大学物理实验报告_声速的测量
379编号大学物理实验报告-声速的测量

379编号大学物理实验报告-声速的测量实验名称:声速的测量实验目的:通过实验测量声波在不同媒介中的传播速度,熟悉实验仪器的使用方法并了解声速的概念及计算方法。
实验仪器:定频发生器、扬声器、共振管、卷尺、计时器等。
实验原理:声速是指声波在介质中传播的速度。
声波的波速v与频率f和波长λ有关:v=fλ。
在同一介质中,声速是一定的,而在不同的介质中,声速是不同的,与介质的性质有关。
共振现象是指在某一频率下,振动系统的振幅达到最大值的现象。
当空气某一长度的共振管产生共振时,管内的空气分子震动的频率与发出声波的频率相同,即共振频率。
共振频率与管长及空气介质有关,若以L表示共振管长度,则共振频率与管长L之间的关系为:f=nv/4L,其中n为正整数。
实验步骤:1.通过定频发生器产生固定频率的电磁波信号,并通过扬声器将电磁波信号转换成相应频率的声波信号,声波信号的频率为500Hz左右。
2.将共振管半封闭,调整管长,使共振现象出现。
测量此时的共振管长度L1。
4.记录室内温度和相对湿度。
5.分别在室内、水中和硫酸乙酯中重复上述步骤,测量共振管长度。
实验数据:实验媒介室内水中硫酸乙酯中室温/℃ 22.5 22.0 22.5相对湿度/% 38.0 40.5 41.0L1/cm 25.5 25.0 16.8L2/cm 12.0 11.5 6.2实验计算:通过实验,我们测得在不同媒介中的共振管长度,根据实验原理,我们可以通过共振管长度和共振频率计算声速v。
对于室内测量结果来说:共振频率f=nv/4L1,将n取为1,得到v=4L1f=4×25.5×500=25500cm/s。
根据声速的定义,声速v=λf,公式中λ为波长,由此我们可以求得波长:λ=v/f=25500/500=51cm。
同理可得其他媒介下的声速和波长,结果如下。
实验结论:通过本实验,我们了解了声速的概念及计算方法,同时也熟悉了实验仪器的使用方法。
(2023)大学物理实验报告声速的测量(一)

(2023)大学物理实验报告声速的测量(一)
实验报告:测量声速
概述
本实验旨在通过测量空气中的声速来学习声波的基本性质和特点,掌
握测量的基本方法和技巧。
材料与仪器
•声速测量仪
•气垫桥
•电源、万用表等辅助设备
实验步骤
1.将声速测量仪和气垫桥连接
2.将待测试验物(如气体)加入到气垫桥内
3.打开声速测量仪,进行预热和校准
4.调节测量仪的参数,使其能够测量到待测物质中的声速
5.进行实验测量,并记录数据
6.对数据进行分析和处理,计算得到实验结果
实验结果
经过多次测量和统计分析,我们得到了如下的实验结果:
•空气中的声速:340m/s
分析与讨论
在实验中,我们发现测量结果存在一定的误差,这可能与仪器精度、
环境噪声、操作技巧等多个方面有关。
为了提高实验的准确度和可靠性,在进行实验之前我们应该认真准备、仔细操作,避免一些人为因素对实验结果的影响。
结论
通过本次声速测量实验,我们进一步了解了声波的特性和性质,掌握了测量声速的基本方法和技巧,为今后的物理实验积累了经验和实践基础。
总结
本次实验要求我们独立完成实验操作和数据处理,锻炼了我们的实验能力和科研素养。
在实验中,我们也体会到了科学实验的严谨性和科学精神的重要性,让我们能够更好地理解科学研究的本质和意义。
在今后的学习和工作中,我们应该注重实践、勤思考、善总结,不断提升自身的实验能力和科学素养,为自己和社会创造更大的贡献。
大学物理实验声速测量实验报告

大学物理实验声速测量实验报告在这个实验中,我们的目标是测量声速。
听起来简单吧?但当你深入了解,才会发现其中的奥秘。
声音是一种波动,依赖于介质。
空气、水,甚至固体中,声音传播的速度都不一样。
今天,就让我们一起走进这个实验的细节吧。
一、实验原理1.1 声音的传播声音在空气中传播时,是通过空气分子的振动传递的。
简单来说,当你说话,声带振动,产生的波动让周围的空气分子开始跳舞,结果就是声音传到了你朋友的耳朵里。
声速受温度、湿度和气压的影响。
温度越高,声速越快。
想象一下,夏天在海边,声音传得比在寒冷的冬天要快得多。
1.2 声速的测量我们使用了一个简单的方法来测量声速。
首先,准备好一个发声装置,比如一个喇叭。
然后,在远处放一个麦克风。
两者之间的距离是已知的。
当喇叭发声时,麦克风接收到声音并记录下时间。
这就是我们的测量方法,直接而有效。
二、实验步骤2.1 准备设备我们需要的设备包括一个喇叭、一个麦克风、一个计时器和一根尺子。
准备这些东西时,心里充满了期待。
我们把喇叭放在一个固定的位置,确保一切都在最佳状态。
然后,调整麦克风的位置,尽量减少环境噪音。
2.2 进行实验一切准备就绪,开始实验!我打开喇叭,发出清晰的声音。
听,那一瞬间,似乎时间都停止了。
我们都聚精会神地盯着计时器,心跳也随之加速。
声音在空气中迅速传播,麦克风记录下了到达的时间。
每次实验,我们都小心翼翼,尽量减少误差。
2.3 数据记录与处理实验结束后,数据收集到了。
根据公式,声速等于距离除以时间。
我们把记录的数据代入公式,经过几轮计算,最终得出了声速的近似值。
这个过程虽然繁琐,但每一步都让人心潮澎湃。
计算结果与理论值非常接近,这让我倍感欣喜。
三、实验结果与分析3.1 数据结果经过多次实验,我们得到了几组数据。
虽然有一些小的误差,但总体趋势很明显。
声速在空气中大约是340米每秒。
这一数字在心中回响,让我感到无比神奇。
声音在我们生活中随处可见,却从未认真思考过它的速度。
声速的测量实验报告及数据处理

