九年级上册数学 二次函数同步单元检测(Word版 含答案)

合集下载

九年级上册数学《二次函数》单元检测题(附答案)

九年级上册数学《二次函数》单元检测题(附答案)

人教版数学九年级上学期《二次函数》单元测试[考试时间:90分钟分数:100分]一.选择题(每题3分,共30分)1.抛物线y=(x+1)2+(m2+1)(m为常数)的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限2.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A .图象与y轴的交点坐标为(0,13)B .图象的对称轴在y轴的右侧C .当x>0时,y的值随x值的增大而增大D .当x=2时,函数有最小值为53.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A .y=2(x﹣6)2B .y=2(x﹣6)2+4C .y=2x2D .y=2x2+44.设函数y=A (x﹣h)2+k(A ,h,k是实数,A ≠0),当x=1时,y=1;当x=8时,y=8,()A .若h=4,则A <0B .若h=5,则A >0C .若h=6,则A <0D .若h=7,则A >05.已知抛物线y=A x2+B x+C (A <0)经过点(﹣1,0),且满足4A +2B +C >0,有下列结论:①A +B >0;②﹣A +B +C >0;③B 2﹣2A C >5A 2.其中,正确结论的个数是()A .0B .1C .2D .36.二次函数y=A x2+B x+C ,自变量x与函数y的对应值如表:x﹣3 ﹣2 ﹣1y﹣2 ﹣2 0下面四个说法正确的有()①抛物线的开口向上②当x>﹣3时,y随x的增大而增大③二次函数的最小值是﹣2 ④﹣4是方程A x2+B x+C =0的一个根.A .1个B .2个C .3个D .4个7.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若A B =4,D E=3,则杯子的高C E为()A .14B .11C .6D .38.二次函数y=x2﹣2x﹣2与x轴的交点个数是()A .0个B .1个C .2个D .3个9.在同一平面直角坐标系中,函数y=A x2+B x(A ≠0)与y=B x+A (B ≠0)的图象可能是()A .B .C .D .10.对于二次函数y=A x2﹣(2A ﹣1)x+A ﹣1(A ≠0),有下列结论:①其图象与x轴一定相交;②若A <0,函数在x>1时,y随x的增大而减小;③无论A 取何值,抛物线的顶点始终在同一条直线上;④无论A 取何值,函数图象都经过同一个点.其中所有正确的结论是()A .①②③B .①③④C .①②④D .①②③④二.填空题(每题4分,共20分)11.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.12.抛物线y=x2+B x+C 经过点A (0,3),B (2,3),抛物线所对应的函数表达式为.13.已知非负实数x,y,z满足x+y+z=1,则t=2xy+yz+2zx的最大值为.14.如图是二次函数y=A x2+B x+C (A ≠0)的图象的一部分,对称轴为直线x=,抛物线与x轴的交点分别为A 、B ,则A 、B 两点间的距离是.15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A 、B 、C 三点,D 为顶点,连结AC ,B C .点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交B C 于点E,连结A P交B C 于点F,则的最大值为.三.解答题(每题10分,共50分)16.如图,抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点,与y轴交于点C .(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△PA O =2S△PC O,求出P点的坐标;(3)连接B C ,点E是x轴一动点,点F是抛物线上一动点,若以B 、C 、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.17.某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?18.如图①,已知抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3),直线l经过B 、C 两点.抛物线的顶点为D .(1)求抛物线和直线l的解析式;(2)判断△B C D 的形状并说明理由.(3)如图②,若点E是线段B C 上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF 交线段B C 于点G,当△EC G是直角三角形时,求点E的坐标.19.春节前夕,万果园超市从厂家购进某种礼盒,已知该礼盒每个成本价为32元.经市场调查发现,该礼盒每天的销售量y(个)与销售单价x(元)之间满足一次函数关系.当该款礼盒每个售价为50元时,每天可卖出200个;当该款礼盒每个售价为60元时,每天可卖出100个.(1)求y与x之间的函数解析式(不要求写出x的取值范围);(2)若该超市想达到每天不低于240个的销售量,则该礼盒每个售价定为多少元时,每天的销售利润最大,最大利润是多少元?20.如图,抛物线y=﹣x2+B x+C 与x轴交于点A ,B ,与y轴交于点C ,其中点B 的坐标为(3,0),点C 的坐标为(0,3),直线l经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作C D ∥x轴交抛物线于点D ,过线段C D 上方的抛物线上一动点E作EF ⊥C D 交线段B C 于点F,求四边形EC FD 的面积的最大值及此时点E的坐标;(3)点P是在直线l上方的抛物线上一动点,点M是坐标平面内一动点,是否存在动点P,M,使得以C ,B ,P,M为顶点的四边形是矩形?若存在,请直线写出点P的横坐标;若不存在,请说明理由.答案与解析一.选择题1. B .2. C .3. C .4. C .5. D .6. B .7. B .8. C .9. C .10. B .二.填空11. 2.12. y=x2﹣2x+3.13..14. 3.15..三.解答题16.解:(1)∵抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点, ∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C ,∴点C (0,3)∴OA =OC =3,设点P(x,﹣x2﹣2x+3)∵S△PA O =2S△PC O,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若B C 为边,且四边形B C FE是平行四边形,∴C F∥B E,∴点F与点C 纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若B C 为边,且四边形B C EF是平行四边形,∴B E与C F互相平分,∵B E中点纵坐标为0,且点C 纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若B C 为对角线,则四边形B EC F是平行四边形,∴B C 与EF互相平分,∵B C 中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).17.解:(1)根据题意得,y=x•(60﹣x)=﹣x2+15x,自变量的取值范围为:0<x≤40;(2)∵y=﹣x2+15x=﹣(x﹣30)2+225,∴当x=30时,三间饲养室占地总面积最大,最大为225(m2).18.解:(1)∵抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3), ∴y=﹣x2+B x+3,将点B (3,0)代入y=﹣x2+B x+3,得0=﹣9+3B +3,∴B =2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B (3,0),C (0,3),∴可设直线l的解析式为y=kx+3,将点B (3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△B C D 是直角三角形,理由如下:如图1,过点D 作D H ⊥y 轴于点H ,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D (1,4),∵C (0,3),B (3,0),∴HD =HC =1,OC =OB =3,∴△D HC 和△OC B 是等腰直角三角形,∴∠HC D =∠OC B =45°,∴∠D C B =180°﹣∠HC D ﹣∠OC B =90°,∴△B C D 是直角三角形;(3)∵EF ⊥x 轴,∠OB C =45°,∴∠FGB =90°﹣∠OB C =45°,∴∠EGC =45°,∴若△EC G 是直角三角形,只可能存在∠C EG =90°或∠EC G =90°,①如图2﹣1,当∠C EG =90°时,∵EF ⊥x 轴,∴EF ∥y 轴,∴∠EC O =∠C OF =∠C EF =90°,∴四边形OFEC 为矩形,∴y E =y C =3,在y =﹣x 2+2x +3中,当y =3时,x 1=0,x 2=2,∴E (2,3);②如图2﹣2,当∠EC G =90°时,由(2)知,∠D C B =90°,∴此时点E 与点D 重合,∵D (1,4),∴E (1,4),综上所述,当△EC G 是直角三角形时,点E 的坐标为(2,3)或(1,4).19.解:(1)设y与x之间的函数解析式为y=kx+B ,由题意得,,解得:,∴y与x之间的函数解析式为y=﹣10x+700;(2)设每天的销售利润为W元,由如图得,W=(x﹣32)(﹣10x+700)=﹣10x2+1020x﹣22400=﹣10(x﹣51)2+3610, ∵﹣10x+700≥240,解得:x ≤46,∴32<x ≤46,∵A =﹣10<0,∴当x <51时,W 随x 的增大而增大,∴当x =46时,W 有最大值,最大利润是﹣10×(46﹣51)2+3610=3360,答:该礼盒每个售价定为46元时,每天的销售利润最大,最大利润是3360元.20.解:(1)将点B (3,0),点C (0,3)代入y =﹣x 2+B x +C 中, 则有, ∴, ∴y =﹣x 2+2x +3;(2)∵y =﹣x 2+2x +3,∴对称轴为x =1,∵C D ∥x 轴,∴D (2,3),∴C D =2,∵点B (3,0),点C (0,3),∴B C 的直线解析式为y =﹣x +3,设E (m ,﹣m 2+2m +3),∵EF ⊥C D 交线段B C 于点F ,∴F (m ,﹣m +3),∴S 四边形EC FD =S △C D E +S △C D F =×2×(﹣m 2+2m )+×2×m =﹣m 2+3m , 当m =时,四边形EC FD 的面积最大,最大值为;此时E (,);(3)设P (n ,﹣n 2+2n +3),①当C P ⊥PB 时,设B C 的中点为J (,),则有PJ = B C =,∴(n ﹣)2+(﹣n 2+2n +3﹣)2=()2,解得整理得到n(n﹣3)(n2﹣n﹣1)=0, ∴n=0或3或,∵P在第一象限,∴P点横坐标为;②当C P⊥C B 时,P(1,4).∴P点横坐标为1;综上所述:P点横坐标为或1.。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

九年级上册数学《二次函数》单元测试题(带答案)

九年级上册数学《二次函数》单元测试题(带答案)

