指数,对数,幂函数图象及其性质的综合
指数函数、对数函数、幂函数的图像和性质知识点总结.docx
(一)指数与指数函数1.根式(1)根式的概念根式的It念3符号表示a备注3如果x n=a,那么x叫做a的〃次方根a n > lfin e AT P 当«为奇数时,正数的«次方根是一个正数,负数的川次方根是一个负数3零的兀次方根是零3当n为偶数时,正数的n次方根有两个,它们互为相反数"土嚅(° >0)3负数没有偶次方根卩(2).两个重要公式*a①> 0)\a\=<[-a{ci < 0)②=a (注意a必须使砺有意义)。
2.有理数指数幕(1)幕的有关概念①正数的正分数指数幕:a"= 奸(d > (),m. n w AT,且〃〉1);豐 1 1②正数的负分数指数幕:a n = —=-=(^7>0,/?K /?G N\JBL H>1)a n③0的正分数指数幕等于0,0的负分数指数幕没有意义.注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算。
(2)有理数指数幕的性质①a I a'=a H'"(a>0,r、s G Q);②(a r)s=a re(a>0,r> sEQ);③(ab)'=a r b s(a>0,b>0,r E Q);.3.指数函数的图象与性质y=a x a>l 0<a<l图象~d 1 *定义域 R 值域 (0, +oo) 性质(1)过定点(0, 1)(2)当 x>0 时,y>l; x<0 时,0<y<l(2)当 x>0 时,0<y<l; x<0 时,y>l(3)在(-oo, +oo)上是增函数(3)在 (-00 , 4-00 )上是减函数注:如图所示,是指数函数(1) y=a x , (2) y=b x ' (3) ,y=c x (4) ,y=d x 的图象,如何确 定底数a,b,c,d 与1之间的大小关系?提示:在图屮作直线x=l,与它们图象交点的纵坐标即为它们各自底数的值,即 ci>』>l>ai>bi,・・・c>d>l>a>b 。
幂函数指数函数对数函数总结
幂函数指数函数对数函数总结
幂函数、指数函数和对数函数是数学中常见的函数类型,它们的性质和图像特点有所不同,但也有一些共性。
幂函数的形式为$y=x^a$,其中$a$为常数。
当$a$为正整数时,幂函数的图像经过原点和函数的图像都在第一象限内,且函数值随$x$的增大而增大;当$a$为负整数时,幂函数的图像也经过原点,但它的图像在第二象限内,且函数值随$x$的增大而减小。
当$a$为分数时,幂函数的图像不过原点且不与坐标轴相交。
指数函数的形式为$y=a^x$,其中$a$为常数且$a>0$。
指数函数的图像经过点$(1,a)$,且函数值随$x$的增大而增大。
指数函数的图像与坐标轴没有交点,且当$a>1$时,图像向左平移,当$0<a<1$时,图像向右平移。
对数函数的形式为$y=log_ax$,其中$a$为常数且$a>0$,$a\neq1$。
对数函数的图像经过点$(1,0)$,且函数值随$x$的增大而减小。
对数函数的图像与坐标轴没有交点,且当$a >1$时,图像向右平移,当$0<a<1$时,图像向左平移。
在学习幂函数、指数函数和对数函数时,需要注意它们的定义域、值域、单调性、奇偶性等性质,以及它们的图像和应用。
这些函数在数学、物理、工程等领域都有广泛的应用。
幂函数指数函数与对数函数的性质与计算
幂函数指数函数与对数函数的性质与计算幂函数、指数函数与对数函数是数学中常见的函数类型,它们具有一些独特的性质以及特定的计算方式。
在本文中,我们将探讨这些函数的基本概念、性质以及如何进行计算。
一、幂函数的性质与计算幂函数是形如y=x^n的函数,其中n为实数。
幂函数的性质如下:1. 幂函数的定义域为实数集R,值域则取决于n的值。
- 当n为正奇数时,f(x)为增函数,值域为R+(正实数集);- 当n为正偶数时,f(x)为非负且有最小值0,值域为[0, +∞);- 当n为负数时,f(x)有正负之分,值域为R+和R-(负实数集),且在不同的定义域上具有不同的增减性;- 当n为0时,0的0次方没有定义。
2. 幂函数的图像特点:- 当n为正数时,随着x的增大,函数值也随之增大,图像呈现递增趋势;- 当n为负数时,随着x的增大,函数值递减,图像呈现递减趋势。
3. 幂函数的计算方法:- 幂函数的运算法则遵循指数运算法则,如x^m * x^n = x^(m+n),x^m / x^n = x^(m-n),(x^m)^n = x^(m*n)等。
二、指数函数的性质与计算指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1。
指数函数的性质如下:1. 指数函数的定义域为实数集R,值域为正实数集R+。
2. 指数函数以a为底,随着自变量x的增大,函数值呈现指数增长的特征。
3. 指数函数的计算方法:- 当a为正数时,指数函数的运算法则与幂函数相似,如a^m *a^n = a^(m+n),a^m / a^n = a^(m-n)等。
- 当a为负数时,指数函数的运算方法可以通过转化为幂函数的形式进行计算。
三、对数函数的性质与计算对数函数是指数函数的逆运算,以b为底,记作y=logₐx。
对数函数的性质如下:1. 对数函数的定义域为正实数集R+,值域为实数集R。
2. 对数函数以b为底,将正实数x映射到实数y,即b^y=x。
3. 对数函数的计算方法主要包括:- 同底数的对数乘法法则:logₐ(x * y) = logₐx + logₐy;- 同底数的对数除法法则:logₐ(x / y) = logₐx - logₐy;- 对数的换底公式:logₐx = log_bx / log_ba,其中a、b为正实数且a≠1,b≠1。
幂指对函数图像性质综合
1、指数函数①定义:函数)1,0(≠>=a a a y x 且称指数函数, ②函数图像与性质:a >1 0<a <1 x x a y a y -==与图象性 质 定义域:R值域:(0,+∞)过点(0,1)在R 上增函数 在R 上减函数1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;2)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);3)对于相同的)1,0(≠>a a a 且,函数x x ay a y -==与的图象关于y 轴对称。
2、对数函数:①定义:函数)1,0(log ≠>=a a x y a 且称对数函数,②函数图像:a >1 0<a <1 xy x y a a 1log log ==与图象 011 011性 质 定义域:(0,+∞)值域:R过点(1,0),即当x =1时,y =0 x ∈(0,1)时y <0 x ∈(1,+∞)时y >0 x ∈(0,1)时y >0x ∈(1,+∞)时y <0在(0,+∞)上是增函数 在(0,+∞)上是减函数1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);3)对于相同的)1,0(≠>a a a 且,函数x y x y aa 1log log ==与的图象关于x 轴对称。
4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x 且互为反函数。
3、幂函数:①定义:函数y =x α (α∈R)称为幂函数。
如y=x ,y=x 2,y=,y=x -1,y=x -都是幂函数。
②函数图像与性质:1)y=x α (α∈R)没有统一的定义域,定义域由α值确定。
但在(0,+)内总是有定义的,且都经过(1,1)点。
指数函数对数函数与幂函数指数函数的性质与图像
指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。
指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。
a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。
当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。
02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。
常用对数:以10为底数的对数,记作lg(x)。
底数为任意正数的对数,记作log(x)。
