牛顿第二定律题型总结
牛顿第二定律典型题型
牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。
2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。
选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。
而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。
由矢量合成法则,得F总=,因此答案C正确。
例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
牛顿第二定律十大题型分类汇总(详解版)
牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。
(3)物体从开始运动到最后停止运动的总时间。
解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。
若物块与斜面、水平面间的动摩擦因数均为μ=0.25。
斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。
求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。
牛顿第二定律25种题型
牛顿第二定律25种题型牛顿第二定律是一个非常重要的物理定律,可以应用到各种不同的题型中。
以下是一些可能的题型:1. 计算给定物体的质量和加速度,求解作用力的大小。
2. 给定物体的质量和作用力的大小,求解加速度。
3. 给定物体的质量和加速度,求解作用力的方向。
4. 考虑多个作用力作用在物体上,求解物体的加速度。
5. 考虑摩擦力对物体运动的影响,求解加速度。
6. 考虑空气阻力对物体自由落体的影响,求解加速度。
7. 考虑弹簧力对物体振动的影响,求解加速度。
8. 考虑物体在斜面上的运动,求解加速度。
9. 考虑物体在圆周运动中的加速度。
10. 考虑物体的质量随时间变化,求解加速度。
11. 考虑非惯性系中的物体运动,求解加速度。
12. 考虑相对论效应对物体运动的影响,求解加速度。
13. 考虑电磁力对带电粒子的影响,求解加速度。
14. 考虑磁场对带电粒子的影响,求解加速度。
15. 考虑引力对天体运动的影响,求解加速度。
16. 考虑光子动量对物体的影响,求解加速度。
17. 考虑量子力学效应对微观粒子的影响,求解加速度。
18. 考虑弯曲时空对物体运动的影响,求解加速度。
19. 考虑黑洞的引力对物体的影响,求解加速度。
20. 考虑物体受到辐射的影响,求解加速度。
21. 考虑物体在非常高温或低温环境中的运动,求解加速度。
22. 考虑物体在高速运动中的加速度。
23. 考虑物体在微重力环境中的运动,求解加速度。
24. 考虑物体受到外部激励力的影响,求解加速度。
25. 考虑物体在复杂场景中的运动,求解加速度。
这些题型涵盖了牛顿第二定律在不同情景下的应用,从基本的直线运动到相对论和量子力学等高级领域。
每种题型都需要根据具体情况进行分析和计算,以求得正确的加速度。
牛顿第二定律高考题型归纳
牛顿第二定律〔1〕已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=,如下列图所示.保持小球所受风力F=不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离所需时间为多少?(g取g=10 m/s2,sin 37°=,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如下图.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如下图,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④ N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s〔2〕已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如下图,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度到达1 m/s 时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2 对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下列图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下列图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右传送带在自动输送各种粮食起很大作用,如下图.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度到达相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如下图,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s 的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=,求物体从A运动到B所需的时间是多少?(sin37°=,cos37°=,g =10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不管是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如下图为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①假设v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②假设v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①假设v2/2μg≥L,则Δt=;②假设v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体〔当成一个质点〕,分析受到的外力和运动情况,应用牛顿第二定律求出加速度〔或其他未知量〕;如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。
牛顿第二定律知识点总结和典型例题
一、牛顿第二定律1. (1)内容:物体的加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向与作用力的方向相同。
(2)表达式:F=Kma,当单位采用国际单位制时K=1,F=ma。
(3)适用范围①牛顿第二定律只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
二、单位制、基本单位、导出单位(1)单位制:基本单位和导出单位一起组成了单位制。
①基本物理量:只要选定几个物理量的单位,就能够利用物理公式推导出其他物理量的单位,这些被选定的物理量叫做基本物理量。
②基本单位:基本物理量的单位。
力学中的基本物理量有三个,它们是质量、时间、长度,它们的单位是基本单位。
③导出单位:由基本单位根据物理关系推导出来其他物理量单位。
(2)国际单位制中的基本单位三、牛顿定律的应用1.动力学的两类基本问题(1)已知受力情况求物体的运动情况;(2)已知运动情况求物体的受力情况。
2.解决两类基本问题的方法:以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:四、牛顿第二定律的瞬时性1.牛顿第二定律: (1)表达式为F=ma。
(2)理解:其核心是加速度与合外力瞬时对应关系,二者总是同时产生、同时消失、同时变化。
2.两类模型(1)刚性绳(或接触面)—不发生明显形变就产生弹力物体,剪断(或脱离)后,弹力立即消失,不需要形变恢复时间。
(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变。
3.解题思路分析瞬时变化前后物体的受力情况→列牛顿第二定律方程→求瞬时加速度4.求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是相对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
如例题中突然剪断细绳,就要重新受力分析和运动分析,同时注意哪些力发生突变。
牛顿第二定律牛顿定律怎么考?看看这五大基本考察题型!