人教版数学九年级上学期《二次函数》单元测试(满分120分,考试用时120分钟)一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·广西壮族自治区初三期中)若关于x 的函数y =(2﹣A )x 2﹣x 是二次函数,则A 的取值范围是( ) A .A ≠0 B .A ≠2 C .A <2 D .A >22.(2020·宁夏银川市教育局初三三模)下列对二次函数y=x 2﹣x 的图象的描述,正确的是( ) A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的3.(2020·浙江省初三二模)二次函数263y kx x =-+的图象与x 轴有交点,则k 的取值范围是( )A .3k <B .3k <且0k ≠C .3k ≤D .3k ≤且0k ≠4.(2020·江苏省初三二模)竖直向上的小球离地面的高度h(米)与时间t(秒)的关系函数关系式为h=-2t 2+mt+258,若小球经过74秒落地,则小球在上抛过程中,第( )秒离地面最高. A .37 B .47 C .34 D .435.(2020·江西省初三其他)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个6.(2020·内蒙古自治区初三期末)函数y=A x+B 和y=A x 2+B x+C (A ≠0)在同一个坐标系中的图象可能为( )A .B .C .D .7.(2020·湖北省初三期中)抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度8.(2020·山东省初三二模)小轩从如图所示的二次函数y=A x 2+B x+C (A ≠0)的图象中,观察得出了下面五条信息:①A B >0;②A +B +C <0;③B +2C >0;④A ﹣2B +4C >0;⑤3a b 2=. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个9.(2020·内蒙古自治区初三期中)设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=(x-1)2-3上的三点,则y 1,y 2,y 3的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>10.(2019·河北省初三零模)在平面直角坐标系xOy 中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )A .y 1B .y 2C .y 3D .y 411.(2019·河南省初三期末)如图,平行于x 轴的直线A C 分别交函数 y 1=x 2(x≥0)与 y 2= 13x 2(x≥0)的图象于 B ,C 两点,过点C 作y 轴的平行线交y 1=x 2(x≥0)的图象于点D ,直线D E ∥A C 交 y 2=13x 2(x≥0)的图象于点E ,则DE AB=( )A .3B .1C .2D .3﹣ 12.(2020·湖南省初三一模)某建筑物,从10m 高的窗口A ,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M 离墙1m ,离地面403m ,则水流落地点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m13.(2019·内蒙古自治区初三期末)如图,在△A B C 中,∠B =90°,A B =6C m ,B C =12C m ,动点P 从点A 开始沿边A B 向B 以1C m/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边B C 向C 以2C m/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过( )秒,四边形A PQC 的面积最小.A .1B .2C .3D .414.(2020·黄冈市启黄中学初三二模)已知二次函数y=﹣x 2+x+6及一次函数y=﹣x+m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2019·武钢实验学校初三月考)公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行______m才能停下来.16.(2020·黑龙江省初三期末)已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标是_________.17.(2020·江苏省初三其他)二次函数y=x2-2x-3的图象如图所示,若线段A B 在x轴上,且A B 为个单位长度,以A B 为边作等边△A B C ,使点C 落在该函数y轴右侧的图象上,则点C 的坐标为__.18.(2020·吉林省实验繁荣学校初三其他)在平面直角坐标系中,如图所示的函数图象是由函数y=(x﹣1)2+1(x≥0)的图象C 1和图象C 2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A 、B 分别在图象C 1和C 2上,点A 、B 的横坐标分别为A 、B ,且A +B =0.当B <x≤A 时该函数的最大值和最小值均与A 、B 的值无关,则A 的取值范围为_____.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2020·江门市第二中学初三月考)已知二次函数y=A (x﹣1)2+k的图象经过A (﹣1,0)、B (4,5)两点.(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而减小?(3)当x为何值时,y>0?20.(2020·宁夏回族自治区初三一模)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x (单位:km),乘坐地铁的时间1y (单位:min)是关于x 的一次函数,其关系如下表:(1)求1y 关于x 的函数解析式;(2)李华骑单车的时间2y (单位:min)也受x 的影响,其关系可以用2y =12x 2-11x +78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.21.(2020·安徽省定远县第一初级中学初三月考)如图,在同一直角坐标系中,二次函数y=x 2-2x-3的图象与两坐标轴分别交于点A 点 B 和点C ,一次函数的图象与抛物线交于B 、C 两点.(1)将这个二次函数化为2()y a x h k =++的形式为 .(2)当自变量x 满足 时,两函数的函数值都随x 增大而增大.(3)当自变量x 满足 时,一次函数值大于二次函数值.(4)当自变量x 满足 时,两个函数的函数值的积小于0.22.(2019·江苏省海门中南国际小学初二期中)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求ABC∆的面积.23.(2020·江西省初三期末)已知二次函数y=x2+B x+C 中,函数y与自变量x的部分对应值如下表:(1)表中n的值为;(2)当x为何值时,y有最小值,最小值是多少?(3)若A (m1,y1),B (m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.24.(2020·武汉十一崇仁初级中学初三其他)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)用表达式表示蝙蝠形风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?25.(2019·柘城县实验中学初三月考)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+B x+C 表示,且抛物线上的点C 到OB 的水平距离为3 m,到地面OA 的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?26.(2018·山东省期末)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线B C 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP'C .是否存在点P ,使四边形POP'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形A B PC 的面积最大?求出此时P 点的坐标和四边形A B PC 的最大面积.参考答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·广西壮族自治区初三期中)若关于x 的函数y =(2﹣A )x 2﹣x 是二次函数,则A 的取值范围是( ) A .A ≠0 B .A ≠2 C .A <2 D .A >2[答案]B[解析]∵函数y=(2-A )x 2-x 是二次函数,∴2-A ≠0,即A ≠2,故选B .2.(2020·宁夏银川市教育局初三三模)下列对二次函数y=x 2﹣x 的图象的描述,正确的是( ) A .开口向下 B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的[答案]C[解析]A 、∵A =1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣,∴抛物线的对称轴为直线x=,选项B 不正确;C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确;D 、∵A >0,抛物线的对称轴为直线x=,∴当x >时,y 随x 值的增大而增大,选项D 不正确,故选C .3.(2020·浙江省初三二模)二次函数的图象与轴有交点,则的取值范围是() A . B .且C .D .且[答案]D[解析]∵二次函数y=kx 2−6x+3的图象与x 轴有交点,∴方程kx 2−6x+3=0(k≠0)有实数根, 122ba =121212263y kx x =-+x k 3k <3k <0k ≠3k ≤3k ≤0k ≠即△=36−12k ⩾0,k ⩽3,由于是二次函数,故k≠0,则k 的取值范围是k ⩽3且k≠0.故选D .4.(2020·江苏省初三二模)竖直向上的小球离地面的高度h(米)与时间t(秒)的关系函数关系式为h=-2t 2+mt+,若小球经过秒落地,则小球在上抛过程中,第( )秒离地面最高. A . B . C . D . [答案]A[解析]∵竖直上抛的小球离地面的高度h (米)与时间t (秒)的函数关系式为h =﹣2t 2+mt +,小球经过秒落地,∴t =时,h =0, 则0=﹣2×()2+m +, 解得:m =, 当t ===时,h 最大, 故答案为:. 5.(2020·江西省初三其他)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个B .2个C .3个D .4个[答案]A[解析]结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x <3时,y 随x 的增大而减小,故本说法正确. 2587437473443258747474742581272b a -()12722-⨯-3737综上所述,说法正确的有④共1个.故选A .6.(2020·内蒙古自治区初三期末)函数y=A x+B 和y=A x 2+B x+C (A ≠0)在同一个坐标系中的图象可能为( )A .B .C .D .[答案]D [解析]解:A .由一次函数的图象可知A >0,B >0,由抛物线图象可知,开口向上,A >0,对称轴x =﹣>0,B <0;两者相矛盾,错误;B .由一次函数的图象可知A >0,B <0,由抛物线图象可知A <0,两者相矛盾,错误;C .由一次函数的图象可知A <0,B >0,由抛物线图象可知A >0,两者相矛盾,错误;D .由一次函数的图象可知A >0,B <0,由抛物线图象可知A >0,对称轴x =﹣>0,B <0;正确. 故选D . 7.(2020·湖北省初三期中)抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度[答案]D[解析]解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选D .8.(2020·山东省初三二模)小轩从如图所示的二次函数y=A x 2+B x+C (A ≠0)的图象中,观察得出了下面五条信息:①A B >0;②A +B +C <0;③B +2C >0;④A ﹣2B +4C >0;⑤. 你认为其中正确信息的个数有 2b a 2b a3a b 2A .2个B .3个C .4个D .5个[答案]D [解析]①如图,∵抛物线开口方向向下,∴A <0.∵对称轴x ,∴<0.∴A B >0.故①正确. ②如图,当x=1时,y <0,即A +B +C <0.故②正确.③如图,当x=﹣1时,y=A ﹣B +C >0,∴2A ﹣2B +2C >0,即3B ﹣2B +2C >0.∴B +2C >0.故③正确.④如图,当x=﹣1时,y >0,即A ﹣B +C >0,∵抛物线与y 轴交于正半轴,∴C >0.∵B <0,∴C ﹣B >0.∴(A ﹣B +C )+(C ﹣B )+2C >0,即A ﹣2B +4C >0.故④正确.⑤如图,对称轴,则.故⑤正确. 综上所述,正确的结论是①②③④⑤,共5个.故选D .9.(2020·内蒙古自治区初三期中)设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=(x-1)2-3上的三点,则y 1,y 2,y 3的大小关系为( )A .B .C .D .[答案]B[解析]解:∵函数的解析式是y =(x -1)2-3,∴对称轴是x =1,∴点A 关于对称轴的点A ′是(4,y 1),那么点B 在对称轴上,点C 、A ′都在对称轴的右边,∵,∴抛物线开口向上,并且在对称轴的右边y 随x 的增大而增大,b 12a 3=-=-2b a 3=-b 12a 3=-=-3a b 2=123y y y >>132y y y >>321y y y >>312y y y >>10a =>∵4>2>1.∴y 1>y 3>y 2.故选B .10.(2019·河北省初三零模)在平面直角坐标系xOy 中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )A .y 1B .y 2C .y 3D .y 4[答案]A[解析]由图象可知: 抛物线y 1的顶点为(-2,-2),与y 轴的交点为(0,1),根据待定系数法求得y 1=(x+2)2-2; 抛物线y 2的顶点为(0,-1),与x 轴的一个交点为(1,0),根据待定系数法求得y 2=x 2-1;抛物线y 3的顶点为(1,1),与y 轴的交点为(0,2),根据待定系数法求得y 3=(x-1)2+1;抛物线y 4的顶点为(1,-3),与y 轴的交点为(0,-1),根据待定系数法求得y 4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y 1故选A .11.(2019·河南省初三期末)如图,平行于x 轴的直线A C 分别交函数 y =x (x≥0)与 y =x (x≥0)的图象于 B ,C 两点,过点C 作y 轴的平行线交y =x (x≥0)的图象于点D ,直线D E ∥A C 交 y =x (x≥0)的图象于点E ,则=() 34122132122132DE ABAB .1 CD .3﹣[答案]D[解析]解:设点A的纵坐标为B , 因为点B 在的图象上, 所以其横坐标满足=B , 根据图象可知点B 的坐标为,B ), 同理可得点C 的坐标为 所以点D 因为点D 在的图象上, 故可得 y==3B ,所以点E 的纵坐标为3B ,因为点E 在的图象上, =3B , 因为点E 在第一象限,可得E 点坐标为(,3B ),故D E=所以= 故选D .12.(2020·湖南省初三一模)某建筑物,从10m 高的窗口A ,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M 离墙1m ,离地面m ,则水流落地点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m[答案]B 21y x =2x ∴21y x =2)2213y x =∴213x (3b -DE AB3-403[解析]解:设抛物线的解析式为y =A (x ﹣1)2+, 把点A (0,10)代入A (x ﹣1)2+,得A (0﹣1)2+=10, 解得A =﹣, 因此抛物线解析式为y =﹣(x ﹣1)2+, 当y =0时,解得x 1=3,x 2=﹣1(不合题意,舍去);即OB =3米.故选B .13.(2019·内蒙古自治区初三期末)如图,在△A B C 中,∠B =90°,A B =6C m ,B C =12C m ,动点P 从点A 开始沿边A B 向B 以1C m/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边B C 向C 以2C m/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过( )秒,四边形A PQC 的面积最小.A .1B .2C .3D .4[答案]C [解析]解:设P 、Q 同时出发后经过的时间为ts ,四边形A PQC 的面积为SC m 2,则有:S=S △A B C -S △PB Q=12 ×12×6-12 (6-t)×2t =t 2-6t+36=(t-3)2+27.∴当t=3s 时,S 取得最小值.故选C .14.(2020·黄冈市启黄中学初三二模)已知二次函数y=﹣x 2+x+6及一次函数y=﹣x+m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m 与新图象有4个交点时,m 的取值范围是( )403403403103103403A .﹣<m <3B .﹣<m <2C .﹣2<m <3D .﹣6<m <﹣2[答案]D[解析]如图,当y=0时,﹣x 2+x+6=0,解得x 1=﹣2,x 2=3,则A (﹣2,0),B (3,0),将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y=(x+2)(x ﹣3),即y=x 2﹣x ﹣6(﹣2≤x≤3),当直线y=﹣x+m 经过点A (﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m 与抛物线y=x 2﹣x ﹣6(﹣2≤x≤3)有唯一公共点时,方程x 2﹣x ﹣6=﹣x+m 有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m 与新图象有4个交点时,m 的取值范围为﹣6<m <﹣2,故选D .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2019·武钢实验学校初三月考)公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t-5t 2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行______m 才能停下来.[答案]20.[解析]求停止前滑行多远相当于求s 的最大值.则变形s =-5(t -2)2+20,所以当t =2时,汽车停下来,滑行了20m .16.(2020·黑龙江省初三期末)已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标254254是_________.[答案](1,4).[解析]把A (0,3),B (2,3)代入抛物线可得B =2,C =3,所以=,即可得该抛物线的顶点坐标是(1,4).17.(2020·江苏省初三其他)二次函数y=x 2-2x-3的图象如图所示,若线段A B 在x 轴上,且A B 为位长度,以A B 为边作等边△A B C ,使点C 落在该函数y轴右侧的图象上,则点C 的坐标为__.[答案,3)或(2,-3).[解析]解:∵△A B C 是等边三角形,且∴A B 边上的高为3,又∵点C 在二次函数图象上,∴C 的纵坐标为±3, 令y=±3代入y=x 2-2x-3, ∴或0或2∵使点C 落在该函数y 轴右侧的图象上,∴x >0,∴或x=2∴3)或(2,-3)故答案为,3)或(2,-3)18.(2020·吉林省实验繁荣学校初三其他)在平面直角坐标系中,如图所示的函数图象是由函数y=(x ﹣1)2+1(x≥0)的图象C 1和图象C 2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A 、B 分别在图象C 1和C 2上,点A 、B 的横坐标分别为A 、B ,且A +B =0.当B <x≤A 时该函数的最大值和最小值均与A 、B 的值无关,则A 的取值范围为_____.[答案]1≤A+1[解析]∵图象C 1和图象C 2组成中心对称图形,对称中心为点(0,2),∴C 2的解析式为y=(x+1)2+3(x≤0).∵函数的最大值和最小值均与A 、B 的值无关,∴1≤y ≤3.当(x ﹣1)2+1=3,x 当(x ﹣1)2+1=1,x =1;∴1≤A 时,该函数的最大值和最小值均与A 、B 的值无关.故答案为三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·江门市第二中学初三月考)已知二次函数y=A (x ﹣1)2+k 的图象经过A (﹣1,0)、B (4,5)两点.(1)求此二次函数的解析式;(2)当x 为何值时,y 随x 的增大而减小?(3)当x 为何值时,y >0?[答案](1);(2)x <1时,y 随x 的增大而减小;(3)x <-1或x >3时,y >0.[解析]解:(1)把A (-1,0)和B (4,5)代入,联立方程组解得,, ∴即;(2)由(1)可知抛物线的对称轴为x=1,∵A =1,∴函数图象开口向上,223y x x =--14a k =⎧⎨=-⎩()2y x 14=--2y x 2x 3=--∴当x<1时,y 随x 的增大而减小;(3)设y=0,则x 2−2x −3=0,解得:x=3或−1,∴函数图象和x 轴的交点坐标为(3,0)和(−1,0),∵A =1,∴函数图象开口向上,∴x>3或x<−1时,y>0.20.(2020·宁夏回族自治区初三一模)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为(单位:km),乘坐地铁的时间(单位:min)是关于的一次函数,其关系如下表:(1)求关于的函数解析式;(2)李华骑单车的时间(单位:min)也受的影响,其关系可以用=2-11+78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.[答案](1) y 1=2x +2 ;(2) 李华应选择在B 站出地铁,才能使他从文化宫站回到家所需的时间最短,最短时间为39.5 min[解析]解:(1)设y 1关于x 的函数解析式为y 1=kx +B .将(7,16),(9,20)代入,得解得∴y 1关于x 的函数解析式为y 1=2x +2. (2)设李华从文化宫站回到家所需的时间为y min ,y =y 1+y 2则y =y 1+y 2=2x +2+x 2-11x +78=x 2-9x +80= (x -9)2+39.5. ∴当x =9时,y 取得最小值,最小值为39.5.所以李华应选择在B 站出地铁,才能使他从文化宫站回到家所需的时间最短,最短时间为39.5 min. 21.(2020·安徽省定远县第一初级中学初三月考)如图,在同一直角坐标系中,二次函数y=x 2-2x-3的图象与x 1y x 1y x 2y x 2y 12x x 716920k b k b +=⎧⎨+=⎩22k b =⎧⎨=⎩121212两坐标轴分别交于点A 点 B 和点C ,一次函数的图象与抛物线交于B 、C 两点.(1)将这个二次函数化为的形式为 .(2)当自变量满足 时,两函数的函数值都随增大而增大.(3)当自变量满足 时,一次函数值大于二次函数值.(4)当自变量满足 时,两个函数的函数值的积小于0.[答案](1) ; (2) x>1; (3) 0<x<3;(4) x<-1.[解析](1)y =x 2 -2x -3=(x - 1)2-4,(2)抛物线的对称轴为直线x =1,则x >1时二次函数的函数值都随x 增大而增大,而一次函数y 随x 增大而增大,所以当x > 1时,两函数的函数值都随x 增大而增大,(3)当0<x <3时,一次函数值大于二次函数值;(4)当x <-1时,两个函数的函数值的积小于0,故答案为y =(x -1)2-4 ; x >1 ; 0<x <3 ;x <-1. 22.(2019·江苏省海门中南国际小学初二期中)如图,已知二次函数的图象经过,两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与轴交于点,连接,,求的面积.[答案]见解析2()y a x h k =++x x x x 2(-1)-4y x =212y x bx c =-++()2,0A ()0,6B-x C BA BC ABC ∆[解析](1)把,代入得 , 解得.∴这个二次函数解析式为. (2)∵抛物线对称轴为直线, ∴的坐标为,∴,∴. 23.(2020·江西省初三期末)已知二次函数y=x 2+B x+C 中,函数y 与自变量x 的部分对应值如下表:(1)表中n 的值为 ;(2)当x 为何值时,y 有最小值,最小值是多少?(3)若A (m 1,y 1),B (m+1,y 2)两点都在该函数的图象上,且m >2,试比较y 1与y 2的大小.[答案](1)5;(2)当x=2时,y 有最小值,最小值是1;(3)y 1<y 2[解析](1)∵根据表可知:对称轴是直线x=2,∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y 有最小值,最小值是1; ()2,0A ()0,6B -212y x bx c =-++2206b c c -++=⎧⎨=-⎩46b c =⎧⎨=-⎩21462y x x =-+-44122x =-=⎛⎫⨯- ⎪⎝⎭C ()4,0422AC OC OA =-=-=1126622ABC S AC OB ∆=⨯=⨯⨯=(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2,∴当m >2时,点A (m 1,y 1),B (m+1,y 2)都在对称轴的右侧,y 随x 的增大而增大,∵m <m+1,∴y 1<y 2.24.(2020·武汉十一崇仁初级中学初三其他)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)用表达式表示蝙蝠形风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?[答案](1)y=-10x +300(12≤x ≤30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元;(3) 当售价定为20元时,王大伯获得利润最大,最大利润是1000元.[解析]解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=,令W=840,则=840,解得:=16,=24.答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=,∵A =﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.25.(2019·柘城县实验中学初三月考)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=x 2+B x+C 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?2104003000x x -+-2104003000x x -+-1x 2x 210(20)1000x --+16-172[答案](1)抛物线的函数关系式为y=x 2+2x+4,拱顶D 到地面OA 的距离为10 m;(2)两排灯的水平距离最小是m .[解析]解:(1)由题知点在抛物线上 所以,解得,所以 所以,当时, 答:,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0))当x=2或x=10时,,所以可以通过 (3)令,即,可得,解得答:两排灯的水平距离最小是26.(2018·山东省期末)如图,在平面直角坐标系中,二次函数的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线B C 下方抛物线上的一个动点.16-17(0,4),3,2B C ⎛⎫ ⎪⎝⎭41719326c b c =⎧⎪⎨=-⨯++⎪⎩24b c =⎧⎨=⎩21246y x x =-++62b x a=-=10t y =≦21246y x x =-++2263y =>8y =212486x x -++=212240x x -+=1266x x =+=-12x x -=2y x bx c =++(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形.是否存在点P ,使四边形为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形A B PC 的面积最大?求出此时P 点的坐标和四边形A B PC 的最大面积.[答案](1);(2)存在这样的点,此时P 点的坐标为,); (3)P 点的坐标为(,−),四边形A B PC 的面积的最大值为. [解析](1)将B 、C 两点的坐标代入,得, 解得. ∴二次函数的解析式为.(2)存在点P ,使四边形POP′C 为菱形;.设P 点坐标为(x ,x 2-2x-3),PP′交C O 于E.若四边形POP′C 是菱形,则有PC =PO;.连接PP′,则PE ⊥C O 于E ,.∵C (0,-3),.POP'C POP'C 2y=x 2x 3--32-321547582y x bx c =++93b c=0{c=3++-b=2{c=3--2y=x 2x 3--∴C O=3,.又∵OE=EC ,.∴OE=EC =. ∴y=−;. ∴x 2-2x-3=−, 解得(不合题意,舍去). ∴存在这样的点,此时P 点的坐标为,). (3)过点P 作y 轴的平行线与B C 交于点Q ,与OB 交于点F ,设P(x ,x 2-2x-3),设直线B C 的解析式为:y=kx+D ,.则,. 解得: .∴直线B C 的解析式为y=x-3,.则Q 点的坐标为(x ,x-3);.当0=x 2-2x-3,.解得:x 1=-1,x 2=3,.∴A O=1,A B =4,.S 四边形A B PC =S △A B C +S △B PQ +S △C PQ .=A B •O C +QP•B F+QP•OF. =×4×3+ (−x 2+3x)×3. 32323212x x ==32-330d k d -⎧⎨+⎩==13k d ⎧⎨-⎩==1212121212=− (x −)2+. 当x =时,四边形A B PC 的面积最大. 此时P 点的坐标为(,−),四边形A B PC 的面积的最大值为. 32327583232154758。