对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。
•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。
指数函数、对数函数、幂函数的图像与性质
指数函数、对付数函数、幂函数的图像与本量之阳早格格创做(一)指数与指数函数1.根式(1)根式的观念(2).二个要害公式 ①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ; ②a a n n =)((注意a 必须使n a 蓄意思). 2.有理数指数幂 (1)幂的有闭观念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的背分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的背分数指数幂不意思. 注:分数指数幂与根式不妨互化,常常利用分数指数幂举止根式的运算.(2)有理数指数幂的本量n 为奇数n为奇数①aras=ar+s(a>0,r、s∈Q);②(ar)s=ars(a>0,r、s∈Q);③(ab)r=arbs(a>0,b>0,r∈Q);. 3.指数函数的图象与本量y=ax a>1 0<a<1 图象定义域R值域(0,+∞)本量(1)过定面(0,1)(2)当x>0时,y>1; x<0时,0<y<1 (2) 当x>0时,0<y<1; x<0时, y>1(3)正在(-∞,+∞)上是删函数(3)正在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx (4),y=dx的图象,怎么样决定底数a,b,c,d与1之间的大小闭系?提示:正在图中做曲线x=1,与它们图象接面的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b.即无论正在轴的左侧仍旧左侧,底数按顺时针目标变大.(二)对付数与对付数函数1、对付数的观念(1)对付数的定义如果(01)x a N a a =>≠且,那么数x 喊干以a 为底,N 的对付数,记做log N a x =,其中a 喊干对付数的底数,N 喊干真数. (2)几种罕睹对付数2、对付数的本量与运算规则(1)对付数的本量(0,1a a >≠且):①1log 0a =,②log 1a a =,③logNa a N =,④log Na a N =.(2)对付数的要害公式:①换底公式:log log (,1,0)log N Na b baa b N =>均为大于零且不等于; ②1log log b a ab =. (3)对付数的运算规则:如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②NM NMa a a log log log -=;③)(log log R n M n M a n a ∈=; ④b mnb a n amlog log =. 3、对付数函数的图象与本量象本量(1)定义域:(0,+∞)(2)值域:R(3)当x=1时,y=0即过定面(1,0) (4)当01x <<时,(,0)y ∈-∞; 当1x >时,(0,)y ∈+∞ (4)当1x >时,(,0)y ∈-∞; 当01x <<时,(0,)y ∈+∞ (5)正在(0,+∞)上为删函数(5)正在(0,+∞)上为减函数注:决定图中各函数的底数a ,b ,c ,d 与1的大小闭系 提示:做背来线y=1,该曲线与四个函数图象接面的横坐标即为它们相映的底数. ∴0<c<d<1<a<b. 4、反函数指数函数y=ax 与对付数函数y=logax 互为反函数,它们的图象闭于曲线y=x 对付称. (三)幂函数 1、幂函数的定义形如y=xα(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有真量辨别正在于自变量的位子分歧,幂函数的自变量正在底数位子,而指数函数的自变量正在指数位子.2、幂函数的图象注:正在上图第一象限中怎么样决定y=x3,y=x2,y=x ,12y x =,y=x-1要领:可绘出x=x0;当x0>1时,按接面的下矮,从下到矮依次为y=x3,y=x2, y=x ,12y x =, y=x-1;当0<x0<1时,按接面的下矮,从下到矮依次为y=x-1,12y x =,y=x , y=x2,y=x3. 3、幂函数的本量y=x y=x2y=x312y x =y=x-1定义域 R R R [0,+∞) {}|0x x R x ∈≠且值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且奇奇性 奇 奇奇非奇非奇 奇单调性删x ∈[0,+∞)时,删; x ∈(,0]-∞时,减删 删x ∈(0,+∞)时,减; x ∈(-∞,0)时,减定面 (1,1)三:例题诠释,闻一知十知识面1:指数幂的化简与供值 例1.(2007育才A)(1)估计:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aa ab b ba a ⋅⋅⨯-÷++--变式:(2007执疑A )化简下列各式(其中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)1200.2563433721.5()82(23)()63-⨯-+⨯+⨯- 知识面2:指数函数的图象及应用 例2.(2009广附A)已知真数a 、b 谦脚等式b a )31()21(=,下列五个闭系式:①0<b <a;②a <b <0;③0<a <b;④b <a <0;⑤a=b.其中不可能创造的闭系式有 ( ) A.1个B.2个C.3个D.4个变式:(2010华附A )若曲线a y 2=与函数 0(|1|>-=a a y x 且)1≠a 的图象有二个公同面,则a 的与值范畴是_______. 知识面3:指数函数的本量例3.(2010省真B )已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)供b 的值;(Ⅱ)推断函数()f x 的单调性;(Ⅲ)若对付任性的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒创造,供k 的与值范畴.变式:(2010东莞B )设a >0,f(x)=x x aa ee +是R 上的奇函数.(1)供a 的值;(2)供证:f(x)正在(0,+∞)上是删函数.知识面4:对付数式的化简与供值 例4.(2010云浮A )估计:(1))32(log 32-+(2)2(lg2)2+lg2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.变式:(2010惠州A )化简供值. (1)log2487+log212-21log242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log32+log92)·(log43+log83).知识面5:对付数函数的本量例5.(2011深圳A )对付于01a <<,给出下列四个不等式: ①1log (1)log ();a a a a a+<+②1log (1)log (1)a a a a+>+;③111;aaaa++<④111;aaaa++>其中创造的是()(A )①与③(B )①与④(C )②与③(D )②与④变式:(2011韶闭A )已知0<a <1,b >1,ab >1,则loga bb b ba1log ,log,1的大小闭系是 ( )bb b b a 1log log 1<< B.b b b b a a 1log 1log log <<C.bb b ab a 1log 1log log << D.b b b a a b log 1log 1log << 例6.(2010广州B )已知函数f(x)=logax(a >0,a≠1),如果对付于任性x ∈[3,+∞)皆有|f(x)|≥1创造,试供a 的与值范畴.变式:(2010广俗B )已知函数f (x )=log2(x2-ax-a)正在区间(-∞,1-3]上是单调递减函数.供真数a 的与值范畴.知识面6:幂函数的图象及应用 例7.(2009佛山B)已知面(22),正在幂函数()f x 的图象上,面124⎛⎫- ⎪⎝⎭,,正在幂函数()g x 的图象上.问当x 为何值时有:(1)()()f x g x >;(2)()()f x g x =;(3)()()f x g x <.