牛顿第二定律牛顿定律怎么考?看看这五大基本考察题型!牛顿第二定律的考察方式主要分为这样的5个,今天为大家仔细地将五大考点分类汇总,并为大家找到相应的经典习题。
请大家好好地做哦!预计阅读时间:27分钟1力与运动关系的定性分析【例1】如图所示,如图所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是A.小球刚接触弹簧瞬间速度最大B.从小球接触弹簧起加速度变为竖直向上C.从小球接触弹簧到到达最低点,小球的速度先增大后减小D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
选CD。
【例2】如图所示.弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B 点.如果物体受到的阻力恒定,则A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为零D.物体从A到O的过程加速度逐渐减小解析:物体从A到O的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.所以初始阶段物体向右做加速度逐渐减小的加速运动.当物体向右运动至AO间某点(设为O′)时,弹力减小到等于阻力,物体所受合力为零,加速度为零,速度达到最大.此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O点时弹力减为零,此后弹力向左且逐渐增大.所以物体从O′点后的合力方向均向左且合力逐渐增大,由牛顿第二定律可知,此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.正确选项为A、C.点评:(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零.这显然是没对物理过程认真分析,靠定势思维得出的结论.要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对速度和加速度间关系的理解.譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大.2牛顿第二定律的瞬时性【例3】(2001年上海高考题)如图(1)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。
必修一_牛二定律__题型总结
必修一_牛二定律__题型总结牛顿第二定律已知受力求顿运一位滑雪者止顿始沿山坡下滑~山坡顿角从静θº~雪板雪地顿摩擦因顿与数~求=300.045秒滑下的路程和内秒末的速度。
5已知顿求受力运顿量顿的顿重汽顿~在的顿引力的作用下~有止顿上山坡沿山坡~前顿静没2.75t2900N1高度升高~汽顿前顿顿~速度到达~求汽顿前顿顿程顿受到的阻力,m0.05m100m36km/hf在某一旅游景~建有滑草顿目~顿山可看成一角度顿区θ的斜面~一游客顿量顿m~他止从静下滑~在顿顿t的顿顿下滑了位移x~求,摩擦力f的大小和滑顿摩擦因数μ。
牛顿第二定律斜面模型顿11一物以一定的初速度一光滑斜面底端体从点上滑~最高可滑至点~是的中14. ACBAC点~如顿所示~已知物顿从至需顿顿顿~顿它从顿再回到需要的顿顿BCB12ABt0。
C.B.A,物置于光滑的斜面上~斜面固定顿~物沿斜面下滑的加速度顿体当体~斜面顿物的体a11F顿力顿。
斜面不固定~且地面也光滑顿~物下滑的加速度顿体~斜面顿物的顿力体aN12F顿~顿下列顿系正的是,确N2a>a,F>Fa<a,F>FA. B. 12N1N212N1N2a<a,F<Fa>a,F<FC. D. 12N1N212N1N2当体来个参运体参运斜面可顿顿~顿物顿是相顿斜面顿加速考系在作加速顿~而且物和考系的顿方向不在同一直顿上~利用常顿的方法顿于判~但是利用矢量三角形法顿能顿松顿解。
条断如顿4所示~由于重力的大小和方向是定不顿的~斜面顿力的方向也是惟一的~由共点确力合成的三角形法顿~斜面固定顿~加速度方向沿斜面向下~作出的矢量顿如顿顿所示~斜面当也顿顿~物不沿平行于斜面方向顿~相顿于地面的顿顿顿方向如顿所示。
所以正顿顿顿运体并运运虚确B。
,如顿1.05所示~在水平地面上有一顿顿的平板小顿~顿上固定一盛水的杯子~杯子的直运个2径顿R。
小顿作加速顿顿~水面呈如顿所示顿~左右液面的高度差顿当匀运状h~顿小顿的加速度方向指向如何,加速度的大小顿多少,顿1.05 我顿由顿可以看出物顿情~根据杯中水的形~可以建顿顿的一模型~一物顿放体运况状构个个α,~重力和斜面的支持力的合力提供物顿沿水平方向上的加速度~在光滑的斜面上;顿角顿a=gtanα其加速度顿, 。
牛顿第二定律各种典型题型
牛顿第二定律牛顿第二定律11.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
2.表达式F=ma。
3.“五个”性质1.一般思路:分析物体该时的受力情况—由牛顿第二定律列方程一瞬时加速度2.两种模型(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。
(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。
[例](多选)(2014 •南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为B的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()A.两个小球的瞬时加速度均沿斜面向下,大小均为85吊eB.B球的受力情况未变,瞬时加速度为零C. A球的瞬时加速度沿斜面向下,大小为2gsin eD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零[例](2013吉林模拟)在动摩擦因数U =0.2的水平面上有一个质量为m=2 kg 的小球, 小球与水平轻弹簧及与竖直方向成0=45°角的不可伸长的轻绳一端相连,如图所示,此时 小球处于静止平衡状态,且水平面对小球的弹力恰好为零。
