烯烃亲电加成
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ H 2 Pt
非均相 催化剂
Pt + H2
HH
H3C
CH3
CH3 CH3
CH3
Pt + D2
CH3 D
D
顺式加成, 定量完成;从 位阻小 的一面进行。
新发展 均相催化剂 ,如威尔金森催化剂 RhCl(PPh) 3: 反应速度快,收率高 ,机理研究容易 ,还在发展中。
11
贵金属催化加氢反应机理
12
HOOC
(CH2)7COOH
OH
亚油酸
反-己烯雌酚
9
三. 物理性质 状态
常温、常压 (0.1MPa)
(直链烯烃)
C2~C4: 气态 C 5~C 18:液态 >C19: 固态
沸点 随碳原子数增加而 升高;
熔点 随碳原子数增加而 升高;
溶解度: 随碳原子数增加 , 水溶性下降,脂溶性增加。
10
四. 化学反应 (一)催化加氢
H3C
CH2CH3
CC
H
CH3
(Z)- 3-甲基-2-戊烯
H3C
CH(CH3)2
CC
H3CH2C
CH2CH2CH3
(E)- 3-甲基-4-异丙基-3-庚烯 6
Z, E -构型标记法适用所有的 cis, trans-isomers , 且更广泛。 两套方法同时在使用,但二者 无必然联系 .
Cl C C CH3
CH 3
H 3C
CH 3
CC
CC
H 3C
H
H
H
反-2-丁烯
顺-2-丁烯
4
2.3 产生顺反异构的 条件 a: 含有? 键使 C-C 键旋转受阻。
b: 每个双键碳原子上所连的两个基团或原子必须互不相同。
3. 顺反异构体 的命名和 Z、E标记法
顺式(cis) :双键碳原子上两个相同的原子或基团处于双键同侧。 反式(trans) :双键碳原子上两个相同的原子或基团处于双键反侧。
①.与卤化氢 加成 亲电试剂 对碳碳双键的加成进攻,分二步 ;
慢
C C + E Nu
亲电试剂 亲核试剂
+
CC
E
Nu-
Nu CC
快E
第一步,亲电试剂对双键进攻形成碳正离子; 第二步,亲核试剂与碳正离子中间体结合,形成加成产物。
14
反应第一步形成 碳正离子
R
+
C
R' R''
碳 正 离
含六个电子 、 带正电荷的碳氢 基团。带正电荷的碳 sp2杂化;
1
π键的特性
1. C=C 双键不能自由旋转 ; 2.π 键比σ键不稳定 ;
从键能看 双键能 < 单键能 从结构看 肩碰肩重叠
3. π电子流动性较大 ,π电子云容易 被极化; 4. π键不能独立存在 ,只能与σ键共存。
? 键的特点是:成键 不牢固,易断裂,是发生化学 反应的部位。以? 键相连的二个原子不能做相对自 由旋转。
烯烃的稳定性 -----用氢化热考察
氢化热: 1mol 烯烃氢化时,断裂 一个?键,一个H-H σ键,同时形成 两个 C-H σ键,所放出的能量。
126.6
E
kJ .mol -1
119.5
kJ .mol -1
115.3
kJ m. ol -1
126.6
E
kJ .mol -1
119.1
kJ .mol -1
子 平面型结构;键角 120o 。
美国南加利福尼亚大学 的George A. Olah 教授 由于“对碳正离子化学的贡献 ”被授予 1994 年 的诺贝尔化学奖。
百度文库15
碳正离子稳定性 诱导效应 的解释
+ GC
+ GC
若连有给电子基 ,使正电荷分散,碳正离子 稳定; 若连有吸电子基 ,使正电荷更集中,碳正离子 不稳定。
Cl
Cl
CC
H
H
顺-1,2-二氯乙烯
Cl
H
CC
H
Cl
反- 1,2-二氯乙烯
5
H3C
CH2CH3
CC
H
H
顺-2-戊烯
H3C
H
CC
H
CH2CH3
反-2-戊烯
局限性:当双键碳原子所连 四个原子或基团 互不相同 时,无法适用。
IUPAC 规定:
Z式:双键碳原子上两个较优基团或原子处于双键同侧。 E式:双键碳原子上两个较优基团或原子处于双键异侧。
