人工智能技术应用介绍PPT

合集下载

人工智能ppt课件免费

人工智能ppt课件免费
人工智能的未来趋势
随着算法、算力和数据的发展,人工 智能将在各个领域发挥更大的作用, 如自动驾驶、医疗诊断、智能制造等 。
对观众的寄语和期望
寄语
希望观众能够深入了解人工智能的发展和应用,把握未来的机遇和挑战。
期望
期待观众能够积极探索人工智能在各个领域的应用,为未来的发展做出贡献。
感谢您的观看
THANKS
人工智能 PPT 课件
目录
CONTENTS
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的未来展望 • 如何学习和应用人工智能 • 结语
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机 器能够模拟人类的智能行为,实 现人机交互和自主决策。
人工智能的核心
自动驾驶汽车能够提高交通效率和安 全性,减少交通事故和拥堵现象。
医疗诊断
人工智能在医疗领域的应用, 可以帮助医生提高诊断准确性 和效率。
人工智能可以通过分析大量的 医疗数据和病例,辅助医生进 行疾病诊断和治疗方案制定。
人工智能还可以用于医学影像 分析,自动识别病变和异常情 况,提高医学影像诊断的准确 性和效率。
模拟人类的感知、认知、学习和 推理等智能行为,实现机器的自 主决策和智能控制。
人工智能的历史与发展
早期阶段
当前阶段
20世纪50年代,人工智能概念开始出 现,主要研究领域包括专家系统和自 然语言处理。
21世纪初至今,人工智能技术广泛应 用于各个领域,包括自动驾驶、智能 家居、医疗诊断等。
发展阶段
20世纪80年代末至90年代,随着计算 机技术和大数据的发展,人工智能技 术逐渐成熟,机器学习、深度学习等 领域取得重要突破。

第六章 人工智能及其应用 课件(共16张PPT).ppt

第六章 人工智能及其应用 课件(共16张PPT).ppt
什么是人工智能?
人工智能 Artificial Intelligence
人工智能是计算机科学的一个分支, 是研究计算机模拟人的某些感知能力、 思维过程和智能行为的学科。人工智能 是引领未来的战略性技术,将深刻改变 人类生产生活方式。人们要保持对人工 智能的控制能力,防范人工智能失控的 风险和对人类社会未来发展的潜在威胁。
揭阳市揭东区第二中学 许家乐 原创课件
《数据与计算》
初识人工智能
第六章导学课
6.1
认识人工智能
6.2
人工智能的应用
揭阳市揭东区第二中学 许家乐 原创课件
PEPORT ON WORK
01
人工智能
什么是人工智能? 人工智能的诞生和发展历程是怎样的?
揭阳市揭东区第二中学 许家乐 原创课件
揭阳市揭东区第二中学 许家乐 原创课件
1997年“深蓝”战胜卡斯帕罗夫 2006年深度学习的开始研究 2010年大数据时代到来 2016年3月AlphaGo以4比1战胜 世界围棋冠军李世石
揭阳市揭东区第二中学 许家乐 原创课件
人工智能的研究领域
图像识别

人脸识别
做 机器人 自动驾驶
语音识别 听
机器学习 学习
理解
机器翻译
思考
人机对弈
专家系统
在教育领域,人工智能成
为教师和学生的得力助手。
比如智能导师:主要通过 自然语言处理和语音识别技术,
Hi
由计算机模拟教师教学的经验
和方法,对学生实施一对一的
教学,并向具有不同需求和特
征的学习者传递知识。
揭阳市揭东区第二中学 许家乐 原创课件
4、智能交通 智能交通系统是通信、信息和控
制技术在交通系统中集成应用的产物, 它借助现代科技手段和设备,将各核 心交通元素联通,实现信息互通与共 享,建立安全、高效、便捷和低碳的 交通运输管理系统。