当剪断轻绳的瞬间,取g=10 m/s 2,以下说法正确的是()若剪断弹簧,则剪断的瞬间小球的加速度大小为10巾〃2,方向向右针对练习:(2014 •苏州第三中学质检)如图所示,质量分别为m 、2m 的小球A 、B,由 轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中 的拉力为F,此时突然剪断细线。
在线断的瞬间,弹簧的弹力的大小和小琳的加速度的大小分别为( 4. (2014•宁夏银川一中一模)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端解决两类动力学问题两个关键点 ⑴把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。
牛顿第二定律25种题型
牛顿第二定律25种题型牛顿第二定律是物理学中的基本定律之一,它描述了物体受力时的加速度与力的关系。
下面将详细介绍牛顿第二定律的25种题型。
1. 计算物体的加速度:根据牛顿第二定律,加速度与物体所受力成正比,与物体的质量成反比。
因此,可以通过已知的力和质量来计算物体的加速度。
2. 计算物体所受的力:根据牛顿第二定律,力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的力。
3. 计算物体的质量:根据牛顿第二定律,质量与力和加速度的比值成正比。
因此,可以通过已知的力和加速度来计算物体的质量。
4. 计算物体的重力:根据牛顿第二定律,物体所受的重力与物体的质量成正比。
因此,可以通过已知的质量和加速度(通常为重力加速度)来计算物体的重力。
5. 计算物体所受的摩擦力:根据牛顿第二定律,物体所受的摩擦力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的摩擦力。
6. 计算物体所受的弹力:根据牛顿第二定律,物体所受的弹力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的弹力。
7. 计算物体所受的拉力:根据牛顿第二定律,物体所受的拉力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的拉力。
8. 计算物体所受的斜面力:当物体沿斜面运动时,可以通过分解力的成分来计算物体所受的斜面力。
9. 计算物体所受的空气阻力:当物体在空气中运动时,可以通过已知的速度和物体的形状来计算物体所受的空气阻力。
10. 计算物体所受的浮力:当物体浸没在液体中时,可以通过已知的液体密度、物体的体积和重力加速度来计算物体所受的浮力。
11. 计算物体所受的离心力:当物体在旋转的平台上运动时,可以通过已知的物体质量、旋转半径和角速度来计算物体所受的离心力。
12. 计算物体所受的引力:当两个物体之间存在引力时,可以通过已知的物体质量和距离来计算物体所受的引力。
牛顿第二定律应用的几种题型
牛顿第二定律应用的常见题型概念及要点:牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma。
理解要点:①牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
②加速度与力均为矢量,其两者间相互对应关系为:㈠两者必然同体性㈡方向具有同向性㈢大小瞬时对应性㈣各物体间独立性应用牛顿第二定律解题的步骤:①明确研究对象②对研究对象进行受力分析③由牛顿第二定律求解各过程相关加速度④列运动学方程求解问题以牛顿第二定律为核心的动力学是力学的重要组成部分,也是高考中的考查热点,学习时我们一定要深刻理解牛顿第二定律,并能熟练应用牛顿第二定律求解相关问题,下面介绍牛顿第二定律应用的几类典型问题。
一、连接体问题(物块物块,绳物块,弹簧物块)此类问题高考仅限于几个物体的加速度相同的情形,求解此类问题需灵活运用整体法和隔离法。
求解“内力”问题通常先对整体运用牛顿第二定律,求出系统的加速度,再用隔离法研究连接体中一个物体,即可求出物体间的相互作用力;求解“外力”问题,需先分析连接体中的一个物体,确定系统的加速度,再对整体运用牛顿第二定律,即可求出“外力”。
例l.1. 如下图所示,质量为2m的物体A与水平地面的摩擦可忽略不计,质量为m物块B与地面间的动摩擦因数为,在已知水平推力F作用下,AB一起做加速运动,A和B间的作用力为______。
解析:先把AB 看作一个整体,系统受到的合外力为,系统的加速度为,再对物体B 分析,由牛顿第二定律有,解得。
例1.2. 2007江苏,6如图3-6-3所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg 。
现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为(B )A .5mg 3μ B .4mg3μ C .2mg 3μ D .mg 3μ【解析】以四个木块整体为研究对象,由牛顿第二定律得:F =6ma ,绳的拉力最大时,m 与2m 间的摩擦力刚好为最大静摩擦力μmg ,以2m 为研究对象,则:F -μmg=2ma ,对m 有:μmg -T =ma ,联立以上三式得:T=(3/4)μmg .【答案】B【点拨】连接体问题对在解题过程中选取研究对象很重要.对于有共同加速度的连接体问题,一般先用整体法由牛顿第二定律求出加速度,再根据题目要求,将其中的某个物体进行隔离分析和求解.利用公式F =ma 用整体法求解加速度时,要特别注意质量m 与研究对象对应.例1.3. 2008全国Ⅱ,18如图3-6-10所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a 和b 。
牛顿第二定律题型归类
牛顿定律类型题归类一、瞬时性问题1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
