ansys技巧总结_如何正确理解ANSYS的节点坐标系
ANSYS中的坐标系

ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
修改面单元和体单元坐标系方向(ESYS)。
显示坐标系:用于节点和单元PLOT LIST采用的坐标系,默认采用总体笛卡尔坐标系。
ANSYS中的坐标系及相应的命令

ANSYS中的坐标系及相应的命令2009-06-23 22:01ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
ANSYS新手入门指导

ANSYS新手入门01工作平面和坐标系工作平面是由原点、二维坐标系、捕捉增量和显示栅格组成的无限平面。
在同一时刻只能定义一个工组平面,在定义新工作平面的同时将删除旧的工作平面。
工作平面与坐标系是独立的,例如工作平面和激活的坐标系可以有不同的原点和旋转方向。
进入工作平面和坐标系工作平面是由原点、二维坐标系、捕捉增量和显示栅格组成的无限平面。
在同一时刻只能定义一个工组平面,在定义新工作平面的同时将删除旧的工作平面。
工作平面与坐标系是独立的,例如工作平面和激活的坐标系可以有不同的原点和旋转方向。
进入ANSYS后,系统会产生一个默认的工作平面,即总体笛卡儿的X-Y平面,它的X、Y轴分别取为总体笛卡儿坐标系的X和Y轴。
工作平面的默认位置与总体坐标原点重合。
自上而下建立模型是在当前激活的坐标系内定义的。
工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。
它们位于模型的总体原点。
三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。
局部坐标系局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径Workplane%26gt;Local CS%26gt;Create LC来创建。
激活的坐标系是分析中特定时间的参考系。
缺省为总体笛卡尔坐标系。
当创建了一个新的坐标系时,新坐标系变为激活坐标系。
这表明后面的激活坐标系的命令。
菜单中激活坐标系的路径Workplane%26gt;Change active CS to%26gt;。
节点坐标系每一个节点都有一个附着的坐标系。
节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。
节点力和节点边界条件(约束)指的是节点坐标系的方向。
ansys中的坐标系

示例
… csys,0(激活直角坐标系为当前坐标系) 激活直角坐标系为当前坐标系) nrotat,all
(将节点坐标系切换到与当前坐标系方向一致) 将节点坐标系切换到与当前坐标系方向一致)
f,all,fx,100 f,all,fy,100
______________________________________________________________________________
o
x x1
定义局部坐标系的方法
根据整体坐标系定义局部坐标系
LOCAL,KCN,KCS,XC,YC,ZC,THXY,THYZ,THZX
根据已知的 3个节点定义局部坐标系
CS,KCN,KCS,NORIG,NXAX,NXYPL
根据已知的 3个关键点定义局部坐标系
CSKP,KCN,KCS,PORIG,PXAXS,PXYPL
自上而下 划分线、面或体,生成单元 划分线、面或体,
整体坐标系
直角坐标系(Cartesian coordinate system)
(系统默认的坐标系) 系统默认的坐标系)
柱面坐标系(Cylindrical coordinate system) 球面坐标系(Spherical coordinate system)
plnsol,s,x (显示x方向应力云图) 显示x方向应力云图) fini
一般情况下,象这种环形结构 一般情况下, 往往需要得到图ii的显示结果 往往需要得到图
(图ii) ii)
谢谢各位! 谢谢各位!
/post1 rsys,0
缺省情况下,是将整体直 缺省情况下, 角坐标系作为结果坐标系
(将直角坐标系置为结果坐标系) 将直角坐标系置为结果坐标系) X方向
ansys坐标系的总结