声速的测量实验报告及数据处理一、实验目的与原理1.1 实验目的为了研究声速的测量方法,我们进行了一次声速的测量实验。
通过实验,我们希望能够了解声速的定义、测量原理以及影响声速的因素,从而为实际应用提供理论依据。
1.2 实验原理声速是指在某种介质中,声波传播的速度。
声音是由物体振动产生的机械波,当这种振动传播到介质中时,会引起介质分子的振动,从而形成声波。
声波在介质中的传播速度与其内部分子的振动速度有关,而分子的振动速度又受到温度、压力等因素的影响。
因此,声速的测量实际上是测量介质中分子振动速度的过程。
二、实验设备与材料2.1 设备本次实验使用的设备包括:声源(用于产生声波)、麦克风(用于接收声波)、计时器(用于计算声波传播时间)、数据处理软件(用于分析实验数据)。
2.2 材料实验所使用的材料包括:水、玻璃、铝箔等。
这些材料都是常见的介质,可以用于测量声速。
三、实验步骤与数据处理3.1 实验步骤1) 将水倒入一个透明的容器中,使其充满水。
2) 将玻璃和铝箔分别放在水中。
3) 用麦克风分别对玻璃和铝箔进行录音。
4) 使用计时器记录每次录音所需的时间。
5) 重复以上步骤多次,以获得较为准确的数据。
6) 使用数据处理软件对实验数据进行分析,得出声速的测量结果。
3.2 数据处理我们需要计算每次录音所需的时间。
由于实验过程中可能会受到环境噪声的影响,因此我们需要在每次录音前先将麦克风校准,以减小误差。
接下来,我们可以使用以下公式计算声波在介质中传播的距离:距离 = (时间 * 频率) / 声速其中,时间是以秒为单位的时间长度,频率是以赫兹为单位的声音频率,声速是以米/秒为单位的声波传播速度。
通过对所有数据的分析,我们可以得到不同介质中声波传播速度的测量结果。
四、实验结果与分析根据我们的实验数据,我们得到了不同介质中声波传播速度的结果。
通过对比实验数据与理论预测值,我们发现实验结果与理论预测值基本一致,说明我们的实验方法是可行的。
大学物理实验报告声速的测量

大学物理实验报告声速的测量声速是指声波在介质中传播的速度。
在大学物理实验中,测量声速是一项常见的实验项目。
本文将介绍如何进行声速的测量以及实验过程中的注意事项。
声速的测量可以通过多种方法进行,其中一种常用的方法是通过测量声波在空气中的传播时间来计算声速。
实验中需要用到一台发声器和一台示波器。
首先,将发声器放置在适当的位置,使声波能够在实验室中传播。
然后,将示波器连接到发声器上,并将示波器设置为触发模式。
触发模式可以确保示波器在接收到声波信号时才进行测量。
接下来,调整发声器的频率,使其产生一个明显的声波信号。
然后,打开示波器,并调整示波器的垂直和水平刻度,使声波信号能够在示波器屏幕上清晰可见。
现在,我们可以开始测量声速了。
首先,选择一个起始点,并用示波器的游标功能标记下来。
然后,等待声波信号到达示波器的起始点,并用示波器的游标功能再次标记下来。
通过测量两个标记点之间的时间差,我们可以得到声波在空气中传播的时间。
为了提高测量的准确性,可以进行多次测量,并计算平均值。
此外,还应注意排除外界因素对测量结果的影响。
例如,确保实验室中的环境噪音较小,并避免其他声源的干扰。
在进行实验时,还应注意一些实验技巧。
首先,要确保示波器的触发模式正确设置,以确保测量结果的准确性。
其次,要使用适当的测量工具,如游标功能,以提高测量的精确度。
最后,要注意对实验数据进行记录和分析,以便后续的数据处理和结果推导。
通过以上实验步骤和技巧,我们可以准确测量声速并得到实验结果。
在实验报告中,除了记录实验步骤和结果外,还可以进行一些讨论和分析。
例如,可以比较实验结果与理论值的差异,并探讨可能的误差来源。
此外,还可以讨论声速在不同介质中的差异,并对实验结果进行进一步的解释和应用。
总结起来,声速的测量是一项常见的大学物理实验。
通过合理的实验步骤和技巧,我们可以准确测量声速并得到实验结果。
在实验报告中,除了记录实验过程和结果外,还可以进行讨论和分析,以进一步理解声速的特性和应用。
大学物理实验报告-声速的测量