例题分析:例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用 细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少? 例2.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于 地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅 速抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。
例3.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0B .大小为233g ,方向竖直向下C .大小为233g ,方向垂直于木板向下D .大小为33g ,方向水平向右 【练习】:1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【 】 A.g B.mmM - g C.0 D.mmM +g2.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为:【 】 A.都等于2g B. 2g和0 C.2g M M M B B A ⋅+和0 D.0和2g M M M B B A ⋅+图3 ABC图2-81题图 图2-92题图 图1B A3.一根轻弹簧上端固定同上端挂一质量为m o 的平盘,盘中有一质量为m 的物体(如图3-3-13)当盘静止时,弹簧的长度比其自然长度伸长为l ,今向下拉盘使弹簧再伸长∆l 后停止,然后松手放开,则刚松手时盘对物体的弹力等于(设弹簧处在弹性限度以内):【 】A .mg l l )1(Λ+B .g m m l l))(1(+∆+ C .mg l l ∆ D .g m m ll )(+∆4.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中 :【 】 A .A 、B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a BC .A 、B 加速度相同时,速度υA <υBD .A 、B 加速度相同时,速度υA >υB5.如图所示,小球质量为m,被三根质量不计的弹簧A 、B 、C 拉住,弹簧间的夹角均为1200,小球平衡时, A 、B 、C 的弹力大小之比为3:3:1,当剪断C 瞬间,小球的加速度大小及方向可能为:【 】A .g/2,竖直向下;B .g/2,竖直向上;C .g/4,竖直向下;D .g/4,竖直向上;6.如图4-20所示,A 、B 、C 、D 、E 、F 六个小球分别用弹簧、细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a 、b 、c 处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下列说法中正确的是( )A .所有小球都以g 的加速度下落B .A 球的加速度为2g ,B 球的加速度为gC . C 、D 、E 、F 球的加速度均为g D .E 球的加速度大于F 球的加速度7:如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态,现将l 2线剪断 (1)求剪断瞬时物体的加速度.(2)若将上图中的细线l 1改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,现将l 2剪断,求剪断瞬时物体的加速度.二、动态分析问题1、速度变化叛断:若速度与加速度方向相同则速度增大,反之减小。
必修一 牛二定律 题型总结
牛顿第二定律已知受力求运动一位滑雪者从静止开始沿山坡下滑,山坡倾角θ=30º,雪板与雪地动摩擦因数为0.04,求5秒内滑下的路程和5秒末的速度。
已知运动求受力质量为2.75t的载重汽车,在2900N的牵引力的作用下,有静止开上山坡沿山坡,没前进1 m高度升高0.05m,汽车前进100m时,速度达到36km/h,求汽车前进过程种受到的阻力f ?在某一旅游景区,建有滑草项目,该山可看成一角度为θ的斜面,一游客质量为m,他从静止下滑,在时间t的时间下滑了位移x,求:摩擦力f的大小和滑动摩擦因数μ。
三、牛顿第二定律斜面模型图1114. 一物体以一定的初速度从一光滑斜面底端A点上滑,最高可滑至C点,B是AC的中点,如图12所示,已知物块从A 至B 需时间为t 0,则它从B 经C 再回到B 需要的时间 。
..AB C1.物体置于光滑的斜面上,当斜面固定时,物体沿斜面下滑的加速度为1a ,斜面对物体的弹力为1N F 。
斜面不固定,且地面也光滑时,物体下滑的加速度为2a ,斜面对物体的弹力为2N F ,则下列关系正确的是:A. 2121,N N F F a a >>B. 2121,N N F F a a ><C. 2121,N N F F a a <<D. 2121,N N F F a a <> 当斜面可动时,对物体来说是相对斜面这个加速参考系在作加速运动,而且物体和参考系的运动方向不在同一条直线上,利用常规的方法难于判断,但是利用矢量三角形法则能轻松获解。
如图4所示,由于重力的大小和方向是确定不变的,斜面弹力的方向也是惟一的,由共点力合成的三角形法则,斜面固定时,加速度方向沿斜面向下,作出的矢量图如实线所示,当斜面也运动时,物体并不沿平行于斜面方向运动,相对于地面的实际运动方向如虚线所示。
所以正确选项为B 。
2. 如图1.05所示,在水平地面上有一辆运动的平板小车,车上固定一个盛水的杯子,杯子的直径为R 。
牛顿第二定律题型归纳
牛顿第二定律题型归纳一、牛顿运动定律的简单应用1.如图所示,底板光滑的小车上用两个量程为20N、完全相同的弹簧测力计甲和乙系住一个质量为1kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10N,当小车做匀加速直线运动时,弹簧测力计甲的示数为8N,这时小车运动的加速度大小是( )A.2m/s2B.4m/s2C.6m/s2ﻩD.8 m/s22.汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患。