人工智能与应用PPT课件

人工智能与应用PPT课件
语音识别与合成技术 及应用
2024/1/30
25
语音识别基本原理和方法
声学模型
将声音转化为可识别的特征参数,如梅尔频率倒谱系数(MFCC )等。
语言模型
利用统计语言模型来描述语音的上下文关系,提高识别准确率。
2024/1/30
解码器
将声学模型和语言模型结合,搜索最可能的文字序列作为识别结果 。
26
2024/1/30
问答系统
通过自然语言处理技术理 解用户提出的问题,并从 知识库中检索相关信息, 生成简洁、准确的答案。
机器翻译
利用自然语言处理技术实 现不同语言之间的自动翻 译,促进国际交流和合作 。
19
自然语言生成技术探讨
2024/1/30
自然语言生成技术
01
研究如何将非结构化的数据或信息转化为人类可读的自然语言
人工智能与应用 PPT课件
2024/1/30
1
contents
目录
2024/1/30
• 人工智能概述 • 机器学习原理与实践 • 自然语言处理技术与应用 • 计算机视觉技术与应用 • 语音识别与合成技术及应用 • 智能推荐系统原理与实践 • 人工智能伦理、法律和社会影响
2
01
人工智能概述
2024/1/30
6
02
机器学习原理与实践
2024/1/30
7
监督学习算法介绍
2024/1/30
原理
通过最小化预测值与真实值之间 的均方误差,学习得到最优的线 性模型参数。
应用
预测连续型数值,如房价、股票 价格等。
8
监督学习算法介绍
2024/1/30
原理
在特征空间中寻找最大间隔超平面, 使得不同类别的样本能够被正确分类 。

(完整版)人工智能介绍PPT课件全

(完整版)人工智能介绍PPT课件全
人的智能的理论、方法、技术及应用 系统的一门新的技术科学。
• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。

人工智能技术介绍PPT完整版(人工智能概述、围棋、象棋、人工智能3.0等)

人工智能技术介绍PPT完整版(人工智能概述、围棋、象棋、人工智能3.0等)

乐观思潮
人工智能
孕育期
电子计算机 机
器翻译与NLP 图灵测试 计算 机下棋 早期神
1956
1974
1980
1987
1993
2006
2016
所有的AI程序 都只是“玩具” 运算能力 计算复杂性 常识与推理
未达预期
大数据 计算能力
削减投入
应用增多
经网络
人工智能核心技术
知识和数据智能处理
知识处理时通常使用专家
来悄
临悄
• 交通工具(即无人机、无人驾驶等) • VR(虚拟现实)
终正
结在
工业1.0 创造了机器工厂的 “蒸汽时代”
工业2.0 将人类带入分工明 确、大批量生产的 流水线模式和“电 气时代”
工业3.0 应用电子信息技术, 进一步提高生产自 动化水平
工业4.0 开始应用信息物理 融合系统(CPS)
复 杂 度
有关学科 教学、科学和 工程辅助
图论
博弈
AI的几大门派
模拟人的心智 模拟脑的结构 模拟人的行为
进化学派 类推学派 贝叶斯学派 符号学派 联结学派 行为学派
感知
知识表示 神经网络 机器人
深度学习
聪明的AI
有学识的AI
识别 判断
思考 语言 推理
知识图谱
AI生态逐步形成:基础资源+技术+应用
人工智能产业生态的三层基本架构
信息物联系统 蒸汽机
电力广泛应用
自动化、信息化
18世纪末
20世纪初
1970年代初
今天
时间
AI将催生“无用阶层”吗?
• 人工/脑力劳动:翻译、记者...
• 人工/体力劳动:保安、保姆...

《人工智能介绍》PPT课件

《人工智能介绍》PPT课件

2023REPORTING 《人工智能介绍》PPT课件•人工智能概述•机器学习技术•自然语言处理技术•计算机视觉技术•语音识别与合成技术•人工智能伦理、法律与社会影响目录20232023REPORTINGPART01人工智能概述定义第一次浪潮(20世纪60年代-7…第二次浪潮(20世纪80年代-9…第三次浪潮(21世纪初至今)萌芽期(20世纪50年代-60年…发展历程人工智能(AI )是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能的发展大致经历了以下几个阶段人工智能的概念被提出,并出现了一些早期的理论和方法。

