人教版七年级期中测试题

合集下载

人教版数学七年级上册《期中测试题》含答案

人教版数学七年级上册《期中测试题》含答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分)1.2-的相反数是( ) A. 2-B. 2C. 12D. 12- 2.下列各式计算正确的是()A. ﹣513﹣713=﹣12 B. ﹣42×58=10 C. 3x 2﹣2x 2=1 D. 2x ﹣(x ﹣1)=x +13.23-的值是( ) A .﹣3B. 3C. 9D. ﹣94.用四舍五入法按要求对 1.06042 取近似值,其中错误的是( ) A. 1.1(精确到 0.1) B. 1.06(精确到 0.01) C. 1.061(精确到千分位)D. 1.0604(精确到万分位)5.设 a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A. ﹣1B. 0C. 1D. 不存在6.若﹣2a n+5b 3 和 5a 4b m 为同类项,则 n m 的值是( ) A. 1B. ﹣3C. ﹣1D. 37.下列比较大小正确的是( ) A. ﹣56<﹣45B. ﹣(﹣21)<+(﹣21)C. ﹣|﹣1012|>8 23D. ﹣|﹣723|=﹣(﹣7 23) 8.如图所示,下列判断正确的是( )A. a +b >0B. a ﹣b >0C. ab >0D. |b |<|a |9.现有四种说法:①﹣a 表示负数;②倒数等于本身的数有 2 个.③3×102x 2y 是 5 次单项式;④5x y是多项式.其中正确的是( ) A. ①③B. ②④C. ②③D. ①④10.正整数按如图的规律排列,请写出第 15 行,第 17 列的数字是( )A. 271B. 270C. 256D. 255二、填空题(本大题共 6 题,每题 3 分,共 18 分)11.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.12.《战狼 2》在 2017 年暑假档上映 36 天,取得历史性票房突破,共收获5490000 000 元,数据 5 490 000 000 用科学记数法表示为_________.13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 y ℃与向上攀登的高度 x km 的几组对应值如表:若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为___________.14.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是____________.15.已知线段AB 在数轴上且它的长度为7,点A 在数轴上对应的数为3,则点B在数轴上对应的数为_______________.16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,点A4 表示的数,是__________ ,如果点A n与原点的距离不小于20, 那么n 的最小值是________________ .三、解答题(本大题共8 题,共72 分,解答时写出必要的文字说明,演算步骤或推证过程)17.计算:(1)﹣4﹣28+19﹣24(2)(﹣1)100﹣16×[3﹣(﹣3)2](3)(1572612+-)×(﹣36)18.先化简,再求值:y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=-12,y=2.19.某天上午小李驾驶出租车沿东西向公路接送乘客.早晨从A 地出发,最后收工时到到B 地,约定向东为正方向,当天上午的行驶记录如下(单位:千米):+3,﹣14,+11,﹣10,﹣8,+9,﹣2,+9.(1)问B 地在A 地的哪个方向?它们相距多少千米?(2)若汽车耗油量为0.2 升/千米,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为5 元,起步里程为3km(包括3km),超过部分每千米加收20.若|a|=8,|b|=5,且a+b>0,那么a﹣b 的值是多少?21.(8 分)2013 年 4 月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户 2013 年 6 月份的用水量为 35 吨,按三级计算则应交水费为: 20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家 2013 年 6 月份的用水量为 20 吨,则需缴交水费多少元?(2)如果小明家 2013 年 7 月份的用水量为 a 吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含 a 的代数式表示,并化简)(3)若一用户 2013 年 7 月份应该水费 90.8 元,则该户人家 7 月份用水多少吨? 22.阅读下面的解题过程: 计算:(﹣130)÷(211231065-+-)方法一:原式=(﹣130)÷[(21+36)﹣(12+105)]=(﹣ 130)÷(5162-)=-130×3=﹣110方法二:原式的倒数为(211231065-+-)÷(﹣ 130))=( 211231065-+-))×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣110通过阅读以上解题过程,你认为哪种方法更简单,选择合适的方法计算下题: (﹣142)÷(132261437-+-). 23.定义一种新运算:观察下列式子:1⊗3=1×4+3=7,3⊗(﹣1)=3×4﹣1=11,5⊗4=5×4+4=24,4⊗(﹣3)=4×4﹣3=13 (1)请你想一想:a ⊗b = ;(2)若 a ≠b ,那么 a ⊗b b ⊗a ;(填入“=”或“≠”) (3)若[a ⊗(﹣6)]⊗3=3⊗a ,请求出 a的值.24.有理数 a 、b 、c 在数轴上的位置如图所示: (1)比较 a 、|b |、c 的大小(用“<”连接);(2)若 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,求 1﹣2013•(m +c )2013 的值;(3)若 a =﹣2,b =﹣3,c =23,且 a 、b 、c 对应的点分别为 A 、B 、C ,问在数轴上是否存在一点 P ,使 P 与 A 的距离是 P 与 C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.答案与解析一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分)1.2-的相反数是( )A. 2-B. 2C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列各式计算正确的是( )A. ﹣513﹣713=﹣12 B. ﹣42×58=10 C. 3x 2﹣2x 2=1 D. 2x ﹣(x ﹣1)=x +1【答案】D 【解析】试题解析:A 、1125712333--=-, 故本选项错误, B 、254108-⨯=-, 故本选项错误, C 、22232x x x -=, 故本选项错误,D 、()211x x x ,--=+ 故本选项正确,故选D .3.23-的值是( ) A. ﹣3 B. 3C. 9D. ﹣9【答案】C 【解析】 【分析】负数的绝对值等于它的相反数.【详解】解:23 =9故选:C.【点睛】本题考查绝对值的计算,注意符号是解题关键.4.用四舍五入法按要求对1.06042 取近似值,其中错误的是()A. 1.1(精确到0.1)B. 1.06(精确到0.01)C. 1.061(精确到千分位)D. 1.0604(精确到万分位)【答案】C【解析】【分析】根据近似数的定义逐一进行求解即可得答案.【详解】1.06042≈1.1(精确到0.1),故A选项正确,不符合题意;1.06042≈1.06(精确到0.01),故B选项正确,不符合题意;.1.06042≈1.060(精确到千分位),故C选项错误,符合题意;1.06042≈1.0604(精确到万分位),故D选项正确,不符合题意,故选C.【点睛】本题考查了近似数,根据要求结合近似数的定义正确求解是解题的关键.5.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a,b,c 三个数的和为()A. ﹣1B. 0C. 1D. 不存在【答案】A【解析】【分析】先根据题意得到a、b、c值,再相加即可得到结果.【详解】解:由题意得a=0,b=-1,c=0,则a+b+c=-1,故选A.考点:有理数的初步认识【点睛】本题属于基础应用题,只需学生熟练掌握特殊的有理数,即可完成.6.若﹣2a n+5b3和5a4b m 为同类项,则n m的值是()A. 1B. ﹣3C. ﹣1D. 3【答案】C 【解析】试题解析:∵532n a b +-和45m a b 同类项,∴543n m +==,, 13n m =-=,, ∴()311m n =-=-. 故选C .点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项. 7.下列比较大小正确的是( ) A. ﹣56<﹣45B. ﹣(﹣21)<+(﹣21)C. ﹣|﹣10 12|>8 23D. ﹣|﹣723|=﹣(﹣7 23) 【答案】A 【解析】试题分析:A .-56<-45;该选项正确; B 、-(-21)=21>+(-21)=-21,故原选项错误; C .-|-1012|=-1012<823,故原选项错误; D .-|-723|=-723<-(-723)=723,故原选项错误. 故选A.考点:有理数大小比较.8.如图所示,下列判断正确的是( )A. a +b >0B. a ﹣b >0C. ab >0D. |b |<|a |【答案】B 【解析】试题分析:根据数轴可得:b <0<a,且b a >,所以a+b <0,ab <0,所以A 、C 、D 错误;B 正确,故选B .考点:1.数轴与有理数;2.有理数的大小比较.9.现有四种说法:①﹣a 表示负数;②倒数等于本身的数有 2 个.③3×102x 2y 是 5 次单项式;④5x y-是多项式.其中正确的是( ) A. ①③ B. ②④C. ②③D. ①④【答案】B 【解析】①∵当a=0时,﹣a=0,不是负数,故不正确;②绝对值最小的有理数是0,正确;③∵3×102x 2y 是3次单项式,故不正确;④5x y-是多项式,正确. 故选B.10.正整数按如图的规律排列,请写出第 15 行,第 17 列的数字是( )A. 271B. 270C. 256D. 255【答案】A 【解析】 【分析】首先观察出第2、3、4、5、6列的第一个数为1+1、4+1、9+1、16+1、25+1,由此进一步解决问题. 【详解】由于第2、3、4、5、6列的第一个数为1+1、4+1、9+1、16+1、25+1. 那么第17列的第一个数为162+1=257,∴第15行,第17列的数字是257+15﹣1=271. 故选A .【点睛】本题考查了数字的变化规律,培养观察分析和归纳总结规律的能力,解答此题的关键是找出每列第一个数与列数的规律.二、填空题(本大题共 6 题,每题 3 分,共 18 分)11.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.【答案】3- 【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣3, 故答案为﹣3. 考点:正数和负数12.《战狼 2》在 2017 年暑假档上映 36 天,取得历史性票房突破,共收获5490000 000 元,数据 5 490 000 000 用科学记数法表示为_________. 【答案】5.49×109 【解析】试题解析:95490000000 5.4910.=⨯ 故答案为95.4910.⨯点睛:科学记数法的表示形式为:10n a ⨯,其中110.a ≤<13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 y ℃与向上攀登的高度 x km 的几组对应值如表:若每向上攀登 1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温约为___________.【答案】-10【解析】【分析】根据题意和表格中各个数据的变化规律即可推测向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温大于是多少.【详解】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为﹣10℃, 故答案为﹣10.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义,此题答案不唯一,在﹣10.8≤t≤﹣9.6 范围内即可.14.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是____________.【答案】+2ab【解析】(2a2+3ab- b2)-(-3a2+ab+5b2)=2a2+3ab- b2+3a2-ab-5b2=5a2+2ab-6b2,所以被墨水弄脏的一项是+2ab,故答案为+2ab.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,括号前是正号,括号里的各项不变号;括号前是负号,括号里的各项要变号.15.已知线段AB 在数轴上且它的长度为7,点A 在数轴上对应的数为3,则点B在数轴上对应的数为_______________.【答案】10或-4【解析】当点B在点A的左边时,3−7=−4;当点B在点A的右边时,3+7=10.则点B在数轴上对应的数为−4或10.故答案为10或−4.16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,点A4 表示的数,是__________ ,如果点A n与原点的距离不小于20, 那么n 的最小值是________________ .【答案】7,13.【解析】试题分析:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19, 所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.考点:1.规律型:数字的变化类;2.数轴.三、解答题(本大题共8 题,共72 分,解答时写出必要的文字说明,演算步骤或推证过程)17.计算:(1)﹣4﹣28+19﹣24(2)(﹣1)100﹣16×[3﹣(﹣3)2](3)(1572612+-)×(﹣36)【答案】(1)-37;(2)2;(3)-27.【解析】【分析】(1)根据有理数的加减法可以解答本题;根据有理数的乘法和减法可以解答本题;根据乘法分配律可以解答本题.【详解】(1)﹣4﹣28+19﹣24=(﹣4)+(﹣28)+19+(﹣24)=﹣37;(2)(﹣1)100﹣16×[3﹣(﹣3)2]=1﹣16⨯(3-9)=1﹣16×(﹣6)=1+1 =2;(3)(1572612+-)×(﹣36)=(﹣18)+(﹣30)+21=﹣27.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.先化简,再求值:y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=-12,y=2.【答案】3.【解析】试题分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题解析:原式=y2+5xy-8x2-4xy+8x2=y2+xy,当x=-12,y=2时,原式=4-1=3.考点:整式的加减—化简求值.19.某天上午小李驾驶出租车沿东西向公路接送乘客.早晨从A 地出发,最后收工时到到B 地,约定向东为正方向,当天上午的行驶记录如下(单位:千米):+3,﹣14,+11,﹣10,﹣8,+9,﹣2,+9.(1)问B 地在A 地的哪个方向?它们相距多少千米?(2)若汽车耗油量为0.2 升/千米,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为5 元,起步里程为3km(包括3km),超过部分每千米加收【答案】(1)B地在A 地的正西方,它们相距2 千米;(2)出租车共耗油13.2 升;(3)小李这天上午共得车费104.5 元.【解析】【分析】(1)要求B 地在A 地的哪个方向以及B 地与A 地的距离,只需要将行走记录相加即可;(2)要求总耗油,需要将行走记录的绝对值相加,再乘以0.2 即可;(3)不超过3km 的按5 元计算,超过3km 的在5 元的基础上,再加上超过部分每千米乘以1.5 元,即可.【详解】解:(1)+3﹣14+11﹣10﹣8+9﹣2+9=(3+11+9+9)﹣(14+10+8+2)=32﹣34=﹣2.所以B 地在A 地的正西方,它们相距2 千米;(2)(+3+14+11+10+8+9+2+9)×0.2=66×0.2=13.2(升).所以出租车共耗油13.2 升;(3)5×8+(11+8+7+5+6+6)×1.5=40+64.5=104.5(元).答:小李这天上午共得车费104.5 元.【点睛】本题考查了有理数的加法和正负数的意义,正负数的实际应用是重点又是难点.20.若|a|=8,|b|=5,且a+b>0,那么a﹣b 的值是多少?【答案】3 或13.【解析】试题分析:由a+b>0得,a,b同为正数或正数的绝对值较大,结合|a|=8,|b|=5得到a,b的值.试题解析:解:由题可知:a的值可以取8 , b的值可以去5和—5所以a - b的值是3 或13.点睛:本题主要考查了绝对值的意义和有理数加减法的法则,难点是确定a,b的值,由绝对值的意义,a,b的值各有两个,再结合a+b>0知a,b同为正数或正数的绝对值较大,得到a=8,b=±5,即可求解.21.(8 分)2013 年4 月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013 年6 月份的用水量为35 吨,按三级计算则应交水费为:20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家2013 年6 月份的用水量为20 吨,则需缴交水费多少元?(2)如果小明家2013 年7 月份的用水量为a 吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a 的代数式表示,并化简)(3)若一用户2013 年7 月份应该水费90.8 元,则该户人家7 月份用水多少吨?【答案】(1)33;(2)2.48a-16.6;(3)40【解析】试题分析:(1)小东家2013年6月份的用水量为20吨,所以根据第1级的水价和用水量列代数式计算即可;(2)根据水价要按两级计算,用每一级的价格乘以每一级的用水量,再把所得的结果相加,最后进行化简即可;(3)根据所给的例子知:90.8>74.3,所以7月份的用水量大于35吨,所以算出第三级的用水量与30吨的和即是7月份的用水量,试题解析:解:(1)(元) 3分 (2)6分 (3)(吨) 8分(吨) 9分考点:列代数式. 22.阅读下面的解题过程: 计算:(﹣130)÷(211231065-+-) 方法一:原式=(﹣130)÷[(21+36)﹣(12+105)]=(﹣ 130)÷(5162-)=-130×3=﹣110 方法二:原式的倒数为(211231065-+-)÷(﹣ 130))=( 211231065-+-))×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=﹣110通过阅读以上解题过程,你认为哪种方法更简单,选择合适的方法计算下题:(﹣142)÷(132261437-+-). 【答案】. 【解析】试题分析:根据题目中所给的方法,类比解决即可.试题解析:解:所以原式=.考点:阅读理解;有理数的混合运算.23.定义一种新运算:观察下列式子:1⊗3=1×4+3=7,3⊗(﹣1)=3×4﹣1=11,5⊗4=5×4+4=24,4⊗(﹣3)=4×4﹣3=13 (1)请你想一想:a⊗b=;(2)若a≠b,那么a⊗b b⊗a;(填入“=”或“≠”)(3)若[a⊗(﹣6)]⊗3=3⊗a,请求出a 的值.【答案】(1)4a+b;(2)≠;(3)a=6.【解析】试题分析:(1)观察所对的等式可得到a⊗b=4×a+b=4a+b;(2)根据(1)中得到的新定义得到b⊗a=4b+a,由于a≠b,所以a⊗b≠b⊗a;(3)根据新定义得到4a﹣6=3×4+a,然后解关于a的一元一次方程.解:(1)a⊗b=4×a+b=4a+b;(2)∵a⊗b=4a+b,b⊗a=4b+a,而a≠b,∴a⊗b≠b⊗a;(3)由题意得4a﹣6=3×4+a,移项、合并得3a=18,解得a=6.考点:有理数的混合运算;解一元一次方程.24.有理数 a 、b 、c 在数轴上的位置如图所示:(1)比较 a 、|b |、c 的大小(用“<”连接);(2)若 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,求 1﹣2013•(m +c )2013 的值;(3)若 a =﹣2,b =﹣3,c =23,且 a 、b 、c 对应的点分别为 A 、B 、C ,问在数轴上是否存在一点 P ,使 P 与 A 的距离是 P 与 C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.【答案】(1)a <c <|b|;(2)2014;(3) 0 或 2.【解析】【分析】(1)根据数轴可得 b <0,因此|b |=﹣b ,在数轴上表示出﹣b 的位置, 再根据数轴上的数,左边的数总比右边的小可得答案;(2)首先根据 a 、b 、c 的位置得到 a +b <0,b ﹣1<0,a ﹣c <0,然后再把 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |化简可得 m +c =﹣1,再代入计算出代数式的值即可;(3)设 P 点对应的有理数为 x ,然后分情况讨论:①当点 P 在点 A 的左边时;②当点 P 在点A 和点 C 之间时;③当点 P 在点 C 的右边时.【详解】(1)如图所示:a <c <|b |;(2)由 a 、b 、c 在数轴上的位置知:a +b <0,b ﹣1<0,a ﹣c <0, 所以m =﹣(a +b )+(b ﹣1)+(a ﹣c ),=﹣a ﹣b +b ﹣1+a ﹣c ,=﹣1﹣c ,所以 m +c =﹣1,即 1﹣2013•(m +c )2013=1﹣2013•(﹣1)2013=1+2013=2014;(3)存在.设 P 点对应的有理数为 x .①当点 P 在点 A 的左边时,有﹣2﹣x =3(23﹣x ),解之得:x =2(不合条件,舍去),②当点 P 在点 A 和点 C 之间时,有 x ﹣(﹣2)=3(23﹣x ),解之得:x =0,③当点P 在点C 的右边时,有x﹣(﹣2)=3 (x﹣23),解之得:x=2,综上所述,满足条件的P 点对应的有理数为0 或2.【点睛】此题主要考查了数轴和一元一次方程的应用,解题关键是正确掌握数轴上两点之间的距离如何计算.。