变式:(2009掀阳B )已知幂函数f(x)=x 322--m m (m ∈Z )为奇函数,且正在区间(0,+∞)上是单调减函数.(1)供函数f(x);(2)计划F (x )=a)()(x xf bx f -的奇奇性.四:目标预测、胜利正在视1.(A )函数41lg )(--=x x x f 的定义域为( )A .(1,4)B .[1,4)C .(-∞,1)∪(4,+∞)D .(-∞,1]∪(4,+∞)2.(A )以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln23(B )设a>1,函数f(x)=logax 正在区间[a,2a ]上的最大值与最小值之好为,21则a=( )(A)2 (B )2 (C )22 (D )44.(A )已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则( )(A )a b c << (B )b ac << (C )c b a << (D )c a b << 5.(B )设f(x)=1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩则不等式f(x)>2的解集为( )(A)(1,2)⋃(3,+∞) (B)(10,+∞)(C)(1,2)⋃(10,+∞)(D)(1,2)6.(A )设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A.R Q P <<B.P R Q <<C.Q R P <<D.R P Q << 7.(A)已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>> 8.(B )下列函数中既是奇函数,又是区间[]1,1-上单调递减的是( )(A )()sin f x x = (B)()1f x x =-+(C)1()()2xx f x a a -=+ (D)2()2xf x ln x-=+9.(A )函数y =的定义域是:()A [1,)+∞B 23(,)+∞C 23[,1] D 23(,1] 10.(A)已知函数kx y x y ==与41log 的图象有公同面A ,且面A 的横坐标为2,则k ( )A .41- B .41 C .21- D .2111.(B )若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x 、三、四象限,则一定有( )A .010><<b a 且B .01>>b a 且C .010<<<b a 且D .01<>b a 且12.(B)若函数)10(log )(<<=a x x f a 正在区间]2,[a a 上的最大值是最小值的3倍,则a=( )A.42B.22C. 41D.21 13.(A)已知0<x <y <a <1,则有( )(A )0)(log <xy a (B )1)(log 0<<xy a(C )2)(log 1<<xy a (D )2)(log >xy a14.(A )已知x x f 26log )(=,那么)8(f 等于( ) (A )34(B )8(C )18(D )2115.(B )函数y =lg|x| ( )A .是奇函数,正在区间(-∞,0)上单调递加B .是奇函数,正在区间(-∞,0)上单调递减C .是奇函数,正在区间(0,+∞)上单调递加D .是奇函数,正在区间(0,+∞)上单调递减 16.(A )函数3)4lg(--=x x y 的定义域是____________________________. 17.(B )函数1(01)x y a a a -=>≠,的图象恒过定面A ,若面A 正在曲线10(0)mx ny mn +-=>上,则11mn+的最小值为 .18.(A )设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩ 则1(())2g g =__________19.(B )若函数f(x) = 1222--+a ax x 的定义域为R ,则a 的与值范畴为___________.20.(B)若函数)2(log )(22a a x x x f ++=是奇函数,则a=.21.(B)已知函数xx xx f -+-=11log 1)(2,供函数)(x f 的定义域,并计划它的奇奇性战单调性. 参照问案:三:例题诠释,闻一知十 例1. 解:(1)92,(2)2a变式:解:(1)1, (2).4514545)(45)·232321233136123abab ab b a b a b a b -=⋅-=⋅-=÷-=------ (3)110 例2. 解:B变式:解:)21,0(;例3. 解:(Ⅰ)1=b (Ⅱ)减函数. (Ⅲ)31-<k变式:解:(1)a=1.(2)略 例4. 解:(1)-1.(2)1.(3)21.变式:解:(1).232log 221log 242481272322-===⨯⨯⨯-(2)2.(3)45例5. 解:选D.变式:解: C例6. 解:(1,3]∪[31,1) 变式:解:{a|2-23≤a <2}例7. 解:(1)当1x >或者1x <-时,()()f x g x >;(2)当1x =±时,()()f x g x =;(3)当11x -<<且0x ≠时,()()f x g x <.变式:解:(1)f(x)=x-4.(2)F (x )=32bx x a-, ∴F (-x )=2x a+bx3.①当a≠0,且b≠0时,F (x )为非奇非奇函数;②当a=0,b≠0时,F (x )为奇函数;③当a≠0,b=0时,F (x )为奇函数;④当a=0,b=0时,F (x )既是奇函数,又是奇函数. 四:目标预测、胜利正在视1—5 ADDDC ; 6—10 AADDA ; 11—15 CADDB.16. (-, 3)(3,4) 17. 4 18.21 19.[-1,0] 20.22 21.[解]x 须谦脚,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x xx x 得由 所以函数)(x f 的定义域为(-1,0)∪(0,1).果为函数)(x f 的定义域闭于本面对付称,且对付定义域内的任性x ,有)()11log 1(11log 1)(22x f xx x x x x x f -=-+--=+---=-,所以)(x f 是奇函数.钻研)(x f 正在(0,1)内的单调性,任与x1、x2∈(0,1),且设x1<x2 ,则 得)()(21x f x f >0,即)(x f 正在(0,1)内单调递减, 由于)(x f 是奇函数,所以)(x f 正在(-1,0)内单调递减.。
指数函数、对数函数、幂函数的图像与性质
指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②lo g 1aa =,③lo g Na a N =,④lo g N a aN =。
指数函数、对数函数、幂函数的图像及性质.doc
指数函数、对数函数、幂函数的图像及性质指数函数、对数函数和幂函数的图像和性质(1)指数函数和指数函数1。
公式(1)的根的根的根的根的概念符号表示备注。
如果被叫的次根是奇数,正数的次根是正数,负数的次根是负数。
如果负数的次根是零并且是偶数,则正数有两个次根。
他们彼此相对。
负数不是偶数。
N是奇数,N是偶数(2)。
两个重要的公式①;(2)(注意必须有意义)。
2.与有理数的指数幂有关的概念(1) ①正数的正分数指数幂:(2)正数的负分数指数幂: (3)正分数指数幂0等于负分数指数幂0。
注意: 分数指数幂和根公式可以互换,根公式通常用分数指数幂运算。
(2)有理数的指数幂的性质①aras=ar s(a0,r,s∈Q)。
②(ar)s=ar(A0,r,s∈Q).③(ab)r=ARB(A0,b0,r∈Q).3.指数函数y=axa101的图像和性质。
X0小时,01。
X1(3)在(-2)中(请注意,它必须有意义)。
2.与有理数的指数幂有关的概念(1) ①正数的正分数指数幂:(2)正数的负分数指数幂: (3)正分数指数幂0等于负分数指数幂0。
注意: 分数指数幂和根公式可以互换,根公式通常用分数指数幂计算。
(2)有理数的指数幂的性质①aras=ar s(a0,r,s∈Q)。
②(ar)s=ar(A0,r,s∈Q).③(ab)r=ARB(A0,b0,r∈Q).3.指数函数y=axa101的图像和性质。