实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。
当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即__D_时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为__D_Dd__________ÿĝϨϨ________________ _的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2.相位比较法波是振动状态的传播,也可以说是位相的传播。
沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。
大学物理实验声速测量实验报告

大学物理实验声速测量实验报告一、实验目的1、了解声速测量的基本原理和方法。
2、学习使用驻波法和相位法测量声速。
3、加深对声波、波动等物理概念的理解。
4、培养实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,会形成驻波。
当声源和接收器之间的距离满足一定条件时,会在两者之间形成稳定的驻波。
驻波的相邻波腹或波节之间的距离为半波长的整数倍。
通过测量相邻波腹或波节之间的距离,就可以计算出声波的波长,进而计算出声速。
2、相位法利用示波器观察声源和接收器的信号相位差。
当声源和接收器之间的距离改变时,相位差会发生变化。
通过测量相位差的变化,结合距离的改变量,可以计算出声波的波长,从而得出声速。
声速的计算公式为:$v =fλ$,其中$v$为声速,$f$为声波的频率,$λ$为波长。
三、实验仪器1、声速测量仪包括声源、接收器、可移动导轨等。
2、示波器用于观察信号的波形和相位。
3、信号发生器产生一定频率的电信号驱动声源。
四、实验步骤1、驻波法测量声速连接实验仪器,将声源和接收器安装在可移动导轨上。
打开信号发生器,调节输出频率,使示波器上显示出稳定的正弦波。
缓慢移动接收器,观察示波器上的波形,找到相邻的波腹或波节,记录接收器的位置。
重复测量多次,计算相邻波腹或波节之间的距离平均值,即为半波长。
根据信号发生器的频率和波长计算出声速。
2、相位法测量声速按照驻波法的连接方式连接好仪器。
将示波器的两个通道分别连接到声源和接收器的输出端。
缓慢移动接收器,观察示波器上两个信号的相位差变化。
当相位差从 0 变化到π时,记录接收器的位置。
重复测量多次,计算相邻两次相位差变化时接收器移动的距离平均值,即为波长。
结合信号发生器的频率计算出声速。
五、实验数据及处理1、驻波法测量数据|测量次数|相邻波腹(或波节)位置(mm)|距离差(mm)|半波长(mm)||||||| 1 |_____ |_____ |_____ || 2 |_____ |_____ |_____ || 3 |_____ |_____ |_____ || 4 |_____ |_____ |_____ || 5 |_____ |_____ |_____ |平均值:半波长=_____ mm已知信号发生器的频率$f =_____ Hz$,则声速$v =fλ = f×2×$半波长=_____ m/s2、相位法测量数据|测量次数|相位差变化时的位置(mm)|距离差(mm)|波长(mm)||||||| 1 |_____ |_____ |_____ || 2 |_____ |_____ |_____ || 3 |_____ |_____ |_____ || 4 |_____ |_____ |_____ || 5 |_____ |_____ |_____ |平均值:波长=_____ mm声速$v =fλ =_____$ m/s六、误差分析1、仪器误差测量仪器本身存在精度限制,可能导致测量结果的误差。
声速测量实验报告范文(共五则)

声速测量实验报告范文(共五则)第一篇:声速测量实验报告范文实验时间:2019 年月日,第批签到序号:【进入实验室后填写】福州大学【实验一】声速测量(303 实验室)学学院班班级学学号姓姓名实验前必须完成【实验预习部分】登录下载预习资料携带学生证提前 10 分钟进实验室实验预习部分【实验目的】】【实验仪器】(名称、规格或型号)【实验原理】(文字叙述、主要公式、原理图)实验预习部分【实验内容和步骤】】实验预习部分一、写出示波器以下标号的功能(用中文表述),并复习它们的位置(参本考课本 P148 图图 19-13):39(或 11)25。
二、在下图方框中标出函数信号发生器的四个部位分别对应哪个选项。
A、CH1B、CH1使能C、CH2D、CH2使能三、实验中在测量声波波长之前,必须确定系统的。
频率。
动调节方法是:先移动 S1 到距 S2 为为 5 ~10 cm,缓慢调节函数信号发生器频率(在~kHz 连续调节),观察哪个频率下接收波电压动幅度最大。
然后移动S1,使示波器显示的正弦幅度最大,再细调信号以频率(以0.01kHz。
为步长调节),直到接收波振幅最大。
记下此时频率。
注意:本实验用的声速测定装置动子是发射端,定子是接收端。
于两个换能器之间的距离最好大于 5 cm,严禁将两个换能器接触。
数据记录与处理【一】测量系统的谐振频率 f =k H z此时换能器间距 L=mm 【二】用共振干涉法测波长((v 公 =340.00 m/s)1L =mm,11L =mm,λ=mm声速 v =百分偏差 B=【三】用相位比较法测波长(v 公 =340.00m/s)数次数 i L i /mm 数次数 i+6 L i+6 m/mm6()/6()i iL L mmλ+=-()mm λ声速 v =百分偏差 B=思考题:用相位法测量波长时,指出本实验用哪两个图形之间的距离:测量波长:(在正确的图下画√)进入实验室后,按实验指导老师要求撰写。
大学物理实验报告声速的测量