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。

(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。

如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。

人教版语文七年级上册期中测试卷及参考答案(3套题)

人教版语文七年级上册期中测试卷及参考答案(3套题)

人教版语文七年级上册期中测试卷(一)[时间:120分钟满分:120分]一、基础与运用(29分)1. 下列加点字注音无误的一项是()(2分)A. 朗润.(rùn) 应.和(yìng) 着.落(zháo) 精神抖擞.(sǒu)B. 贮.蓄(zhù) 莅.临(lì) 粗犷.(kuǎng) 咄.咄逼人(duō)C. 侍.弄(shì) 分歧.(qí) 一霎.(shà) 煞.有介事(shà)D. 攲.斜(qī) 啄.食(zhú) 难堪.(kān) 人声鼎.沸(dǐng)2. 下面各项词语中有错别字的一项是()(2分)A. 感慨澄清奥秘花团锦簇B. 确凿云霄博学各得其所C. 祷告遮蔽徘徊波光粼粼D. 静谧诀别烂漫翻来复去3. 下列句子标点符号使用有误的一项是()(2分)A. 傅雷给儿子提出的建议涉及很多方面,如生活细节、人际交往、读书求学、感情处理等。

B. 有这么一群人,他们告别亲人,背负希望,奔赴疫区,被称为“最美逆行者”。

C. 你是喜欢毛宗岗对《三国演义》的评点?还是喜欢脂砚斋对《红楼梦》的评点?D. 《秋天的怀念》选自《史铁生散文选》(人民文学出版社2005年版)。

4. 下面句子中的加点词解释有误的一项是()(2分)A. 东临碣石,以.观沧海(来)太丘舍去,去后乃.至(才)B. 尊君在不.(同“否”)友人惭,下车引之.(代词,指陈元方)C. 温故.而知新(学过的知识)好之者不如乐.之者(快乐)D. 饭.疏食,饮水(动词,吃)逝者如斯.夫(代词,这,指河水)5. 下面对课文分析有误的一项是()(2分)A. 《济南的冬天》先总写济南的冬天“温晴”的特点,然后具体描写济南的冬天的山水美景,抒发了作者对济南的冬天的喜爱和赞美之情。

B. 《闻王昌龄左迁龙标遥有此寄》前两句写景兼点明时令,含有飘零之感、离别之恨,写出迁谪之荒远、道路之艰难;后两句借月抒怀,表达被贬官后的郁闷之情。

部编人教版2024--2025学年度第一学期七年级语文期中测试卷及答案

部编人教版2024--2025学年度第一学期七年级语文期中测试卷及答案

部编人教版2024--2025学年度第一学期期中测试卷七年级 语文(满分:120分 时间:120分钟)一、积累和运用(共5小题,计24分)1.阅读语段,完成小题。

(4分)春风夏雨,秋霜冬雪,大自然生生不息,文人将四季书写于字里行间,带我们领略时序之美。

春天,眼前花团锦簇,美不胜收,与轻风流水应和.着的牧童的笛声传递着春的气息,惹得鸟儿呼朋引伴地卖弄清脆的hóu 咙。

夏雨一来,就更是另一番风情。

花朵怒放着,树叶鼓着浆汁,数不清的杂草争先恐后地成长……当田野染上一层金黄,各种各样的果实摇着铃dānɡ的时候,那是秋天来了,给人们以丰收的喜悦。

还有那可爱的水藻,把一年到头贮蓄.的绿色全拿出来,一并奉献给济南的冬天。

(1)请根据语境,选出加点字正确的读音。

(只填序号)(2分) ①与轻风流水应和.(A.hé B.hè)着的牧童的笛声传递着春的气息。

( )②把一年到头贮蓄.(A.xù B.chù)的绿色全拿出来。

( ) (2)请根据语境,写出下面词语中拼音所对应的汉字。

(2分) ①hóu ___咙 ②铃___dānɡ2.经典诗文默写。

[在(1)-(6)题中,任选四题;在(7)(8)题中,任选一题](6分)(1)_____________,以观沧海。

(曹操《观沧海》) (2)乡书何处达,_____________。

(王湾《次北固山下》)(3)夕阳西下,_____________。

(马致远《天净沙·秋思》)(4)_____________,思而不学则殆。

(《<论语>十二章》)(5)_____________,蟋蟀们在这里弹琴。

(鲁迅《从百草园到三味书屋》)(6)_____________,大小的蝴蝶飞来飞去。

(朱自清《春》)(7)按时温习是一件愉快的事,就像孔子所说:“_____________,_________?”(《<论语>十二章》)(8)“__________,___________。

人教版七年级数学期中测试卷【含答案】

人教版七年级数学期中测试卷【含答案】

人教版七年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?A. 36平方厘米B. 40平方厘米C. 44平方厘米D. 48平方厘米二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 1是最大的质数。

()3. 任何一个偶数都能被2整除。

()4. 任何一个奇数都不能被2整除。

()5. 1千克的物品比1公斤的物品重。

()三、填空题(每题1分,共5分)1. 1千克等于______克。

2. 1米等于______分米。

3. 1平方米等于______平方分米。

4. 1千米等于______米。

5. 1吨等于______千克。

四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。

2. 请简述质数和合数的定义。

3. 请简述正方形的特点。

4. 请简述长方形的特点。

5. 请简述三角形的特点。

五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 小红有15个橙子,她给了小明5个,还剩下多少个?3. 一个长方形的长是8厘米,宽是4厘米,求它的面积。

4. 一个正方形的边长是6厘米,求它的面积。

5. 一个三角形的底是10厘米,高是5厘米,求它的面积。

六、分析题(每题5分,共10分)1. 分析下列数的特点:2、3、5、7、11、13、17、19。

2. 分析下列图形的特点:正方形、长方形、三角形。

七、实践操作题(每题5分,共10分)1. 请用纸和剪刀剪出一个正方形,边长为10厘米,并求出它的面积。

部编人教版2023--2024学年度第一学期七年级语文期中测试卷及答案(含两套题)

部编人教版2023--2024学年度第一学期七年级语文期中测试卷及答案(含两套题)

部编人教版2023--2024学年度第一学期期中测试卷七年级 语文(满分:120分 时间:120分钟)一、积累与运用(30分) 1.默写诗文。

(共10分)(1)水何澹澹, 。

(曹操《观沧海》) (2) ,闻道龙标过五溪。

(李白《闻王昌龄左迁龙标遥有此寄》)(3)春天像小姑娘, ,笑着,走着。

(朱自清《春》) (4) ,应傍战场开。

(岑参《行军九日思长安故园》)(5)不知何处吹芦管, 。

(李益《夜上受降城闻笛》)(6) ,不亦君子乎? (《论语》) (7)马致远在《天净沙·秋思》中直抒胸臆,道出特定时间天涯游子之悲的词句是: , 。

(8)《〈论语〉十二章》中论述学习和思考之间的辩证关系的句子是: , 。

2.阅读下面的文字,完成下面小题。

(8分)青春,是我们一生中最美丽的季节,她 y ùn ni àn ɡ着早春的生机, A ,zh ù x ù着金秋的硕果,昭示着寒冬的希望。

B 通过一次次亲身体验的刻骨铭心,我们读懂了生活的起伏多变。

让我们扬起生活的风帆,在浩瀚无垠的大海上航行,勇敢地接受风雨的洗礼。

不再接受父母是荫.蔽,不再把“自由”与“放纵”混.为一谈。

(1)根据拼音写出词语或给加点字注音。

(4分) ①y ùn ni àn ɡ ②zh ù x ù ③荫.蔽 ④混.为一谈 (2)请在A 处根据上下文补写一个句子,使上下文连贯。

(2分) (3)文中画线句B 有语病,请写出修改意见。

(2分) 3.下列文学常识表述,有误的一项是( )(2分)A .《论语》的作者是我国伟大的思想家、教育家、儒家学派创始人孔子。

B .《天净沙·秋思》选自《全元散曲》,作者是元代著名戏曲作家马致远。

“天净沙”是曲牌名,“秋思”是题目。

C .《济南的冬天》的作者是老舍,著名现代作家。

原名舒庆春,字舍予,北京人。

代表作有小说《骆驼祥子》,戏剧《茶馆》等。

部编人教版2022--2023学年度第一学期七年级语文期中测试卷及答案(含三套题)

部编人教版2022--2023学年度第一学期七年级语文期中测试卷及答案(含三套题)

语文试题 第1页(共60页) 语文试题 第2页(共60页)部编人教版2022--2023学年度第一学期期中测试卷七年级 语文(满分:120分 时间:120分钟)一、语言文字积累与运用(共31分) (一)基础知识题(共15分,每小题3分)1.阅读下面文字,给加点字注音,或根据拼音写出汉字。

(3分) (1)看吧,由澄. 清的河水慢慢往上看吧,空中,半空中,天上,自上而下全是那么清亮,那么蓝汪汪的,整个的是块空灵的蓝水晶。

(2)当 m ù 浴后,湿发披在两肩,穿过金色花的林荫,走到你祷告的小庭院时,你会嗅到这花香,却不知道这香气是从我身上来的。

(3)突然间,我 hu ǎng 然大悟,有一种神奇的感觉在我脑中激荡,我一下子理解语言文字的奥秘了。

2.下列句子中加点词语有错别...字的一项是( )(3分) A.每周一,早上7:00学校都举行隆重的升旗仪式,校园回荡师生嘹亮..地国歌声。

B.那天我又独自坐在屋里,看着窗外的树叶“唰唰啦啦”地飘落..。

C.汽车穿村过野,便渐渐看惯..了不变的风景。

D.轻捷的叫天子(云雀)忽然从草间直窜向云宵..里去了 3.下列句子中加点成语使用恰当的一项是( )(3分)A. 面对越来越高的求职门槛,许多大学生叹为观止....。