基于符号逻辑的专家系统得到广泛应用,但由于技术限制和理论缺陷,人工智能进入低谷期。

机器学习算法的兴起,尤其是神经网络技术的快速发展,为人工智能的复苏奠定了基础。

深度学习技术的突破,以及大数据、云计算等技术的支持,使得人工智能在各个领域取得了显著成果。

定义与发展历程技术原理及核心思想技术原理人工智能的技术原理主要包括感知、认知和行动三个层面。

感知层面通过传感器等设备获取外部环境信息;认知层面通过算法对获取的信息进行处理和分析,实现知识的表示、学习和推理;行动层面则根据认知结果做出相应的决策或行为。

核心思想人工智能的核心思想在于模拟人类的智能行为,包括学习、推理、决策等。

通过不断地学习和优化算法,提高机器的智能化水平,使其能够自主地完成复杂的任务。

应用领域人工智能已经渗透到各个领域,如自然语言处理、计算机视觉、智能机器人、智能制造、智慧城市等。

其中,自然语言处理使得机器能够理解和生成人类语言;计算机视觉使得机器能够识别和理解图像和视频;智能机器人则能够自主完成各种复杂任务。

前景展望随着技术的不断发展和应用场景的不断拓展,人工智能将在未来发挥更加重要的作用。

例如,在医疗领域,人工智能可以协助医生进行疾病诊断和治疗方案制定;在交通领域,自动驾驶技术将改变人们的出行方式;在金融领域,智能投顾和风险管理将提高金融服务的效率和质量。

人工智能介绍ppt课件

人工智能介绍ppt课件
应对策略:需要建立多元化的数据收集与处理方法,不断 提高模型的可解释性,加强隐私保护与安全性,构建以人 为中心的设计理念,以及加强跨学科研究与合作。
2. 人才培养与教育
AI技术的快速发展对人才的需求也日益增强。教育领域需要将AI技术引入到课程内容中,培养学生的创新思维 和实践能力。除了传统的计算机科学课程,还应重视数学、统计、物理等基础学科的教育。此外,实践环节也 非常重要,如提供实习机会、举办AI竞赛等,让学生在实践中提升技能。还可以尝试AI+教育的创新教学模式, 如通过虚拟现实、增强现实等技术,让学生更好地理解AI概念和应用。
保人工智能技术为人类带来积极的影响。
4. 未来展望与发展趋势
2. 机器视觉
将在自动驾驶、安防监 控等领域发挥更大作用。
1. 自然语言处理
将更加精确,实现与人 类更自然的交流。
3. 人工智能伦理
需更加重视,制定相应法律 法规,以保障人类利益。
0
3
0
2
0
4
0
1
0
5
4. 量子计算
助力AI发展,将实现更 高效的学习和决策。
5. AI芯片
更强大的性能和更低的 能耗,推动AI计算普及。
总结与建议
1. 关注人工智能技术与应用
1. 深度学习
是AI领域的核心技 术,已应用于图像识 别、自然语言处理、
语音识别等领域。
4. 医疗诊断
AI辅助诊断系统能 快速筛查疾病,提
高诊断准确性。
2. 自动驾驶
深度学习算法驱动下 的自动驾驶技术实现 了复杂路况下的安全
人工智能技术
1. 机器学习
深度学习与神经网络
深度学习是一种神经网络, 通过模拟人脑的神经网络结 构,实现对大量数据的高效

(完整版)人工智能介绍PPT课件

(完整版)人工智能介绍PPT课件

智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。

人工智能应用普及ppt课件

人工智能应用普及ppt课件

2023REPORTING 人工智能应用普及ppt课件•人工智能概述•人工智能在各领域应用案例•人工智能技术选型与实现方法•人工智能伦理、法律和社会影响•企业如何布局和推动AI 应用落地•总结与展望:AI 未来发展趋势预测目录20232023REPORTINGPART01人工智能概述定义与发展历程定义人工智能(AI)是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和扩展人的智能的理论、方法、技术及应用系统。

发展历程从20世纪50年代的萌芽期,到80年代的知识工程时期,再到90年代后的机器学习时期,以及近年来的深度学习时期,人工智能经历了多个发展阶段。

技术原理及核心算法技术原理人工智能通过模拟人类大脑神经网络的运作方式,实现信息的处理、学习和推理等功能。

其核心技术包括机器学习、深度学习、自然语言处理等。

核心算法机器学习算法如线性回归、决策树、随机森林等;深度学习算法如卷积神经网络(CNN)、循环神经网络(RNN)等;自然语言处理算法如词向量模型、语言模型等。

行业应用现状与趋势应用现状人工智能已广泛应用于金融、教育、医疗、交通、安防等多个领域,如智能客服、智能投顾、智能教育、辅助诊断、智能交通等。

发展趋势未来,人工智能将在更多领域实现应用,如智能家居、智慧城市等。

同时,随着技术的不断发展,人工智能将更加智能化、自主化,为人类带来更加便捷的生活体验。

2023REPORTINGPART02人工智能在各领域应用案例智能家居与智慧城市建设智能家居系统通过人工智能技术,实现家居设备的自动化控制和智能化管理,提高居住舒适度和能源利用效率。