ANSYS坐标系总结直角坐标系在平面内画两条互相垂直,并且有公共原点的数轴。
其中横轴为X轴, 纵轴为丫轴。
这样就说在平面上建立了平面直角坐标系,简称直角坐标系。
ni ■■pn IH平面极坐标系坐标系的一种。
在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。
对于平面上任意一点p,用p表示线段op的长度,称为点p的极径或矢径,从ox到op的角度9 s[ 0, 2n],称为点p的极角或辐角,有序数对(p 9称为点p的极坐标。
极点的极径为零,极角不定。
除极点外,点和它的极坐标成一一对应。
柱面坐标系柱坐标系中的三个坐标变量是r、©、z。
与直角坐标系相同,柱坐标系中也有一个z变量。
各变量的变化范围是:0 w r < + X,0 2 n乂<z<+x-其中x=rcos ©y=rsin ©z=z球坐标系(空间极坐标系)球坐标是一种三维坐标。
设P (x, y , z)为空间内一点,则点P也可用这样三个有次序的数r,釈B来确定,其中r为原点0与点P间的距离,B为有向线段与z轴正向所夹的角,©为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。
这样的三个数r,釈9 叫做点P的球面坐标,x=rsin 9 cos ©y=rsin 9 sin ©z=rcos 9/zhishi/184852.htmlANSYS坐标系以及工作平面的具体说明ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。
而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。
▲ ANSYS 中定义局部坐标系是通过LOCAL 命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX,PAR1, PAR2其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX 为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。
ansys各种坐标系

ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWP LA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NA NG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
修改面单元和体单元坐标系方向(E SY S)。
显示坐标系:用于节点和单元P LOT LIST采用的坐标系,默认采用总体笛卡尔坐标系。
Ansys的坐标系及其操作

Ansys的坐标系及其操作1 总体坐标系:用来确定几何形状的参数如节点、关键点等的空间位置。
总体坐标系是一个绝对参考系,用来确定空间几何结构的位置。
Ansys中有3类总体坐标系可以供用户选择,即笛卡尔坐标系、圆柱坐标系和球坐标系。
这三种坐标系都属于右手坐标系,而且公用一个坐标原点。
激活坐标系后,会在主界面下状态中显示相应的坐标信息。
2 局部坐标系:用户自定义的坐标系。
用户可用于建模等操作。
由于很多分析中的模型很复杂,仅使用总体坐标系是不够的,这是我们必须建立自己的坐标系,即局部坐标系。
局部坐标系的原点可以与总体坐标系的原点偏移一定的距离,或者不同不同于先前定义的总体坐标系。
与总体坐标系一样,局部坐标系也可以有笛卡尔坐标系、球坐标系和圆柱坐标系。
局部坐标系还可以是圆的,也可以是椭圆的,此外还可以是环形局部坐标系。
单击at specificed loc菜单项,将弹出特定点拾取对话框,用户在图形窗口拾取任意点作为自定义的坐标原点,也可以在输入文本框中输入自定义的坐标原点。
假设在图形窗口任意拾取一点作为坐标原点后,打开以下对话框。
所有的局部坐标系和总体坐标系都可以当做当前坐标系来使用,但只能有一个当前激活的坐标系。
激活坐标系可以按照如下方法:1 每次定义一个局部坐标系后,它自动被激活成当前坐标系。
2 utility menu /workplane/change active cs to/specificed coord system3 列表显示所有的坐标系列表如果想查看所有的总体坐标系和局部坐标系的信息,可以通过以下方法CSlist或utility menu/list/other/local coord system3 节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
总体和局部坐标系用于几何体的定位,而节点坐标系则用于定义节点自由度的方向。
每个节点都有自己的节点坐标系。
在实际应用中,有时需要给节点施加不同于坐标系主方向上的载荷或约束,这就需将节点坐标系旋转到所需要的方向,然后在节点坐标系上施加载荷或约束。
ANSYS中的坐标系及相应的命令

ANSYS中的坐标系及相应的命令2009-06-23 22:01ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
ANSYS第三章-坐标系