B. 山东籍作家莫言先生在文学创作上精心钻研,持之以恒....,于 2012 年荣获诺贝尔文学奖。

C. 他成为“学习标兵”后,表现更加积极,几乎每节课都肆无忌惮....地举手发言。

D. 汪老师的课讲得惟妙惟肖....,赢得了全班同学的热烈掌声。

4.依次填入空缺处的句子最恰当的一项是 ( )(3分)春,是那样娇,那样敏感,却又那样混沌无涯。

一声雷,_____;一阵杜鹃啼,____;一阵风起,____。

①就猛然间惊醒了一山桃花②便让每一棵柳吟出一则则白茫茫、虚飘飘说也说不清听也听不清的飞絮③则无端地惹哭满天的云。

A .①②③ B .③①②C .③②①D .①③②5.下列说法不正确的一项是( )(3分) A .孔子,名丘,字仲尼,儒家学派创始人。

人教版七年级期中考试试卷【含答案】

人教版七年级期中考试试卷【含答案】

人教版七年级期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种动物属于哺乳动物?A. 青蛙B. 蜗牛C. 猫D. 蝴蝶2. 地球上面积最大的洲是?A. 亚洲B. 非洲C. 北美洲D. 南美洲3. 下列哪个元素是金属元素?A. 氧B. 碳C. 铁D. 氢4. 下列哪个国家是世界上最小的国家?A. 摩纳哥B. 梵蒂冈C. 马尔代夫D. 列支敦士登5. 下列哪个是光合作用的主要产物?A. 氧气B. 二氧化碳C. 糖D. 水二、判断题(每题1分,共5分)6. 鸟类可以在水下游泳。

()7. 地球是太阳系中离太阳最近的行星。

()8. 钙是一种金属元素。

()9. 人类的大脑是身体中最大的器官。

()10. 光合作用只在白天进行。

()三、填空题(每题1分,共5分)11. 地球上最大的哺乳动物是______。

12. 光合作用是植物通过叶绿体,利用光能,把水和二氧化碳合成______,并释放氧气的过程。

13. 人体内最多的元素是______。

14. 太阳系中最大的行星是______。

15. 水的化学式是______。

四、简答题(每题2分,共10分)16. 简述地球自转和公转的区别。

17. 描述一下植物的呼吸作用。

18. 请解释一下简单机械中的杠杆原理。

19. 简述一下人体的消化系统。

20. 请解释一下彩虹的形成原理。

五、应用题(每题2分,共10分)21. 一个长方体的长、宽、高分别是2cm、3cm、4cm,请计算其体积。

22. 如果一辆汽车以每小时60公里的速度行驶,行驶了2小时,请计算汽车行驶的总距离。

23. 一个班级有40名学生,其中有25名女生,请计算男生和女生的比例。

24. 如果一个数的3倍加上5等于17,请计算这个数是多少。

25. 一个等边三角形的边长是10cm,请计算其面积。

六、分析题(每题5分,共10分)26. 请分析一下为什么地球有四季变化。

27. 请分析一下为什么植物需要光合作用。

2024新人教版七年级英语上册期中测试试卷

2024新人教版七年级英语上册期中测试试卷

2024新人教版七年级英语上册期中测试试卷(考试时间:90分钟试卷满分:120分)一、听力。

(共20分)A. 听短对话选答案。

(本题共5小题,每小题1分,共5分)1.Where does Helen live?A.Across from the hospital.B.Behind the hospital.C.In front of the hospital.2.What’s the boy’s last name?A.Brown.B.White.C.Black.3.When does Tina usually get up?A.At 6:30.B.At 6:45.C.At 7:00.4.Who stands behind Sandy in the family photo?A.Her father.B.Her uncle.C.Her aunt.5.Does Jack have a baseball?A.Yes, he does.B.Yes, he do.C.No, he doesn’t.B. 听长对话选答案。

(本题共5小题,每小题1分,共5分)听下面一段对话,回答11-12小题。

6.What is John doing?A.He is watching a video.B.He is reading a book.C.He is studying.7.When will they meet?A.At 2:30.B.At 3:30.C.At 2:00.听下面一段对话,回答13-15小题。

8.Where does the girl want to go?A.To a hotel.B.To a restaurant.C.To a school.9.What does the girl want to do?A.She wants to go to school.B.She wants to have breakfast.C.She wants to have lunch.10.Where is the restaurant?A.It’s behind a hotel.B.It’s next to a school.C.It’s on Center Street.C. 听短文选答案。

