行解析,并介绍其在实际问题中的应用。

1. 正弦函数的和差角公式正弦函数的和差角公式可以表示为:sin(x ± y) = sinx * cosy ± cosx * siny这个公式中,x和y是两个任意角度。

当加法形式时,正弦函数的和差角公式可以表示为两个正弦函数相乘再相加;当减法形式时,正弦函数的和差角公式可以表示为两个正弦函数相乘再相减。

应用:在解决几何问题时,正弦函数的和差角公式可以帮助我们计算角度的正弦值。

例如,在海上导航中,当需要计算航线与地平线的夹角时,可以利用正弦函数的和差角公式进行计算。

2. 余弦函数的和差角公式余弦函数的和差角公式可以表示为:cos(x ± y) = cosx * cosy ∓ sinx * siny和正弦函数的和差角公式类似,余弦函数的和差角公式中的加法形式可以表示为两个余弦函数相乘再相减,减法形式可以表示为两个余弦函数相乘再相加。

应用:在物理学中,余弦函数的和差角公式可以应用于解决震动问题。

例如,在弹簧振子的运动中,当弹簧振子同时受到多个力的作用时,可以利用余弦函数的和差角公式计算合力的大小和方向。

3. 正切函数的和差角公式正切函数的和差角公式可以表示为:tan(x ± y) = (tanx ± tany) / (1 ∓ tanx * tany)和差角公式是利用三角函数的基本关系推导出来的,但是由于正切函数的定义中包含了除法运算,所以其和差角公式相对来说比较复杂。

在计算中可以先用正弦和余弦函数表示,再进行化简。

应用:在电路中,正切函数的和差角公式可以用于计算电压和电流之间的相位差。

例如,在交流电路中,当需要计算电压和电流之间的相位差时,可以利用正切函数的和差角公式进行计算。

三角函数和解三角公式总结

三角函数和解三角公式总结
− sin
sin 2 cos 2
sin 2 − , cos 2 −
tan 2 −
− cos
sin 2
− sin , cos 2
sin 2 − cos 2 −
tan 2
− cos
sin .
sin 2 cos 2
3.两角和与差公式:
①cos −
cos cos sin sin ;③sin −
sin cos − cos sin ;

2 2sin(
).( ,

①其中辅助角 是方程 tan
在( , )内的解;【提取系数 2 2是关键】
2
② : : 或 : 或 : 时要熟练;
③必要时可化为余弦形式.
④显然,
sin
cos 的值域为[ − 2 2, 2 2 .
7.若函数
sin cos 的图象关于直线
对称,则

( − ); ② 2
( ); ③
tan
tan 2 −
)
− sin sin − cos , cos − − tan tan −
− sin cos ; − tan
一全正↕,
二正弦↕,
三正切↕,
四余弦↕,
四余弦↑
sin 2 − ⑵ cos 2 −
tan 2 −
cos
sin 2
sin , cos 2
sin 2− cos 2−
tan 2
cos
三角函数和解三角公式总结
1.同角三角函数的基本关系式:(用于求值、化简、证明;变形运用、1 的代换、齐次化切.)
⑴平方关系:sin2 cos2

⑶三角完全平方公式:① sin cos 2

(完整版)高中数学三角函数公式大全全解

(完整版)高中数学三角函数公式大全全解

三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。

注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

高中三角函数公式大全【图解】

高中三角函数公式大全【图解】
N2+3BaBa3N2N2+6Na2Na3NN2+6K2K3N
N2+6Rb2Rb3NN2+2Al2AlN
P4+6H24PH3P+3NaNa3P2P+3ZnZn3P2
H2+2Li2LiH
2、还原性
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos_α
1-cos2α=2sin_α
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin_(a/2)=(1-cos(a))/2
cos_(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
学习方法网[xuexifangfa.]
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
=4cossup3;a-3cosa
sin3a=3sina-4sinsup3;a
=4sina(3/4-sinsup2;a)
=4sina[(√3/2)sup2;-sinsup2;a]
=4sina(sinsup2;60°-sinsup2;a)
=4sina(sin60°+sina)(sin60°-sina)
=4cosa(cossup2;a-cossup2;30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数定义及其三角函数公式大全
一:三角函数公式大全
同角三角函数的基本关系式
倒数关系: 商的关系:平方关系:
tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα=
secα/cscα
cosα/sinα=cotα=
cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α诱导公式
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosαsin(π-α)=sinαcos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanαtan(π+α)=tanαcot(π+α)=cotα
两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-
tanα ·tanβ
tanα-
2tan(α/2) sinα=——————
1+tan2(α/2)
1-tan2(α/2) cosα=——————
1+tan2(α/2)
2tan(α/2) tanα=——————
1-tan2(α/2)
tanβ
tan(α-β)=——————
1+
ta nα ·tanβ
半角的正弦、余弦和正切公式三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切
公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式三角函数的积化和差公式
α+ 1
βα-β
sinα+sinβ=2sin—--·cos—-—
2 2
α+
βα-β
sinα-sinβ=2cos—--·sin—-—
2 2
α+
βα-β
cosα+cosβ=2cos—--·cos—-—
2 2
α+βα-β
cosα-cosβ=-2sin—--·sin—-—
2 2sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1 cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1 cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=- -[cos (α+β)-cos(α-β)]
2
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
二:初中三角函数公式及其定理
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
3、
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切
值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
A
90B 90∠-︒=∠︒=∠+∠得由B A
邻边 A C
A
90B 90∠-︒=∠︒
=∠+∠得由B A
6、正弦、余弦的增减性:
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:
当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线
水平线
视线
视线俯角
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度
(坡比)。

用字母i 表示,即h
i l
=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α=
=。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

:i h l =h
l
α。

相关文档
最新文档