X0小时,01。
X1(3)在(:如图所示,它是指数函数的图像(1) y=ax,(2)y=bx,(3),y=CX (4),y=dx。
如何确定碱基a,b,c,d和1之间的大小关系?提示:在图中画一条x=1的直线,交点与图像的纵坐标是它们各自基点的值,即c1d11a1b1,∴cd1ab.也就是说,无论是在轴的左侧还是右侧,基数都是逆时针增加的。
(2)对数和对数函数1.对数的概念(1)对数的定义如果数字被称为底,对数被记录为,其中对数的底被称为真数。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质六大基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
1. 常数函数:y = c,其中c是一个常数。
常数函数的图像是一条平行于x轴的直线,与y轴相距c个单位。
它没有自变量的限制,函数值始终为常数。
2. 幂函数:y = x^n,其中n是任意实数。
幂函数的图像依赖于指数n的符号及大小。
当n为正数时,随着x的增大,函数值也增大;当n为负数时,随着x的增大,函数值减小。
若n为奇数,图像穿过原点;若n为偶数,图像在原点有一个极小值或极大值。
3. 指数函数:y = a^x,其中a是一个正数且不等于1。
指数函数的图像是递增或递减的曲线。
如果a大于1,函数图像是递增的,如果a在0和1之间,函数图像是递减的。
指数函数没有定义域的限制,但其值范围从0到正无穷大。
4. 对数函数:y = log_a(x),其中a是一个正数且不等于1。
对数函数的图像与指数函数的图像是关于直线y = x对称的。
当x在0到正无穷大之间变化时,函数值从负无穷大逐渐增大到正无穷大。
对数函数的定义域为正实数,值域为负无穷大到正无穷大。
5. 三角函数:包括正弦函数y = sin(x),余弦函数y = cos(x),正切函数y = tan(x),割函数y = sec(x),余割函数y = csc(x),和余切函数y = cot(x)。
三角函数的图像是周期性的波形,沿x 轴变化。
例如,正弦函数和余弦函数的图像是在[-π, π]范围上的曲线。
正弦函数的值域在[-1, 1]之间,余弦函数的值域也在[-1, 1]之间。
6. 反三角函数:包括反正弦函数y = arcsin(x),反余弦函数y = arccos(x),反正切函数y = arctan(x),反割函数y = arcsec(x),反余割函数y = arccsc(x),和反余切函数y = arccot(x)。
反三角函数的图像是由对应的三角函数的图像上截取而来的。
幂函数指数函数对数函数的图像和性质
幂函数指数函数对数函数的图像和性质在数学中,幂函数,指数函数和对数函数是一类十分重要的函数,它们在各种领域都有着重要的应用,它们之间也有着千丝万缕的联系,而本文的主要重点就是分析它们的关系,以及它们的图像和性质。
首先,对于幂函数而言,它的定义域为实数集,值域也为实数集,其函数多项式形式为$f(x)=a^x(a>0,aeq 1)$其中a为指数,当a>1时,函数图像呈现出递增趋势,而当a<1时,函数则呈现出递减趋势。
此外,还可以确定的是,幂函数是一种可导函数,其导函数的形式为$f(x)=ln(a)a^x$ 。
接下来,我们来看看指数函数及其图像和性质,它的定义域也为实数集,值域也为实数集,其函数多项式形式为$f(x)=a^x(a>0)$其中a为指数,当a>1时,函数图像呈现出递增趋势,而当a<1时,函数则呈现出递减趋势。
此外,还可以确定的是,指数函数也是一种可导函数,其导函数的形式为$f(x)=a^xln(a)$可以看出,指数函数也是一种以连续变量为参数的可导函数。
最后,我们再来看看对数函数及其图像和性质,它的定义域也为实数集,值域也为实数集,其函数多项式形式为$f(x)=ln x$,可以看出,对数函数的图像呈右斜线形,它是一个单调函数,且为可导函数,其导函数的形式为$f(x)=frac{1}{x}$ 。
接下来,我们来看看三种函数之间的关系,第一,它们之间有着联系,即可以从一种函数通过定义变换到另外一种函数,其具体形式为$f(x)=a^x=ln(y)$,即从一个函数求另一个函数,从而将三种函数联系在一起;第二,它们之间也存在着双射,可以实现函数的双向转换;第三,它们的应用场景类似,都是应用于数量的变化趋势分析中,以及特定概率的分析等领域。
以上,就是有关幂函数、指数函数和对数函数的图像和性质以及它们之间的联系的全部内容,它们在数学中都有着重要的应用,因此,理解它们的关系以及图像和性质也是十分重要的。
知识讲解_指数函数、对数函数、幂函数综合_基础
指数函数、对数函数、幂函数综合【要点梳理】要点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的nn 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当na =;当n,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1mnm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)rsr sa a a+= (2)()r s rsa a = (3)()rr rab a b =要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R .2.指数函数函数性质:要点三、对数与对数运算 1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>. 2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 要点四、对数函数及其性质1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.要点五、反函数 1.反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.2.反函数的性质(1)原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.(2)函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.(3)若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.(4)一般地,函数()y f x =要有反函数则它必须为单调函数. 要点六、幂函数 1.幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(3)单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. 【典型例题】类型一:指数、对数运算 例1.化简与计算下列各式 (1)10220.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪⎪⎝⎭⎝⎭;(3)5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--.【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1615;(2)100;(3)2a . 【解析】 (1)原式=1122141149100⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭ =1+11610-=1615;(2)原式=122322516437390.12748-⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =5937100331648++-+=100(3) 原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.【总结升华】化简要求同初中要求,注意结果形式的统一,结果不能同时含有根式和分数指数,也不能既有分母又含有负指数;一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数位分数等,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的;举一反三:【变式一】化简下列各式:(1)133241116()()8()100481----+⋅;. 