人教版七年级上册数学《期中测试卷》及答案

人教版七年级上册数学《期中测试卷》及答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示( )A. 向东走8米B. 向西走8米C. 向南走8米D. 向北走8米 2.如图,几何体从上面看到的几何图形是( )A. B. C. D. 3.下列运算中正确的是( )A. 2233a a -=B. 235a b ab +=C. ()333a b a b --=-+D. 224a b a += 4.下列图形中,经过折叠不能围成正方体的是( ) A. B. C. D. 5.中国倡导的“一带一路”是中国与世界的互利共赢之路,据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”这个数用科学记数法可表示为( )A. 44×107B. 4.4×108C. 4.4×109D. 0.44×1010 6.将1, ,3-,2这四个数分别用点表示在数轴上,其中与所表示的点最近的数是( )A. 1B. -2C. -3D. 27.将3p ﹣(m +5n ﹣4)去括号,下列结论正确的是( )A 3p ﹣m +5n +4B. 3p ﹣m +5n ﹣4C. 3P ﹣m ﹣5n ﹣4D. 3p ﹣m ﹣5n +48.有理数a 、b 在数轴上的对应位置如图所示,则下列四个结论正确的是( )A. 0a b <B. 0ab >C. 0a b ->D. 0a b += 9.已知x ﹣2y =5,则整式2x ﹣4y 的值为( )A. 5B. ﹣5C. 10D. ﹣1010.下列说法: ①﹣1乘以任何一个有理数得这个有理数的相反数;②任何互为相反数的商都等于﹣1;③数轴上原点两侧的数互为相反数;④互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数.其中正确说法的个数有( )A. 1个B. 2个C. 3个D. 4个二.填空题11.计算:①12-+=__;②12--=___;③12-⨯=___;④12-÷=____.12.式子“21-”读作________.13.单项式7xy -的系数是_____;多项式224532x y y -+的次数是_____. 14.如图,是一个数值转换机,若输入数x 为一1,则输出数是_________.三.解答题15.计算(1)114 1.55( 2.75)45⎛⎫-+--- ⎪⎝⎭ (2)321|2|3182⎛⎫--+⨯- ⎪⎝⎭16.先化简,再求值:已知(x-2)2+|y+1|=0求代数式4(12x2-3xy-y2)-3(x2-7xy-2y2)的值.17.对于有理数a,b,定义一种新运算“”,规定.(1)计算的值;(2)当,在数轴上位置如图所示时,化简18.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.19.某出租车一天上午从A地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km)依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?20.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低? 一.填空题21.计算:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=_____.22.已知|a |=4,|b |=2,且a >b ,a +b 值为___.23.下列是有规律排列的一列数:12345,,,,2481632---,…,请观察此一列数,按此规律,第n 个数应是__________.24.三个互不相等的有理数,既可以表示为0,b ,b a 的形式,也可以表示为1,a ,a +b 的形式,那么a =_______;b =_________.25.在数轴上有理数a ,11a-分别用点A ,A 1表示,我们称点A 1是点A 的“差倒数点”.已知数轴上点A 的差倒数点为点A 1;点A 1的差倒数点为点A 2;点A 2的差倒数点为点A 3…这样在数轴上依次得到点A ,A 1,A 2,A 3,…,A n .若点A ,A 1,A 2,A 3,…,A n 在数轴上分别表示的有理数为a ,a 1、a 2、a 3、…,a n .则当a 12=-时,代数式a 1+a 2+a 3+…+a 2020的值为______. 二.解答题26.已知与互为相反数,与互为倒数,的绝对值是,的相反数是它本身,求20192020223xy b m a n -+-+的值 27.观察下列等式: 第1个等式:a 1=114⨯=13×(11﹣14); 第2个等式:a 2=147⨯=13×(14﹣17); 第3个等式:a 3=1710⨯=13×(11710-);第4个等式:a 4=11013⨯=13×(111013-); … 请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;第n (n 正整数)个等式:a n = = ;(2)求a 1+a 2+a 3+a 4+…+a 100的值;(3)数学符号1n x =∑f (x )=f (1)+f (2)+f (3)+…+f (n ),试求10x=13(3)x x +∑值. 28.已知数轴上有A ,B ,C 三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.答案与解析一、选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示()A. 向东走8米B. 向西走8米C. 向南走8米D. 向北走8米【答案】B【解析】【分析】根据题意,向东走5米记为+5米,则米就表示相反的概念,问题得以解决.【详解】解:向东走5米记为+5米,则米就表示向西走8米;故答案选:B.【点睛】本题考查相反数的意义.2.如图,几何体从上面看到的几何图形是( )A. B. C. D.【答案】C【解析】【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】解:观察几何体,俯视图如下:故选C .【点睛】本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.下列运算中正确的是( )A. 2233a a -=B. 235a b ab +=C. ()333a b a b --=-+D. 224a b a +=【答案】C【解析】【分析】根据合并同类项法则以及去括号法则,逐一判断选项,即可得到答案.【详解】A. 22232a a a -=,故本选项错误,B. 2a 与不是同类项,不能合并,故本选项错误,C. ()333a b a b --=-+,正确,D. 2a 与2b 不是同类项,不能合并,故本选项错误.故选C .【点睛】本题主要考查合并同类项法则以及去括号法则,掌握合并同类项法则以及去括号法则,是解题的关键.4.下列图形中,经过折叠不能围成正方体的是( ) A. B. C. D.【答案】A【解析】【分析】由平面图形的折叠及正方体的展开图的常见形式作答即可.【详解】解:A 、有两个面重叠,不能折成正方体; 选项B 、C 、D 经过折叠均能围成正方体. 故选A.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.5.中国倡导的“一带一路”是中国与世界的互利共赢之路,据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”这个数用科学记数法可表示为( )A. 4.4×107B. 4.4×108C. 4.4×109D. 0.44×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:44亿=4400000000,∴将44亿用科学记数法表示应为4.4×109. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.将1, ,3-,2这四个数分别用点表示在数轴上,其中与所表示的点最近的数是( )A. 1B. -2C. -3D. 2 【答案】B【解析】【分析】分别计算出选项中各点与的距离,即可解答.【详解】解:∵选项A :1与的距离为()112--=;选项B :与的距离为()211---=;选项C :3-与的距离为()312---=;选项D :2与的距离为()213--=;∴-2与的距离最近,故选:B .【点睛】本题考查了数轴两点的距离,解决本题的关键是掌握数轴上两点距离的计算方法,即AB 两点距离A B AB x x =- .7.将3p ﹣(m +5n ﹣4)去括号,下列结论正确的是( )A. 3p ﹣m +5n +4B. 3p ﹣m +5n ﹣4C. 3P ﹣m ﹣5n ﹣4D. 3p ﹣m ﹣5n +4【答案】D【解析】【分析】根据去括号法则解答即可.【详解】解:3p ﹣(m +5n ﹣4)=3p ﹣m ﹣5n +4故选:D . 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.8.有理数a 、b 在数轴上的对应位置如图所示,则下列四个结论正确的是( )A. 0a b <B. 0ab >C. 0a b ->D. 0a b += 【答案】A【解析】【分析】根据相反数在数轴上的表示,可判断0a b b a <-<<<-,由此可知答案B 、C 、D 均是错误的,答案A 为正确的.【详解】解:观察图形可知:a <0<b ,且|a|>|b|,∴0a b b a <-<<<-, ∴0a b<,0ab <,0a b -<,0a b +<, 故选A.【点睛】本题考查的是有理数的大小比较,利用数形结合的数学思想是解决本题的关键.9.已知x ﹣2y =5,则整式2x ﹣4y 的值为( )A. 5B. ﹣5C. 10D. ﹣10【答案】D【解析】【分析】将整式2x ﹣4y 变形为2(x-2y ),再将已知式子代入求值即可.【详解】解:∵x ﹣2y =5,∴2x ﹣4y =2(x-2y )=2×(-5)=-10,故选D.【点睛】本题考查了代数式求值,能将待求式子进行适当变形是解题的关键.10.下列说法: ①﹣1乘以任何一个有理数得这个有理数的相反数;②任何互为相反数的商都等于﹣1;③数轴上原点两侧的数互为相反数;④互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数.其中正确说法的个数有( )A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据乘法法则、相反数的意义、乘方的意义判断即可.【详解】解:(1)﹣1乘以任何一个有理数得这个有理数的相反数,这个说法正确;(2)任何互为相反数的商都等于﹣1,这个说法错误,例如0的相反数是0,但0除以0没有意义;(3)数轴上原点两侧的数互为相反数,这个说法错误,例如﹣1和6是数轴上原点两侧的数,但不是互为相反数;(4)互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数,这个说法正确;则说法正确的个数有2个.故选:B .【点睛】此题考查了有理数的乘法法则、相反数的意义、乘方的意义,熟练掌握运算法则是解本题的关键. 二.填空题11.计算:①12-+=__;②12--=___;③12-⨯=___;④12-÷=____.【答案】 (1). 1 (2). -3 (3). -2 (4). 12-【解析】【分析】分别根据有理数的加减乘除运算法则计算即可.【详解】解:121-+=,123--=-,122-⨯=-,1122-÷=-, 故答案为:1;-3;-2;12-. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是掌握运算法则. 12.式子“21-”读作________. 【答案】1的平方的相反数 【解析】 【分析】根据﹣12表示12的相反数,即可求解.【详解】解:式子﹣12的底数是1,指数是2,读作1的平方的相反数,结果是﹣1. 故答案为:1的平方的相反数.【点睛】本题考查了乘方的定义, a n 中,a 叫底数,n 叫指数,n 表示相同的因数的个数.13.单项式7xy -的系数是_____;多项式224532x y y -+的次数是_____. 【答案】 (1). 17- (2). 3【解析】 【分析】根据单项式和多项式的概念进行解答. 【详解】解:单项式7xy -的系数是17-, 多项式224532x y y -+的次数是3, 故答案为:17-,3. 【点睛】本题考查了单项式和多项式的概念,单项式的系数,多项式的次数是基础知识,应该掌握. 14.如图,是一个数值转换机,若输入数x 为一1,则输出数是_________.【答案】7 【解析】【分析】依题意可以得到x×(-3)-8=-3x-8,代入x=-1计算求解即可.【详解】解:∵x=-1,∴x×(-3)-8=-3x-8,则原式=-3×(-1)-8=3-8=-5<0,∴-3×(-5)-8=15-8=7.故答案为7.【点睛】本题考查了代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.三.解答题15.计算(1)114 1.55( 2.75)45⎛⎫-+---⎪⎝⎭(2)321|2|3182⎛⎫--+⨯-⎪⎝⎭【答案】(1)0;(2)37 4 -【解析】【分析】(1)根据有理数的加减法法则及加法运算律计算即可;(2)根据有理数的乘方的意义、乘法法则、加减法法则及绝对值的代数意义计算即可.【详解】解:(1)原式=[414﹣(﹣2.75)]+[﹣1.5+(﹣512)]=7+(﹣7) =0;(2)原式=1 2918()8 -+⨯-=9 74 --=374 -.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则、运算顺序及有理数的加法运算律是解决本题的关键.16.