数学九年级上册《二次函数》单元检测带答案

数学九年级上册《二次函数》单元检测带答案
16.如图, 是一块锐角三角形材料,边 ,高 ,要把它加工成一个矩形零件,使矩形的一边在 上,其余两个顶点分别在 、 上,要使矩形 的面积最大, 的长应为________ .
17.当 时,下列函数中,① ;② ;③ ;④ .函数值 随自变量 增大而增大的是________(只填写序号)
18.如图,抛物线 的顶点为 ,直线 与抛物线交于 , 两点. 是抛物线上一点,过 作 轴,垂足为 .如果以 , , 为顶点的三角形与 相似,那么点 的坐标是________.
故答案选:B.
【点睛】本题考查了二次函数 性质,解题的关键是熟练的掌握二次函数的性质及运用.
3.函数 的图象是以 为顶点的抛物线,则这个函数的关系式是()
A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据条件得出二次函数的顶点式,整理成一般形式即可.
【详解】根据顶点式得:y=(x−3)2+2;
整理成一般形式为:y=x2−6x+11.
【详解】∵抛物线y=ax2+bx+c中,4a−b=0,a−b+c>0,
∴抛物线对称轴为直线x=− =− =−2,且x=−1对应二次函数图象上的点在x轴上方,
又这两个交点之间的距离小于2,根据题意画出相应的图形,如图所示:
可得:a>0,b>0,c>0,
∴abc>0,故选项①错误,选项②正确;
由图象可得:当x=1时,y=a+b+c>0,故选项③正确;
A.abc>0B.3a+c<0
C.4a+2b+c<0D.b2-4ac<0
【答案】B
【解析】

九年级上册数学 二次函数同步单元检测(Word版 含答案)

九年级上册数学  二次函数同步单元检测(Word版 含答案)

九年级上册数学 二次函数同步单元检测(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值;(2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >- 【解析】【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值;(2)分m >0和m ≤0两种情况,结合二次函数性质求最值;(3)结合二次函数与x 轴交点及对称轴的性质确定取值范围;(4)结合一元二次方程根与系数的关系确定取值范围.【详解】解:(1)当1m =-时,()22613y x x x =++≥ 把(),1P a 代入,得22611a a ++=解得0a =或3a =-(2)当0m >时,,(3)F m m -此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫-- ⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0 当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△解得:m=0(舍去)或29m =- 由题意可知抛物线的对称轴为直线x=32m 且x ≥3m ∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④.(探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE =90°.在Rt △OBE 中,OB 2+OE 2=BE 2.在Rt △BCE 中,BC 2+EC 2=BE 2.∴OB 2+OE 2=BC 2+CE 2. ∵OB 2=y ,∴y +y =x 2+(8-x)2.∴y =x 2-8x +32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.3.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0k y x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥;【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k x ),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b a-≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1),①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,k x ),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n ,设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n n y x --=+, 设点P 为(x ,k x),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >; 当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥. 【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.4.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点.(1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由.【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0【解析】【分析】(1)利用泛对称点得定义求出t 的值,即可求出a.(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a )是一对泛对称点,设3t =2解得t =23所以a =t×1=23 (2)解:设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),其中0<p <q ,t >0. 因为PA ⊥x 轴于点A ,QB ⊥y 轴于点B ,线段PA ,QB 交于点C ,所以点A ,B ,C 的坐标分别为:A (p,0),B (0,tp ),C (p,tp )设直线AB ,PQ 的解析式分别为:y =k 1x +b 1,y =k 2x +b 2,其中k 1k 2≠0.分别将点A (p,0),B (0,tp )代入y =k 1x +b 1,得111pk b tp b tp +=⎧⎨=⎩. 解得11k t b tp=-⎧⎨=⎩ 分别将点P (p,tq ),Q (q,tp )代入y =k 2x +b 2,得2222pk b tp qk b tp +=⎧⎨+=⎩. 解得22k t b tp tp =-⎧⎨=+⎩ 所以k 1=k 2.所以AB ∥PQ(3)解:因为抛物线y =ax 2+bx +c (a <0)交y 轴于点D ,所以点D 的坐标为(0,c ).因为DM ∥x 轴,所以点M 的坐标为(x M ,c ),又因为点M 在抛物线y =ax 2+bx +c (a <0)上.可得ax M 2+bx M +c =c ,即x M (ax M +b )=0.解得x M =0或x M =-b a. 因为点M 不与点D 重合,即x M ≠0,也即b≠0, 所以点M 的坐标为(-b a ,c ) 因为直线y =ax +m 经过点M ,将点M (-b a ,c )代入直线y =ax +m 可得,a·(-b a)+m =c. 化简得m =b +c所以直线解析式为:y =ax +b +c. 因为抛物线y =ax 2+bx +c 与直线y =ax +b +c 交于另一点N ,由ax 2+bx +c =ax +b +c ,可得ax 2+(b -a )x -b =0.因为△=(b -a )2+4ab =(a +b )2,解得x 1=-b a ,x 2=1. 即x M =-b a ,x N =1,且-b a≠1,也即a +b≠0.所以点N 的坐标为(1,a +b +c )要使M (-b a,c )与N (1,a +b +c )是一对泛对称点, 则需c =t ×1且a +b +c =t ×(-b a ). 也即a +b +c =(-b a)·c 也即(a +b )·a =-(a +b )·c. 因为a +b≠0,所以当a =-c 时,M ,N 是一对泛对称点.因此对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形.此时点M 的坐标为(-b a,-a ),点N 的坐标为(1,b ). 所以M ,N 两点都在函数y =b x(b≠0)的图象上. 因为a <0, 所以当b >0时,点M ,N 都在第一象限,此时 y 随x 的增大而减小,所以当y M >y N 时,0<x M <1;当b <0时,点M 在第二象限,点N 在第四象限,满足y M >y N ,此时x M <0.综上,对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M (x M ,y M ),N (x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.5.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围; (3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围.【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论;(2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案.【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0),∴令y =0得:ax 2+bx+c =0∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点;(2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下,又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤, ∴﹣b 2≥4a ,∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ),∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,∴c (a+b+c )>0,∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0,∴(2a+3b )(4a+3b )<0,∵a≠0,则9a 2>0,∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩, ∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】 本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.6.如图,已知抛物2(0)y ax bx c a=++≠经过点,A B,与y轴负半轴交于点C,且OC OB=,其中B点坐标为(3,0),对称轴l为直线12x=.(1)求抛物线的解析式;(2) 在x轴上方有一点P,连接PA后满足PAB CAB∠=∠,记PBC∆的面积为S ,求当10.5S=时点P的坐标(3)在(2)的条件下,当点P恰好落在抛物线上时,将直线BC上下平移,平移后的10.5S=时点P的坐标;直线y x t=+与抛物线交于,C B''两点(C'在B'的左侧),若以点,,C B P''为顶点的三角形是直角三角形,求出t的值.【答案】(1)211322y x x=--(2)(2,6)(3)19或32【解析】【分析】(1)确定点A的坐标,再进行待定系数法即可得出结论;(2)确定直线AP的解析式,用m表示点P的坐标,由面积关系求S和m的函数关系式即可求解;(3)先确定点P的坐标,当'''90B PC∠=,利用根与系数的关系确定'''B C的中点E的坐标,利用''2B C PE=建立方程求解,当''''90PC B∠=时,确定点G的坐标,进而求出直线''C G的解析式,得出点''C的坐标即可得出结论.【详解】(1)∵OC OB=,且B点坐标为(3,0),∴C点坐标为(0,3)-.设抛物线解析式为21()2y a x k=-+.将B、C两点坐标代入得254134a ka k⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258ak⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒, ∴AOC ∆≌AOC ∆', ∴3OC OC ='=, ∴(0,3)C '. ∵对称轴l 为直线12x =, ∴(2,0)A -, ∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C , ∴直线BC 解析式为-3y x =, ∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =.此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (),当90C PB ∠=''︒时,取''B C 的中点E ,连接PE .则2B C PE ''=,即224B C PE =''. 设1122(,),(,)B x y C x y ''.由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +, 222221212121212()()2()2()41666B C x x y y x x x x x x t ⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t =-+-=-+),∴226116664(21)2t t t +=-+, 解得:19t =或6(舍去),当90PC B ''''∠=︒时,延长C P ''交BC 于H ,交x 轴于G . 则90,45BHG PGO ∠=︒∠=︒,过点P 作PG x ⊥轴于点Q ,则12GQ PQ ==, ∴(18,0)G ,∴直线C G ''的解析式为18y x =-+,由211-322-18y x x y x ⎧=-⎪⎨⎪=+⎩得725x y =-⎧⎨=⎩或612x y =⎧⎨=⎩(舍去), ∴(7,25)C '-',将(7,25)C '-'代入y x t =+中得32t =. 综上所述,t 的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.7.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】 【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解. 【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.8.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,0453593535,(4359355)4t tS tt⎧⎛⎫≤≤⎪ ⎪⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t 3535<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5;①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; ②当355<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(435935(5)4t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪+<≤⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.9.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433k tkm t m m ,解之得:2(1)326(1)3k m t m ∴直线AP 的表达式为:2(1)(6)3y m x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②, 联立①②得:2(1)3243y m x y x ,解得:446m my x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =,则有,66mm ,解得:33m , 经检验,33m是原分式方程得跟, 则633m ,故Q 的横坐标的值为33【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.10.在平面直角坐标系中,抛物线y=x 2+(k ﹣1)x ﹣k 与直线y=kx+1交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当k=1时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP 最大面积s=1927322288⨯=; P (12,﹣34) (3)存在;25 【解析】【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1. ∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:,∵k>0,∴.∴存在唯一一点Q,使得∠OQC=90°,此时.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.。

数学九年级上学期《二次函数》单元测试(带答案)

数学九年级上学期《二次函数》单元测试(带答案)
3.已知二次函数 的图象与 轴的一个交点为 ,则它与 轴的另一个交点坐标是()
A.(1, 0)B.(-1, 0)C.(2, 0)D.(-2, 0)
4.如图,已知二次函数 在坐标平面上的图象经过 、 两点.若 , ,则 的值可能为()
A. 1B. 3C. 5D. 7
5.已知二次函数 的图象过点 , , .若点 , , 也在二次函数 的图象上,则下列结论正确的是()
∴y=x2+x−2,
当y=0时,
x2+x−2=0,
解得x1=1,x2=−2.
故另一个交点坐标是(−2,0).
故答案选D.
[点睛]本题考查了抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点的知识点.
4.如图,已知二次函数 在坐标平面上的图象经过 、 两点.若 , ,则 的值可能为()
A.1B.3C.5D.7
[答案]B
[解析]
[分析]
先由A(1,2),B(3,2),C(5,7),代入y=Ax2+Bx+C,得到二次函数得到二次函数的解析式,再比较y1、y2、y3的大小.
[详解]把A(1,2),B(3,2),C(5,7)代入y=Ax2+Bx+C得
,
解得 .
∴函数解析式为y= x2− x+ = (x−2)2+ .
人教版数学九年级上学期
《二次函数》单元测试
[考试时间:90分钟分数:120分]
一、选择题(共10小题,每小题3分,共30分)、
1.下列函数中,是二次函数的有()
① ② ③ ④
A.1个B.2个C.3个D.4个
2.已知二次函数 图象如图所示,给出以下结论:① ;② ;③ ;④ ,其中结论正确有()个.