第三章坐标系3.1坐标系的类型ANSYS程序提供了多种坐标系供用户选取。
· 总体和局部坐标系用来定位几何形状参数(节点、关键点等)的空间位置。
· 显示坐标系.用于几何形状参数的列表和显示。
· 节点坐标系。
定义每个节点的自由度方向和节点结果数据的方向。
· 单元坐标系。
确定材料特性主轴和单元结果数据的方向。
· 结果坐标系。
用来列表、显示或在通用后处理(POST1)操作中将节点或单元结果转换到一个特定的坐标系中。
工作平面与本章的坐标系分开讨论,以在建模中确定几何体素,参见§4中关于工作平面的详细信息。
3.2总体和局部坐标系总体和局部坐标系用来定位几何体。
缺省地,当定义一个节点或关键点时,其坐标系为总体笛卡尔坐标系。
可是对有些模型,定义为不是总体笛卡尔坐标系的另外坐标系可能更方便。
ANSYS程序允许用任意预定义的三种(总体)坐标系的任意一种来输入几何数据,或在任何用户定义的(局部)坐标系中进行此项工作。
3.2.1总体坐标系总体坐标系统被认为是一个绝对的参考系。
ANSYS程序提供了前面定义的三种总体坐标系:笛卡尔坐标、柱坐标和球坐标系.所有这三种系统都是右手系。
且由定义可知它们有共同的原点。
它们由其坐标系号来识别:0是笛卡尔坐标,1是柱坐标,2是球坐标(见图总体坐标系)图3-1总体坐标系· (a) 笛卡尔坐标系(X, Y, Z) 0 (C.S.0)· (b)柱坐标系(R,θ, Z com ponents) 1 (C.S.1)· (c) 球坐标系(R,θ,φcomponents) 2 (C。
S。
2)· (d)柱坐标系(R,θ,Y components) 5 (C.S.5)3.2。
2局部坐标系在许多情况下,有必要建立自己的坐标系。
其原点与总体坐标系的原点偏移一定的距离,或其方位不同于先前定义的总体坐标系(如图3—2所示用局部、节点或工作平面坐标系旋转定义的一个坐标系的例子)。
ANSYS中坐标系应用及总结

ansys 坐标系节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。
节点力和节点边界条件(约束)指的是节点坐标系的方向。
时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。
而通用后处理器 /POST1中的结果是按结果坐标系进行表达的。
例如: 模型中任意位置的一个圆,要施加径向约束。
首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。
这个局部坐标系现在成为激活的坐标系。
然后选择圆上的所有节点。
通过使用 "Prep7> Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。
未选择节点保持不变。
节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。
这些节点坐标系的X方向现在沿径向。
约束这些选择节点的X方向,就是施加的径向约束。
注意:节点坐标系总是笛卡尔坐标系。
可以将节点坐标系旋转到一个局部柱坐标下。
这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。
可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。
有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括:输入数据:1 自由度常数2 力3 主自由度4 耦合节点5 约束方程等输出数据:1 节点自由度结果2 节点载荷3 反作用载荷等但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。
具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实现。
ansys的坐标系

ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
修改面单元和体单元坐标系方向(ESYS)。
显示坐标系:用于节点和单元PLOT LIST采用的坐标系,默认采用总体笛卡尔坐标系。
ANSYS的坐标转换办法

Ansys的六种坐标系及其操作学习资料原文地址:Ansys的六种坐标系及其操作作者:fyouyongAnsys的坐标系及其操作1 总体坐标系:用来确定几何形状的参数如节点、关键点等的空间位置。
总体坐标系是一个绝对参考系,用来确定空间几何结构的位置。
Ansys中有3类总体坐标系可以供用户选择,即笛卡尔坐标系、圆柱坐标系和球坐标系。
这三种坐标系都属于右手坐标系,而且公用一个坐标原点。
激活坐标系后,会在主界面下状态中显示相应的坐标信息。
2 局部坐标系:用户自定义的坐标系。
用户可用于建模等操作。
由于很多分析中的模型很复杂,仅使用总体坐标系是不够的,这是我们必须建立自己的坐标系,即局部坐标系。
局部坐标系的原点可以与总体坐标系的原点偏移一定的距离,或者不同不同于先前定义的总体坐标系。
与总体坐标系一样,局部坐标系也可以有笛卡尔坐标系、球坐标系和圆柱坐标系。
局部坐标系还可以是圆的,也可以是椭圆的,此外还可以是环形局部坐标系。
单击at specificed loc菜单项,将弹出特定点拾取对话框,用户在图形窗口拾取任意点作为自定义的坐标原点,也可以在输入文本框中输入自定义的坐标原点。
假设在图形窗口任意拾取一点作为坐标原点后,打开以下对话框。
所有的局部坐标系和总体坐标系都可以当做当前坐标系来使用,但只能有一个当前激活的坐标系。
激活坐标系可以按照如下方法:1 每次定义一个局部坐标系后,它自动被激活成当前坐标系。
2 utility menu /workplane/change active cs to/specificed coord system3 列表显示所有的坐标系列表如果想查看所有的总体坐标系和局部坐标系的信息,可以通过以下方法CSlist或utility menu/list/other/local coord system3 节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
总体和局部坐标系用于几何体的定位,而节点坐标系则用于定义节点自由度的方向。
ANSYS坐标系