行车过程中,如果车距较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车到完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)( )A.450 NB.400 NC.350 NﻩD.300N3.用40N的水平力F拉一个静止在光滑水平面上、质量为20kg的物体,力F作用3s后撤去,则第5s末物体的速度和加速度的大小分别是( )A.v=6m/s,a=0B.v=10m/s,a=2m/s2C.v=6m/s,a=2m/s2D.v=10m/s,a=04.如图所示,在平直轨道做匀变速运动的车厢中,用轻细线悬挂一个小球,悬线与竖直方向保持恒定的夹角θ,则( )A.小车一定向左运动B.小车一定向右运动C.小车一定具有方向向左的加速度D.小车一定具有方向向右的加速度5.如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后()A.木块立即做减速运动B.木块在一段时间内速度仍可增大 C.当F等于弹簧弹力时,木块速度最大 D.弹簧压缩量最大时,木块加速度为零二、瞬时加速度(力是产生加速度的原因,力变化,加速度也随之瞬间变化)1.一轻弹簧的上端固定,下端悬挂一个重物,重物静止时,弹簧伸长了8cm,若再将重物向下拉4cm ,然后放手,则在释放重物的瞬间,重物的加速度的大小是( ) A.g/4 B . g/2 C . 3g/2 D. g2.天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,两球均保持静止,当突然减断细绳的瞬间, A 、B 的加速度(以向下为正方向)分别为( ) A .g , g, B. 0, 2g C. 2g, 0 D.g, -g3.如图所示,物块A 、B、C 质量分别为m 、2m、3m,A 与天花板间、B 与C之 间用轻弹簧相连,当系统平衡后,突然将A 、B 间轻绳剪断,在轻绳剪断瞬间,A、B 、C 的加速度(以 向下为正方向)分别为( )A.g,g,g B .-5g,2.5g,0 C .-5g,2g,0ﻩ D.-g ,2g ,3g4.如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角 为30°的光滑木板AB 托住,小球恰好处于静止状态。
牛顿第二定律常见题型和解题方法
牛顿第二定律常见题型和解题方法一、求加速度1、瞬时加速度的求法例1、12.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P和物体Q的加速度大小是()A.a P = a Q = gB.a P =2 g,a Q = gC.a P = g,a Q =2 gD.a P = 2g,a Q = 02、二力合成法求加速度例2、一辆小车在水平地面上行驶,悬挂的摆球相对小车静止并与竖直方向成α角(如下图所示)下列关于小车运动情况,说法正确的是A.加速度方向向左,大小为g tanα。
B.加速度方向向右,大小为g tanαC.加速度方向向左,大小为g sinαD.加速度方向向右,大小为g sinα3、正交分解法求加速度例3、在长木板上放有一物体,从水平位置开始慢慢地抬起木板的一端,当木板与水平面的夹角α=30°时,物体恰好匀速下滑,那么当α=60°时,求物体下滑的加速度大小二、程序法结合两类基本问题例4、如图所示,一弹簧一端系在墙上O点,自由伸长到B点。
今将一小物体m压着弹簧,将弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面的摩擦系数恒定。
试判断下列说法中正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B,先加速后减速,从B到C一直减速运动D.物体从B点受合外力为零例5、用平行于斜面的力推动一个质量为m 的物体,沿倾角为a 的光滑斜面向上运动,当物体运动到斜面的中点时撤去推力,物体恰能滑到斜面顶点,由此可断定推力F 的大小为?例6、水平传送带长度为20 m ,以2 m/s 的速度作匀速运动,已知某物体与传送带的动摩 擦因数为0.1,该物体放在传送带的某一端开始,到达另一端所需的时间为例7、小球质量m=1kg ,穿在与水平面成300的斜杆上,如图,小球与杆之间动摩擦因数为 =6/3小球受竖直向上的拉力F=20牛,从静止开始经2秒钟,求小球沿杆移动多大的距离?(g 取10米/秒2)三、整体法和隔离法应用例8、如图,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为A .2g sin α B .gsin α C .23gsin α D .2gsin α 例9、如图所示,跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg ,吊板的质量为10 kg ,绳及定滑轮的质量、滑轮的摩擦均可不计,取重力加速度g =10m/s 2。
牛顿第二定律高考题型归纳
牛顿第二定律1.通过牛顿第二定律将力学与运动学结合(1)已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=0.5,如下图所示.保持小球所受风力F=0.5mg不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离2.4m所需时间为多少?(g取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如图所示.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcosθ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如图所示,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=0.6,cos37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s(2)已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如图所示,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度达到1 m/s时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a =2 m/s2对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右2.