九年级数学上册 二次函数单元试卷(word版含答案)

九年级数学上册  二次函数单元试卷(word版含答案)

九年级数学上册二次函数单元试卷(word版含答案)一、初三数学二次函数易错题压轴题(难)1.已知,抛物线y=-12x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)直接填写抛物线的解析式________;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.求证:MN∥y轴;(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG •CH 为定值.【答案】(1)2122y x x=-++;(2)见详解;(3)见详解.【解析】【分析】(1)把点C、D代入y=-12x2 +bx+c求解即可;(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y=-12x2 +bx+c过点C(0,2),点Q(2,2),∴2122222b cc⎧-⨯++⎪⎨⎪=⎩=,解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-,x p =22p x k =- 由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124b x x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -. 由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ).设直线QG 的解析式为y kx m =+,将点()2,2Q 代入y kx m =+得22k m =+22m k -∴= ∴直线QG 的解析式为22m y x m -=+ 同理可求直线QH 的解析式为22n y x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4, 由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124b x x a∴⋅=-= 即x D x E =4, 即(m-2)•(n-2)=4∴CG•CH=(2-m )•(2-n )=4.2.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-,则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+--- ∴()()26554m m m -+---=,即()()140,m m --= 解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --= 解得54152m -=<(舍)或5412m += ③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键3.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G . (1)当1m =-时,设图象G 上一点(),1P a ,求a 的值;(2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >- 【解析】【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值;(2)分m >0和m ≤0两种情况,结合二次函数性质求最值;(3)结合二次函数与x 轴交点及对称轴的性质确定取值范围;(4)结合一元二次方程根与系数的关系确定取值范围.【详解】解:(1)当1m =-时,()22613y x x x =++≥ 把(),1P a 代入,得22611a a ++=解得0a =或3a =-(2)当0m >时,,(3)F m m -此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫-- ⎪⎝⎭此时,229911=()22918m m m ---++∴0y 的最大值118= 综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0 当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△解得:m=0(舍去)或29m =- 由题意可知抛物线的对称轴为直线x=32m 且x ≥3m ∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.4.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C .(1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移.【解析】【分析】 (1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值; (3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离.【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c . 得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩. ∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2). (2)∵点B 坐标为(2,2).∴∠BOA=45°.∴△PDC 为等腰直角三角形.如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m .∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ). 当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m . 解得:12m =,20m =(舍去).∴m=2.当点C′在y=12-x2+2x上,则12-×(32m)2+2×32m=12m,解得:120 9m=,20m=(舍去).∴m=20 9(3)存在n=27,抛物线向左平移.当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(103,109),点B(2,2).∴点A′(83,89).∴点A″的坐标为(83,289).设直线OA″的解析式为y=kx,将点A″代入得:828 39k=,解得:k=76.∴直线OA″的解析式为y=76 x.将y=2代入得:76x=2,解得:x=127,∴点B′得坐标为(127,2).∴n=212277-=. ∴存在n=27,抛物线向左平移.【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m )以及点B′的坐标是解题的关键.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值;(3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】 (Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩ ∴设直线AC 的解析式为3y x将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM =∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.7.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,3171t-<≤,3175t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F 的解析式,然后分14t -=-、点(),1t t -落在223()y x x x t =--≥上和点(),1t t -落在()223y x x x t =--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩ ∴该函数的最大值和最小值分别为4和-4;a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点;b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t = c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,312t <≤,352t <<时,直线1y t =-与图象F 有两个公共点.【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.8.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003ab c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0), ∴AB=-1-(-3)=2,∵OA=OC ,∠AOC=90°,∴△AOC 是等腰直角三角形,∴AC=2OA=32,∠BAC=45°, ∵B (-1,0),D (-2,-1),∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB AC BP BA =, 即232BP =, 解得BP=223, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23, ∴OE=1+23=53, ∴点P 的坐标为(-53,-23); ②AB 和BA 是对应边时,△ABC ∽△BAP ,∴AB AC BA BP =, 即2322BP=, 解得BP=32,过点P 作PE ⊥x 轴于E ,则BE=PE=32×2=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.9.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可; (2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】 解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+= 此时a 13P 1393132-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.10.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【答案】(1)243y x x =-+-;(2)32;(3)E (2,73-) 【解析】【分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案;(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标.【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143a b c =-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x =-+-.(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==, 又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°,∴△CDH 为等腰直角三角形,∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.。

九年级数学上册 二次函数单元综合测试(Word版 含答案)

九年级数学上册  二次函数单元综合测试(Word版 含答案)

九年级数学上册二次函数单元综合测试(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴CE NE =NFBF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m mm-+=2343m m m --+-,化简得:m 2﹣5m+5=0. 解得:m 1=552+,m 2=552-.∴M 点坐标为(55+,3)或(55-,3)②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3).【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移. 【解析】 【分析】(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c . 得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩.∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2).(2)∵点B 坐标为(2,2). ∴∠BOA=45°.∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m . ∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ).当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m . 解得:12m =,20m =(舍去). ∴m=2. 当点C′在y=12-x 2+2x 上,则12-×(32m)2+2×32m=12m,解得:120 9m=,20m=(舍去).∴m=20 9(3)存在n=27,抛物线向左平移.当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(103,109),点B(2,2).∴点A′(83,89).∴点A″的坐标为(83,289).设直线OA″的解析式为y=kx,将点A″代入得:828 39k=,解得:k=76.∴直线OA″的解析式为y=76 x.将y=2代入得:76x=2,解得:x=127,∴点B′得坐标为(127,2).∴n=2122 77 -=.∴存在n=27,抛物线向左平移. 【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m)以及点B′的坐标是解题的关键.3.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0ky x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围. 【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥;【解析】 【分析】(1)①直接利用待定系数法,即可求出函数的表达式; ②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,kx),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52ba -≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1), ①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,kx),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n , 设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n ny x --=+,设点P 为(x ,kx),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--;∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩,∴不等式组的解集为:2n >; 当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥. 【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.4.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩.(1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值;(2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫- ⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩,①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=,解得:m=2+5(舍去)或m=25-. 当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:m=2+2或m=22-.综上所述:m=25-或m=22+或m=22-.②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12-,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.5.已知二次函数y=ax2+bx+c(a≠0).(1)若b=1,a=﹣12c,求证:二次函数的图象与x轴一定有两个不同的交点;(2)若a<0,c=0,且对于任意的实数x,都有y≤1,求4a+b2的取值范围;(3)若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围.【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论;(2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案.【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0),∴令y =0得:ax 2+bx+c =0∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点;(2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下,又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤, ∴﹣b 2≥4a ,∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ),∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,∴c (a+b+c )>0,∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0,∴(2a+3b )(4a+3b )<0,∵a≠0,则9a 2>0,∴两边同除以9a 2得,24()()033b b a a ++<,∴2343baba⎧+<⎪⎪⎨⎪+>⎪⎩或2343baba⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233ba-<<-,∴二次函数图象对称轴与x轴交点横坐标的取值范围是:12323ba<-<.【点睛】本题考查了抛物线与x轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.6.如图,抛物线2y x bx c=-++的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.点A坐标的为3,0,点C的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M为线段AB上一点(点M不与点A、B重合),过点M作i轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作//PQ AB交抛物线于点Q,过点Q作QN x⊥轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求AEM△的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若=22FG DQ,求点F 的坐标.【答案】(Ⅰ)223y x x=--+;(Ⅱ)12;(Ⅲ)()4,5F--或()1,0【解析】【分析】(Ⅰ)将点A,点C坐标代入解析式可求解;(Ⅱ)设M(x,0),P(x,-x2-2x+3),利用对称性可求点Q(-2-x,-x2-2x+3),可求MP=-x2-2x+3,PQ=-2-x-x=-2-2x,则可用x表示矩形PMNQ的周长,由二次函数的性质可求当矩形PMNQ的周长最大时,点P的坐标,即可求点E,点M的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM =∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.7.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k .∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:k=±25,∵k>0,∴k=25.∴存在唯一一点Q,使得∠OQC=90°,此时k=25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,直线3y x与x轴、y轴分别交于点A,C,经过A,C两点的抛物线2y ax bx c=++与x轴的负半轴的另一交点为B,且tan3CBO∠=(1)求该抛物线的解析式及抛物线顶点D的坐标;(2)点P是射线BD上一点,问是否存在以点P,A,B为顶点的三角形,与ABC相似,若存在,请求出点P的坐标;若不存在,请说明理由【答案】(1)243y x x=++,顶点(2,1)D--;(2)存在,52,33P⎛⎫--⎪⎝⎭或(4,3)--【解析】【分析】(1)利用直线解析式求出点A、C的坐标,从而得到OA、OC,再根据tan∠CBO=3求出OB,从而得到点B的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D的坐标;(2)根据点A、B的坐标求出AB,判断出△AOC是等腰直角三角形,根据等腰直角三角形的性质求出AC,∠BAC=45°,再根据点B、D的坐标求出∠ABD=45°,然后分①AB和BP是对应边时,△ABC和△BPA相似,利用相似三角形对应边成比例列式求出BP,过点P作PE⊥x轴于E,求出BE、PE,再求出OE的长度,然后写出点P的坐标即可;②AB和BA是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC ,∠AOC=90°,∴△AOC 是等腰直角三角形,∴,∠BAC=45°,∵B (-1,0),D (-2,-1),∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB AC BP BA =,即22BP =, 解得BP=3, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=32过点P作PE⊥x轴于E,则BE=PE=3222=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.如图,在平面直角坐标系中,矩形AOBC的边AO在x轴的负半轴上,边OB在y轴的负半轴上.且AO=12,OB=9.抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线的表达式;(2)在第二象限的抛物线上找一点M,连接AM,BM,AB,当△ABM面积最大时,求点M的坐标;(3)点D是线段AO上的动点,点E是线段BO上的动点,点F是射线AC上的动点,连接EF,DF,DE,BD,且EF是线段BD的垂直平分线.当CF=1时.①直接写出点D的坐标;②若△DEF的面积为30,当抛物线y=﹣x2+bx+c经过平移同时过点D和点E时,请直接写出此时的抛物线的表达式.【答案】(1)y=﹣x2﹣514x﹣9;(2)M(﹣6,31.5);(3)①(﹣50)或(﹣3,0),②y=﹣x2﹣133x﹣4【解析】【分析】(1)利用待定系数法把问题转化为解方程组即可解决问题.(2)如图1中,设M(m,﹣m2﹣514m﹣9),根据S△ABM=S△ACM+S△MBC﹣S△ACB构建二次函数,利用二次函数的性质解决问题即可.(3)①分两种情形:如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).根据FD=FB,构建方程求解.当点F在线段AC上时,同法可得.②根据三角形的面积求出D,E的坐标,再利用待定系数法解决问题即可.【详解】解:(1)由题意A(﹣12,0),B(0,﹣9),把A,B的坐标代入y=﹣x2+bx+c,得到9 144120cb c=-⎧⎨--+=⎩,解得:5149bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣514x﹣9.(2)如图1中,设M(m,﹣m2﹣514m﹣9),S△ABM=S△ACM+S△MBC﹣S△ACB=12×9×(m+12)+12×12×(﹣m2﹣514m﹣9+9)﹣12×12×9=﹣6m2﹣72m=﹣6(m+6)2+216,∵﹣6<0,∴m=﹣6时,△ABM的面积最大,此时M(﹣6,31.5).(3)①如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).∵EF垂直平分线段BD,∴FD=FB,∵F(﹣12,﹣10),B(0,﹣9),∴102+(m+12)2=122+12,∴m=﹣12﹣55∴D(﹣50).当点F在线段AC上时,同法可得D(﹣3,0),综上所述,满足条件的点D的坐标为(﹣50)或(﹣3,0).故答案为(﹣50)或(﹣3,0).②由①可知∵△EF的面积为30,∴D(﹣3,0),E(0,﹣4),把D,E代入y=﹣x2+b′x+c′,可得'493''0cb c=-⎧⎨--+=⎩,解得:13'3'4bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣133x﹣4.故答案为:y=﹣x2﹣133x﹣4.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,线段的垂直平分线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

九年级数学上册 二次函数同步单元检测(Word版 含答案)

九年级数学上册 二次函数同步单元检测(Word版 含答案)

九年级数学上册二次函数同步单元检测(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,直线y=12x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣32x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当32MNAN=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:24244x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.2.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值3.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2. 【解析】 【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2ax==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+ ∴k=-3-a ;抛物线L 的对称轴为直线-2ax=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5, ∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.4.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1,则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C ''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-, 即()22220(21)20(1)B C n n ''=--=-,∴()max1|B Cn ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+ ⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解,∴分析可知1()04k m k m ⎛⎫+-=⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.5.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【详解】(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合;令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3;∵点A 在点B 的右边,∴B (1,0),A (3,0);∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时;∵OA=OC ,∠AOC=90°,∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°,∴AO 平分∠D 2AP 2;又∵P 2D 2∥y 轴,∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0).将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩; ∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3),则有:(﹣x+3)+(x 2﹣4x+3)=0,即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1;∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点).∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形;当点P 的坐标为P 2(2,﹣1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于F ;∵P (2,﹣1),∴可设F (x ,1);∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2;∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.6.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式; (2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S =时点P 的坐标;直线y x t =+与抛物线交于,C B ''两点(C '在B '的左侧),若以点,,C B P ''为顶点的三角形是直角三角形,求出t 的值.【答案】(1)211322y x x =--(2)(2,6)(3)19或32 【解析】【分析】 (1)确定点A 的坐标,再进行待定系数法即可得出结论;(2)确定直线AP 的解析式,用m 表示点P 的坐标,由面积关系求S 和m 的函数关系式即可求解;(3)先确定点P 的坐标,当'''90B PC ∠=,利用根与系数的关系确定'''B C 的中点E 的坐标,利用''2B C PE =建立方程求解,当''''90PC B ∠=时,确定点G 的坐标,进而求出直线''C G 的解析式,得出点''C 的坐标即可得出结论.【详解】(1)∵OC OB =,且B 点坐标为(3,0),∴C 点坐标为(0,3)-. 设抛物线解析式为21()2y a x k =-+. 将B 、C 两点坐标代入得2504134a k a k ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258a k ⎧=⎪⎪⎨⎪=-⎪⎩. ∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒,∴AOC ∆≌AOC ∆',∴3OC OC ='=,∴(0,3)C '.∵对称轴l 为直线12x =, ∴(2,0)A -,∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C ,∴直线BC 解析式为-3y x =, ∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+,∵10.5S=,∴3910.54x+=,∴2x=.此时P点的坐标为(2,6).(3)如图2,由211-322332y x xy x⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P(),当90C PB∠=''︒时,取''B C的中点E,连接PE.则2B C PE''=,即224B C PE=''.设1122(,),(,)B x yC x y''.由211-322y x xy x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t--+=,∴12123,(26)x x x x t+==-+,∴点33(,)22E t+,222221212121212()()2()2()41666 B C x x y y x x x x x x t⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t=-+-=-+),∴226116664(21)2t t t+=-+,解得:19t=或6(舍去),当90PC B''''∠=︒时,延长C P''交BC于H,交x轴于G.则90,45BHG PGO∠=︒∠=︒,过点P作PG x⊥轴于点Q,则12GQ PQ==,∴(18,0)G ,∴直线C G ''的解析式为18y x =-+,由211-322-18y x x y x ⎧=-⎪⎨⎪=+⎩得725x y =-⎧⎨=⎩或612x y =⎧⎨=⎩(舍去), ∴(7,25)C '-',将(7,25)C '-'代入y x t =+中得32t =.综上所述,t 的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.7.定义:函数l 与l '的图象关于y 轴对称,点(),0P t 是x 轴上一点,将函数l '的图象位于直线x t =左侧的部分,以x 轴为对称轴翻折,得到新的函数w 的图象,我们称函数w 是函数l 的对称折函数,函数w 的图象记作1F ,函数l 的图象位于直线x t =上以及右侧的部分记作2F ,图象1F 和2F 合起来记作图象F .例如:如图,函数l 的解析式为1y x =+,当1t =时,它的对称折函数w 的解析式为()11y x x =-<.(1)函数l 的解析式为21y x =-,当2t =-时,它的对称折函数w 的解析式为_______; (2)函数l 的解析式为1²12y x x =--,当42x -≤≤且0t =时,求图象F 上点的纵坐标的最大值和最小值;(3)函数l 的解析式为()2230y ax ax a a =--≠.若1a =,直线1y t =-与图象F 有两个公共点,求t 的取值范围.【答案】(1)()212y x x =+<-;(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-;(3)当3t =-,31712t <≤,3175t +<<时,直线1y t =-与图象F 有两个公共点. 【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F 的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F 的解析式,然后分14t -=-、点(),1t t -落在223()y x x x t =--≥上和点(),1t t -落在()223y x x x t =--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4;a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点;b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1317t -=,2317t += c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =∴当3171t -<≤或3175t +<<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,3171t -<≤,3175t +<<时,直线1y t =-与图象F 有两个公共点.【点睛】 本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.8.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139(,)24M -; 第二种情况:当MN 与BC 为对角线关系,MN 与BC 交点为K,则K(2,2),∴3222m ∴m=52∴﹣m 2+3m+4=214 ∴3521(,)24M 综上所述,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,点M 的坐标为1539(,)24M -- 21139(,)24M - 3521(,)24M .【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m --0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-, 解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可. 【详解】 解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+= 此时a 13P 1393132-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.。