大学物理实验报告声速的测量大学物理实验报告:声速的测量引言:声速是声波在介质中传播的速度,是一个物质的固有属性。
在物理学中,测量声速是一项重要的实验,它不仅有助于我们了解声波的传播规律,还可以为其他领域的研究提供基础数据。
本实验旨在通过一系列测量步骤,精确计算出声速的数值。
材料与方法:实验所需材料有:声速测量装置、示波器、发声器、频率计、螺旋测微器、直尺、宽口瓶、水、计时器等。
实验步骤如下:1. 将宽口瓶中装满水,放置在平稳的桌面上。
2. 将发声器固定在宽口瓶的顶部,确保其与水面平行。
3. 将示波器与发声器相连,以便观察声波的波形。
4. 调节发声器的频率,使其发出稳定的声音。
5. 使用螺旋测微器测量宽口瓶的高度,并记录下来。
6. 在示波器上观察声波的波形,并使用频率计测量声波的频率。
7. 同时启动计时器和示波器,记录下声波传播从发声器到水面反射回来的时间间隔。
8. 重复上述步骤,进行多组实验数据的测量。
结果与讨论:根据实验数据,我们可以计算声速的数值。
首先,根据声波传播的时间间隔和宽口瓶的高度,我们可以计算出声波在水中的传播距离。
其次,根据声波的频率和传播距离,我们可以计算出声波在水中的传播时间。
最后,通过将传播距离除以传播时间,我们可以得到声速的数值。
在实验过程中,我们需要注意一些误差来源。
首先,由于声波的传播路径并非直线,而是经过水面的反射,因此需要对声波传播的路径进行修正。
其次,由于实验设备的精度限制,测量值可能存在一定的误差。
为了减小误差,我们可以进行多组数据的测量,并取平均值作为最终结果。
此外,声速的数值还受到温度和压力等环境因素的影响。
在实验中,我们可以通过控制实验环境的温度和压力,使其尽量接近标准条件,以获得更准确的结果。
结论:通过以上实验步骤和数据处理,我们成功测量出了声速的数值。
实验结果表明,声速在水中的数值为XXX m/s(具体数值根据实验数据计算得出)。
这一结果与文献中的数值相近,验证了实验的准确性和可靠性。
实验报告--声速的测量

实验报告--声速的测量一声速,这个词听上去有点儿高大上,其实生活中随处可见。
想象一下,阳光明媚的日子里,朋友们在操场上打球,远处传来一声巨响。
你有没有注意到,你先看到球飞过,耳朵里却慢了一拍,才听到声音?这就是声速的魅力,快得让人惊叹。
1.1 实验的准备首先,我们得准备一些简单的工具。
一个计时器,一根长长的绳子,当然还有个听得见的声音源,比如说一个小鼓或一根哨子。
听起来简单吧?没错,实际操作时却充满乐趣。
把绳子拉直,朋友们站在不同的位置,准备好,等着那一瞬间。
大家心里都激动不已。
1.2 测量的方法我们决定用“看声”的方式。
有人在远处敲鼓,另一个人则在离鼓约100米的地方,眼睛紧盯着。
鼓声一响,计时器开始计时。
等到声音传来,计时器停下。
每个人的心跳都在加速,生怕错过了那一瞬间。
数据记录下来,一切都那么直接,那种感觉,真是妙不可言。
二2.1 数据的分析接下来,我们得分析这些数据。
为了得到声速,我们需要用公式:声速等于距离除以时间。
假设我们记录到的时间是0.3秒,距离是100米,那么声速就成了333米每秒。
听到这里,是不是觉得声音就像一阵风,瞬间吹过?当然,这只是一个粗略的估计,真实情况可能会受到许多因素的影响。
2.2 环境因素的影响在不同的环境下,声速是有差异的。
比如,水里的声速比空气快得多。
想象一下,如果在水下,你的声音仿佛穿越了时空。
再说说温度,热空气中的声音传播得更快。
记得那次实验吗?我们在阳光下和阴凉处分别测试,结果差别不小。
这就像是在说,同样的声音,放在不同的地方,效果却大相径庭。
2.3 误差的来源当然,实验总是有误差的。
第一,环境噪声会影响我们的判断,谁能保证鼓声和其他声音的清晰度?第二,计时的准确性也会影响结果。
手一抖,可能就多了几毫秒。
这样想来,实验不仅是测量,更是一个探寻的过程,让我们不断接近真实。
三3.1 实验的意义声速的测量,不仅仅是为了求得一个数字。
它揭示了声波传播的奥秘。
想想音乐,声波通过空气传递到我们的耳朵,触动了我们的心弦。
大学物理实验报告-声速的测量15457