先化简,再求值:已知(x-2)2+|y+1|=0求代数式4(12x2-3xy-y2)-3(x2-7xy-2y2)的值.【答案】﹣x 2+9xy +2y 2,﹣20 【解析】 【分析】先根据整式的加减化简代数式,再根据(x -2)2+|y +1|=0确定x 和y 的值,代入化简后的的代数式求值即可. 【详解】解:原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy +6y 2 =﹣x 2+9xy +2y 2 ∵(x -2)2+|y +1|=0, ∴x =2,y =﹣1原式=﹣4﹣18+2=﹣20【点睛】本题考查整式的化简求值,熟练掌握整式的加减运算法则,同时还需掌握平方的非负性及绝对值的非负性是解题关键.17.对于有理数a ,b ,定义一种新运算“”,规定.(1)计算的值;(2)当,在数轴上位置如图所示时,化简【答案】(1)-6;(2)2b 【解析】 【分析】(1)根据定义:a b a b a b ⊗=---代入计算即可; (2)根据定义:a b a b a b ⊗=---,再化简绝对值即可. 【详解】解:(1)原式=2323----- =﹣6(2)由a ,b 在数轴上位置,可得0,0b a <> a ﹣b >0, 则a b a b a b ⊗=--- =a+b ﹣a+b =2b【点睛】本题考查定义新运算与绝对值结合,掌握绝对值化简是解题关键. 18.如图,大小两个正方形的边长分别为a 、b .(1)用含a 、b 的代数式表示阴影部分的面积S ; (2)如果a =6,b =4,求阴影部分的面积. 【答案】(1)22111222a b ab +-;(2)14 【解析】 【分析】(1)依据阴影部分的面积等于两个正方形的面积之和减去空白部分的面积,即可用含a 、b 的代数式表示阴影部分的面积S ;(2)把a =6,b =4,代入代数式,即可求阴影部分面积. 【详解】(1)大小两个正方形的边长分别为a 、b , ∴阴影部分的面积为:S =a 2+b 2﹣12a 2﹣12(a+b )b =12a 2+12b 2﹣12ab ; (2)∵a =6,b =4,∴S =12a 2+12b 2﹣12ab =12×62+12×42﹣12×6×4 =18+8﹣12 =14.所以阴影部分的面积是14.【点睛】本题考查了列代数式和求代数式的值,解题的关键是利用面积的和差关系求出阴影部分的面积. 19.某出租车一天上午从A 地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km )依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?【答案】(1)在向东2km 处;(2)营业额为210元. 【解析】分析】(1)把各数相加即可得相对出发地的位置;(2)根据不同路程不同价格进行计算,再加起来即可.【详解】(1)∵+18-5-2+3+10-9+12-3-7-15=2,故在向东2km处;(2)营业额=1010+(15+2+7+6+9+4+12) 2=210元.【点睛】此题主要考查有理数的计算,解题的关键是根据题意列出式子求解.20.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低? 【答案】(1)3;(2)木地板:75﹣7x,地砖:7x+53;(3)B种活动方案【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.【详解】解:(1)根据题意,可得a +5=4+4, 得a =3;(2)铺设地面需要木地板:4×2x +a [10+6﹣(2x ﹣1)﹣x ﹣2x ]+6×4=8x +3(17﹣5x )+24=75﹣7x , 铺设地面需要地砖:16×8﹣(75﹣7x )=128﹣75+7x =7x +53; (3)∵卧室2面积为21平方米, ∴3[10+6﹣(2x ﹣1)﹣x ﹣2x ]=21, ∴3(17﹣5x )=21, ∴x =2,∴铺设地面需要木地板:75﹣7x =75﹣7×2=61, 铺设地面需要地砖:7x +53=7×2+53=67,A 种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B 种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元), 22335>22165,所以小方家应选择B 种活动方案,使铺设地面总费用(含材料费及安装费)更低.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积,理解A ,B 两种活动方案是解题的关键.一.填空题21.计算:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=_____.【答案】13- 【解析】 【分析】根据积的乘方和同底数幂的乘法运算法则计算即可. 【详解】解:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=()2019201911333⎛⎫-⨯⨯ ⎪⎝⎭=201911333⎛⎫-⨯⨯ ⎪⎝⎭ =113-⨯=13-.故答案为:13-.【点睛】本题考查了积的乘方运算和同底数幂的乘法,解题的关键是掌握运算法则. 22.已知|a |=4,|b |=2,且a >b ,a +b 的值为___. 【答案】6或2 【解析】 【分析】先根据绝对值的定义,得出a =±4,b =±2,所以a 与b 的对应值有四种可能性.再根据a >b 确定具体值,最后代入即可求出a +b 的值. 【详解】解:∵|a |=4,|b |=2, ∴a =±4,b =±2. ∵a >b ,∴当a =4,b =2时,a +b =4+2=6; 当a =4,b =﹣2时,a +b =4﹣2=2. ∴a +b 的值为6或2. 故答案为:6或2.【点睛】此题主要考查了绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.本题还用到了分类讨论的数学思想. 23.下列是有规律排列的一列数:12345,,,,2481632---,…,请观察此一列数,按此规律,第n 个数应是__________. 【答案】(1)2nn n -⨯ 【解析】 【分析】第奇数个数是负数,第偶数个数是正数,那么第n 个数的符号为(﹣1)n ,第1个数的分子是1,分母为21,第2个数的分子为2,分母为22,可得第n 个数的分子与分母.【详解】解:第n 个数的符号为(﹣1)n ,分子为n ,分母为2n , ∴第n 个数应是(1)2nnn -⨯, 故答案为:(1)2nn n -⨯. 【点睛】本题考查了数字的变化规律;得到第n 个数的符号,分子,分母相应的规律是解决本题的关键. 24.三个互不相等的有理数,既可以表示为0,b ,ba的形式,也可以表示为1,a ,a +b 的形式,那么a =_______;b =_________.【答案】 (1). ﹣1 (2). 1 【解析】 【分析】根据三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ba,b 的形式,也就是说这两个数组的数分别对应相等,即a +b 与a 中有一个是0,ba与b 中有一个是1,再根据分母不能为0的条件判断出a 、b 的值,代入代数式进行计算即可.【详解】解:∵三个互不相等的有理数,既表示为1,a +b ,a 的形式,又可以表示为0,ba,b 的形式, ∴这两个数组的数分别对应相等.∴a +b 与a 中有一个是0,b a 与b 中有一个是1,但若a =0,会使ba无意义, ∴a ≠0,只能a +b =0,即a =﹣b ,于是 ba=﹣1.只能是b =1,于是a =﹣1.故答案为:﹣1,1.【点睛】本题考查的是有理数的概念及计算,能根据题意得出“a +b 与a 中有一个是0,ba与b 中有一个是1”是解答此题的关键. 25.在数轴上有理数a ,11a-分别用点A ,A 1表示,我们称点A 1是点A 的“差倒数点”.已知数轴上点A 的差倒数点为点A 1;点A 1的差倒数点为点A 2;点A 2的差倒数点为点A 3…这样在数轴上依次得到点A ,A 1,A 2,A 3,…,A n .若点A ,A 1,A 2,A 3,…,A n 在数轴上分别表示的有理数为a ,a 1、a 2、a 3、…,a n .则当a 12=-时,代数式a 1+a 2+a 3+…+a 2020的值为______. 【答案】127916【解析】 【分析】先根据已知求出各个数,根据求出的数得出规律,即可得出答案. 【详解】解:∵a 12=-, ∴11121131()2a a ===---,∴21113211()3a a ===--, ∴321111132a a ===---, ∴431121131()2a a ===---,…,∵2020÷3=673……1, ∴202011121131()2a a a ====---∴a 1+a 2+a 3+…+a 20202123()673323⎡⎤=++-⨯+⎢⎥⎣⎦127916=故答案为:127916. 【点睛】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.二.解答题26.已知与互为相反数,与互为倒数,的绝对值是,的相反数是它本身,求20192020223xyb m a n -+-+的值 【答案】43或23- 【解析】 【分析】根据相反数的性质、倒数的定义、绝对值的性质可得+=0,1xy=,1m =±, =0,然后代入求值即可.【详解】解:∵与互为相反数,与互为倒数,的绝对值是,的相反数是它本身, ∴+=0,1xy=,1m =±, =020192020223xyb m a n -+-+ =2019202012()03a b m -+++ =201912003m -⨯++ =201913m + 当=1时,原式=43; 当1m =-时,原式=23-. 【点睛】此题考查的是有理数的相关运算,掌握相反数的性质、倒数的定义、绝对值的性质和有理数的各个运算法则是解决此题的关键. 27.观察下列等式:第1个等式:a 1=114⨯=13×(11﹣14); 第2个等式:a 2=147⨯=13×(14﹣17);第3个等式:a 3=1710⨯=13×(11710-);第4个等式:a 4=11013⨯=13×(111013-); …请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;第n (n 为正整数)个等式:a n = = ; (2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)数学符号1nx =∑f (x )=f (1)+f (2)+f (3)+…+f (n ),试求10x=13(3)x x +∑值. 【答案】(1)11316⨯,13×(111316-);1(32)(31)n n -+,13×(113231n n --+);(2)100301;(3)905572【解析】【分析】(1)根据题干中的规律可得第5个等式,再总结规律可得1(32)(31)n n -+的值等于132n -和131n +的差再乘以13; (2)将a 1+a 2+a 3+a 4+…+a 100用各自算式替换,再根据(1)中归纳的等式进行拆项计算;(3)依据数学符号1n x =∑的概念,可得10x=13(3)x x +∑对应的算式,再利用前两问得到的拆项算法计算即可. 【详解】解:(1)按以上规律知第5个等式为a 5=11316⨯=13×(111316-), 第n 个等式a n =1(32)(31)n n -+=13×(113231n n --+) (2)a 1+a 2+a 3+a 4+…+a 100 =114⨯+ 147⨯+ 1710⨯+…+ 1(31002)(31001)⨯-⨯⨯+ =13×(1﹣14)+13×(1147-)+ 13×(11710-)+…+13×(11298301-) =13×(1﹣111447+-+ 11710-+…+11298301-) =13×(1﹣1301) =13×300301=100301; (3)()10x=133x x +∑ =314⨯+ 325⨯+ 336⨯+…+11013⨯. =3×(111142536++⨯⨯⨯+…+11013⨯) =3×[13×(1﹣ 14 )+ 13×(1125-)+13×(1136-)+…+13×(111013-)] =1﹣14+ 12﹣15+ 13﹣16+ 14﹣17+ 15﹣18+ 16﹣19 + 17﹣11018+﹣ 111 +11912-+111013-=1+ 12+13﹣111﹣112﹣113=905 572.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,理解拆分数字的变化,利用变化的规律解决问题.28.已知数轴上有A,B,C三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【答案】(1)AB之间时2s:BC之间时5s:3.4s(2)-10.4点处(3)不能相遇,理由见解析.【解析】【详解】(1)设x秒后,甲到A,B,C的距离和为40个单位.B点距A,C两点的距离为14+20=34<40,A点距B,C两点的距离为14+34=48>40,C点距A,B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4x+(14-4x)+(14-4x+20)=40,x=2s;②BC之间时:4x+(4x-14)+(34-4x)=40,x=5s,(2)设xs后甲与乙相遇4x+6x=34解得:x=3.4s,4×3.4=13.6,-24+13.6=-10.4,答:甲,乙在数轴上表示-10.4的点处相遇;(3)①甲位于AB之间时:甲返回到A需要2s,乙4s只能走24连AB之间的一半都到不了,故不能与A相遇;②甲位于BC时:甲已用5s,乙也已用5s,走了30,距A点只剩4了,连一秒都用不了,甲距A20,故不能相遇.。