牛顿运动定律在传送带问题中的应用传送带在自动输送各种粮食起很大作用,如图所示.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.ﻩﻩﻩﻩﻩﻩﻩ例3.如图所示,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需的时间是多少?(sin37°=0.6,cos37°=0.8,g=10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcosθ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10m/s时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如图所示为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得:a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①若v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②若v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+ = + .答案:①若v2/2μg≥L,则Δt= ;②若v2/2μg<L,则Δt= + .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点),分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。
牛顿第二定律的应用常见题型与解题方法
学益佳教育高中物理教研组 高一物理基础班复习——牛顿第二定理题型总结一、两类动力学问题1.已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类 第二类典型例题:例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m=2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:(1)物体加速度a 的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.(2)若列车的质量是1.0×106kg ,机车对列车的牵引力是1.5×105N ,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1>F2,则1施于2的作用力的大小为( )A .F1B .F2C .(F1+F2)/2D .(F1-F2)/2学益佳教育高中物理教研组求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M ,斜面与物块无摩擦,地面光滑。
应用牛顿第二定律解题的几种题型
应用牛顿第二定律解题的几种题型牛顿第二定律是一个重要的物理学定律,用于解释物体运动中加速度变化的原理。
它主要用于描述物体受外力时会发生的加速或减速过程,可用来解决许多实际问题。
本文将介绍应用牛顿第二定律解题的几种典型题型,以及如何解答这些题型。
一、牛顿运动速度题第一种典型题目是根据牛顿第二定律求解运动速度的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,距离原点s米。
请求出t时刻物体的速度v?解题思路:物体由v0开始加速,到t时刻,它的速度是v=v0+at。
由于物体从原点出发,则v0=0。
所以,在t时刻,物体的速度是v=at。
二、牛顿运动加速度题第二种典型题目是根据牛顿第二定律求解加速度的题型。
例如:一个物体从原点出发,在t时刻后,距离原点s米,且物体的速度为v米/秒。
请求出加速度a?解题思路:由于物体从原点出发,则v0=0。
根据牛顿第二定律,v=v0+at,即v=at。
解出a=v/t。
三、牛顿运动时间题第三种典型题目是根据牛顿第二定律求解运动时间的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,距离原点s米。
请求出物体从原点出发到s米的运动时间t?解题思路:根据牛顿第二定律,v=v0+at,解出t=v/a。
由于物体从原点出发,则v0=0,即t=s/a。
四、牛顿运动位移题第四种典型题目是根据牛顿第二定律求解位移的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,其速度是v米/秒。
请求出物体从原点出发到t时刻时的位移s?解题思路:根据牛顿第二定律,s=v0t+at^2/2。
由于物体从原点出发,则v0=0,即s=at^2/2。
到此,本文介绍了应用牛顿第二定律解题的几种典型题型,以及解答这些题型的解题思路。
熟练掌握牛顿第二定律,并灵活运用,可以很好地解决实际问题。
牛顿第二定律典型题型归纳 -完整获奖版
牛顿第二定律典型题型归纳一. 重难点解析:1. 动力学两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况。
(2)已知运动情况求受力情况。
分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度。
基本思路流程图:基本公式流程图为:2. 动力学问题的处理方法(1)正确的受力分析。
对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。