实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅(1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用/v L t =(2)表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S 2为超声波接收器,声波传至它的接收面上时,再被反射。
当S 1和S 2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即L =n ×λ2, n =0,1,2, (3)时,S 1发出的声波与其反射声波的相位在S 1处差2nπ(n=1,2 ……),因此形成共振。
因为接收器S 2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器S 2的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
大学物理实验声速的测量实验报告

大学物理实验声速的测量实验报告一、实验目的1、学会用驻波法和相位法测量声速。
2、了解声速测量的基本原理和方法。
3、加深对波动理论的理解,提高实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,入射波与反射波叠加形成驻波。
在驻波中,相邻两波节之间的距离为半波长的整数倍。
通过测量相邻两波节之间的距离,就可以计算出声波的波长,进而求得声速。
设声源的振动频率为 f,波长为λ,声速为 v,则有 v =fλ。
在驻波法中,我们使用超声换能器作为声源和接收器。
当两个换能器之间的距离等于半波长的整数倍时,接收端的信号幅度达到最大,此时两个换能器之间的距离 L 与波长λ之间的关系为:L =nλ/2(n =1,2,3,)。
2、相位法声源和接收器作相对运动时,接收器接收到的声波频率会发生变化,这种现象称为多普勒效应。
在相位法中,我们利用多普勒效应来测量声速。
设声源的频率为 f,声源和接收器的相对运动速度为 v',接收器接收到的声波频率为 f',则有:f' = f (1 + v'/v) 。
当声源和接收器相向运动时,v'为正;当声源和接收器相背运动时,v'为负。
通过测量声源和接收器的相对运动速度 v'以及声源的频率 f,就可以计算出声速 v。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法测量声速(1)按照实验装置图连接好仪器,将超声换能器 S1 和 S2 分别连接到声速测量仪的发射端和接收端。
(2)打开信号发生器和示波器,调整信号发生器的输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动 S2,观察示波器上的信号幅度变化。
当信号幅度达到最大时,记录此时 S2 的位置 L1。
(4)继续移动 S2,当信号幅度再次达到最大时,记录此时 S2 的位置 L2。
(5)重复步骤(3)和(4)多次,测量多组数据。
(6)根据测量数据计算出声波的波长λ,进而求得声速 v。
物理实验报告声速测量

一、实验目的1. 了解声波的产生和传播原理;2. 掌握声速的测量方法;3. 通过实验验证声速与介质的关系。
二、实验原理声波是一种机械波,其传播速度与介质的性质有关。
声速是指声波在介质中传播的速度,通常用公式v = fλ表示,其中v为声速,f为声波的频率,λ为声波的波长。
在实验中,我们通过测量声波在介质中的传播时间,结合声波频率,计算出声速。
实验原理如下:1. 利用声源产生已知频率的声波;2. 通过测量声波在介质中的传播时间,计算出声波的波长;3. 根据声波频率和波长,计算出声速。
三、实验仪器1. 声波发生器:用于产生已知频率的声波;2. 测距仪:用于测量声波在介质中的传播时间;3. 金属棒:作为声波传播的介质;4. 秒表:用于计时;5. 计算器:用于计算声速。
四、实验步骤1. 将声波发生器固定在金属棒的一端,并将测距仪固定在金属棒的另一端;2. 开启声波发生器,使声波从一端传播到另一端;3. 当声波到达测距仪时,立即启动秒表计时;4. 当声波返回到声波发生器时,立即停止秒表计时;5. 记录下声波在金属棒中传播的时间;6. 根据声波发生器的频率和测得的传播时间,计算出声速。
五、实验数据及处理1. 声波发生器频率:f = 440 Hz;2. 声波在金属棒中传播的时间:t = 0.008 s;3. 声速计算:v = fλ = f × (t / 2) = 440 Hz × (0.008 s / 2) = 1.76 m/s。
六、实验结果与分析根据实验数据,声波在金属棒中的传播速度为1.76 m/s。
该结果与理论值较为接近,说明实验方法可靠。
七、实验结论1. 声波在金属棒中的传播速度与介质的性质有关;2. 通过实验,我们成功测量了声波在金属棒中的传播速度;3. 实验结果验证了声速与介质的关系。
八、注意事项1. 实验过程中,确保声波发生器、测距仪和金属棒固定牢固;2. 测量声波传播时间时,尽量减少人为误差;3. 实验结束后,整理实验器材,保持实验室卫生。
大学物理实验报告声速的测量-V1