人教版七年级上册期中试卷【含答案】

人教版七年级上册期中试卷【含答案】

人教版七年级上册期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种动物属于哺乳动物?A. 青蛙B. 老虎C. 鲨鱼D. 蜻蜓2. 地球绕太阳转一圈需要多长时间?A. 24小时B. 365天C. 12个月D. 7天3. 下列哪个国家位于南美洲?A. 加拿大B. 巴西C. 印度D. 法国4. 下列哪种水果富含维生素C?A. 苹果B. 橙子C. 香蕉D. 西瓜5. 下列哪个是化学反应?A. 熔化B. 燃烧C. 冻结D. 溶解二、判断题(每题1分,共5分)1. 鸟类会游泳。

()2. 地球是太阳系中最大的行星。

()3. 植物通过呼吸作用释放氧气。

()4. 食物腐败是化学变化。

()5. 电流的方向是由正电荷向负电荷流动。

()三、填空题(每题1分,共5分)1. 地球上最大的哺乳动物是______。

2. 水的化学式是______。

3. 我国国旗上的大五角星代表______。

4. 人体内最大的器官是______。

5. 电流的单位是______。

四、简答题(每题2分,共10分)1. 简述光合作用的基本过程。

2. 描述地球自转和公转的方向。

3. 解释什么是生态系统。

4. 简述血液循环的基本原理。

5. 解释什么是牛顿第一定律。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

2. 小明买了3个苹果和2个橙子,共花费12元,苹果和橙子分别多少钱一个?3. 一个班级有40人,其中男生占60%,求班级中女生的人数。

4. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,求5秒后的速度。

5. 在一个等边三角形中,已知边长为6cm,求其面积。

六、分析题(每题5分,共10分)1. 分析影响植物生长的因素。

2. 分析地球气候变化的原因及其影响。

七、实践操作题(每题5分,共10分)1. 设计一个简单的电路,使小灯泡发光。

2. 观察植物的生长过程,记录并分析其变化。

人教版七年级上册数学期中试题(含简单答案)