/post1 rsys,0
缺省情况下,是将整体直 缺省情况下, 角坐标系作为结果坐标系
(将直角坐标系置为结果坐标系) 将直角坐标系置为结果坐标系) X方向
plnsol,s,x (显示x方向应力云图) 显示x方向应力云图)
( 图 i)
———————————— rsys,11
X方向 (将局部坐标系11置为结果坐标系) 将局部坐标系11置为结果坐标系 置为结果坐标系)
三、单元坐标系
——与每个节点都有自己的节点坐标系一样,每个单元都有自己的单元坐标系 与每个节点都有自己的节点坐标系一样,
单元坐标系的作用
规定正交材料特性的方向 规定所施加面力的方向 规定单元结果数据(应力或应变) 规定单元结果数据(应力或应变)的方向
大多数单元坐标系的缺省方向遵循以下规则: 大多数单元坐标系的缺省方向遵循以下规则: 缺省方向遵循以下规则
z z y x y x x y
link1
shell63
solid45
定义和修改单元坐标系的方法
直接定义单元坐标系的方向
ESYS,KCN ESYS,KCN
对已知单元进行单元坐标系的修改
EMODIF,IEL,ESYS,I1 EMODIF,IEL,ESYS,I1
注意:定义或修 注意: 改单元坐标系方 向之前,一定要 向之前, 定义一个局部坐 定义一个局部坐 标系
实际上,使用结果坐标系起到了一个根 实际上, 据用户需要“统一”结果数据的作用!! 据用户需要“统一”结果数据的作用!! 的作用
注意:有些单元,例如beam单元的单元轴力和弯矩不受结果坐标系的影响!! 注意:有些单元, 单元的单元轴力和弯矩不受结果坐标系的影响!!
激活结果坐标系
——可以将其它整体坐标系、局部坐标系、节点和单元坐标系定义 可以将其它整体坐标系、局部坐标系、节点和单元坐标系定义 整体坐标系
ansys坐标系的分类介绍及应用

一、工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)二、总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。
它们位于模型的总体原点。
三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。
三、局部坐标系局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。
激活的坐标系是分析中特定时间的参考系。
缺省为总体笛卡尔坐标系。
当创建了一个新的坐标系时,新坐标系变为激活坐标系。
这表明后面的激活坐标系的命令。
菜单中激活坐标系的路径Workplane>Change active CS to>。
四、节点坐标系每一个节点都有一个附着的坐标系。
节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。
节点力和节点边界条件(约束)指的是节点坐标系的方向。
时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。
而通用后处理器/POST1中的结果是按结果坐标系进行表达的。
例如: 模型中任意位置的一个圆,要施加径向约束。
首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。
这个局部坐标系现在成为激活的坐标系。
然后选择圆上的所有节点。
通过使用"Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。
未选择节点保持不变。
节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。
这些节点坐标系的X方向现在沿径向。
约束这些选择节点的X方向,就是施加的径向约束。
注意:节点坐标系总是笛卡尔坐标系。
ANSYS的坐标系