大学物理实验报告声速的测量-V1测量声速是物理实验中非常基础的实验之一,这篇文章将介绍大学物理实验报告声速的测量。
一、实验目的本实验旨在通过测量声波在不同介质中的传播速度,从而得出声速的实验值,并与理论值进行比较。
同时,通过实验过程,提高学生对声学基础概念的理解。
二、实验原理声波的传播速度与介质性质有关,一般来说,声速在固体中最快,在液体中其次,在气体中最慢。
声速的计算公式为v=s/ t,其中s为声波传播距离,t为声波传播时间。
在实验中,声速可通过测量声波的传播距离和传播时间来计算。
三、实验器材1.反射式测量声速仪器;2.音频发生器;3.示波器;4.计时器;5.水槽。
四、实验步骤1.实验前准备:将反射式测量声速仪器放置在水槽上,调节水深,保证水面与发光口之间的距离为一个波长;2.发生声波:打开音频发生器,发出一定频率的声波,声波经发光口射入水中;3.测量声波传播时间:从示波器上读取声波传播的时间t1;4.调整反射角度:调整反射角度,使声波经声传感器回射回来,并以反射光的方式经过接收光口,再次测量声波传播的时间t2;5.测量声波传播距离:通过反射角度、声波入射口到反射光口的水平距离和测量水深,计算出声波的传播距离s;6.计算声速:利用公式v=s/t计算声速。
五、实验结果及分析1.我们进行了多组实验,测得声速的平均值为340m/s;2.根据理论值,声速在室温下一般为343m/s,通过比较实验值和理论值,可以发现二者很接近,说明实验结果较为准确;3.通过实验,加深了我们对声学基础概念的认识,也提高了我们的实验技能。
六、实验总结通过本实验,我们掌握了测量声速的方法,并通过实验结果与理论值的比较验证了实验的准确性。
同时,着重强调理论与实验相结合的重要性,只有在实验过程中不断加强理论知识的修正与更新,才能在科学理论中不断发现新的实验规律,推动科学技术的进步。
大学物理实验声速的测量

大学物理实验声速的测量第五章大学物理拓展实验实验一声速的测量【目的与任务】1、继续学会双踪示波器的调试和使用,观察正弦波、三角波、方波和利萨如图形;2、学习用相位比较法测声速:?用波形比较法测声速;?用利萨如图形法测声速;3、用空气中的声速求空气的比热容比γ。
【仪器与设备】双踪示波器,函数信号发生器,声速测量仪。
【原理与方法】1、观察利萨如图形如果在示波器X、Y通道均加上正弦信号见图1,当两个信号相互间的频率成整数倍而相位差不同时,会在示波器荧光屏上显示出一系列不同的利萨如图形,如图2:(1) ; (2) f,fxy;(3)。
若将该图旋转90?,则变为:(1);(2);(3)f,2ff,3ff,ff,2fxyxyyxyx。
f,3fyx图1 图2图2中图形虽各异,但下式总是成立的,nfyx (1) ,fnyx即两个信号的频率(,)之比,等于图形与水平轴、垂直轴的切点数(,)之比。
切点ffnnyyxx1数的读法参阅图3。
由此,若已知其中一个信号的频率,就可推算出另一个信号的频率。
利用利萨如图形测频率时,要尽量使图形稳定。
这是因为两种信号的频率不会非常稳定和严格相等,所以得到的利萨如图形也不很稳定,一般会上下左右来回地地滚动。
而且,图形翻转越快,误差越大。
测量时可按下述方法进行调节:调节频率微调,使图形翻转的速率逐渐变慢,直到翻转的方向刚好改变时,对应的频率就是准确值。
图32、测量两个正弦信号的相位差频率相同的两个正弦信号的固定相位差可用如下两种方法测得。
(1) 双踪示波法。
将两个正弦信号分别输入双踪示波器的、通道,调出如图4所示YYAB的波形,测出相应的T和,T所占的格数,则相位差为,T, (2) ,2,T图4 图5(2) 利萨如图形法。
单双踪示波器都能采用,如图4所示,设(3) y,ysin,t0(4) x,xsin(,t,,)02式中φ为y与x的相位差,对x轴上的点,,则,所以 y,0t,0x,xsin,,A0得A=arcsin (5) ,x03、相位比较法(又称行波法)测声速图6 图7 图四仪器装置如图6所示,取表面为坐标原点,从发出的声波为: SS11x, (6) ,cos(,)Sat1x,式中x为观察点的坐标,其相位比x=0的点落后: ,,,x2x,, (7) ,,,,,由上式可知,沿声波传播方向,每改变,相位变化。
声速的测量实验报告_实验报告_

声速的测量实验报告不会写声速的测量实验报告的朋友,下面请看小编给大家整理收集的声速的测量实验报告,仅供参考。
声速的测量实验报告1实验目的:测量声音在空气中的传播速度。
实验器材:温度计、卷尺、秒表。
实验地点:平遥县状元桥东。
实验人员:爱物学理小组实验分工:张灏、成立敬——测量时间张海涛——发声贾兴藩——测温实验过程:1 测量一段开阔地长;2 测量人在两端准备;3 计时员挥手致意,发声人准备发声;4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止)5 多测几次,记录数据。
实验结果:时间17∶30温度21℃发声时间0.26″发声距离 93m实验结论:在21℃空气中,声音传播速度为357.69m/s.实验反思:有一定误差,卡表不够准确。
声速的测量实验报告2实验目的:1)探究影响声速的因素,超声波产生和接收的原理。
2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。
4)三种声速测量方法作初步的比较研究。
实验仪器:1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。
4)信号发生器: 5)示波器实验原理: 1)空气中:a.在理想气体中声波的传播速度为v88(式中8088cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。
)标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下(T0�8�8273.15K,p�8�8101.3�8�8kPa),干燥空气中的声速为v0=331.5m/s。
在室温t℃下,干燥空气中的声速为v88v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。
当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。
大学物理实验报告声速的测量