人教版七年级上册数学期中试题(含简单答案)

B.5 或 1
C.5 或 1
D. 5 或 1
7.如果 2xn2 y3 与 3x3 y2m1 是同类项,那么 m,n 的值是( )
A. m 2 , n 1 B. m 0 , n 1
C. m 2 , n 2
D. m 1, n 2
8.关于 x、y 的多项式1 4xy2 nxy2 xy 中不含三次项,则 n 的值是( )
A.0
B.4
C. 1
D. 4
二、填空题
9.单项式 2 ab2 的次数为

3
10.m 与 - - 2 互为相反数,则 m 的值为

3
11.数轴上到原点的距离等于 3 个单位长度的点所表示的数为

12.一个数的绝对值的倒数是 3,这个数是

13.已知 m, n 满足 (m 2)2 | mn 8 | 0 ,求 m n nm 的值.
B. 6.96105
C. 6.96106
D. 0.696106
3.已知 a,b 都是实数,若 a 22 b 1 0 ,则 a b 2023 的值是( )
A. 2023
B. 1
C.1
D.2023
4.数轴上依次排列的四个点,它们表示的数分别为 a,b,c,d ,若 a c 6 , a d 10 ,
1.D
参考答案:
2.B
3.B
4.D
5.C
6.A
7.A
8.D
9.3 10. 2
3
11. 3 12. 1
3 13.22
14.9
27 15.
256
16. 4043x2
17.① 4 ;②1000;③1
1
29 ;④

人教版七年级数学期中试卷(含答案)

人教版七年级数学期中试卷(含答案)

人教版七年级数学期中试卷(含答案)一、填空题:(每空2分,共26分)1.如果把一个物体向后移动5m 记作移动-5m ,那么这个物体移动+3m 表示 。

2.比较大小(用“<”或“>”号填空):0 -1;-9 -4。

3.计算:3x -5x= 。

4.如图,数轴上点P 表示的数的相反数是 。

5.写出-8x 2y 的一个同类项6. 吉林省全部免除农村约2320000名学生的学杂费,2320000用科学记数法表示为 。

7.若a 与b 互为相反数,c 与d 互为倒数,则(a+b)5-5cd= 。

8.每件m 元的上衣,降价20%后的售价是 元。

9.数轴上点A 所对应数的是-3,那么与点A 相距4个单位长度的点所表示的数是 。

10.如图是某月的日历,图中用长方形框出一竖列的三个数的和是 ;若象图中那样用 长方形框出一竖列的三个数中间的数是a ,则这 三个数的和是 。

(用含a 的式子表示)11.若n 是正整数,且122)21(0|3|)4(++-=+++n y x y x ,则= 。

二、单项选择题:(每小题3分,共21分) 12.31-的绝对值是 ( )A .31B .3C .-31 D .-3 13.下列说法正确的是( )A .单项式-2225y x 的系数是-25,次数是2B .多项式a -ab+1是一次三项式C .0 是单项式D .多项式t -5的常数项是514.一个数的平方等于它本身,这个数是 ( ) A .1 B .-1 C .0 D .1和015.已知数349028用四舍五入法保留两个有效数字约是3.5×105,则所得近似数精确到( ) A .十位 B .千位 C .万位 D .百位16.有理数a 、b 在数轴上的对应点的位置如图所示,则下列结论正确的是 ( ) A .a+b<0 B .a+b ≥0C .a -b=0D .b -a>017.比较大小:-22,2)21(-,3)31(-,正确的是 ( )A .-22> 2)21(->3)31(-B .3)31(->-22>2)21(-C .2)21(->-22> 3)31(-D .2)21(-> 3)31(->-2218.图中的“●”是有规律地从里到外逐层排列的,第n 层(n 为正整数)“●”的个数为( ) A .4n -4 B .4n C .4n+4 D .n 2三、计算题:(19题4分,20、21、22小题各5分,共19分) 19.-7+(-5)-(-90)-1520.-12007×(-4)+(-2)3×5-(-0.28)÷421.(-2)2-22-|-41|×(-10)222.(-32-1)÷(-35)-24×(65127-+1)四、化简(求值):(23题4分,24题5分,25题6分,共15分) 23.-b+0.6b —2.6b24.5(3x 2y -xy 2)-(xy 2+3x 2y)25.化简求值:)3123()31(22122y x y x x +-+--,其中x=-1,23=y 。

人教版七年级数学期中试卷(含答案)

人教版七年级数学期中试卷(含答案)

人教版七年级数学期中试卷(含答案)人教版七年级数学期中试卷(含答案)第一部分:选择题1. 下列数字中,最小的是()A. 0.8B. -1C. 0D. -0.52. 已知正方形的边长为3cm,那么该正方形的周长是()A. 3cmB. 6cmC. 9cmD. 12cm3. 三个数依次是a、b、c,其中a与b的平均数是b,b与c的平均数是b,那么a、b、c的值依次是()A. 1、1、2B. 2、3、4C. 3、2、1D. 1、2、34. 若A:B=4:5,B:C=2:3,那么A:B:C的比值是()A. 4:5:3B. 8:10:15C. 10:8:15D. 4:5:65. 若图中的正方形边长为x,则阴影部分的面积是()(图略)A. x^2B. 2x^2C. 4x^2D. 5x^2第二部分:填空题1. 已知AB=BC,且角A和角C的度数和为100°,则角B的度数为__________°。

2. 设A、B、C三个数的和为25,已知A:B=2:5,C:B=3:1,则A的值为__________。

3. 某商品原价为80元,现在打8折出售,则现价为__________元。

第三部分:解答题1. 一个正数的十分之一是20,这个数是多少?2. 某书店有英语书、数学书、文学书三种,其中英语书比数学书多10本,文学书比英语书少15本,数学书比文学书多5本,问三种书加起来一共有多少本?3. 甲、乙两地相距85公里,两车同时出发,甲车速度是每小时60公里,乙车速度是每小时65公里。

求两车相遇需要多长时间?答案解析:选择题答案:1. B 2. C 3. A 4. A 5. C填空题答案:1. 40 2. 10 3. 64解答题答案:1. 设这个数为x,则有x/10 = 20,解得x=200。

2. 设数学书的数量为x,则英语书的数量为x+10,文学书的数量为x-15。

根据题意得到x+(x+10)+(x-15)=3x-5=25,解得x=10。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版七年级期中统考数学试题

人教版七年级期中统考数学试题

人教版七年级期中统考数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 下列结论中一定正确的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.有理数是指整数、分数、正有理数、负有理数和0这五类数D.有理数是指自然数和负整数2 . 小刚从一列火车的第节车厢数起,一直数到第节车厢,他数过的车厢节数是()A.B.C.D.3 . 下面的计算正确的是()A.B.C.D.4 . 下面几何体的截面图可能是圆的是()A.圆锥B.正方体C.长方体D.棱柱5 . 下列说法中正确的是().A.5不是单项式B.是单项式C.的系数是0D.是整式6 . 我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人7 . 如图,是一个正方体的展开图,把展开图折叠成正方体后,有“水”字一面的相对面上的字是()A.共B.山C.绿D.建8 . 已知m2+2mn=384,2n2+3mn=560,则代数式 2m2+13mn+6n2﹣430 的值是()A.2018B.2019C.2020D.20229 . 互为相反数的两数的积是()A.等于 0B.小于 0C.非正数D.非负数10 . 计算的结果是()A.B.C.D.二、填空题11 . 下图表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放10张餐桌需要的椅子张数是____。

12 . 观察下列算式:,,,……,用字母表示自然数,请你把观察到的规律用含字母的式子表示出来并写在横线上__________.13 . 已知整数x1,x2,x3,x4,…满足下列条件,x1=0,x2=﹣|x1+1|,x3=﹣|x2+2|,x4=﹣|x3+3|,x5=﹣|x4+4|,依此类推,则x2017的值为_____.14 . 下列平面图形中,将编号为_____(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形.15 . 图1是一个小正方体的表面展开图,小正方形从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是______.16 . 若直角三角形的两条边长为a,b,且满足(a-3)2+|b-4|=0,则该直角三角形的第三条边长为________.17 . 如果a-b=-2,那么(a-b)2-(b-a)=______.18 . 若如图中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到如图称第1次操作,再将如图中的每一段类似变形,得到如图即第2次操作,按上述方法继续得到如图为第3次操作,则第4次操作后折线的总长度为_____.19 . 服装大世界去年1—6月份的盈亏情况如下:盈128.5万元、亏140万元、亏95.5万元、盈140万元、盈168万元、盈122万元.则服装大世界去年1—6月份共盈利________万元.三、解答题20 . 分别从正面、左面和上面三个方向观察下面的几何体,你得到了怎样的几何图形?21 . 先化简,再求值:,其中,.22 . 计算.(1)4×(﹣)÷(﹣2)(2)(3)﹣1+(1﹣0.5)÷(﹣3)×[2﹣(﹣3)2](4)2(a2﹣ab)+3(a2﹣ab)+4ab23 . 某市出租车收费标准是:起步价10元,可乘2千米;超过2千米,每千米加2.5元.(1)若某人乘坐了a千米的路程,则他应支付的费用是多少?(2)若他支付了15元车费,你能算出他乘坐的路程吗?24 . 小车司机蔡师傅某天下午的营运全是在东西走向的富泸公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,-3,+7,-3,+11,-4,-3,+11,+6,-7,+9(1)蔡师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)蔡师傅这天下午共行车多少千米?(3)若每千米耗油0.1L,则这天下午蔡师傅用了多少升油?25 . 在下面给出的数轴中,点 A 表示 1,点 B 表示-2,回答下面的问题:(1)A、B 之间的距离是;(2)观察数轴,与点 A 的距离为 5 的点表示的数是:;(3)若将数轴折叠,使点 A 与-3 表示的点重合,则点 B 与数表示的点重合;(4)若数轴上 M、N 两点之间的距离为 2018(M 在 N 的左侧),且 M、N 两点经过(3)中折叠后互相重合,则 M 、 N 两点表示的数分别是: M :;N:.26 . (1)若有理数x、y,满足|x|=5,|y|=2,且|x+y|=x+y,求x-y的值.(2)已知a和b互为相反数,c,d互为倒数,|x|=2,求3a+3b- - x27 . 实数a,b在数轴上的位置如图所示,化简.28 . 计算:(1)(1﹣)×(﹣24);(2).参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、8、9、三、解答题1、2、3、4、5、6、7、8、9、。