简单介绍ansys中的几种坐标系的功能以及使用操作!希望能给大家带来帮助!1.整体和局部坐标系:确定几何形状参数(node,kp等)在空间的位置。
关于整体坐标不用介绍了,分为全局笛卡尔,全局柱坐标,全局球坐标,基本所有的以下要介绍的坐标默认都是全局笛卡尔。
局部坐标可在wp——local cs中创建和删除,主要用于一些特殊的创建和使用(例如单元坐标必须使用局部坐标)。
2.节点坐标系:定义各节点的自由度方向和节点结构数据的取向。
(例如CP命令中UX的方向),默认为全局笛卡尔。
如果给圆柱加轴向载荷或径向载荷如加扭矩,需把节点坐标改为柱坐标。
(具体方法本贴以作为一技巧给出)通过Creat——nodes——rotate nodes cs 中的命令改变3.单元坐标系:定义单元各项异性材料的性质,施加面载荷的方向和单元结果的取向。
通过creat——element——elem attribute 设置或在划分网格的elem attribute中设置Modify/move——modify——attrib4.显示坐标系:决定几何体被列出和显示的坐标系,默认时为整体直角坐标通过wp——change display cs to改变5.结果坐标系:节点或单元结果数据在列表或显示时所采用的特殊坐标系,默认时为整体坐标系。
通过post1——option for outputList——result——options 改变注意:同一时刻只能激活一个坐标系,默认情况下,整体直角坐标系被自动激活,每当用户创建一个新的局部坐标系后,该坐标就会被自动激活。
补充:6.工作平面是一个无限大的面,是一个二维的空间,只有x,y轴和原点,默认它与当前激活坐标(笛卡尔)系中xy平面重合。
但工作平面和坐标是独立的,你可以任意改变其方向。
而当前激活坐标系是一个不能改变的坐标(只能改变其方式:笛卡尔,柱坐标,球坐标)默认它的原点和xy与工作平面重合。
但可以通过建立局部坐标系。
ANSYS中坐标系

ANSYS中坐标系1. 总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。
它们位于模型的总体原点。
三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是默认总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。
2. 局部坐标系由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径:Workplane>Local CS>Create LC>at WP Origin来创建。
坐标系编号其中,Cartesian 0: 总体笛卡尔坐标系; Cylindrical 1: 总体柱坐标系; Spherical 2: 总体球坐标系; Toroidal 3: 圆环坐标系。
3. 激活的坐标系激活的坐标系是分析中特定时间的参考系。
缺省为总体笛卡尔坐标系。
当创建了一个新的坐标系时,新坐标系变为激活坐标系。
这表明后面的激活坐标系的命令。
菜单中激活坐标系的路径Workplane>Change active CS to>。
材料4. 节点坐标系4.1 定义节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是默认与总体笛卡尔坐标系平行。
用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
4.2 调整节点坐标系方法定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
ANSYS 使用技巧与经验