H
H
顺-1-氯丙烯 (Z)-1- 氯丙烯
Cl C C CH3
H3C
H
反-2-氯-2-丁烯 (Z)- 2-氯-2-丁烯
4.顺 、反异构体的 差异
4.1 物理性质 的差异
顺反异构体,因几何形状(结构)不同, 物理性质 不同。
7
H3C
CH3
CC
H
H
?=0.33D ( bp 3.7oC )
H
CH3
CC
H3C
Br
H
H3C C CH2 + HBr CH3
H3C C CH3 + CH3
90%
H3C C CH2Br
H
?=0 ( bp 0.9oC )
偶极矩 、沸点 的差异
HOOC
COOH
CC
H
H
H
COOH
CC
HOOC
H
mp . 130 oC 易溶于水
mp . 287 oC 难溶于水
熔点的差异
8
4.2 化学性质的差异
COOH
140 oC
COOH
4.3 生物活性的差异
H3C(H2C)4
HO
O
275oC
O
COOH
O
112.4
kJ .mol -1
从能图可看出:
R2C=C R2 > R2C=CH R > RCH=CH R > R2C=CH 2 > RCH=CH 2> CH 2=CH 2 (E > Z)
即双键碳上 烷基越多的烯烃越稳定。
13
(二)亲电加成 亲电试剂 :本身缺少一对电子 , 又有能力从反应中得
到电子形成共价键的试剂。 例:H+、Br +、lewis酸等。
1
3
2
4-丙基-环己烯
CH2 CH
乙烯基
H3C CH CH
丙烯基
CH2 CH CH2
烯丙基
3
2. 烯烃的同分异构
2.1 构造异构
CH3CH2CH CH2 CH3CH CHCH3
1-丁烯 2-丁烯
环丁烷
CH3C CH2
CH3 2-甲基丙烯 (异丁烯)
甲基环丙烷
2.2 顺反异构---(属于立体异构)
H
2
二. 烯烃的命名和异构 1. IUPAC 命名法
1)选择含双键最长 的碳链为主链; 2)近双键端 开始编号; 3)将编号较小 的双键位号写在母体名称 之前; 4) 环烯用最小数字标出取代基 位次。
34 5 6
CH 3CH 2CHCH 2CH 2CH 3
CH=CH 2
21
3-乙基-1-己烯
5
6
4 CH 2CH 2CH 3
16
超共轭效应 的解释
H
:
+
C
H
C
CH 3
H 3C
σ,p - 超共轭效应
超共轭 稳定性
H HC
H
HH
C H
C+ H
C HH
9个σ— P超共轭
H
H
HC H
C+ H
C HH
6个σ— P超共轭
H
H
H CC
3个σ— P超共轭
H
H
碳正离子稳定性 次序:
3o C+
>
2o C+
>
1
oC
+
>CH
+ 3
17
控制整个反应速率的 第一步反应(慢),是由 亲电试 剂进攻而引起,故此反应称 亲电加成反应 。
非均相 催化剂
Pt + H2
HH
H3C
CH3
CH3 CH3
CH3
Pt + D2
CH3 D
D
顺式加成, 定量完成;从 位阻小 的一面进行。
新发展 均相催化剂 ,如威尔金森催化剂 RhCl(PPh) 3: 反应速度快,收率高 ,机理研究容易 ,还在发展中。
11
贵金属催化加氢反应机理
12
HOOC
(CH2)7COOH
OH
亚油酸
反-己烯雌酚
9
三. 物理性质 状态
常温、常压 (0.1MPa)
(直链烯烃)
C2~C4: 气态 C 5~C 18:液态 >C19: 固态
沸点 随碳原子数增加而 升高;
熔点 随碳原子数增加而 升高;
溶解度: 随碳原子数增加 , 水溶性下降,脂溶性增加。
10
四. 化学反应 (一)催化加氢
H3C
CH2CH3
CC
H
CH3
(Z)- 3-甲基-2-戊烯
H3C
CH(CH3)2
CC
H3CH2C
CH2CH2CH3
(E)- 3-甲基-4-异丙基-3-庚烯 6
Z, E -构型标记法适用所有的 cis, trans-isomers , 且更广泛。 两套方法同时在使用,但二者 无必然联系 .