智慧城市建设运用人工智能、大数据等技术,提升城市管理、交通、安防等方面的智能化水平,构建宜居、智能、可持续发展的城市环境。

自动驾驶汽车技术进展自动驾驶技术借助人工智能、计算机视觉等技术,实现汽车在不需要人类驾驶的情况下,能够自动识别和应对交通环境中的各种情况。

智能交通系统通过人工智能技术,实现交通信号的优化控制、路况的实时监测和预测等功能,提高道路交通的安全性和通行效率。

人工智能PPT课件

人工智能PPT课件

人工智能的发展将改变就业结构,部分传统岗位可能消失或被
替代,同时将催生新的就业机会。
数据隐私和安全
02
随着人工智能应用的普及,数据隐私和安全问题将更加突出,
需要加强数据保护和安全措施。
技术伦理和法律责任
03
人工智能的发展将带来技术伦理和法律责任问题,需要建立健
全相关法规和规范。
06
结论
人工智能的潜力和价值
商业价值
人工智能技术能够提高企业的生 产效率,降低成本,提升产品和 服务的质量,从而为企业创造更
大的商业价值。
社会价值
人工智能在医疗、教育、交通等 领域的应用,能够提高社会服务 水平,改善人们的生活质量,为
社会创造巨大的价值。
创新价值
人工智能的发展推动了科技创新 ,促进了各行业的数字化转型, 为人类社会带来了前所未有的变
03
人工智能的实际应用
智能家居
智能家居利用人工智能技术,通 过智能设备、传感器和自动化系 统,实现家庭环境的智能化控制
和管理。
智能家居能够提供便利的生活体 验,如语音助手控制家电、自动 调节室内温度和湿度、智能照明
和安全监控等。
智能家居还可以通过数据分析, 为用户提供更个性化的服务,如
定制化的音乐、电影推荐等。
人工智能 PPT 课件
汇报人:可编辑 2023-12-25
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的挑战与伦理问题 • 未来的人工智能发展 • 结论
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机器能够模拟人类的智能行为 ,实现人机交互、自主策、学习和推理等功能的技术。
驶。

人工智能PPT课件专用版高清版

人工智能PPT课件专用版高清版
常用算法
如SIFT、SURF、HOG等,这些算法在图像识别、 目标跟踪等领域有广泛应用。
目标检测和识别技术原理
目标检测
在图像或视频中定位出感兴趣的目标,并给出其位置信息。
识别技术
对检测到的目标进行分类和识别,确定其所属类别。
深度学习应用
卷积神经网络(CNN)在目标检测和识别领域取得了显著 成果,提高了识别准确率和速度。
将人类语音转换为机器可读的文本信息。
语音识别流程
包括信号预处理、特征提取、声学模型、语言模型、解码搜索等步 骤。
语音识别应用场景
如智能家居、车载系统、智能客服等。
声学模型和语言模型构建方法
声学模型构建
基于大量语音数据,通过训练得到声学模型,用于识别语音信号 中的音素或单词。
语言模型构建
基于文本数据,通过统计语言模型或神经网络语言模型等方法,得 到单词之间的概率关系,用于指导语音识别过பைடு நூலகம்。
发展历程
从早期的符号学习到现代的深度学习,人工智 能经历了多个发展阶段,包括专家系统、知识 工程、机器学习等。
重要里程碑
包括图灵测试、达特茅斯会议、深度学习的提 出等,这些事件对人工智能的发展产生了深远 影响。
人工智能技术领域及应用场景
01
02
03
技术领域
包括机器学习、计算机视 觉、自然语言处理等,这 些技术是人工智能的核心。
3 循环神经网络(RNN)
适用于处理序列数据,如文本、语音等。通过记忆单元捕 捉序列中的时序信息,实现序列建模和预测。
4 生成对抗网络(GAN)
由生成器和判别器组成,通过对抗训练生成逼真的样本数 据,广泛应用于图像生成、风格迁移等领域。
模型评估与优化策略

人工智能技术及应用课件pptx

人工智能技术及应用课件pptx

01人工智能概述Chapter人工智能的定义与发展定义发展历程人工智能的技术体系机器学习深度学习自然语言处理计算机视觉人工智能的应用领域智能机器人通过集成传感器、控制器和执行器等设备,实现自主导航、语音识别、人脸识别等功能,广泛应用于家庭服务、工业生产等领域。