(2)受力分析的依据。
①力的产生条件是否存在,是受力分析的重要依据之一。
②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。
③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。
3. 解题思路及步骤(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。
①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。
②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)③根据牛顿第二定律列方程,求出物体的加速度。
④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。
(2)由物体的运动情况求解物体的受力情况。
解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。
②题目中求的力可能是合力,也可能是某一特定的作用力。
即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力。
4. 解题方法牛顿运动定律是解决动力学问题的重要定律,具体应用的方法有好多,高中物理解题常用的方法有以下几种:(1)正交分解法:表示方法为减少矢量的分解,建立坐标系时,确定x轴正方向有两种方法:①分解力而不分解加速度。
分解力而不分解加速度,通常以加速度a的方向为x轴正方向,建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别得x轴和y轴的合力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律的应用(张胜富)一、知识归纳:1、牛顿第二定律(1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.(2)定义式:F 合=ma2、对牛顿第二定律的理解(1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、同时消失,保持一一对应关系.(2)矢量性.F=ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的方向决定.已知F 合的方向,可推知a的方向,反之亦然.(3)同体性:a =mF 合各量都是属于同一物体的,即研究对象的统一性.(4)独立性:F合产生的a 是物体的合加速度,x方向的合力产生x 方向的加速度,y 方向的合力产生y 方向的加速度.牛顿第二定律的分量式为F x =ma x,F y =ma y.(5)相对性:公式中的a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒:(1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度. (2)不能根据m=m F 得出m∝F ,m ∝a1的结论.物体的质量m 与物体受的合外力和运动的加速度无关.3、合外力、加速度、速度的关系(1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是F=ma ,只要有合外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无关.只有速度的变化率才与合外力有必然的联系.(2)合力与速度同向时,物体做加速运动,反之减速. (3)力与运动关系:力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小无必然的联系.(4)加速度的定义式与决定式:a=tv∆∆是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的方法;a =mF是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加速度的因素.特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即a 与合力F方向总是相同,但速度v 的方向不一定与合外力的方向相同.讨论点一:如图所示,对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用瞬间 ( )A .物体立即获得速度 B.物体立即获得加速度 C.物体同时获得速度和加速度D.由于物体没有来得及运动,所以速度和加速度都为零4、力的单位(1)当物体的质量是m=1kg,在某力的作用下它获得的加速度是a=1m/s2时,那么这个力就是1牛顿,符号N表示.(2)比例系数k的含义:根据F=kma知,k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小.k的大小由F、m、a三者的单位共同决定,三者取不同的单位k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位.讨论点二:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,正确的是A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中,k=1 D.在任何情况下k都等于15、应用牛顿第二定律解题的一般步骤(1)确定研究对象(有时选取合适的研究对象,可使解题大为简化)(2)分析研究对象的受力情况,画出受力分析图(3)选定正方向或建立适当的正交坐标系(4)求合力,列方程求解(5)对结果进行检验或讨论6、超重、失重(1)视重:所谓“视重”是指人由弹簧秤等量具上所看到的读数.(2)超重:当物体具有向上的加速度时,物体对支持物的压力(或对悬挂物的拉力)大于物体所受的重力(即视重大于重力)的现象称为超重现象.(3)失重:当物体具有向下的加速度时,物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力(即视重小于重力)的现象,称为失重现象.