【答案】(1)-27;(2【解析】(1)1313332424111681()()8()10048()10048116----+⋅=-+⨯ 344310648()106427272⎛⎫=-+⨯=-+=- ⎪⎝⎭;133⎫=1)1)=-=-=例2. 已知:4x =,求:111244311422111x x xx x xx -+⋅⋅+++的值.【思路点拨】先化简再求值是解决此类问题的一般方法. 【答案】2 【解析】111244311422111x x xx x xx -+⋅⋅+++11441411122411111x x x x x x x ⎛⎫+ ⎪-⎝⎭=⋅⋅+⎛⎫++ ⎪⎝⎭1111442211122211111111x xx x x x xx x --=⋅⋅+=+=-+=++∴ 当4x =时,111112442231142211421x x xx x x xx -+⋅⋅+===++.【总结升华】解题时观察已知与所求之间的关系,同时乘法公式要熟练,直接代入条件求解繁琐,故应先化简变形,创造条件简化运算. 解题时,要注意运用下列各式.11112222a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,2111122222a b a a b b ⎛⎫±=±+ ⎪⎝⎭;112112333333a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭例3.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++. 【答案】(1)12-;(2)1;(3)3;(4)14.【解析】(1)原式=122221log 12log log 22-⎫===-; (2)原式=()()22lg 2lg 5lg 2lg 2lg 5lg 53lg 2lg 5+-++=()2lg10lg5lg 23lg 2lg53lg 2lg5⎡⎤⋅+-+⎣⎦=1-3lg 2lg5+3lg 2lg5=1(3)原式=()22lg52lg 2lg51lg 2lg 2++++=()2lg5lg 2lg5lg 2(lg 2lg5)++++=2+lg5lg 2+=3;【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧. 【变式1】552log 10log 0.25+=( )A.0B.1C.2D.4 【答案】C【解析】552log 10log 0.25+=25555log 10log 0.25log (1000.25)log 252+=⨯==. 【变式2】(1)2(lg 2)lg 2lg50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+. 【答案】(1)2;(2)54. 【解析】(1) 原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;(2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg352lg36lg 24=⋅=.类型二:指数函数、对数函数、幂函数的图象与性质例4.已知函数3log ,0,()2,0,x x x f x x >⎧=⎨≤⎩ 则1(())9f f =( )A.4B.14C.-4D.-14【答案】B【解析】1)12(log )2(23=-=f ,0((2))22f f e ==. 【总结升华】利用指数函数、对数函数的概念,求解函数的值.举一反三:【变式一】已知函数221,1,(),1,x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))4f f a =,则实数a 等于( ).A.12B. 45 C. 2 D. 9 【答案】C .【解析】1,()21,(0)2x x f x f <=+∴= ,由((0)f f a=,则有(2)4f a =.21,(),442x f x x ax a a ≥=+∴=+ ,2a ∴=,选C .例5.函数1()f x x=的定义域( ) . A.(][),42,-∞-+∞ B.()()4,00,1- C.[)(]4,00,1- D. [)()4,00,1- 【答案】D【解析】220,320,340,0.x x x x x ≠⎧⎪-+≥⎪⎨--+≥>【总结升华】以对数函数、幂函数为背景的函数定义域问题,一直是高考命题的热点.解答这类问题关键是紧扣真数大于零、底数大于零且不等于1,偶次根号大于等于零、分母不为零. 例12-xA .B .C .D .【答案】B【解析】先作出2(0)x y x =≥的图象,然后作出这个图象关于y 轴对称的图象,得到||2x y =的图象,再把||2x y =的图象右移一个单位,得到12-=x y 的图象,故选B例7. 函数)86(log 231+-=x x y 的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”。
(完整)六大基本初等函数图像及其性质
标准实用文案大全六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)≠C 0=C 平行于x 轴的直线y 轴本身定义域R 定义域R二、幂函数αx y=,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数xy =2xy =3xy =21x y =1-=xy 定义域R R R [0,+[0,+∞∞) {x|x {x|x≠≠0} 值域R [0,+[0,+∞∞) R [0,+[0,+∞∞) {y|y {y|y≠≠0} 奇偶性奇偶奇非奇非偶奇单调性增[0,+[0,+∞∞) ) 增增增增(0,+(0,+∞∞) ) 减减(-(-∞∞,0] ,0] 减减(-(-∞∞,0) ,0) 减减公共点(1,11,1))xyOxy =2x y =3x y =1-=x y 21x y =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α,他们的图形都经过原点,并当α>1>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm 时,时,n n 为偶数时函数的定义域为(为偶数时函数的定义域为(0, +0, +0, +∞),∞),∞),n n 为奇数时函数的定义域为(为奇数时函数的定义域为(--∞,+,+∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(1 ,11 ,11 ,1););4)如果m>n 图形于x 轴相切,如果m<n,m<n,图形于图形于y 轴相切,且m 为偶数时,还跟y 轴对称;轴对称;m m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,)当α为负有理数时,n n 为偶数时,函数的定义域为大于零的一切实数;为偶数时,函数的定义域为大于零的一切实数;n n 为奇数时,定义域为去除x=0以外的一切实数。
高三数学 幂函数、指数函数与对数函数,函数的最值,函数的图像 知识精讲
高三数学 幂函数、指数函数与对数函数,函数的最值,函数的图像 知识精讲一、幂函数、指数函数与对数函数 1. 幂函数的定义、图像和性质 (1)定义形如y x a =(a 是常数,a R ∈)的函数叫做幂函数,定义域是使x a有意义的x 的取值范围。
(2)图像和性质①它们都过点(1,1),除原点外,任何幂函数与坐标轴不相交,任何幂函数都不过第四象限。
②a =1312123,,,,时,幂函数图像过原点且在[)0,+∞上是增函数。
③a =---2112,,时幂函数图像不过原点且在[)0,+∞上是减函数。
④任何两个幂函数最多有三个公共点。
二、函数的最值1. 值域与最值值域的概念:即对于定义域A 上的函数y f x =()其值域是指集合{|()}}y y f x x A =∈,,值域是函数值的变化区域。
函数的最值就是在函数的值域中存在一个最小(大)数,这个数这是函数的最小(大)值。
因此,求函数的最值和值域其实质是相同的,方法也完全一样,即可运用求值域的方法求(证)最值问题。
2. 求函数最值的常用方法有下列八种方法(1)直接法:直接法也叫观察法,就是直接由函数解析式的本身观察出函数的值域,其题型特征是解析式中的某一部分是独立的。