自动驾驶利用计算机视觉、雷达传感器和深度学习等技术,实现车辆在复杂交通环境中的自动导航和驾驶。

智慧医疗通过人工智能技术辅助医生进行疾病诊断和治疗方案制定,提高医疗效率和准确性。

智能家居将人工智能技术应用于家居设备,实现远程控制、语音识别、智能推荐等功能,提高家居生活的便捷性和舒适性。

02机器学习技术Chapter定义常见算法应用场景030201监督学习无监督学习定义常见算法应用场景强化学习定义智能体通过与环境进行交互,根据获得的奖励或惩罚来学习如何做出最佳决策。

常见算法Q-learning、策略梯度、深度强化学习(如DQN)等。

应用场景机器人控制、游戏AI、自动驾驶等。

常见模型卷积神经网络(CNN )、循环神经网络(RNN )、生成对抗网络(GAN )等。

定义利用深度神经网络模型,通过逐层抽象和组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

应用场景图像识别、语音识别、自然语言处理、推荐系统等。

深度学习03自然语言处理技术Chapter词汇的附加信息词汇的基本形式包括词汇的拼写、读音、词源、词义等方面的信息。

词汇间的关系句子的结构句子的类型句法分析的方法1 2 3词汇的语义句子的语义篇章的语义语义理解01020304识别文本中的人名、地名、机构名等命名实体。

命名实体识别抽取文本中实体之间的关系,如人物关系、事件关系等。

关系抽取识别文本中的事件及其参与者、时间、地点等要素。

事件抽取分析文本中所表达的情感倾向和情感强度。

情感分析信息抽取04计算机视觉技术Chapter01020304图像分类图像增强图像分割图像生成图像识别与处理目标检测与跟踪目标检测01目标跟踪02行为识别03三维重建与虚拟现实三维重建从二维图像中恢复三维结构,如SFM(结构从运动恢复)、多视图立体几何等虚拟现实创建和体验虚拟世界,如VR头盔、3D渲染技术等增强现实将虚拟信息叠加到真实世界中,如AR眼镜、AR应用等视频分析与理解对视频进行自动分类和标注,如场景识别、事件检测等提取视频中的关键信息和精彩片段,生成视频摘要或预告片理解视频中的高层语义信息,如情感分析、故事情节理解等对视频进行剪辑、合成和特效处理,如非线性编辑、视频特效等视频分类视频摘要视频语义理解视频编辑与合成05智能语音技术Chapter声学模型语言模型解码器文本预处理声学建模波形合成自然语言生成与对话系统自然语言生成对话系统智能客服智能家居智能车载智能翻译智能语音应用06人工智能在各领域的应用Chapter智能机器人与自动化工业机器人服务机器人特种机器人智能交通与无人驾驶智能交通系统无人驾驶汽车无人机配送远程医疗健康管理医疗机器人通过互联网技术实现远程诊断和治疗,缓解医疗资源紧张问题。

人工智能应用普及ppt课件

人工智能应用普及ppt课件

人工智能的涵义

人工智能的柒大应用领域
人工智能的未来方向
人工智能的安全问题
1
人工智能的涵义
人工智能的涵义
(Artificial Intelligence)
英文缩写为AI。
它是研究、开发用于模拟、 延伸和扩展人的智能的理论、 方法、技术及应用系统的一 门新的技术科学。
人工智能是计算机科学的一 个分支,它企图了解智能的 实质,并生产出一种新的能 以人类智能相似的方式做出 反应的智能机器。
百洋智能与IBM达成战略合作关 系,医生将通过基于海量大数据 的智能决策辅助系统大幅提升诊 疗精准性。
人工智能的柒大应用领域
人工智能应用于新药研发
方向
新药开发
AI公司
BenevolentAI
TwoXAR
合作企业
Janssen
Santen Pharnext Galapagos
技术原理
GPU模拟 + 深度学习软件分析 → 关联并筛选出 候选药物分子结构
智能诊疗
模拟医生的思维和诊 断推理,从而给出可 靠诊断和治疗方案。
人工智能的柒大应用领域
智能影像识别
① 图像识别,将影 像进行分析,获 取一些有意义的 信息
② 深度学习,通过 大量的影像数据 和诊断数据,促 使其掌握诊断能 力。
人工智能的柒大应用领域
智能健康管理
主要集中在风险识别、 虚拟护士、精神健康、 在线问诊、健康干预 以及基于精准医学的 健康管理。
DUMA 药物发现平台 → 大量科学数据分析 → 对 疾病和药物进行自动匹配
构建新型药物分 子
Insilico Medicine
Life Extension GANs数据分析 + 高级信号通路活化分析技术 +