(4)完全失重:当物体向下的加速度a=g时,物体对支持物的压力(或对悬挂物的拉力)等于零的状态,即视重等于零时,称为完全失重状态.(5)产生超重、失重现象的原因:①产生超重的原因:当物体具有向上的加速度a(向上加速或向下减速运动)时,支持物对物体的支持力(或悬绳的拉力)为F.由牛顿第二定律可得:F-mg=ma所以F=m(g+a)>mg由牛顿第三定律知,物体对支持物的压力(或对悬绳的拉力)F′>mg.②产生失重现象的原因:当物体具有向下的加速度a(向下加速或向上减速运动)时,支持物对物体的支持力(或悬绳对物体的拉力)为F.由牛顿第二定律可知:mg-F=ma所以F=m(g-a)<mg由牛顿第三定律可知,物体对支持物的压力(或对悬绳的拉力)F′<mg.特例:当物体具有向下的加速度a=g时.则F′=0.物体处于完全失重状态.(6)对超重和失重现象的理解.①物体处于超重或失重状态时,物体所受的重力始终不变,只是物体对支持物的压力或对悬挂物的拉力发生了变化,看起来物重好像有所增大或减小.②发生超重或失重的现象与物体的速度方向无关,只取决于物体加速度的方向.③在完全失重状态下,平常由重力产生的一切物理现象都会完全消失,比如物体对桌面无压力,单摆停止摆动,浸在水中的物体不受浮力等.靠重力才能使用的仪器,也不能再使用,如天平、液体气压计等.讨论点一:如图所示,质量均为m 的甲、乙两同学,分别静止于水平地面的台秤P 、Q上,他们用手分别竖直牵拉一只弹簧秤的两端,稳定后弹簧秤的示数为F ,若弹簧秤的质量不计,下列说法正确的是ﻩﻩ( )A .甲同学处于超重状态,乙同学处于失重状态 B.台秤P 的读数等于m g-FC.台秤Q 的读数为mg -2FD.两台秤的读数之和为2mg二、典型题型题型1:必须弄清牛顿第二定律的矢量性牛顿第二定律F =ma 是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
例1、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m 的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
例2、图2(a)一质量为m 的物体系于长度分别为L 1、L 2的细线和质量不计的轻弹簧上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
例3、如图(b)所示,一质量为m 的物体系于长度分别为L1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
L1 L2 θ图2(b) L 1 L 2 θ图2(a)拓展:小球A、B 的质量分别为m 和2m,用轻弹簧相连,然后用细线悬挂而静 止,如图所示,在烧断细线的瞬间,A 、B 的加速度各是多少?拓展:如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为( )A.0 B .大小为2\r(3)3g,方向竖直向下C.大小为错误!未定义书签。
g ,方向垂直于木板向下 D .大小为\f(\r (3),3)g ,方向水平向右拓展:一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态,正确的是( )A .接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零B .接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零C .接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处D .接触后,小球速度最大的地方就是加速度等于零的地方题型3:必须弄清牛顿第二定律的同体性加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。
例4、一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。
图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。
吊台的质量m =15kg ,人的质量为M =55kg,起动时吊台向上的加速度是a=0.2m/s 2,求这时人对吊台的压力。
(g=9.8m/s 2)拓展:如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4k g,盘C 的质量m C=0.6kg ,现悬挂于天花板O 处,处于静止状态。
当用火柴烧断O 处的细线瞬间,木块A 的加速度aA 多大?木块B对盘C 的压力F BC 多大?(g 取10m/s 2)问题4:发生相对运动的条件例5、质量分别为m 、m 2、m 3的物块A 、B 、C 叠放一起放在光滑的水平地面上,现对B 施加一水平力F ,已知A B 间最大静摩擦力为0f ,B C 间最大静摩擦力为02f ,为保证它们能够一起运动,F 最大值为( )A.06f B . 04f C.03f D . 02f 拓展1:如图所示,一夹子夹住木块,在力F 作用下向上提升,夹子和木块的质量分别为m 、M ,夹子与木块两侧间的最大静摩擦有均为f,若木块不滑动,力F 的最大值是图4 A B C OA . 2()f m M MB .2()f m M mC.2()()f m M m M g MD.2()()f m M m M g M问题5:接触物体分离的条件及应用相互接触的物体间可能存在弹力相互作用。
对于面接触的物体,在接触面间弹力变为零时,它们将要分离。
抓住相互接触物体分离的这一条件,就可顺利解答相关问题。
下面举例说明。
例6、一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g)匀加速向下移动。
求经过多长时间木板开始与物体分离。
拓展:如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m 。