数学九年级上册 二次函数单元试卷(word版含答案)

数学九年级上册  二次函数单元试卷(word版含答案)

数学九年级上册 二次函数单元试卷(word 版含答案)一、初三数学 二次函数易错题压轴题(难)1.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】 解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0, ∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥,∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.2.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,AB D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得; (3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++ 8220.8220.4a b c a b c c ⎧-+=⎪⎪++=⎨⎪=⎪⎩解得1204a b c ⎧=-⎪⎪=⎨⎪=⎪⎩2142y x ∴=-+; ()2如图21:42C y x =-+.关于(),0F m 对称的抛物线为()21:242C y x m '=-- 当C '过点()0,4D 时有()2140242m =-- 解得:2m =当C '过点()2,0B 时有()21022242m =- 解得:22m =222m ∴<<;()3四边形'PMP N 可以为正方形由题意设(),P n n ,P 是抛物线C 第一象限上的点2142n n ∴-+= 解得:122,2n n ==-(舍去)即()2,2P如图作HK OF ⊥,PH HK ⊥于H ,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得 ()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.3.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -.(1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案.(2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠.【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->,∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C ,ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒,ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒,又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为(3,1).点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=, 121222x x x x ∴-=-,()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=, ∴直线PM 的解析式为21124x y x x +=-. ()222111221111224224·42x x x x x x x +-+-==-, ∴点'N 在直线PM 上, PA ∴平分MPN ∠.【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.4.如图,在平面直角坐标系x O y 中,抛物线y = ax 2+ bx + c 经过A 、B 、C 三点,已知点A (-3,0),B (0,3),C (1,0).(1)求此抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;(3)在直线x = -2上是否存在点M ,使得∠MAC = 2∠MCA ,若存在,求出M 点坐标.若不存在,说明理由.【答案】(1)y=-x 2-2x+3;(2)点(-32,154),△PDE 的周长最大;(3)点M (-2,3)或(-2,3【解析】【分析】(1)将A 、B 、C 三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB 是等腰直角三角形,故只需使得PD 越大,则△PDE 的周长越大.联立直线AB 与抛物线的解析式可得交点P 坐标;(3)作点A 关于直线x=-2的对称点D ,利用∠MAC = 2∠MCA 可推导得MD=CD ,进而求得ME 的长度,从而得出M 坐标【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴93030a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x 2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°,∵PF ⊥x 轴,∴∠AEF=90°-45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长,此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC . ∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴3∴点M (-23)或(-2,3【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫- ⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围. 【答案】(1)1;(2)①2225- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2,当x=0有最小值,最小值为12 -,当x=2时,有最大值,最大值y=72.综上所述,当-3≤x≤3时,函数y=-x2+4x12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.6.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【详解】(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO 平分∠D 2AP 2;又∵P 2D 2∥y 轴,∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0).将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩; ∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3),则有:(﹣x+3)+(x 2﹣4x+3)=0,即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1;∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点).∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形;当点P 的坐标为P 2(2,﹣1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于F ;∵P (2,﹣1),∴可设F (x ,1);∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2;∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.7.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式; (2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S =时点P 的坐标;直线y x t =+与抛物线交于,C B ''两点(C '在B '的左侧),若以点,,C B P ''为顶点的三角形是直角三角形,求出t 的值.【答案】(1)211322y x x =--(2)(2,6)(3)19或32 【解析】【分析】 (1)确定点A 的坐标,再进行待定系数法即可得出结论;(2)确定直线AP 的解析式,用m 表示点P 的坐标,由面积关系求S 和m 的函数关系式即可求解;(3)先确定点P 的坐标,当'''90B PC ∠=,利用根与系数的关系确定'''B C 的中点E 的坐标,利用''2B C PE =建立方程求解,当''''90PC B ∠=时,确定点G 的坐标,进而求出直线''C G 的解析式,得出点''C 的坐标即可得出结论.【详解】(1)∵OC OB =,且B 点坐标为(3,0),∴C 点坐标为(0,3)-.设抛物线解析式为21()2y a x k =-+.将B、C两点坐标代入得254134a ka k⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258ak⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x=-=--.(2)如图1,设AP与y轴交于点'C.∵PAB CAB∠=∠,OA OA=,90AOC AOC∠'=∠=︒,∴AOC∆≌AOC∆',∴3OC OC='=,∴(0,3)C'.∵对称轴l为直线12x=,∴(2,0)A-,∴直线AP解析式为332y x=+,∵(3,0)B,(0,-3)C,∴直线BC解析式为-3y x=,∴313(3)622PF x x x=+--=+,∴13924PBCS OB PF x∆=⨯⨯=+,∵10.5S=,∴3910.54x+=,∴2x=.此时P点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (), 当90C PB ∠=''︒时,取''B C 的中点E ,连接PE .则2B C PE ''=,即224B C PE =''.设1122(,),(,)B x y C x y ''. 由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +, 222221212121212()()2()2()41666B C x x y y x x x x x x t ⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t =-+-=-+), ∴226116664(21)2t t t +=-+, 解得:19t =或6(舍去),当90PC B ''''∠=︒时,延长C P ''交BC 于H ,交x 轴于G .则90,45BHG PGO ∠=︒∠=︒,过点P 作PG x ⊥轴于点Q ,则12GQ PQ ==,∴(18,0)G ,∴直线C G ''的解析式为18y x =-+, 由211-322-18y x x y x ⎧=-⎪⎨⎪=+⎩得725x y =-⎧⎨=⎩或612x y =⎧⎨=⎩(舍去), ∴(7,25)C '-',将(7,25)C '-'代入y x t =+中得32t =.综上所述,t 的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.8.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM =∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.9.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,3171t-<≤,3175t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩ ∴该函数的最大值和最小值分别为4和-4;a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点;b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t = c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,312t <≤,352t <<时,直线1y t =-与图象F 有两个公共点.【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.10.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D的坐标;(2)点P是射线BD上一点,问是否存在以点P,A,B为顶点的三角形,与ABC相似,若存在,请求出点P的坐标;若不存在,请说明理由【答案】(1)243y x x=++,顶点(2,1)D--;(2)存在,52,33P⎛⎫--⎪⎝⎭或(4,3)--【解析】【分析】(1)利用直线解析式求出点A、C的坐标,从而得到OA、OC,再根据tan∠CBO=3求出OB,从而得到点B的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D的坐标;(2)根据点A、B的坐标求出AB,判断出△AOC是等腰直角三角形,根据等腰直角三角形的性质求出AC,∠BAC=45°,再根据点B、D的坐标求出∠ABD=45°,然后分①AB和BP是对应边时,△ABC和△BPA相似,利用相似三角形对应边成比例列式求出BP,过点P作PE⊥x轴于E,求出BE、PE,再求出OE的长度,然后写出点P的坐标即可;②AB和BA是对应边时,△ABC和△BAP相似,利用相似三角形对应边成比例列式求出BP,过点P作PE⊥x轴于E,求出BE、PE,再求出OE的长度,然后写出点P的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A(-3,0),C(0,3),∴OA=OC=3,∵tan∠CBO=3OCOB=,∴OB=1,∴点B(-1,0),把点A、B、C的坐标代入抛物线解析式得,9303a b ca b cc-+=⎧⎪-+=⎨⎪=⎩,解得:143abc=⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x=++,∵y=x2+4x+3=(x+2)2-1,∴顶点(2,1)D--;(2)∵A(-3,0),B(-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=22,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=过点P作PE⊥x轴于E,则BE=PE==3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.。

九年级 二次函数同步单元检测(Word版 含答案)

九年级 二次函数同步单元检测(Word版 含答案)

九年级 二次函数同步单元检测(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题. (3)分OD 是平行四边形的边或对角线两种情形求解即可. 【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0), ∴抛物线的对称轴x =﹣42aa-=2. (2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m=3±3或1±3,∴P(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3),当OD是平行四边形的对角线时,点P的横坐标为1,此时P(1,﹣32 ),综上所述,满足条件的点P的坐标为(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3)或(1,﹣32 ).【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题2.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.3.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)25,049494t tS tt⎧⎛≤≤⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t<t<t【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:375 22+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:230 2nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(173,﹣509);(4)如图2,设∠ACO=α,则tanα=12AOCO=,则sinα5,cosα5①当0≤t 35时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; 35<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(245435935(5)1044t t t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪⎪+<≤⎪⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.4.如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)P 的坐标 ,C 的坐标 ;(2)直线1上是否存在点Q ,使△PBQ 的面积等于△PAC 面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ 交x 轴于E ,当BE =2AD 时,△PBQ 的面积等于△PAC 的面积的2倍, ∵AD =23, ∴BE =43, ∴E (113,0)或E ′(193,0), 则直线PE 的解析式为:y =﹣6x +22,∴Q (92,﹣5), 直线PE ′的解析式为y =﹣65x +385, ∴Q ′(212,﹣5), 综上所述,满足条件的点Q 的坐标为:(92,﹣5)或(212,﹣5); 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.5.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32); (2)由题意得:AB=5,AD=10,BD=35,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BD AM AN =,即3535AN =, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -),则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.6.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC ,∠AOC=90°,∴△AOC 是等腰直角三角形,∴,∠BAC=45°,∵B (-1,0),D (-2,-1),∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB AC BP BA =,即2BP = 解得BP=3, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=32过点P作PE⊥x轴于E,则BE=PE=3222=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.7.定义:在平面直角坐标系中,O为坐标原点,设点P的坐标为(x,y),当x<0时,点P的变换点P′的坐标为(﹣x,y);当x≥0时,点P的变换点P′的坐标为(﹣y,x).(1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:1211311322m m +-==,(不合题意,舍去). 所以113m +=. ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:12321321m m +-==,(不合题意,舍去). 所以3212m +=. 综上所述:m 的取值范围是m <0,m =1132+或m =3212+. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.8.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM =﹣23m 2﹣43m+2.,PN =﹣m ,AO =3. ∵当x =0时,y =﹣23×0﹣43×0+2=2, ∴OC =2,∴S △PAC =S △PAO +S △PCO ﹣S △ACO =12AO•PM+12CO•PN ﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.9.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键10.如图,已知二次函数22(0)y ax ax c a的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1) 求一次函数解析式;(2)求顶点P的坐标;(3)平移直线AB使其过点P,如果点M在平移后的直线上,且3tan2OAM∠=,求点M坐标;(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4【解析】【分析】(1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M在x轴下方时,有31312xx+-=+,∴59x=-∴25 (,9M-23 -)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N 当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:5 =,∴所求最小值为5【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.。

数学九年级上学期《二次函数》单元测试卷(附答案)

数学九年级上学期《二次函数》单元测试卷(附答案)
11.经过原点 抛物线与x轴交于另一点,该点到原点的距离为2,且该抛物线经过(3,3)点,则该抛物线的解析式为____.
12.若实数A、B满足A+B2=2,则A2+5B2的最小值为_____.
13.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为__________元时,获得的利润最多.
(1)求抛物线的表达式;
(2)若在抛物线上存在点Q,使得C D平分∠A CQ,请求出点Q 坐标;
(3)在直线C D的下方的抛物线上取一点N,过点N作NG∥y轴交C D于点G,以NG为直径画圆在直线C D上截得弦GH,问弦GH的最大值是多少?
(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段C D上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.
人教版数学九年级上学期
《二次函数》单元测试
(满分120分,考试用时120分钟)
第Ⅰ卷(选择题)
一.选择题(共9小题)
1.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是( )
A.图象的开口向下B.函数的最大值为1
C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小
2.抛物线y=﹣3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为( )
A.8Cm2B.9Cm2C.16Cm2D.18Cm2
6.在抛物线y=Ax2-2Ax-3A上有A(-0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()

数学九年级上学期《二次函数》单元测试(含答案)

数学九年级上学期《二次函数》单元测试(含答案)