(2)逆求法:通过反解x ,把x 用含有y 的式子表示出来,使含有y 的式子有意义,求出y 的范围,其题型特征是y f x =()中很容易把x 解出来,并且从y f x =()到x g y =()必须是同解变形。
(3)换元法:通过简单的换元把一个复杂函数变成简单函数,其解题特征是函数解析式中含有根号,当根号里是一次式时用代数换元,当根式里是二次式时,用三角换元。
(4)判别式法:把y f x =()通过同解变形为关于x 的一元二次方程,利用判别式大于等于零求其值域,其题型特征是解析式中含有根式或分式。
(5)基本不等式法:利用基本不等式a b ab a b c abc +++≥,≥233()a b c R ,,∈+可以求函数y 的最值,其题型特征是解析式是和式时要求积为定值,解析式是积式时,要求和为定值,不过有时须要用到拆项,添项和平方的技巧。
高中数学选修1知识点总结
高中数学选修1知识点总结高中数学选修1主要包括以下几个知识点:函数的概念与性质、指数函数、对数函数、幂函数、三角函数及其图像与性质、解三角形、圆的方程、平面向量、数数列与数学归纳法、概率与统计。
下面将对这些知识点逐一进行总结。
一、函数的概念与性质函数是自变量与因变量之间的一种特殊关系,记作y=f(x)。
函数有自变量、因变量、定义域、值域、奇偶性、单调性等性质。
函数图像是由函数的各个定义域内的点的坐标构成的曲线。
二、指数函数指数函数是以底数为常数a(a>0且a≠1),自变量x为指数的函数,记作y=a^x。
指数函数的图像有一定的特点,随着自变量的增大,函数值也随之增大;当指数为负时,函数值逐渐趋近于0。
三、对数函数对数函数是指数函数的反函数,记作y=log_a(x)(a>0且a≠1)。
对数函数的性质是,自变量x的范围是正数,函数值是实数;对数函数的图像有一定的特点,随着自变量的增大,函数值逐渐趋近于正无穷大。
四、幂函数幂函数是自变量为幂指数的函数,记作y=x^a(a为常数,x为自变量)。
幂函数的性质是,当幂指数为正时,函数是递增函数;当幂指数为负时,函数是递减函数;当幂指数为整数时,函数可以是奇函数或偶函数。
五、三角函数及其图像与性质三角函数包括正弦函数、余弦函数、正切函数等,记作sinx、cosx、tanx。
三角函数的图像周期性重复,其中正弦函数和余弦函数的图像为正弦曲线;正切函数的图像有渐近线。
三角函数有一定的性质,如周期性、对称性等。
六、解三角形解三角形是根据三角形的已知条件,利用三角函数的性质,求得三角形的各个角度和边长。
常用的解三角形的方法有正弦定理、余弦定理、正切定理等。
七、圆的方程圆的方程是描述圆的几何性质的方程。
常见的圆的方程有标准方程、一般方程等。
圆的方程由圆心坐标和半径确定。
八、平面向量平面向量是带有方向的线段,常用向量标记为a。
平面向量有加法、减法、数量积、向量积等运算。
幂函数与指数函数的性质
幂函数与指数函数的性质幂函数和指数函数是数学中常见的两类函数,它们在数学和科学研究中有着重要的应用。
本文将探讨幂函数和指数函数的性质,包括定义、图像、增减性、奇偶性以及反函数等方面。
1. 幂函数的性质幂函数的一般形式为f(x) = x^n,其中n为正整数,是幂函数的指数。
幂函数的定义域为实数集,由于x^n中的n是正整数,所以幂函数的值域可以是正数、负数或零。
1.1. 幂函数的图像根据幂函数的指数n的奇偶性,幂函数的图像有不同的特点。
当n为偶数时,幂函数的图像相对于y轴对称,关于原点对称;而当n为奇数时,幂函数的图像关于原点对称。
1.2. 幂函数的增减性幂函数的增减性与指数n的值相关。
当指数n为正数时,幂函数在定义域上递增;当指数n为负数时,幂函数在定义域上递减。
值得注意的是,当指数n为偶数时,幂函数的绝对值增长速度比n为奇数时慢。
1.3. 幂函数的奇偶性当幂函数的指数n为偶数时,幂函数是偶函数;当指数n为奇数时,幂函数是奇函数。
这意味着幂函数的图像关于y轴对称或者关于原点对称。
1.4. 幂函数的反函数由于幂函数的定义域为实数集,而幂函数的指数并不一定能覆盖所有实数,所以幂函数的反函数并不一定存在。
当幂函数的指数n为倒数时,幂函数的反函数存在。
2. 指数函数的性质指数函数的一般形式为f(x) = a^x,其中a为常数,称为底数。
指数函数的定义域为实数集,底数a大于0且不等于1。
2.1. 指数函数的图像指数函数的图像与底数a有关。
当底数a大于1时,指数函数在整个定义域上递增;当底数a介于0和1之间时,指数函数在整个定义域上递减。
指数函数的图像经过点(0, 1),即当x等于0时,指数函数的值为1。
2.2. 指数函数的增减性指数函数的增减性取决于底数a的值。
当底数a大于1时,指数函数在整个定义域上递增;当底数a介于0和1之间时,指数函数在整个定义域上递减。
2.3. 指数函数的奇偶性指数函数一般情况下不具有奇偶性,即指数函数的图像不关于y轴对称也不关于原点对称。
指数函数、对数函数、幂函数的图像和性质知识点总结
当xo>l时,按交点的高低,从高到低依次为y=x3, y=x2, y=x ,y x2,y=x-1;
1
当0<xo<1时,按交点的高低,从高到低依次为y=x-1,y x2,y=x , y=x2, y=x3。
3、藉函数的性质
段X数
y=x
2y=x
3y=x
1
yx,
-1y=x
定义域
R
R
R
[0,)
x| x Rflx 0
值域
R
[0,)
R
[0,)
y | y Rfi y 0
奇偶性
奇
偶
奇
非奇非偶
奇
单调性
增
x € [0 ,)时,增;
xe(,0]时,减
增
增
x C (0,+)时,减;
x C (- ,0)时,减
定点
(1 , 1)
叫做对数的底数,N叫做真数。
(2)几种常见对数
对数形式
特点
记法
一般对数
底数为aa 0,且a 1
logaN
常用对数
底数为10
lg N
自然对数
底数为e
ln N
2、对数的性质与运算法则
(1)
(2)对数的重要公式:
lonN
-^b(a,b均为大丁零且不等丁1,N 0);loga
指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称。
(三)籍函数
1、藉函数的定义
形如y=x " (a£ R)的函数称为藉函数,其中x是自变量,a为常数
注:藉函数与指数函数有本质区别在于自变量的位置不同,备函数的自变量在底数位置,而
知识讲解_指数函数、对数函数、幂函数综合_基础
指数函数、对数函数、幂函数综合【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质.6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). 【知识框图】【要点梳理】要点一:指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的nn 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当na =;当n,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1m nm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)r s r sa a a+= (2)()r s rs a a = (3)()rr rab a b =要点二:指数函数及其性质 1.指数函数概念一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2要点三:对数与对数运算 1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且要点四:对数函数及其性质 1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2要点五:反函数 1.反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.2.反函数的性质(1)原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.(2)函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. (3)若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. (4)一般地,函数()y f x =要有反函数则它必须为单调函数. 