ANSYS 查询函数(Inquiry Function)在ANSYS操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数,最大节点号等。
此时,一般可通过*GET命令来获得这些参数。
现在,对于此类问题,我们有了一个更为方便的选择,那就是查询函数— Inquiry Function。
Inquiry Function类似于ANSYS的 *GET 命令,它访问ANSYS数据库并返回要查询的数值,方便后续使用。
ANSYS每执行一次查询函数,便查询一次数据库,并用查询值替代该查询函数。
假如你想获得当前所选择的单元数,并把它作为*DO循环的上界。
传统的方法是使用*GET命令来获得所选择的单元数并把它赋给一个变量,则此变量可以作为*DO循环的上界来确定循环的次数*get, ELMAX,elem,,count*do, I, 1, ELMAX……*enddo现在你可以使用查询函数来完成这件事,把查询函数直接放在*DO循环内,它就可以提供所选择的单元数*do, I, ELMIQR(0,13)……*enddo这里的ELMIQR并不是一个数组,而是一个查询函数,它返回的是现在所选择的单元数。
括弧内的数是用来确定查询函数的返回值的。
第一个数是用来标识你所想查询的特定实体(如单元、节点、线、面号等等),括弧内的第二个数是用来确定查询函数返回值的类型的(如选择状态、实体数量等)。
同本例一样,通常查询函数有两个变量,但也有一些查询函数只有一个变量,而有的却有三个变量。
查询函数的种类和数量很多,下面是一些常用、方便而快速快捷的查询函数1 AREA—arinqr(areaid,key)areaid—查询的面,对于key=12,13,14可取为0;key—标识关于areaidr的返回信息=1,选择状态=12,定义的数目=13,选择的数目=14,定义的最大数=-1,材料号=-2,单元类型=-3,实常数=-4,节点数=-6,单元数…arinqr(areaid,key)的返回值对于key=1=0, areaid未定义=-1,areaid未被选择=1, areaid被选择…2 KEYPOINTS—kpinqr(kpid,key)kpid—查询的关键点,对于key=12,13,14为0 key —标识关于kpid的返回信息=1,选择状态=12,定义的数目=13,选择的数目=14,定义的最大数目=-1,数料号=-2,单元类型=-3,实常数=-4,节点数,如果已分网=-7,单元数,如果已分网kpinqr(kpid,key)的返回值对于key=1=-1,未选择=0,未定义=1,选择3 LINE—lsinqr(lsid,key)lsid—查询的线段,对于key=12,13,14为0 key—标识关于lsid的返回信息=1,选择状态=2, 长度=12,定义的数目=13,选择的数目=14,定义的最大数=-1,材料号=-2,单元类型=-3,实常数=-4,节点数=-6,单元数…4 NODE—ndinqr(node,key)node—节点号,对于key=12,13,14为0 key—标识关于node的返回信息=1,选择状态=12,定义的数目=13,选择的数目=14,定义的最大数=-2,超单元标记=-3,主自由度=-4,激活的自由度=-5,附着的实体模型ndinqr(node,key)的返回值对于key=1=-1,未选择=0,未定义=1,选择5 VOLUMES—vlinqr(vnmi,key)vnmi—查询的体,对于key=12,13,14为0key—标识关于vnmi的返回信息=1,选择状态=12,定义的数目=13,选择的数目=14,定义的最大数目=-1,数料号=-2,单元类型=-3,实常数=-4,节点数=-6,单元数=-8,单元形状=-9,中节点单元=-10,单元坐标系vlinqr(vnmi,key)的返回值对于key=1=-1,未选择=0,未定义=1,选择ANSYS能实现直接流-固耦合分析吗?ANSYS流固耦合分析有三种形式,可以实现全直接或半直接耦合分析:一: ANSYS/Mechanical模块或含该模块的软件包中的流固耦合分析功能,但此处的流体是非流动的流体,而是静流体,它计算流体由于重力、惯性力、波动压力等引起的分布压力载荷与结构的相互作用。
ANSYS的节点坐标系正确理解方法

ANSYS的节点坐标系正确理解方法节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。
有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括:输入数据:1 自由度常数2 力3 主自由度4 耦合节点5 约束方程等输出数据:1 节点自由度结果2 节点载荷3 反作用载荷等但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。
具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实现。
附:ANSYS坐标系总结工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。
它们位于模型的总体原点。
三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。
局部坐标系局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。
激活的坐标系是分析中特定时间的参考系。
缺省为总体笛卡尔坐标系。
当创建了一个新的坐标系时,新坐标系变为激活坐标系。
这表明后面的激活坐标系的命令。
菜单中激活坐标系的路径Workplane>Change active CS to>。
节点坐标系每一个节点都有一个附着的坐标系。
节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。
技巧如何在ANSYSWorkbench中查看单元坐标系与节点坐标系