人教版数学九年级上学期《二次函数》单元测试考试总分: 120 分考试时间: 120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是( )A .B .C .D .2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是( )A . 当时,的值小于B . 当时,的值大于C . 当时,的值等于D . 当时,的值大于3.函数的图象大致为( )A .B .C .D .4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为( ).A . 1或-5B . -1或5C . 1或-3D . 1或35.抛物线的顶点坐标是( )A . (3, 1)B . (-3, 1)C . (1, -3)D . (1, 3)6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有( )个.A . 2B . 3C . 4D . 57.如图所示为二次函数的图象,在下列选项中错误的是( )A .B . 时,随的增大而增大C .D . 方程的根是,8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是( )A . ABC >0 B . B -2A =0C . 3A +C >0D . 9A +6B +4C >09.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是( )A . y1<y2B . y1=y2C . y1>y2D . 不能确定10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为( )A .B .C .D .二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.12.已知二次函数y=A x 2+B x +C 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲ .13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.14.将二次函数配方成的形式,则y=_________________.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是( )A .B .C .D .[答案]D[解析]试题解析:根据二次函数定义中对常数A ,B ,C 的要求,只要A ≠0,B ,C 可以是任意实数,故选D .2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是()A . 当时,的值小于B . 当时,的值大于C . 当时,的值等于D . 当时,的值大于[答案]B[解析][分析]根据抛物线与y轴的交点位置对A 进行判断;根据二次函数的性质,当x=-2时,y=1,则x=-3时,y>1,于是可对B 进行判断;根据图象,当x=5时,不能确定函数值等于0,则可对C 进行判断;根据二次函数图象上点的坐标特征对D 进行判断.[详解]解:A 、抛物线与y轴的交点在x轴下方,且在点(1,-1)上方,所以x=0时,-1<y<0,所以A 选项错误;B 、当x=-3时,y>1,所以B 选项正确;C 、当x=5时,不能确定函数值等于0,所以C 选项错误;D 、当x=1时,y=-1,所以D 选项错误.故选:B .[点睛]本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.3.函数的图象大致为()A .B .C .D .[答案]B[解析]分析:本题考查二次函数的图形问题.解析:函数的二次项系数为-1,所以开口向下,抛物线与y轴的交点为(0,1).故选B .4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为().A . 1或-5B . -1或5C . 1或-3D . 1或3[答案]B[解析]分析:由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.详解:本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.5.抛物线的顶点坐标是()A . (3, 1)B . (-3, 1)C . (1, -3)D . (1, 3)[答案]A[解析][分析]直接根据二次函数的顶点式可得出结论.[详解]解:∵抛物线的解析式为:y=2(x-3)2+1,∴其顶点坐标为(3,1).故选:A .[点睛]本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有()个.A . 2B . 3C . 4D . 5[答案]C[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴判定B 与0的关系以及2A +B =0;当x=-1时,y=A -B +C ;然后由图象确定当x取何值时,y>0.[详解]解:①∵开口向下,∴A <0,∵对称轴在y轴右侧,∴->0,∴B >0,∵抛物线与y轴交于正半轴,∴C >0,∴A B C <0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与-1之间;∴当x=-1时,y=A -B +C <0,故正确;③∵对称轴x=-=1,∴2A +B =0;故正确;④∵2A +B =0,∴B =-2A ,∵当x=-1时,y=A -B +C <0,∴A -(-2A )+C =3A +C <0,故正确;⑤如图,当-1<x<3时,y不只是大于0.故错误.∴正确的有4个.故选:C .[点睛]此题考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.7.如图所示为二次函数的图象,在下列选项中错误的是()A .B . 时,随的增大而增大C .D . 方程的根是,[答案]C[解析][分析]由抛物线的开口方向判断A 的符号,由抛物线与y轴的交点得出C 的值,根据开口方向及对称轴判断二次函数的增减性,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.[详解]解:A 、由二次函数的图象开口向上可得A >0,由抛物线与y轴交于x轴下方可得C <0,所以A C <0,正确;B 、由A >0,对称轴为x=1,可知x>1时,y随x的增大而增大,正确;C 、把x=1代入y=A x2+B x+C 得,y=A +B +C ,由函数图象可以看出x=1时二次函数的值为负,错误;D 、由二次函数的图象与x轴交点的横坐标是-1或3,可知方程A x2+B x+C =0的根是x1=-1,x2=3,正确.故选:C .[点睛]由图象找出有关A ,B ,C 的相关信息以及抛物线的交点坐标,会判断二次函数的增减性,会利用特殊值代入法求得特殊的式子,如:y=A +B +C ,y=A -B +C ,然后根据图象判断其值.8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是()A . ABC >0 B . B -2A =0C . 3A +C >0D . 9A +6B +4C >0[答案]D[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.[详解]解:A 、∵根据图示知,抛物线开口方向向下,∴A <0;∵抛物线交x轴于点(-1,0),(3,0),∴对称轴x==-=1,∴B =-2A >0.∵根据图示知,抛物线与y轴交于正半轴,∴C >0,∴A B C <0.故本选项错误;B 、∵对称轴x==-=1,∴B =-2A ,∴B +2A =0.故本选项错误;C 、根据图示知,当x=-1时,y=0,即A -B +C =A +2A +C =3A +C =0.故本选项错误;D 、∵A <0,C >0,∴-3A >0,4C >0,∴-3A +4C >0,∴9A +6B +4C =9A -12A +4C =-3A +4C >0,即9A +6B +4C >0.故本选项正确.故选:D .[点睛]本题考查了二次函数图象与系数的关系.二次函数y=A x2+B x+C 系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是()A . y1<y2B . y1=y2C . y1>y2D . 不能确定[答案]C[解析][分析]直接利用二次函数的性质得出其增减性,再利用A ,B 点横坐标得出答案.[详解]解:如图所示:x>-3时,y随x的增大而减小,∵1<2,∴y1>y2.故选:C .[点睛]此题主要考查了二次函数的性质,正确得出二次函数增减性是解题关键.10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为()A .B .C .D .[答案]B[解析][分析]先根据函数关系式为h=gt2确定图象属于那一类函数的图象,再根据g、t的取值范围确定图象的具体形状.[详解]解:t为未知数,关系式h=gt2为二次函数,∵g为正常数∴抛物线开口方向向上,排除C 、D ;又∵时间t不能为负数,∴图象只有右半部分.故选:B .[点睛]根据关系式判断属于哪一类函数,关键要会判断未知数及未知数的指数的高低.二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.[答案][解析][分析]由题意知利润y(元)与销售的单价x(元)之间的关系式,化为顶点式求出y的最大值.[详解]解:利润y(元)与销售的单价x(元)之间的关系为y=-20x2+1400x-2000=-20(x-35)2+22500.∵-20<0∴当x=35元时,y最大为22500元.即该商品获利最多为22500元.故答案为:22500.[点睛]本题考查二次函数的实际应用,借助二次函数的顶点式解决实际问题.12.已知二次函数y=A x2+B x+C 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲.[答案]y>-5[解析]考点:待定系数法求二次函数解析式;二次函数的性质.分析:根据图表知二次函数的顶点坐标是(-1,-6),可将二次函数的解析式设为顶点式,任取一点坐标代入即可求得二次函数的解析式,然后根据二次函数的性质填空.解:由图表知,二次函数的顶点坐标是(-1,-6),可设二次函数的解析式为:y=A (x+1)2-6;∵二次函数经过点(0,-5),∴-5=A -6,解得,A =1,∴二次函数的解析式为:y=(x+1)2-6;∴当x<-2时,y>-5;故答案为:y>-5.13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.[答案][解析][分析]已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去A 得出x、y的关系式.[详解]解:y=x2-4A x+4A 2+A -1=(x-2A ) 2+A -1,∴抛物线顶点坐标为:(2A ,A -1),设x=2A ①,y=A -1②,①-②×2,消去A 得,x-2y=2,即y=x-1.故答案为:y=x-1.[点睛]此题主要考查了根据顶点式求顶点坐标的方法,消元的思想.主要利用x、y代表顶点的横坐标、纵坐标,消去A 得出是解题关键.14.将二次函数配方成的形式,则y=_________________.[答案][解析]试题解析:利用配方法将一次项和二次项组合,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,即=x2-2x+1+2=(x-1)2+2.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)[答案]①②[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.[详解]解:①根据图象知,当x=-2时,y<0,即4A -2B +C <0;故①正确;②∵该函数图象的开口向下,∴A <0;又∵对称轴-1<x=-<0,∴2A -B <0,故②正确;③∵A <0,-<0,∴B <0.∵抛物线交y轴与正半轴,∴C >0.∴A B C >0,故③错误.④∵y=>2,A <0,∴4A C -B 2<8A ,即B 2+8A >4A C ,故④错误.综上所述,正确的结论有①②.故答案为:①②.[点睛]本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)[答案]②④⑤[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点得出C 的值,然后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.[详解]解:①由二次函数的图象开口向下可得A <0,由抛物线与y轴交于x轴上方可得C >0,由对称轴0<x<1,得出B >0,则A B C <0,故①错误;②∵对称轴0<x<1,-<1,A <0,∴-B >2A ,∴2A +B <0,故②正确;③把x=-1时代入y=A x2+B x+C =A -B +C ,结合图象可以得出y>0,即A -B +C >0,故③错误;④把x=-1时代入y=A x2+B x+C =A -B +C ,结合图象可以得出y>0,即A -B +C >0,A +C >B ,∵B >0,∴A +C >0,故④正确;⑤∵图象与x轴有两个交点,∴B 2-4A C >0,∴B 2>4A C ,故⑤正确;⑥当x>1时,y随x的增大而减小,故⑥错误;故答案为:②④⑤.[点睛]此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=A +B +C ,然后根据图象判断其值.17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.[答案][解析][分析]根据正方形对角线平分一组对角可得OB 1与y轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.[详解]解:∵OA 1C 1B 1是正方形,∴OB 1与y轴的夹角为45°,∴OB 1的解析式为y=x联立,解得或,∴点B 1(1,1),OB 1==,∵OA 1C 1B 1是正方形,∴OC 1=OB 1=×=2,∵C 1A 2C 2B 2是正方形,∴C 1B 2的解析式为y=x+2,联立,解得,或,∴点B 2(2,4),C 1B 2==2,∵C 1A 2C 2B 2是正方形,∴C 1C 2= C 1B 2=×2=4,∴C 2B 3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B 3(3,9),C 2B 3==3,…,依此类推,正方形C 2010A 2011C 2011B 2011的边长C 2010B 2011=2011.故答案为:2011.[点睛]本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.[答案]①②④[解析][分析]由上表得与y轴的交点坐标为(0,-8);与x轴的一个交点坐标为(-2,0);函数图象有最低点(1,-9);有抛物线的对称性可得出可得出与x轴的另一个交点坐标为(4,0);当x=-1时,对应的函数值y为-5.从而可得出答案.[详解]根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,-9);②与y轴的交点坐标为(0,-8);③与x轴的交点坐标为(-2,0)和(4,0);④当x=-1时,对应的函数值y为-5.故答案是:①②④.[点睛]考查了用函数图象法求一元二次方程的近似根,体现了数形结合的思想方法.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)[答案][解析][分析]本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y1与y2的大小关系.[详解]解:∵二次函数y=x2+2的图象的对称轴是y轴,在对称轴的左面y随x的增大而减小,∵点A (-4,y1)、B (-3,y2)是二次函数y=x2+2的图象上两点,-4<-3,∴y1>y2.故答案为:y1>y2.[点睛]本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)[答案]①③[解析][分析]由图象可知过(1,0),代入得到A +B +C =0;根据-=-1,推出B =2A ;根据图象关于对称轴对称,得出与X 轴的交点是(-3,0),(1,0);由A -2B +C =A -2B -A -B =-3B <0,根据结论判断即可.[详解]解:由图象可知:过(1,0),代入得:A +B +C =0,∴①正确;-=-1,∴B =2A ,∴②错误;根据图象关于对称轴x=-1对称,与X轴的交点是(-3,0),(1,0),∴③正确;∵B =2A >0,∴-B <0,∵A +B +C =0,∴C =-A -B ,∴A -2B +C =A -2B -A -B =-3B <0,∴④错误.故答案为:①③.[点睛]本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.[答案][解析][分析]设小路的宽为x米,那么长方形花圃的长为(15-2x),宽为(10-x),花圃面积为y平方米,根据长方形面积公式即可列出方程,进而求出函数的定义域.[详解]解:设小路的宽为米,那么长方形花圃的长为,宽为,根据题意得,由,解得.[点睛]本题考查了根据实际问题列二次函数关系式,关键是设出小路的宽,表示出长方形花圃的长和宽,根据面积这个等量关系可列出方程.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?[答案](1)或;(2)月能够获得最大利润,最大利润是万;(3) 该企业一年中应停产的月份是月、月、月[解析][分析](1)把y=21代入,求出n的值即可;(2)根据解析式,利用配方法求出二次函数的最值即可;(3)根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.[详解]解:由题意得:,解得:或;,∵,∴开口向下,有最大值,即时,取最大值,故月能够获得最大利润,最大利润是万;)∵,当时,或者.又∵图象开口向下,∴当时,,当时,,当时,,则该企业一年中应停产的月份是月、月、月.[点睛]此题主要考查了二次函数的应用,难度一般,解答本题的关键是熟练运用配方法求二次函数的最大值,借助二次函数解决实际问题.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?[答案](1)见解析;(2)y=;(3)当时,有最大值,最大值为平方米[解析][分析](1)根据三个矩形面积相等,得到矩形A EFD 面积是矩形B C FE面积的2倍,可得出A E=2B E;(2)设B E=A ,则有A E=2A ,表示出A 与2A ,进而表示出y与x的关系式,并求出x的范围即可;(3)利用二次函数的性质求出y的最大值,以及此时x的值即可.[详解]解:∵三块矩形区域的面积相等,∴矩形面积是矩形面积的倍,又∵是公共边,∴;设,则,∴,∴,,∴,∵,∴,∴∵,且二次项系数为,∴当时,有最大值,最大值为平方米.[点睛]此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.[答案](1)函数的解析式即;(2)抛物线的开口向上,对称轴为直线=1, 顶点坐标;(3)当时,.[解析][分析](1)设抛物线的解析式为y=A (x-x1)(x-x2),再把A (-1,0),B (3,0),C (0,-3)代入即可得出此函数的解析式;(2)根据A 的符号判断抛物线的开口方向、由顶点公式得出对称轴及顶点坐标;(3)由题意把函数转化为不等式,得x2-2x-3>0,从而求出x的取值范围.[详解]解:设抛物线的解析式为,把,,代入得,解得,∴此函数的解析式即;∵,∴抛物线的开口向上,对称轴为直线,,顶点坐标;∵,即图象在轴的下方,∴由图象可知:当时,.[点睛]本题考查了二次函数的性质,以及用待定系数法求二次函数的解析式,求抛物线的顶点坐标的方法,是中考的常见题型.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.[答案](1)抛物线的顶点坐标为;(2)①当时,;②当时,或.[解析][分析](1)把A 点和C 点坐标代入y=A x2+B x+C 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出A 、B 、C 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x为-1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y<3时,x的取值范围.[详解]解:根据题意得,解得,所以二次函数关系式为,因为,所以抛物线的顶点坐标为;①当时,;时,;而抛物线的顶点坐标为,且开口向下,所以当时,;②当时,,解得或,所以当时,或.[点睛]本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.[答案](1)抛物线的解析式为:;(2) 当时,的面积最大,最大值,的坐标为:;(3) 点的坐标为:,,,[解析][分析](1)由平行四边形A B OC 绕点O顺时针旋转90°,得到平行四边形A ′B ′O C ′,且点A 的坐标是(0,4),可求得点A ′的坐标,然后利用待定系数法即可求得经过点C 、A 、A ′的抛物线的解析式;(2)首先连接A A ′,设直线A A ′的解析式为:y=kx+B ,利用待定系数法即可求得直线A A ′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△A MA ′的面积,继而求得答案;(3)分别从B Q为边与B Q为对角线去分析求解即可求得答案.[详解]解:∵平行四边形绕点顺时针旋转,得到平行四边形,且点的坐标是,∴点的坐标为:,∵点、的坐标分别是、,抛物线经过点、、,。