Cl C C CH3
CH 3
H 3C
CH 3
CC
CC
H 3C
H
H
H
反-2-丁烯
顺-2-丁烯
4
2.3 产生顺反异构的 条件 a: 含有? 键使 C-C 键旋转受阻。
b: 每个双键碳原子上所连的两个基团或原子必须互不相同。
3. 顺反异构体 的命名和 Z、E标记法
顺式(cis) :双键碳原子上两个相同的原子或基团处于双键同侧。 反式(trans) :双键碳原子上两个相同的原子或基团处于双键反侧。
①.与卤化氢 加成 亲电试剂 对碳碳双键的加成进攻,分二步 ;
慢
C C + E Nu
亲电试剂 亲核试剂
+
CC
E
Nu-
Nu CC
快E
第一步,亲电试剂对双键进攻形成碳正离子; 第二步,亲核试剂与碳正离子中间体结合,形成加成产物。
14
反应第一步形成 碳正离子
R
+
C
R' R''
碳 正 离
含六个电子 、 带正电荷的碳氢 基团。带正电荷的碳 sp2杂化;
1
π键的特性
1. C=C 双键不能自由旋转 ; 2.π 键比σ键不稳定 ;
从键能看 双键能 < 单键能 从结构看 肩碰肩重叠
3. π电子流动性较大 ,π电子云容易 被极化; 4. π键不能独立存在 ,只能与σ键共存。
? 键的特点是:成键 不牢固,易断裂,是发生化学 反应的部位。以? 键相连的二个原子不能做相对自 由旋转。
烯烃的稳定性 -----用氢化热考察
氢化热: 1mol 烯烃氢化时,断裂 一个?键,一个H-H σ键,同时形成 两个 C-H σ键,所放出的能量。
126.6
E
kJ .mol -1
119.5
kJ .mol -1
115.3
kJ m. ol -1
126.6
E
kJ .mol -1
119.1
kJ .mol -1
子 平面型结构;键角 120o 。
美国南加利福尼亚大学 的George A. Olah 教授 由于“对碳正离子化学的贡献 ”被授予 1994 年 的诺贝尔化学奖。
百度文库15
碳正离子稳定性 诱导效应 的解释
+ GC
+ GC
若连有给电子基 ,使正电荷分散,碳正离子 稳定; 若连有吸电子基 ,使正电荷更集中,碳正离子 不稳定。
Cl
Cl
CC
H
H
顺-1,2-二氯乙烯
Cl
H
CC
H
Cl
反- 1,2-二氯乙烯
5
H3C
CH2CH3
CC
H
H
顺-2-戊烯
H3C
H
CC
H
CH2CH3
反-2-戊烯
局限性:当双键碳原子所连 四个原子或基团 互不相同 时,无法适用。
IUPAC 规定:
Z式:双键碳原子上两个较优基团或原子处于双键同侧。 E式:双键碳原子上两个较优基团或原子处于双键异侧。
H
H
顺-1-氯丙烯 (Z)-1- 氯丙烯
Cl C C CH3
H3C
H
反-2-氯-2-丁烯 (Z)- 2-氯-2-丁烯
4.顺 、反异构体的 差异
4.1 物理性质 的差异
顺反异构体,因几何形状(结构)不同, 物理性质 不同。
7
H3C
CH3
CC
H
H
?=0.33D ( bp 3.7oC )
H
CH3
CC
H3C
Br
H
H3C C CH2 + HBr CH3
H3C C CH3 + CH3
90%
H3C C CH2Br
H
?=0 ( bp 0.9oC )
偶极矩 、沸点 的差异
HOOC
COOH
CC
H
H
H
COOH
CC
HOOC
H
mp . 130 oC 易溶于水
mp . 287 oC 难溶于水
熔点的差异
8
4.2 化学性质的差异
COOH
140 oC
COOH
4.3 生物活性的差异
H3C(H2C)4
HO
O
275oC
O
COOH
O
112.4
kJ .mol -1
从能图可看出:
R2C=C R2 > R2C=CH R > RCH=CH R > R2C=CH 2 > RCH=CH 2> CH 2=CH 2 (E > Z)
即双键碳上 烷基越多的烯烃越稳定。
13
(二)亲电加成 亲电试剂 :本身缺少一对电子 , 又有能力从反应中得
到电子形成共价键的试剂。 例:H+、Br +、lewis酸等。
1
3
2
4-丙基-环己烯
CH2 CH
乙烯基
H3C CH CH
丙烯基
CH2 CH CH2
烯丙基
3
2. 烯烃的同分异构
2.1 构造异构
CH3CH2CH CH2 CH3CH CHCH3
1-丁烯 2-丁烯
环丁烷
CH3C CH2
CH3 2-甲基丙烯 (异丁烯)
甲基环丙烷
2.2 顺反异构---(属于立体异构)
H
2
二. 烯烃的命名和异构 1. IUPAC 命名法
1)选择含双键最长 的碳链为主链; 2)近双键端 开始编号; 3)将编号较小 的双键位号写在母体名称 之前; 4) 环烯用最小数字标出取代基 位次。
34 5 6
CH 3CH 2CHCH 2CH 2CH 3
CH=CH 2
21
3-乙基-1-己烯
5
6
4 CH 2CH 2CH 3
16
超共轭效应 的解释
H
:
+
C
H
C
CH 3
H 3C
σ,p - 超共轭效应
超共轭 稳定性
H HC
H
HH
C H
C+ H
C HH
9个σ— P超共轭
H
H
HC H
C+ H
C HH
6个σ— P超共轭
H
H
H CC
3个σ— P超共轭
H
H
碳正离子稳定性 次序:
3o C+
>
2o C+
>
1
oC
+
>CH
+ 3
17
控制整个反应速率的 第一步反应(慢),是由 亲电试 剂进攻而引起,故此反应称 亲电加成反应 。