实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。
当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即(3)时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2.相位比较法波是振动状态的传播,也可以说是位相的传播。
沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。
大学物理实验报告声速的测量(一)

大学物理实验报告声速的测量(一)大学物理实验报告:声速的测量一、实验目的本实验旨在通过测量声波传播时间和距离,利用间接法测量声速,熟悉声波频率的测量。
二、实验仪器与材料实验仪器:数字多功能存储示波器、函数信号发生器、麦克风、五折射声束盒、气压计和干度计;材料:纸张、铅笔、手触计。
三、实验原理声速是指声波在某一介质中的传播速度。
声速的大小受介质密度、温度等因素的影响,一般情况下在20℃时,空气中声速为340 m/s。
测量声速有直接法和间接法两种方法,直接法是测量脉冲波、连续波、单色波的传播时间或基频波长和频率来得到声速。
间接法是利用已知物理量来计算未知物理量,通过测量声波传播时间和距离,就可以利用间接法测量声速。
四、实验步骤1. 首先将信号发生器的频率调至5000 Hz,振幅调为最大,连接麦克风。
2. 用麦克风发出声波,让声波穿过五折射声束盒的一路平板玻璃,打在离麦克风小约100cm远的另一面平板玻璃上。
3. 用手触计在玻璃平板上找出接收点和发射点,记录其距离为L。
再用干度计测得室温为20℃,加压气压计得到大气压力P。
4. 用数字多功能存储示波器测量声波经过的时间t,时间由麦克风对声波的接收时间和显示仪示出的延迟时间之和得到。
5. 根据公式v=2L/t求得声速v。
五、实验注意事项1. 测量距离时要用手触计精确定位接收点和发射点。
2. 为了减少误差,要多次进行测量,取平均值。
3. 保证实验室内温度和气压稳定,以减少测量误差。
六、实验结果与分析在实验中,测得声波传播时间t为0.005s,距离L为1.02m,气压P 为101.3kPa,温度为20℃,代入公式v=2L/t,可得声速v=408m/s。
与空气中常温下理论值340m/s相差约20%。
实验误差来源主要有以下几个方面:1. 手触计数据读取误差。
2. 实验室内空气流动和温度变化。
3. 数据处理时的计算误差。
4. 实验器材误差。
七、实验结论本实验成功测得了声波在空气中的传播速度,并通过分析异常误差的原因,提出了相应的纠正措施。
大学物理实验声速测量实验报告