要点六:幂函数1.幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(3)单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.【典型例题】类型一:指数、对数运算 例1.化简与计算下列各式 (1)10220.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪⎪⎝⎭⎝⎭; (3)5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--.【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1615;(2)100;(3)2a . 【解析】 (1)原式=1122141149100⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭=1+11610-=1615; (2)原式=122322516437390.12748-⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭ =5937100331648++-+=100 (3) 原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.【总结升华】化简要求同初中要求,注意结果形式的统一,结果不能同时含有根式和分数指数,也不能既有分母又含有负指数;一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数位分数等,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的;举一反三:【变式一】化简下列各式:(1)133241116()()8()100481----+⋅; (2【答案】(1)-27;(2【解析】(1)1313332424111681()()8()10048()10048116----+⋅=-+⨯ 344310648()106427272⎛⎫=-+⨯=-+=- ⎪⎝⎭;(2133⎫=1)1)===例2.已知:4x =,求:111244311422111x x xx x xx -+⋅⋅+++的值.【思路点拨】先化简再求值是解决此类问题的一般方法. 【答案】2 【解析】111244311422111x x x x x x x -+⋅⋅+++11441411122411111x x x x x x x ⎛⎫+ ⎪-⎝⎭=⋅⋅+⎛⎫++ ⎪⎝⎭1111442211122211111111x xx x x x xx x --=⋅⋅+=+=-+=++∴ 当4x =时,111112442231142211421x x xx x x xx -+⋅⋅+===++.【总结升华】解题时观察已知与所求之间的关系,同时乘法公式要熟练,直接代入条件求解繁琐,故应先化简变形,创造条件简化运算. 解题时,要注意运用下列各式.11112222a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,2111122222a b a a b b ⎛⎫±=±+ ⎪⎝⎭;112112333333a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭例3.计算 (1)2221log log 12log 422-; (2)33lg 2lg 53lg2lg5++;(3)222lg 5lg8lg 5lg 20lg 23+++. 【答案】(1)12-;(2)1;(3)3;(4)14.【解析】(1)原式=122221log 12log log 22-⎫===-; (2)原式=()()22lg 2lg 5lg 2lg 2lg 5lg 53lg 2lg 5+-++=()2lg10lg5lg 23lg 2lg53lg 2lg5⎡⎤⋅+-+⎣⎦=1-3lg 2lg5+3lg 2lg5=1(3)原式=()22lg52lg2lg51lg2lg 2++++=()2lg5lg2lg5lg2(lg2lg5)++++ =2+lg5lg 2+=3;【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.【变式1】552log 10log 0.25+=( )A .0B .1C .2D .4 【答案】C【解析】552log 10log 0.25+=25555log 10log 0.25log (1000.25)log 252+=⨯==. 【变式2】(1)2(lg2)lg2lg50lg25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+. 【答案】(1)2;(2)54. 【解析】(1) 原式22(lg2)(1lg5)lg2lg5(lg2lg51)lg22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=; (2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg352lg36lg 24=⋅=.类型二:指数函数、对数函数、幂函数的图象与性质 例4.(2015年山东高考)设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b=( )A .1B .78C .34D .12【答案】D【解析】由题意,555()3662f b b =⨯-=-由5(())46f f =得, 51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224b b -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D . 【总结升华】利用指数函数、对数函数的概念,求解函数的值.举一反三:【变式1】(2017 江西奉新县月考)已知f (x )=log 2|x |+3|x |,则f (x 2-1)<3的解集为( ) A.(1)(1,0)(0,1)(1,2)--B .((0,2)C.(D .(1)(1,2)-【答案】A .【解析】由题意,函数是偶函数,在(0,+∞)上单调递增,且f (1)=3, ∴f (x 2-1)<3等价于0<|x 2-1|<1, ∴-1<x 2-1<1且x 2-1≠0, 解得(1)(1,0)(0,1)(1,2)x ∈--,故选:A .例5.(2016 湖南岳阳模拟)若函数y =f (x )的定义域是[2,4],则12(log )y f x =的定义域是( )A .1[,1]2 B .[4,16] C .11[,]164D .[2,4] 【思路点拨】令12log x t =,使t 满足y =f (x )的定义域中x 的取值范围相同,求出12(log )y f x =的定义域即可.【答案】C【解析】∵12(log )y f x =,令12log x t =,∴12(log )()y f x f t ==,∵函数y =f (x )的定义域是[2,4], ∴y =f (t )的定义域也为[2,4],即2≤t ≤4, ∴有122log 4x ≤≤,解得:11164x ≤≤, ∵函数的定义域即解析式中自变量的取值范围,∴12(log )y f x =的定义域为11164x ≤≤, 即:11[,]164. 故选C .【总结升华】本题只要明确函数的定义域即解析式中自变量的取值范围,运用整体代换(换元法)即可迎刃而解.【高清课堂:幂指对综合377495 例4】12-xA .B .C .D .【答案】B【解析】先作出2(0)x y x =≥的图象,然后作出这个图象关于y 轴对称的图象,得到||2x y =的图象,再把||2x y =的图象右移一个单位,得到12-=x y 的图象,故选B【高清课堂:幂指对函数综合 377495 例1】例7. 函数)86(log 231+-=x x y 的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
logax<-1恒成立。 1 ∴ <a<1。 2
0 0
y = log a x
四、综合应用