人工智能介绍ppt课件

人工智能介绍ppt课件
摘要生成
自动提取文本中的重要信息,生成 简洁明了的摘要,便于用户快速了 解文本内容。
04 计算机视觉技术
图像识别技术
基于深度学习的图像识别
光学字符识别(OCR)
通过训练深度神经网络模型,实现对 图像中物体的自动识别和分类。
将图像中的文字转换为可编辑和检索 的文本格式,广泛应用于文档数字化 、车牌识别等领域。
推荐系统
个性化推荐、广告投放、用户画 像等。
自然语言处理技术
03
词法分析技术
01
分词技术
基于规则、统计或深度学习等方法,将连续的自然语言 文本切分为独立的词汇单元。
02
词性标注
为每个词汇单元分配一个词性标签,如名词、动词、形 容词等,以揭示其在句子中的语法功能。
03
命名实体识别
识别文本中具有特定意义的实体,如人名、地名、机构 名等,并进行分类标注。
人工智能通过模拟人类的感知、认知、决策等智能行为,实现对复杂问题的求 解和自主学习。其技术原理主要包括算法设计、模型训练、数据驱动等。
核心思想
人工智能的核心思想在于让机器具备类似于人类的智能,能够自主地进行学习 、推理、决策等任务。这需要通过大量的数据训练和优化算法来实现。
应用领域与前景展望
应用领域
特征提取与匹配
利用图像特征提取算法,提取图像中 的关键特征,并与已知模式进行匹配 ,实现图像识别。
目标检测技术
基于深度学习的目标检测
01
利用深度学习模型,如R-CNN、Fast R-CNN、YOLO等,实现
对图像中多个目标的定位和分类。
传统目标检测方法
02
采用滑动窗口、HOG特征+SVM分类器等传统计算机视觉技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础资源支 撑
基础资源层:主要是计 算平台和数据中心,属于 计算智能; 技术层:通过机器学习 建模,开发面向不同领域 的算法和技术,包含感知 智能和认知智能; 应用层:主要实现人工 智能在不同场景下的应用。
人工智能系统的技术架构
智能终端
智能云平台
第一节
人工智能的新革命
• 人工智能技术简述 • 深度学习算法 • 知识图谱
知识和创新是推动人类发展的动力
基因:人和大猩猩的基因,有98.4%都是完 全一样的,只有1.6%有区别
“符号语言”(口头语言和书面文
字):传递、保存、共享知识
“集体知识”:人类的大脑可以相互
共享信息,交换知识
人类个体比其他动物没有多大优势,掌握 了符号语言,人类社会的结构发生了突变, 有了一个连接在一起的集体大脑。这种物 种之间相互关联、相互作用的方式,才是 我们和其他物种的真正区别
什么是人工智能?
• 人工智能(Artificial Intelligence),英文缩写 为AI。它是研究、开发用于模拟、延伸和扩展人的 智能的理论、方法、技术及应用系统的一门新的技 术科学。 • 它企图了解智能的实质,并生产出一种新的能以人 类智能相似的方式做出反应的智能机器,该领域的 研究包括机器人、语言识别、图像识别、自然语言 处理和专家系统等。 • 人工智能是对人的意识、思维的信息过程的模拟。 人工智能不是人的智能,但能像人那样思考、也可 能超过人的智能。
人工智能有那些类型?
• 弱人工智能,包含基础的、特定场景下角色型的任 务,如Siri等聊天机器人和AlphaGo等下棋机器人;
• 通用人工智能,包含人类水平的任务,涉及机器的 持续学习; • 强人工智能,指比人类更聪明的机器;
人工智能发展历程
AI的诞生
1956达特矛斯 会议,“人工智 能”正式诞生 搜索式推理 聊天机器人 专家系统 知识工程 五代机 神经网络重生 摩尔定律 统计机器学习 AI广泛应用 深度学习
乐观思潮
人工智能
孕育期
电子计算机 机
器翻译与NLP 图灵测试 计算 机下棋 早期神
1956
1974
1980
1987
1993
2006
2016
所有的AI程序 都只是“玩具” 运算能力 计算复杂性 常识与推理
未达预期
大数据 计算能力
削减投入
应用增多
经网络
手机中的AI
AI处于什么阶段?
• 人工智能相关技术刚刚越过曲线高峰(处于狂热期),是推动透明化身临其境体验技术发展的 主要动力
机器学习&深度学习
• 从以“推理”为重点到以“知识”为重点,再 到以“学习”为重点 • 机器可以自动“学习”的算法,即从数据中自 动分析获得规律,并利用规律对未知数据进行 预测的算法。目前,机器学习=“分类” • 人工智能 > 机器学习 > 深度学习
统计学的研究成果经由机器学习 研究,形成有效的学习算法 统计学习登场并占据主流,支 持向量机、核方法为代表性技术 神经网络以深度学 习之名再次崛起 大幅提升感知智能 准确率
脑容量:历史上的“尼安德特人”和我们 的祖先脑容量是一样的。但后来尼安德特 人就没留下来,只有我们这一支留下来了
AI学科结构
计算原理 算法分析 自动程序设计 逻辑 数学 逻辑学 图示学 自动定理证明 运筹学 启发式 搜索 系统程序设计 心理学 图示学 认识论 心理学 机器视觉 知识的模型化 和表示 计算机语言 AI系统 和语言 系统程序设计 信息处理心理学 心理学 基本方法和技术 逻辑 近期主要应用领域 光学 自然语言系统 心理学 符号操作 管理科学 现代控制理论 逻辑 近期主要应用领域 常识性推理演 绎、问题求解 语言学 控 制 理 论 模式识别 声学 语音学 控制理论 空间研究 机器人 工业自动化
1970年代初
今天
时间