技巧如何在ANSYSWorkbench中查看单元坐标系与节点坐
标系
ANSYS结构分析中的单元坐标系和节点坐标系具有重要作用。
单元坐标系可用来定义材料参数和存储应力、热通量等单元结果,节点坐标系可以用来施加约束、荷载以及存储与节点位移等节点结果。
那么,在Workbench中如何才能查看单元坐标系和节点坐标系呢?实际上,这类操作可以通过添加结果项目的方式来实现。
计算完成后,在Mechanical左侧Outline Tree中选择Solution 分支,然后选择特定的几何对象或有限元模型对象,通过右键菜单Insert>Coordinate Systems>Nodal Trials或Element Trials即可添加节点坐标系或单元坐标系结果项目。
如下面的两图所示为显示所选择圆柱面显示其上节点的Nodal Trials。
如下图所示为显示梁单元的单元坐标系,对于梁单元而言,单元坐标系也就决定了截面主轴的方向。
综上所述,在Workbench中可通过添加结果后处理项目的方式来显示节点或单元坐标系,这一操作可以起到检查模型和验证计算结果的作用。
ANSYS坐标系总结

ANSYS坐标系总结坐标系的种类创建有限元模型,需要通过坐标系对所要生成的模型进行宇间定位。
ansys根据不同的用途,用广提供了多种座标系,用户可以根据具体情况选择使用、●整体和局部坐标系:确定几何形状参数(节点、关键点等)在空间中的位置。
●节点坐标系:定父各节点的自由度方向和节点结果数据的取向。
●举元坐标系·定义单元各向异性材料性质、施加面荷载的方向和单元结果数据的取向。
●显示坐标系:决定几何体被列出和显示的坐标系,默认时为整体直角坐标系.●结果坐标系:节点或单元结果数据在列表或显示时所采用的特殊坐标系,默认时为整体坐标系。
1.整体与局部坐标系整体和局部座标系用来对几何体进行空间定位。
默认情况下,ANSYS使用的坐标系是整体的笛卡儿坐标系(即直角坐标系)。
为方便建立模型,根据模型特点;用户可以选择ANSYS预定义的几种(整体)座标系中的任意一种输入儿何数据—用户也可以使用自己定义的(局部)坐标系。
ANSYS的整体坐标系有二类:直角坐标系/Cartesian coordinate system,C,S,O)、柱座标系(Cylindrical coordinate system,C.S.1)和球座标系(Spherical coordinate system,C.S.2)、如图2、1所不,三类坐标系均属右手系,而且原点相互重合。
局部坐标系是用户自己建立的坐标系,其原点不同于"整体座标系的原点‘偏离一定距离),或其方位不同于整体坐标系(坐标轴偏移一定角度)。
每个坐标系均分配一个坐标号以标识,对用户创建的局部座标系,其坐标系号必须是不小于ll的整数。
可以按下面几种方式创建局部坐标系.根据整体座标系定义局部坐标系:命令:LOCAL,KCN,KCS.XC,YC,2C,THXY,THYZ,THZX,PARl,PAR2●GUI:Utility Menu(适用菜单)>Work Plane(工作平面)>Local Coordinate Systems(局部坐标系)>Create Local CS(创建局部坐标系统)>At Specified loc(在特定点)——OKKCN Ref number of new coord sys——输入自定义坐标的序号KCS Type of coordinate system——选择自定义坐标的类型(Cartesian(直角坐标系,笛卡尔) Cylindrical(柱) Spherical(球) toroidal(圆环))XC,YC,ZC Origin of coord system——输入自定义坐标系的原点THXY Rotation zbout local Z——输入自定义座标系旋转的角度THYZ Rotation zbout local XTHZX Rotation zbout local YFollowing used only elliptical ang toroidal systems-first parameter-second parameter——输入椭圆坐标系和圆环坐标系的参数例如:LOCAL,11,0,1.O,2.O,3.0,5.O,10.O,15.O--定义局部坐标系为11,原点为整体直角坐标系上的点(1.0,2.0,3.0),绕Z,X,Y轴旋转角度为5.0,10.0,15.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括:
输入数据: 耦合节点
5 约束方程等
输出数据:
1 节点自由度结果
2 节点载荷
3 反作用载荷等
但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实现。