大学物理实验声速测量实验报告一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位法测量声速。
3、掌握示波器、信号发生器等仪器的使用方法。
4、培养实验数据处理和误差分析的能力。
二、实验原理1、驻波法当声源发出的平面声波在管内传播时,入射波与反射波叠加形成驻波。
在驻波场中,波腹处声压最大,波节处声压最小。
相邻两波腹(或波节)之间的距离为半波长。
通过测量相邻两波腹(或波节)之间的距离,就可以计算出声波的波长,进而计算出声速。
设两相邻波腹(或波节)之间的距离为Δx,则声波的波长λ =2Δx。
声速 v =fλ,其中 f 为声源的频率。
2、相位法通过比较发射波和接收波的相位差来测量波长。
将发射波和接收波分别输入到示波器的 X 轴和 Y 轴,当它们的相位差为2π 时,李萨如图形呈现一条直线。
移动接收器,当李萨如图形再次呈现直线时,接收器移动的距离即为一个波长。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法(1)按实验装置图连接好仪器,将信号发生器的输出频率调至一定值,例如 35kHz 左右。
(2)调节示波器,使其能清晰地显示出接收信号的波形。
(3)移动接收器,观察示波器上波形的变化,找到波腹或波节的位置,并记录下来。
(4)继续移动接收器,测量相邻波腹(或波节)之间的距离,至少测量 6 组数据。
2、相位法(1)将信号发生器的输出信号同时接入示波器的 X 轴和 Y 轴。
(2)调节示波器,使其显示出稳定的李萨如图形。
(3)移动接收器,观察李萨如图形的变化,当图形再次变为直线时,记录接收器的位置。
(4)重复上述步骤,至少测量 6 组数据。
五、实验数据记录与处理1、驻波法|测量次数|1|2|3|4|5|6||||||||||相邻波腹(或波节)距离Δx(mm)|_____|_____|_____|_____|_____|_____|计算波长λ =2Δx 的平均值,以及声速 v =fλ 的平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实 验 报 告
声速的测量
【实验目的】
1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速
2.学会用逐差法进行数据处理;
3.了解声速与介质参数的关系。
【实验原理】
由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法
实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中
定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。
当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即
(3)
时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2.相位比较法
波是振动状态的传播,也可以说是位相的传播。
沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。
利用这个原理,可以精确的测量波长。
实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与发射器的位相相同时,一国的距离等于与声波的波长。
同样也可以利用李萨如图形来判断位相差。
实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。
3.时差法
用时差法测量声速的实验装置仍采用上述仪器。
由信号源提供一个脉冲信号
经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。
4.逐差法处理数据
在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个的距离为
这样就很容易计算出。
如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。
【实验数据记录、实验结果计算】
实验时室温为16℃,空气中声速的理论值为
1.共振干涉法
频率
使用逐差法进行数据处理,处理过程由C++程序完成,程序如下
#include<iostream>
#include<cstdio>
using namespace std;
const int n=10;
const double f=35.617;
const double L[2*n]={50.00, 52.58, 54.41, 57.46, 59.63, 62.40, 64.46, 67.37, 70.60,
72.16,74.01, 77.00, 79.01, 81.84, 83.80, 86.92, 88.78, 91.66,
93.31, 96.49};
double LMD=0;
int main()
for (int i=0;i<n;i++) LMD+=(L[n+i]-L[i])*2/n/n;
printf("v=%.3lf\n",LMD*f*2);
system("pause");
return 0;
}
此程序运行结果为:v = 344.461 m/s;
2.相位比较法
频率
使用逐差法进行数据处理,处理过程由C++程序完成,程序如下
#include<iostream>
#include<cstdio>
using namespace std;
const int n=5;
const double f=35.618;
const double L[2*n]={54.82, 64.41, 74.02, 83.74, 93.40, 103.06, 112.90,
122.36, 131.86, 141.09};
double LMD=0;
int main()
{
for (int i=0;i<n;i++) LMD+=(L[n+i]-L[i])/n/n;
printf("v=%.3lf\n",LMD*f);
system("pause");
return 0;
}
此程序运行结果为:v = 343.187 m/s
3.时差法测量空气中声速
T/μs400 413 428 442 458 472 487 501 L/mm56.80 55.86 66.81 71.85 76.82 81.83 86.81 91.86
计算机作图如下:
由于第二组数据,存在较大误差,因此将其去掉。
计算机计算得v = 344.41 m/s
4.时差法测量液体中声速
计算机作图如下:
编号 1 2 3 4 5 6 7 8 T/μs94 97 101 104 107 111 114 117 L/mm105.24 110.02 115.00 120.05 125.04 130.06 135.01 140.05
计算机计算得v = 1449.43 m/s
【分析讨论】
1 关于误差
其实做这个实验需要极其精细的操作。
为了得到更精确的结果,不仅要每个人时刻集中精力观察仪器,操作仪器,而且需要两个人的默契配合。
当然,还是有一些最基本的需要注意的地方,如操作距离旋钮时,旋转最好不要太快,接近读数点时要放慢速度,最好不要逆向旋转旋钮;示波器的图像最好调节到合适的大小位置,以便观察和减小误差。
观察李萨如图像时应选取水平或垂直线段中的一者为标准,否则无法判断移动的是波长还是半波长。
此时应将图像尽量放大,因为观察重合时图像较小会导致误差很大。
当然最终测得的结果还是有一定的误差,但误差已经很小了。
观察测得得空气中声速发现几种测量方法的测量结果都偏大,一个重要的原因就是空气中含有水蒸汽及其它杂质,声音在这些物质中的传播速度都要比在空气中的传播速度大,所以最后的测量结果都偏大。
而使用相位法测得的结果与真实值最接近,因为这个方法观察图像时,是在图像变化到重合时读数,判断图像重合成直线是相对容易的,所以误差会较小。
【思考题】
1、为什么换能器要在谐振频率条件下进行声速测定?
答:因为在谐振频率下,反射面之间的声压达极大值。
这样从示波器上观察到的电压信号幅值为最大,从而更利于观察。
2、要让声波在两个换能器之间产生共振必须满足那些条件?
-
答:1、两个换能器的发射面与接受面互相平行。
2、两个换能器间的距离为半波长的整数倍。
3、试举出三个超声波应用的例子,他们都是利用了超声波的那些特性?
答:比如超声波定位系统,超声波探测,超声波洗牙。
他们利用了超声波的波长短,易于定向发射,易被反射等特性。
4、在时差法测量中,为何共振或接受增益过大会影响声速仪对接受点的判
断?
答:因为当共振或接受增益过大时,接受器将提前接收到信号,这样测得的时间将偏小,导致最后计算出的声速偏大。
【个人想法】
1.我想这个实验测声速的方法可以有更广阔的用处.对于前两种方法,可以测得
一些以波形态传播的物质的速度.如果仪器可以极其精密,就可测得光速.
对于第三种方法,可以用来测量光速.在发射端接收端都安装平面镜,可以记录光走充分大个来回的时间,让发射端和接收端记录光走的来回数,然后用时差法算得光速.
.-。