(word版)九年级上册数学二次函数测试题及答案,文档

(word版)九年级上册数学二次函数测试题及答案,文档

fpg二次函数单元测评一、选择题(每题3分,共30分) 1.以下关系式中,属于二次函数の是 (x 为自变量)( )A.B.C.D.2. 函数y=x 2-2x+3 の图象の顶点坐标是()A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)3. 抛物线y=2(x-3)2の顶点在()A.第一象限B.第二象限C.x 轴上D.y 轴上4.抛物线 の对称轴是( ) A.x=-2 B.x=2 C.x=-4 D.x=4二次函数y=ax 2+bx+c の图象如下图,那么以下结论中,正确の是() A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0D.ab<0,c<06.二次函数y=ax 2+bx+c の图象如下图,那么点 在第___象限( ) A.一 B.二 C.三 D.四如下图,二次函数y=ax 2+bx+c(a≠0)の图象の顶点P の横坐标是4,图象交x 轴于点A(m ,0)和点B ,且m>4,那么AB の长是()A.4+mB.mC.2m-8D.8-2my=ax 2+bxの图 8.假设一次函数y=ax+b の图象经过第二、三、四象限,那么二次函数 象只可能是()9.抛物线和直线在同一直角坐标系中の图象如下图,抛物线の对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上の点,P3(x3,y3)是直线上の点,且-1<x1<x2,x3<-1,那么y1,y2,y3の大小关系是( ) A.y1<y2<y3 B.y2<y3<y1 C.y3<y1<y2 D.y2<y1<y3fpgfpg10.把抛物线の图象向左平移2个单位,再向上平移3个单位,所得の抛物线の函数关系式是( )11.A. B.C. D.二、填空题(每题4分,共32分)二次函数y=x2-2x+1の对称轴方程是______________.假设将二次函数y=x2-2x+3配方为y=(x-h)2+kの形式,那么y=________.假设抛物线y=x2-2x-3与x轴分别交于A、B两点,那么ABの长为_________.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,那么这条抛物线の解析式为_____________.二次函数y=ax2+bx+cの图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求の二次函数解析式________________.在距离地面2m高の某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力の情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).假设v0=10m/s,那么该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴の交点坐标为(0,3)の抛物线の解析式为______________.18.抛物线y=x2+x+b2经过点,那么y1の值是_________.三、解答以下各题(19、20每题9分,21、22每题10分,共38分)19.假设二次函数の图象の对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴对称の点A′の坐标;(2)求此二次函数の解析式;fpg在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)の图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后の图象与y轴の交点为C,顶点为P,求△POCの面积.21.:如图,二次函数y=ax2+bx+cの图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它の顶点.(1)求抛物线の解析式;(2)求△MCBの面积S△MCB.22.某商店销售一种商品,每件の进价为元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.fpg答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数の顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+kの形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,3.考点:二次函数の图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2の顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+cの图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数の图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线の图象特征,确定二次函数解析式各项系数の符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,fpg抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选 D.7.考点:二次函数の图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)の图象の顶点Pの横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.考点:数形结合,由函数图象确定函数解析式各项系数の性质符号,由函数解析式各项系数の性质符号画出函数图象の大致形状.解析:因为一次函数y=ax+bの图象经过第二、三、四象限,所以二次函数y=ax2+bxの图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线の对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随xの增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10. 考点:二次函数图象の变化.抛物线の图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.考点:二次函数性质.解析:二次函数y=x2,所以对称轴所在直线方程答案-2x+1. x=1.fpgy=x 2-1. fpg 12.考点:利用配方法变形二次函数解析式 .解析:y=x 2-2x+3=(x 2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.、の横坐标为一元二次方程解析:二次函数y=x 2-2x-3与轴交点2-2x-3=0ABxの两个根,求得 x1=-1,x2=3,那么AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式 .解析:因为抛物线经过 A(-1,0),B(3,0)两点, 解得b=-2,c=-3, 答案为y=x 2-2x-3. 15.考点:此题是一道开放题,求解满足条件の二次函数解析式,答案不唯一 .解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:16.考点:二次函数の性质,求最大值 . 解析:直接代入公式,答案: 7. 17.考点:此题是一道开放题,求解满足条件の二次函数解析式,答案不唯一 .解析:如:y=x 2-4x+3. 18.考点:二次函数の概念性质,求值 .答案: .三、解答题 19.考点:二次函数の概念、性质、图象,求解析式 . 解析:(1)A′(3,-4)(2)由题设知:y=x2-3x-4为所求(3)fpg∴fpg20.考点:二次函数の概念、性质、图象,求解析式.解析:(1)由x1,x2是x2+(k-5)x-(k+4)=0の两根又∵(x1+1)(x2+1)=-8x1x2+(x1+x2)+9=0-(k+4)-(k-5)+9=0k=5y=x2-9为所求(2)由平移后の函数解析式为:y=(x-2)2-9且x=0时y=-5C(0,-5),P(2,-9).解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1B(5,0)由,得M(2,9)作ME⊥y轴于点E,fpgfpg那么可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品の利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品の利润×销售量.要想获得最大利润,并不是单独提高单个商品の利润或仅大幅提高销售量就可以の,这两个量之间应到达某种平衡,才能保证利润最大.因为中给出了商品降价与商品销售量之间の关系,所以,我们完全可以找出总利润与商品の价格之间の关系,利用这个等式寻找出所求の问题,这里我们不妨设每件商品降价x元,商品の售价就是(13.5-x)元了.单个の商品の利润是(13.5-x-2.5)这时商品の销售量是(500+200x)总利润可设为y元.利用上面の等量关式,可得到y与xの关系式了,假设是二次函数,即可利用二次函数の知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为,9112.5).即当每件商品降价元,即售价为时,可取得最大利润元fpg。

数学九年级上册 二次函数单元试卷(word版含答案)

数学九年级上册  二次函数单元试卷(word版含答案)

数学九年级上册 二次函数单元试卷(word 版含答案)一、初三数学 二次函数易错题压轴题(难)1.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为1133313++⎝⎭或53715337-+-⎝⎭. 【解析】【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可.【详解】解:()1当0y =时,()210,x a x a -++= 解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=- ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a < 3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-,∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩1112x y ⎧=⎪⎪∴⎨⎪=⎪⎩(舍去),2212x y ⎧+=⎪⎪⎨⎪=⎪⎩∴点的P坐标为1322⎛⎫+ ⎪ ⎪⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =-则23,23,y x y x x =-⎧⎨=+-⎩1152x y ⎧-=⎪⎪∴⎨⎪=⎪⎩舍去),2252x y ⎧-=⎪⎪⎨⎪=⎪⎩∴点P'的坐标为53715337,⎛⎫-+- ⎪ ⎪⎝⎭综上可得,点P 的坐标为1133313,⎛⎫++ ⎪ ⎪⎝⎭或53715337,⎛⎫-+- ⎪ ⎪⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.2.如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的顶点坐标为()3, 6C ,并与y 轴交于点()0, 3B ,点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示, P 是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作30ACD ∠=交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使60CQD ∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)21233y x x =-++;(2)当92n =时,PBA S ∆最大值为818;(3)存在,Q 点坐标为((0,330,33-或,理由见解析【解析】【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S △PAB=S △BPO+S △APO-S △AOB,设P 21,233n n n ⎛⎫-++ ⎪⎝⎭求出关于n 的函数式,从而求S △PAB 的最大值.(3) 求点D 的坐标,设D 21,233t t t ⎛⎫-++ ⎪⎝⎭,过D 做DG 垂直于AC 于G,构造直角三角形,利用勾股定理或三角函数值来求t 的值即得D 的坐标;探究在y 轴上是否存在点Q ,使60CQD ∠=?根据以上条件和结论可知∠CAD=120°,是∠CQD 的2倍,联想到同弧所对的圆周角和圆心角,所以以A 为圆心,AO 长为半径做圆交y 轴与点Q,若能求出这样的点,就存在Q 点.【详解】解:()1抛物线顶点为()3,6∴可设抛物线解析式为()236y a x =-+将()0,3B 代入()236y a x =-+得 396a =+13a ∴=- ∴抛物线()21363y x =--+,即21233y x x =-++ ()2连接,3, 3OP BO OA ==,PBA BPO PAO ABO S S S S ∆∆∆∆=+-设P 点坐标为21,233n n n ⎛⎫-++ ⎪⎝⎭ 1133222BPO x S BO P n n ∆=== 2211119323322322PAO y S OA P n n n n ∆⎛⎫==-++=-++ ⎪⎝⎭11933222ABO S OA BO ∆==⨯⨯= 22231991919813222222228PBA S n n n n n n ∆⎛⎫⎛⎫=+-++-=-+=--+ ⎪ ⎪⎝⎭⎝⎭ ∴当92n =时,PBA S ∆最大值为818()3存在,设点D 的坐标为21,233t t t ⎛⎫-++ ⎪⎝⎭过D 作对称轴的垂线,垂足为G ,则213,6233DG t CG t t ⎛⎫=-=--++ ⎪⎝⎭30ACD ∠=2DG DC ∴=在Rt CGD ∆中有222243CG CD DG DG DG DG =+=-= )21336233t t t ⎛⎫-=--++ ⎪⎝⎭ 化简得(1133303t t ⎛⎫---= ⎪⎝⎭ 13t ∴=(舍去),2333t =+∴点D(333+3,33AG GD ∴==连接AD ,在Rt ADG ∆中229276AD AG GD ++=6,120AD AC CAD ∴==∠=Q ∴在以A 为圆心,AC 为半径的圆与y 轴的交点上此时1602CQD CAD ∠=∠= 设Q 点为(0,m), AQ 为A 的半径 则AQ ²=OQ ²+OA ², 6²=m ²+3²即2936m += ∴1233,33m m ==-综上所述,Q 点坐标为()()0,330,33-或故存在点Q ,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.3.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0k y x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k有最大值8116;当1x =时,k 有最小值2;(2)109n ≥; 【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k x ),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b a-≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1),①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,k x),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n ,设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n n y x --=+, 设点P 为(x ,k x ),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >; 当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥.【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.4.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±2(舍去0和3+2),故x=3﹣2,则x2﹣2x﹣3=2﹣42,故点P(3﹣2,2﹣42).综上,点P的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.5.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP 最大面积s=1927322288⨯⨯=; P (12,﹣34) (3)存在;k=25【解析】 【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可. 【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1. 联立两个解析式,得:x 2﹣1=x+1, 解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3, ∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF ∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278当x=12时,yP=x 2﹣1=﹣34.∴△ABP面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F , 则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1. ∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k. ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°, ∴△EQN ∽△EOF ,∴NQ EN OF EF=,即:1221kk k k-=, 解得:25, ∵k >0, ∴25. ∴存在唯一一点Q ,使得∠OQC=90°,此时25. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.6.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C,其中点A的坐标是()1,0,点C的坐标是()2,3-,抛物线的顶点为点D.(1)求抛物线和直线AC的解析式.(2)若点P是抛物线上位于直线AC上方的一个动点,求APC∆的面积的最大值及此时点P的坐标.(3)若抛物线的对称轴与直线AC相交于点E,点M为直线AC上的任意一点,过点M作//MN DE交抛物线于点N,以D,E,M,N为顶点的四边形能否为平行四边形?若能,求出点M的坐标;若不能,请说明理由.【答案】(1)y=-x2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),117-+317-)或117--317+【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m,-m2-2m+3),则Q(m,-m+1),求出PQ的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t,-t+1),则点N(t,-t2-2t+3),可分为两种情况进行分析:①当点M在线段AC上时,点N在点M上方;②当点M在线段AC(或CA)延长线上时,点N在点M下方;分别求出点M的坐标即可.【详解】解:(1)∵抛物线y=-x2+bx+c过点A(1,0),C(-2,3),∴10423b cb c-++=⎧⎨--+=⎩,,解得:23bc=-⎧⎨=⎩,.∴抛物线的解析式为y=-x2-2x+3.设直线AC的解析式为y=kx+n.将点A,C坐标代入,得23k nk n+=⎧⎨-+=⎩,,解得11kn=-⎧⎨=⎩,.∴直线AC的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q . 设点P(m ,-m 2-2m+3),则Q(m ,-m+1). ∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2. ∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++.∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154).(3)能.∵y=-x 2-2x+3,点D 为顶点, ∴点D(-1,4),令x=-1时,y=-(-1)+1=2, ∴点E(-1,2). ∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形. ∵点M 在直线AC 上,点N 在抛物线上, ∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3). ①当点M 在线段AC 上时,点N 在点M 上方,则 MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2. ∴-t 2-t+2=2,解得:t=0或t=-1(舍去). ∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则 MN=(-t+1)-(-t 2-2t+3)=t 2+t-2. ∴t 2+t-2=2,解得:t=12-+或t=12-.∴此时点M 的坐标为(12-+,32-)或(12-,32+).综上所述,满足条件的点M 的坐标为:(0,1【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.7.在平面直角坐标系xOy中(如图),已知二次函数2y ax bx c=++(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==,又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°, ∴△CDH 为等腰直角三角形, ∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC , ∵∠BAC=∠FAC , ∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73-).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.8.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;【答案】(1)224233y x x=--+;(2)存在,点P35,22⎛⎫-⎪⎝⎭,使△PAC的面积最大;(3)存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【解析】【分析】(1)直接把点A(﹣3,0),B(1,0)代入二次函数y=ax2+bx+2求出a、b的值即可得出抛物线的解析式;(2)设点P坐标为(m,n),则n=﹣23m2﹣43m+2,连接PO,作PM⊥x轴于M,PN⊥y轴于N.根据三角形的面积公式得出△PAC的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC为边,在线段BC两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ是以BC为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,根据全等三角形的判定定理得出△Q1CD≌△CBO,△CBO≌△BQ2E,故可得出各点坐标.【详解】(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴0932 02a ba b=-+⎧⎨=++⎩2343ab⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)存在.∵如图1所示,设点P坐标为(m,n),则n=﹣23m2﹣43m+2.连接PO,作PM⊥x轴于M,PN⊥y轴于N.则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m =﹣2b a =﹣32时,S △PAC 有最大值. ∴n =﹣23m 2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52, ∴存在点P (﹣32,52),使△PAC 的面积最大.(3)如图2所示,以BC 为边在两侧作正方形BCQ 1Q 2、正方形BCQ 4Q 3,则点Q 1,Q 2,Q 3,Q 4为符合题意要求的点.过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E , ∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°, ∴∠1=∠3,∠2=∠4, 在△Q 1CD 与△CBO 中,∵11324Q C BC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△Q 1CD ≌△CBO , ∴Q 1D =OC =2,CD =OB =1, ∴OD =OC+CD =3, ∴Q 1(2,3); 同理可得Q 4(﹣2,1); 同理可证△CBO ≌△BQ 2E , ∴BE =OC =2,Q 2E =OB =1, ∴OE =OB+BE =1+2=3, ∴Q 2(3,1), 同理,Q 3(﹣1,﹣1),∴存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.9.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M 、N 、P 的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4 ,可得分别为, 点P 的坐标为(,7)或( ,-3) (3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形? 【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t +=或98t = 【解析】【分析】 (1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =.∴抛物线的解析式为:214y x x =-.令2104y x x =-=,解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =.在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-, ∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴512t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