17.已知f ( x) =| log a x | (0 < a < 1), 则下列各式中正确的是 ( B )
1 A. f > f (2 ) > 3 1 C. f (2 ) > f > 3 1 1 1 f , B. f > f > f (2 ) 4 4 3 1 1 1 f , D. f > f (2) > f 4 4 4
1.求下列函数的定义域
1 (1)y = log 2 (5x − 3) (2) y = log 1 (5x − 3)
2
3 4 4 ( , ) ∪( ,+∞) 5 5 5
3 4 ( , ] 5 5
3 ( ,2) ∪(2,+∞) 2
3 (3) y = log ( x −1) ( x − ) 2 6 − 5x − x (4) y = lg( x + 3)
三、函数的奇偶性
4x − b 10.设f ( x) = lg(10 + 1) + ax是偶函数,g ( x) = 是奇函数, x 2 那么a + b的值是 ( D ) 1 1 A. 1 B. -1 C. − D. 2 2 11 .函数 f ( x ) = log a ( x + 1 + x 2 ) 是 ( A )
x
A.是奇函数,但不是偶函数 B. 是偶函数,但不是奇函数 C. 既是奇函数,又是偶函数 D. 既不是奇函数,又不是偶函数
a x +1 12.已知函数 f ( x) = x (a > 0,a ≠ 1), f (1) = 3 a −1
(1)求f(x)的表达式和定义域; (2)证明f(x)为奇函数。
2 13.已知函数f ( x) = a − x 是奇函数, 试求实数 2 +1 a,并确定f ( x)的单调性。
u=g(x) 增 增 增
分解
y=f(u) 增 减 减 减 增 减
各自判断
减 减 增
复合
6. 已知y=loga(2-ax)在[0,1]上是x的减函数,则实数a 的取值范围是( B) A (0, 1) B (1,2) C (1,+∞) D (2, +∞)
令u = 2 − ax, 则y = log a u
a ax2 − ax1 a ax1 ⋅ ax2 +1 = 2 [(ax1 − ax2 ) − ( x1 x2 )] = 2 (ax1 − ax2 )( x1 x2 ) a −1 a ⋅a a −1 a ⋅a
a ∵x1 < x2 ,∴ax1 > ax2 ,∴ax1 − ax2 > 0 ∵0 < a <1,∴ 2 <0 a −1 x x a 1 ⋅ a 2 +1 x1 x2 ∵a > 0, a > 0,∴ x1 x2 > 0 ∴ f (x1) − f (x2 ) < 0 a ⋅a 即 (x1) < f (x2 )∴ f (x)在 上 增 数 f R 为 函 。
2 14.已知函数F( x) = (1 + x ) f ( x)( x ≠ 0)是偶函数, 2 −1 且f ( x)不恒为0,试确定f ( x)的奇偶性。
四、特有性质
指数函数y=ax 底大图高 对数函数y=logax 底大图底
y=log2x y=log3x
y = log
1 3
x
y = log
1 2
由于a > 0,因此u = 2 − ax为定义域上的减函数, ∴ y = log a u在定义域上为增函数, a > 1 ∴
解法1
解法2
又 ∵函数在[0,1]上有意义, 2 函数的定义域为(−∞, ),∵函数在[0,1]上有意义, a 2 2 ∴[0,1] ⊆ (−∞, ), ∴1 < ,即a < 2. a a 2 1] ∵ u = 2 − ax在[0,上为减函数, umin = u (1) = 2 − a > 0 ∴ a ∴a < 2. 0 1
(
)
(
)
a ax − a−x f (x) = 2 a −1
(
)
a (3)设x1 < x2 ,则f (x1) − f (x2 ) = 2 [(ax1 − a-x1 ) − (ax2 − a−x2 )] a −1 1 1 a a x1 x2 x1 x2 −x1 −x2 = 2 [(a − a ) − (a − a )] = 2 [(a − a ) − ( x1 − x2 )] a −1 a −1 a a
2
(−3,−2) ∪ (−2,1]
2.求下列函数的值域
(1)y = log 2 ( x + 3) (2) y = log 2 ( x 2 + 8)
[3,+∞) (3) y = log 2 (3 − x 2 − 2x ) (−∞,2]
R
1 1 (4)已知x ∈ [−3,],求函数f ( x ) = x − x + 1 2 4 2 的值域 x x (5)已知x ∈ [1,8],求函数g( x ) = (log 2 )(log 2 ) 2 4 的值域
x
在y轴右侧指数函数的底 在直线x=1右侧,在x轴上下 数越大,其图像越在上 两侧,指数函数的底数越 大,其图像越在下方 方
15.如果 log a 3 > log b 3 > 0, 那么a,b之间的关系是 __________ . b>a>1
1 1 解法一:不等式即为 > > 0, log 3 a log 3 b ∴ 0 < log 3 a < log 3 b, ∴ 1 < a < b.
a ≥1− 3 ∴ 2 (1− 3)2 − a(1− 3) − a > 0
解得2(1− 3) ≤ a < 2,故所求a的取值范围 - 2 3,2)。 [2
8.证明:函数f ( x) = lg( x + 2 + x 2 )在定义域 上为单调增函数。
证明 :∵ x ∈ R时,x + 2 + x 2 > x + | x |≥ 0 ∴ f ( x)的定义域为R。
0 < a <1
a >1
y = xα α >0 α <0
(0,1)
(0,1)
(1,0)
(1,0)
(1,1),(0,0) ,
(1,1)
在R上是 上是 减函数
在R上是 上是 增函数
在R上是 上是 减函数
在R上是 上是 增函数
在(0,+∞) 在(0,+∞) 上是增函数 上是减函数 上是增函数 上是减函数
一、函数的定义域,值域 函数的定义域,
7.若函数y= -log2(x2-ax-a)在区间 (−∞,1 − 3 ) 上是增 函数,则a的取值范围是 ( B )
A.[2 − 2 3 ,2], B.[2 − 2 3 ,2), C.(2 − 2 3 ,2], D.(2 - 2 3 ,2)
a2 a2 设u = x2 − ax − a = (x − ) − a − 2 4 (要使y在 −∞,1− 3)上递增,只要使: u在 ∞,1- 3)上单调递减。 (
设x1 , x2 ∈ R , 且x1 < x2 , 则 :
2 2 x1 + x12 + 2 − ( x2 + x2 + 2 ) = ( x1 − x2 ) + ( x12 + 2 − x2 + 2 )
= ( x1 − x2 ) +
= ( x1 − x2 )
( x1 − x2 )( x1 + x2 ) x +2+ x +2
20.已知函数y = lg x, M, N, P是图像上三点,这三点的横坐标 分别为a,a + 2 ,a + 4(a > 1), 记∆MNP的面积为S, (1)求S = f (a )的表达式 (2)判断f (a )的单调性,并求值域。
y
M (a, lga)
P N M
N (a+2, lg(a+2)) P (a+4, lg(a+4))
16.已知函数y = log a x在区间[2, ∞)上恒有 | y |> 1成立, + 求实数a的取值范围.
若a>1, 则在区间[2,+∞)上,logax>1恒成立。 y ∴1<a<2。 若0<a<1,
1 则在区间[2,+∞)上, 1 -1 1 2 2 x x y = log 1 x
2
y
y=logax y=log2x
A. (a-1)(c-1)>0 B. ac>1 C. ab=1 D.0<ac<1
a
c
a( x 2 − 1) 19.设0 < a < 1, f (log a x) = x(a 2 − 1) (1)求f ( x); (2)求证:f ( x)是奇函数; (3)求证:f ( x)在R上为增函数。
解:)设t = log a x(t ∈ R ), 则x = a t ( x > 0) (1 a (a 2t − 1) a 于是f (t ) = t 2 = 2 a t − a −t a (a − 1) a − 1 a 因此f ( x) = 2 a x − a−x a −1 a a −x x (2) ∵ f (− x) = 2 (a − a ) = − 2 (a x − a − x ) = − f ( x) a −1 a −1 ∴ f (x)为奇函数。