AI将催生“无用阶层”吗?
• 人工/脑力劳动:翻译、记者...
• 人工/体力劳动:保安、保姆...
什么是人工智能(AI)?
人工智能:国家战略(2017年政府工作报告)
• 全面实施战略性新兴产业发展规划,加快人工智能 等技术的研发和转化,做大做强产业集群 • 把发展智能制造作为主攻方向,推进国家智能制造 示范区、制造业创新中心建设
终正
结在
工业1.0 创造了机器工厂的 “蒸汽时代”
工业2.0 将人类带入分工明 确、大批量生产的 流水线模式和“电 气时代”
工业3.0 应用电子信息技术, 进一步提高生产自 动化水平
工业4.0 开始应用信息物理 融合系统(CPS)
复 杂 度
信息物联系统 蒸汽机
电力广泛应用
自动化、信息化
18世纪末
20世纪初
有关学科 教学、科学和 工程辅助
图论
博弈
AI的几大门派
模拟人的心智 模拟脑的结构 模拟人的行为
进化学派 类推学派 贝叶斯学派 符号学派 联结学派 行为学派
感知
知识表示 神经网络 机器人
深度学习
聪明的AI
有学识的AI
识别 判断
思考 语言 推理
知识图谱
AI生态逐步形成:基础资源+技术+应用
人工智能产业生态的三层基本架构
• 涉及透明化身临其境体验的人本技术(如智能工作空间、互联家庭、增强现实、虚拟现实、脑 机接口)是拉动另外两大趋势的前沿技术 • 数字平台在曲线上处于快速上升期,其中的量子计算和区块链将在今后5—10年带来变革性的 影响
AI Roadmap
国人为什么要关注AI?
为什么人类能成为地球的主宰?
《时间地图:大历史导论》
工智能技术应用介绍PPT
目录 content
第一节
第二节 第三节 人工智能技术概述 深度学习与智能围棋 人工智能3.0
第一节
人工智能的新革命
• 人工智能技术简述 • 深度学习算法 • 知识图谱
人工智能将引领人类第四次工业革命 – 智能化
互联网时代
• 人工智能 • 机器人
来悄
临悄
• 交通工具(即无人机、无人驾驶等) • VR(虚拟现实)
提出支持向量、VC维等概念 神经网络 第一个高潮期 联结学派对大脑进行逆向分析 灵感来自于神经科学和物理学 产生的是“黑箱”模型 神经 网络可归置此类
符号学派将学习看作逆向演绎 并从哲 学、心理学、逻辑学中寻求洞见 代表 包括决策树和基于逻辑的学习 基于符号知识表示 通过 获取和利用领域知识 建 立专家系统
神经网络第二个高潮 NP(non-deterministic polynomial-time)难题 中获重大进展 助力大 量现实问题
相关文档
最新文档