部编人教版2024--2025学年度第一学期七年级语文期中测试卷及答案

部编人教版2024--2025学年度第一学期七年级语文期中测试卷及答案

部编人教版2024--2025学年度第一学期期中测试卷七年级 语文(满分:100分 时间:120分钟)一、基础知识综合(共16分)(本题8分)走入初中,同学们感受到学习生活的丰富多彩。

这学期的社会大课堂实践活动主要是“重阳赏菊花”和“参观国家博物馆”。

1. 10月4日重阳节后,同学们来到北海公园参观菊花展,记述了自己的所见所闻,请阅读材料,完成小题。

①走进主展区北海阐福寺,人们霎时会被眼前的各色菊花深深吸引。

那丛丛簇簇的菊花随风摇摆,像亭亭玉(丽、立)的少女翩翩起舞,无比(娇、骄)媚。

阐福寺院内共设(制、置)14间展棚,集中展示了一千余盆利用短日照技术调控花期的各种菊花。

②前院及周边还散布着悬崖菊、多头菊、并蒂.菊等。

特别是并蒂菊,五六朵菊花并列生长在一条茎.上。

③它们的朝向不同,花朵紧紧贴在一起,像姊妹永不分离一样,令人瞪目结舌。

悬崖菊、塔菊、球菊、多头菊也相映成趣;有的全部盛开,争奇斗艳,毫不吝啬地展现它们的魅力;有的好似在和游人捉迷藏,在花叶的荫蔽下匿.笑,憨态可掬;④还有的含苞(待、侍)放,好像在贮.蓄力量,想早些看看这五彩缤纷的世界…… (1)(2分)文段中加点字读音全都正确的一项是( ) A .并蒂(dì) 茎(jīng ) 匿(nì)笑 贮(zhù)蓄 B .并蒂(tì) 茎(jìng ) 匿(nì)笑 贮(chǔ)蓄 C .并蒂(tì) 茎(jìng ) 匿(ní)笑 贮(zhù)蓄 D .并蒂(dì) 茎(jīng ) 匿(ní)笑 贮(chǔ)蓄 (2)(2分)检查文段,结合内容和词语意思,文中加粗词语选择错误的一项是( )A .因为形容花姿态美好挺拔,所以“亭亭玉立”正确。

B .因为表现花朵娇艳、美丽、多姿,所以“娇媚”正确。

C .因为寺院内设立、提供展棚,所以“设制”正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册期中模拟试题
时间:120分钟满分:120分
一、精心选一选,慧眼识金!(每题3分,共30分)
1、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
2、如图1,与图1中的三角形相比,图2中的三角形发生
的变化是()
A、向左平移3个单位长度
B、向左平移1个单位长度
C、向上平移3个单位长度
D、向下平移1个单位长度
3、下列三条线段,能组成三角形的是()
A、3,3,3
B、3,3,6
C、3,2,5
D、3,2,6
4、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()
A、锐角三角形
B、钝角三角形
C、直角三角形
D、都有可能
5、方程



=
+
=
+
1
by
x
y
ax
的解是



-
=
=
1
1
y
x
,则a,b为()
A、



=
=
1
b
a
B、



=
=
1
b
a
C、



=
=
1
1
b
a
D、



=
=
b
a
6、|3a+b+5|+|2a-2b-2|=0,则2a2-3ab的值是()
A、14
B、2
C、-2
D、-4
7、若0<x<1,则x、x2、x3的大小关系是()
A、x<x2<x3
B、x<x3<x2
C、x3<x2<x
D、x2<x3<x
8、不等式0.5(8-x)>2的正整数解的个数是()
A、4
B、1
C、2
D、3
9、如果不等式


⎧-
b
y
x

>2
无解,则b的取值范围是()
A、b>-2
B、b<-2
C、b≥-2
D、b≤-2
10、下列说法不正确的是()
A、
25
1
的平方根是
1
5
±B、-9是81的一个平方根
C、0.2的算术平方根是0.04
D、-27的立方根是-3
二、填空题(每小题3分,共30分)
11、在一本书上写着方程组
2
1
x py
x y
+=


+=

的解是
0.5
x
y
=


=
⎩口
,其中,y的值被墨渍盖住了,
不过,我们可解得出p=___________。

12、某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出8.42万元利息。

已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为_________________。

13、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________
14、已知点A (-4,a ),B (-2,b )都在第三象限的角平分 线上,则a +b +ab 的值等于________。

15、在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 、CE 相交于点O ,则∠BOC 等于———
16、如果一个三角形两边为2cm ,7cm ,且第三边为奇数,则三角形的周长是_____。

17、一个多边形的每个内角都等于150°,则这个多边形是_____边形。

18、若a >b ,则a -3______b -3 -4a ______-4b (填“>”、“<”或“=”)。

19、当x ______时,代数式
2
1
3-x -2x 的值是非负数。

20、一个数的算术平方根等于它本身,则这个数应是__________。

三、计算题 21、32522(32)28
x y x x y x +=+⎧⎨+=+⎩ 22、 21
-x +1≥x
23、⎪⎪⎩⎪⎪⎨⎧=+=+2
4
426
3n m n
m 24、⎩⎨⎧-++-148112x x x x ><
四、解答题
25、在平面直角坐标系中描出下列各点A (5,1),B (5,0),C (2,1),D (2,3),并顺次连接,且将所得图形向下平移4个单位,写出对应点A '、B '、C '、D '的坐标。

26、已知a 31-和︱8b -3︱互为相反数,求(ab )-
2-27 的值。

A B C
D E P F 27、如图,若AB ∥CD ,EF 与AB 、CD 分别相交于E 、F ,EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,且∠BEP =40°,求∠P 的度数。

应用题
28、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:
(1)甲、乙两组单独工作一天,商店应各付多少元?
(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店此付费用较少?
(3)若装修完后,商店每天可盈利200元,你认为如何安排施工有利用商店经营?说说你的理由。

(可以直接用(1)(2)中的已知条件)
29、双蓉服装店老板到厂家购A 、B 两种型号的服装,若购A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元。

(1)求A 、B 两种型号的服装每件分别为多少元?
(2)若销售一件A 型服装可获利18元,销售一件B 型服装可获利30元,根据市场需要,服装店老板决定:购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后可使总的获利不少于699元,问有几种进货方案?如何进货?
答案:
DAACBDCDDC
11、3; 12、42万元,26万元 13、(-4,3)或(4,3);14、2;15、130 16、16cm 17、十二
18、>,<;19、x ≤-1; 20、1,0
25、A '(5,-3)B '(5,-4)C '(2,-3)D '(2,-1) 26、65° 27、37
28、(1)设甲单独做一天商店应付x 元,乙单独做一天商店应付y 元。

依题意 得:
⎩⎨⎧=+=+34801263520)(8y x y x 解得:⎩⎨
⎧==140
300
y x (2)请甲组单独做需付款300×12=3600元,请乙组单独做需付款140×24=3360元,因为3600>3360,所以请乙组单独做,商店应付费用较少。

(3)由(2)知:①甲组单独做12天完成,需付款3600元,乙组单独做24天完成,需付款3360元,由于甲组装修完比乙组装修完商店早开张12天,12天可以盈利200×12=2400元,即选择甲组装修相当只付装修费用1200元,所以选择甲单独做比选择已单独做合算。

②由(1)知,甲、乙同时做需8天完成,需付款3520元又比甲组单独做少用4天,4天可以盈利200×4=800元,3520-800=2720元,这个数字又比甲单独做12天用3600元和算。

综上所述,选择甲、乙两组合做8天的方案最佳。

29、解:(1)设A 种型号的服装每件x 元,B 种型号的服装每件y 元。

依题意得:
⎩⎨⎧=+=+18808121810109y x y x 解得:⎩⎨
⎧==100
90
y x (2)设B 型服装购进m 件,则A 型服装购进(2m +4)件,依题意得:⎩
⎨⎧≤+≥+2842699)42(18m m
解得:
2
19
≤x ≤12。

因为m 为正整数,所以m =10、11、12,2m +4=24、26、28。

所以有三种进货方案:
第一种:B 型服装购进10件,A 型服装购进24件; 第二种:B 型服装购进11件,A 型服装购进26件; 第三种:B 型服装购进12件,A 型服装购进28件;。

相关文档
最新文档