九年级上册 二次函数同步单元检测(Word版 含答案)

九年级上册 二次函数同步单元检测(Word版 含答案)

九年级上册二次函数同步单元检测(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.已知函数222222(0)114(0)22x ax a xyx ax a x⎧-+-<⎪=⎨---+≥⎪⎩(a为常数).(1)若点()1,2在此函数图象上,求a的值.(2)当1a=-时,①求此函数图象与x轴的交点的横坐标.②若此函数图象与直线y m=有三个交点,求m的取值范围.(3)已知矩形ABCD的四个顶点分别为点()2,0A-,点()3,0B,点()3,2C,点()2,2D-,若此函数图象与矩形ABCD无交点,直接写出a的取值范围.【答案】(1)1a=或3a=-;(2)①12x=--122x=+;②724m≤<或21m-<<-;(3)322a<--或21a≤<-或22a>【解析】【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a的取值.(2)①本题将1a=-代入解析式,分别令两个函数解析式y值为零即可求得函数与x轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-;综上:1a ≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:a >综上:若使得函数与矩形ABCD 无交点,则3a <--或1a ≤<-或a > 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.3.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化.(3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x 2+2x+3, ∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90 ,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧'BM H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(52,74),∴由勾股定理可求得:AB =10,M′B =55,M′A =854, 过点M′作M′G ⊥AB 于点G , 设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2, ∴8516﹣(10﹣x )2=12516﹣x 2,∴x =510, cos ∠M′BG ='BG BM =22,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.4.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m =【解析】 【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PHHK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案. 【详解】 解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2y ax bx c =++8220.8220.4a b ca b cc⎧-+=⎪⎪++=⎨⎪=⎪⎩解得124abc⎧=-⎪⎪=⎨⎪=⎪⎩2142y x∴=-+;()2如图21:42C y x=-+.关于(),0F m对称的抛物线为()21:242C y x m'=--当C'过点()0,4D时有()2140242m=--解得:2m=当C'过点()2,0B时有()21022242m=-解得:22m=222m∴<<;()3四边形'PMP N可以为正方形由题意设(),P n n,P是抛物线C第一象限上的点2142n n∴-+=解得:122,2n n==-(舍去)即()2,2P如图作HK OF⊥,PH HK⊥于H,MK HK ⊥于K四边形PMP N '为正方形 易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.5.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】 【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒, ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为(3,1). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=,121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-, ∴点'N 在直线PM 上,PA ∴平分MPN ∠. 【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.6.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式;(2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S =时点P 的坐标;直线y x t =+与抛物线交于,C B ''两点(C '在B '的左侧),若以点,,C B P ''为顶点的三角形是直角三角形,求出t 的值.【答案】(1)211322y x x =--(2)(2,6)(3)19或32 【解析】 【分析】(1)确定点A 的坐标,再进行待定系数法即可得出结论;(2)确定直线AP 的解析式,用m 表示点P 的坐标,由面积关系求S 和m 的函数关系式即可求解;(3)先确定点P 的坐标,当'''90B PC ∠=,利用根与系数的关系确定'''B C 的中点E 的坐标,利用''2B C PE =建立方程求解,当''''90PC B ∠=时,确定点G 的坐标,进而求出直线''C G 的解析式,得出点''C 的坐标即可得出结论. 【详解】(1)∵OC OB =,且B 点坐标为(3,0), ∴C 点坐标为(0,3)-.设抛物线解析式为21()2y a x k =-+.将B 、C 两点坐标代入得2504134a k a k ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258a k ⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒, ∴AOC ∆≌AOC ∆', ∴3OC OC ='=, ∴(0,3)C '. ∵对称轴l 为直线12x =,∴(2,0)A-, ∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C , ∴直线BC 解析式为-3y x =, ∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =.此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (),当90C PB ∠=''︒时,取''B C 的中点E ,连接PE . 则2B C PE ''=,即224B C PE =''. 设1122(,),(,)B x y C x y ''.由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +,222221212121212()()2()2()41666B C x x y y x x x x x x t ⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t =-+-=-+),∴226116664(21)2t t t +=-+, 解得:19t =或6(舍去),当90PC B ''''∠=︒时,延长C P ''交BC 于H ,交x 轴于G . 则90,45BHG PGO ∠=︒∠=︒,过点P 作PG x ⊥轴于点Q ,则12GQ PQ ==, ∴(18,0)G ,∴直线C G ''的解析式为18y x =-+,由211-322-18y x x y x ⎧=-⎪⎨⎪=+⎩得725x y =-⎧⎨=⎩或612x y =⎧⎨=⎩(舍去), ∴(7,25)C '-',将(7,25)C '-'代入y x t =+中得32t =. 综上所述,t 的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.7.如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)P 的坐标 ,C 的坐标 ;(2)直线1上是否存在点Q ,使△PBQ 的面积等于△PAC 面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ 交x 轴于E ,当BE =2AD 时,△PBQ 的面积等于△PAC 的面积的2倍, ∵AD =23, ∴BE =43, ∴E (113,0)或E ′(193,0), 则直线PE 的解析式为:y =﹣6x +22, ∴Q (92,﹣5), 直线PE ′的解析式为y =﹣65x +385, ∴Q ′(212,﹣5), 综上所述,满足条件的点Q 的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.8.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.9.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】 【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3), 将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32); (2)由题意得:AB=5,AD=10,BD=35, ①∠MAN=∠ABD 时, (Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-,则直线AM 的表达式为:3(2)4y x =--,故点M (0,32),AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时, (Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BD AM AN=,即3535AN =, 解得:AN=94,故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -),则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.10.平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知M (4,1),N (﹣2,3),点P (m ,n ).(1)①若m =1,n =4,则点M ,N ,P 的“最佳三点矩形”的周长为 ,面积为 ;②若m =1,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值; (2)若点P 在直线y =﹣2x +4上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围; ②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点P (m ,n )在抛物线y =ax 2+bx +c 上,且当点M ,N ,P 的“最佳三点矩形”面积为12时,﹣2≤m ≤﹣1或1≤m ≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键。

九年级上册数学《二次函数》单元测试(含答案)

九年级上册数学《二次函数》单元测试(含答案)
A. B. C. D.
【答案】B
【解析】
分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.
详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;
B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣ >0.故选项正确;
15.抛物线y=x2﹣4与y轴的交点坐标是_____,与x轴的交点坐标是_____,简要步骤:_____
16.抛物线y=x2﹣4x﹣5与x轴有_____个交点.
17.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=﹣1,与x轴的一个交点是A(﹣3,0)其图象的一部分如图所示,对于下列说法:①2a=b;②abc>0,③若点B(﹣2,y1),C(﹣ ,y2)是图象上两点,则y1<y2;④图象与x轴的另一个交点的坐标为(1,0).其中正确的是_____(把正确说法的序号都填上)
九年级上册数学《二次函数》单元测试卷
(满分120分,考试用时120分钟)
一.选择题(共10小题,共30分)
1.对于函数y=5x2,下列结论正确的是( )
A.y随x的增大而增大
B.图象开口向下
C.图象关于y轴对称
D.无论x取何值,y的值总是正的
2.在平面直角坐标系中,如果抛物线y=2x2不动,而坐标轴向上,向右平移2个单位长度,那么新坐标系抛物线的解析式是()
∴二次函数表达式为
∵ ,抛物线开口向下;∴选项A错误;
∵ 函数图象与 的正半轴相交;∴选项B错误;
当x=-1时, ;∴选项C错误;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学 二次函数同步单元检测(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3541-或4541+ 【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出245422AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离)454d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()2242max f t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得52m =或52m +=(舍)综上所述,54,2m m +==,52m =符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 或4.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键2.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a 是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣24≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=2,(当a =22时取等号) ∴0<﹣b ≤24, ∴﹣2≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16 【解析】 【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可. 【详解】(1)证明:连接EF . ∵四边形ABCD 是矩形,∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90° 由折叠得∠DEF =∠DAF ,AD =DE ∴∠DEF =90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.4.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =- 【解析】【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B Cq q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C ,∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.5.如图1,在平面直角坐标系中,O 为原点,抛物线2y ax bx c =++经过、、A B C 三点,且其对称轴为1,x =其中点(C ,点()3,0B .(1)求抛物线的解析式;(2)①如图(1),点D 是直线CB 上方抛物线上的动点,当四边形DCAB 的面积取最大值时,求点D 的坐标;②如图(2),连接,CA 在抛物线上有一点,M 满足12MCB ACO ∠=∠,请直接写出点M 的横坐标.【答案】(1)23233=y x ;(2)①D 3532,,②233+2 【解析】【分析】 (1)根据点(3C ,点()3,0B ,利用待定系数法,可得函数解析式;(2)①先求出直线BC 的解析式,当直线m 与抛物线只有一个交点时,点D 到BC 的距离最远,此时△BCD 取最大值,故四边形DCAB 有最大值,求出b 的值代入原式即可得到答案; ②根据题干条件抛物线上有一点,M 满足12MCB ACO ∠=∠,通过利用待定系数法利用方程组求出直线BE 的解析式,可得答案.【详解】解:(1)由题意得:120933baa b⎧-=⎪⎨⎪=++⎩解得323a,b故抛物线的解析式是23233=-++y x x.图(1)图(2)(2)①设直线BC的解析式为3.∵直线BC过点B(3,0),∴3则k=33-,故直线BC解析式为y=33设直线m解析式为3y x b,且直线m∥直线BC当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令23323b3+=+23-333330x x b当2Δ(-33)-43(333)0b时直线m与抛物线有唯一交点解之得:73,b代入原式可求得:32x =∴D 353(,).24图(3)过D 作DP ∥y 轴交CB 于点P ,△DCB 面积=△DPC 面积+△DPB 面积, ∴D 3532⎛ ⎝⎭②存在,点M 的横坐标为313+2解题提示:如图3符合条件的直线有两条: CM 1和CM 2(分别在CB 的上方和下方)∵在Rt △ACO 中,∠ACO=30°,在Rt △COB 中,∠CBO=30°,∴∠BCM 1=∠BCM 2=15°∵△BCE 中,∠BCE=∠BEC 2=15°∴BC=BE=23则E (33+0)设直线CE 解析式为:3y kx =+∴0(323)3k解之得:32 ∴直线CE 解析式为:(32)3y x∴2323333(32)3y x x y x ⎧=-++⎪⎨⎪=⎩解得:x 1=0,x 23-1∵ 在Rt △OCF 中,∠CBO=30°,∠BCF=15°∴在Rt△COF中,∠CFO=45°∴OC=OF=3∴F(3,0)∴直线CF的解析式为-3y x∴23233-3y x xy x⎧=-++⎪⎨⎪=+⎩解之得:30x=(舍去),43+2x即点M的横坐标为:23-1或3+2【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式,理解坐标与图形性质是解题关键.6.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139(,)24M-3521(,)24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】 本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.7.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由; (3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】 (1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时,∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BD AM AN =,即3535=, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.8.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形; (3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.如图,在平面直角坐标系中,矩形AOBC 的边AO 在x 轴的负半轴上,边OB 在y 轴的负半轴上.且AO =12,OB =9.抛物线y =﹣x 2+bx+c 经过点A 和点B .(1)求抛物线的表达式;(2)在第二象限的抛物线上找一点M ,连接AM ,BM ,AB ,当△ABM 面积最大时,求点M 的坐标;(3)点D 是线段AO 上的动点,点E 是线段BO 上的动点,点F 是射线AC 上的动点,连接EF ,DF ,DE ,BD ,且EF 是线段BD 的垂直平分线.当CF =1时.①直接写出点D 的坐标 ;②若△DEF 的面积为30,当抛物线y =﹣x 2+bx+c 经过平移同时过点D 和点E 时,请直接写出此时的抛物线的表达式 .【答案】(1)y =﹣x 2﹣514x ﹣9;(2)M(﹣6,31.5);(3)①(﹣50)或(﹣3,0),②y=﹣x2﹣133x﹣4【解析】【分析】(1)利用待定系数法把问题转化为解方程组即可解决问题.(2)如图1中,设M(m,﹣m2﹣514m﹣9),根据S△ABM=S△ACM+S△MBC﹣S△ACB构建二次函数,利用二次函数的性质解决问题即可.(3)①分两种情形:如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).根据FD=FB,构建方程求解.当点F在线段AC上时,同法可得.②根据三角形的面积求出D,E的坐标,再利用待定系数法解决问题即可.【详解】解:(1)由题意A(﹣12,0),B(0,﹣9),把A,B的坐标代入y=﹣x2+bx+c,得到9 144120cb c=-⎧⎨--+=⎩,解得:5149bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣514x﹣9.(2)如图1中,设M(m,﹣m2﹣514m﹣9),S△ABM=S△ACM+S△MBC﹣S△ACB=12×9×(m+12)+12×12×(﹣m2﹣514m﹣9+9)﹣12×12×9=﹣6m2﹣72m=﹣6(m+6)2+216,∵﹣6<0,∴m=﹣6时,△ABM的面积最大,此时M(﹣6,31.5).(3)①如图2中,当点F 在AC 的延长线设时,连接DF ,FB .设D (m ,0).∵EF 垂直平分线段BD ,∴FD =FB ,∵F (﹣12,﹣10),B (0,﹣9),∴102+(m+12)2=122+12,∴m =﹣12﹣55∴D (﹣50).当点F 在线段AC 上时,同法可得D (﹣3,0),综上所述,满足条件的点D 的坐标为(﹣50)或(﹣3,0).故答案为(﹣50)或(﹣3,0).②由①可知∵△EF 的面积为30,∴D (﹣3,0),E (0,﹣4),把D ,E 代入y =﹣x 2+b′x+c′,可得'493''0c b c =-⎧⎨--+=⎩,解得:13'3'4b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y =﹣x 2﹣133x ﹣4. 故答案为:y =﹣x 2﹣133x ﹣4. 【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,线段的垂直平分线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.10.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC .(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==, 又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°,∴△CDH 为等腰直角三角形,∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.。

相关文档
最新文档