2013年高考理科数学全国新课标卷1试题与标准答案解析版
2013年高考理科数学新课标1卷解析版
2013 年高考理科数学新课标1 卷解析版一、选择题(题型注释)1.已知集合 A={x|x2-2x >0},B={x| - 5 <x < 5},则 () A 、A ∩B= B 、 A B=R C、B AD 、A B【答案】 B ; 【解析】依题意Ax x 0或x 2 ,由数轴可知,选 B.【考点定位】 本题考查集合的基本运算,考查学生数形结合的能力 . 2.若复数 z 满足(3 -4i)z =|4 + 3i | ,则 z 的虚部为 ( )A 、- 4 (B )-【答案】 D ;45( C )4 (D )45【 解 析 】设z a bi , 故 ( 3 i 4 )a( b i ) 3a 3b i 4a i 4b 4, 所3i 以3b 4a 0 3a 4b 5,解得4 b.5【考点定位】 本题考查复数的基本运算,考查学生的基本运算能力.3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调 查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男 女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A 、简单随机抽样 B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样【答案】 C ;【解析】不同的学段在视力状况上有所差异,所以应该按照年段分层抽样 .【考点定位】 本题考查随机抽样,考查学生对概念的理解 .4.已知双曲线C:2 x 2a- 2 y2b=1(a >0, b >0) 的离心率为5 2,则 C 的渐近线方程为 ()A 、y=± 1 4x(B )y=± 1 3x(C )y=± 1 2x( D )y=±x【答案】 C ; 【 解 析 】e2 2c b 1aa5 2, 故2b2a1 4, 即b a1 2, 故 渐 近 线 方 程 为b 1 yxx.a 2【考点定位】 本题考查双曲线的基本性质,考查学生的化归与转化能力 .5.执行右面的程序框图,如果输入的t ∈[ -1,3] ,则输出的 s 属于 ()12 页1页,总试卷第A、[ -3,4] B 、[ -5,2] C、[ -4,3] D 、[ -2,5] 【答案】A;【解析】若t 1,1 ,则S 3t 3,3 ;若t1,3 ,2S 4t t 3,4 ;综上所述S3,4 .【考点定位】本题考查算法框图,考查学生的逻辑推理能力.6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A、50033 B、866cm33 C、1372cm33 D、2048cm33cm【答案】A;【解析】作出该球轴截面的图像如下图所示,依题意BE 2,AE CE 4 ,设D E x ,故AD 2 x ,因为AD2 AE2 DE 2 ,解得x 3,故该球的半径AD 5 ,所以4 5003V R .3 3试卷第 2 页,总12 页【考点定位】本题考查球体的体积公式,考查学生的空间想象能力.7.设等差数列{a n} 的前n 项和为S n,S m-1=-2,S m=0,S m+1=3,则m=( ) A、3 B 、4 C 、5 D 、6【答案】C;【解析】m(m 1)a 2,a 3 ,故d 1;因为S m 0 ,故ma1 d 0 ,故m m 12m 1a ,因为12 a a 1 5 ,故m ma a 1 2a1 (2m 1)d (m 1) 2m 1 5,即m 5 .m m【考点定位】本题考查等差数列的基本公式,考查学生的化归与转化能力. 8.某几何函数的三视图如图所示,则该几何的体积为( )A、16+8 B 、8+8C、16+16 D 、8+16【答案】A;【解析】上半部分体积为V1 2 2 4 16 ,下半部分体积12V 2 4 8 ,22故总体积V2 16 8 .【考点定位】本题考查三视图以及简单组合体的体积计算,考查学生的空间想象能力. 9.设m 为正整数,(x +y) 2m展开式的二项式系数的最大值为a,(x +y) 2m+1 展开式的二项式系数的最大值为b,若13a=7b,则m=( )A、5 B 、6 C 、7 D、8【答案】B;【解析】ma C ,2mmb C ,因为2m 1m m13C 7C ,解得m=6.2m 2m 1【考点定位】本题考查二项式定理的应用以及组合数的计算,考查学生的基本运算能力.试卷第 3 页,总12 页10.已知椭圆2x 2a +2y 2b=1(a>b>0) 的右焦点为 F(3,0) ,过点 F 的直线交椭圆于A 、B两点。
2013年高考新课标1卷理科数学试题及答案(精编WORD版)
(b1
a1)(
1 )n1 2
bn
a1
(b1
a1 )(
1 2
)n1
,
cn
2a1
bn
a1
(b1
a1 )(
1 )n1 2
Sn2
3a1 (3a1 22
a1
)
3a1 2
a1
(b1
a1
)(
1 2
)n
1
3a1 2
a1
(b1
a1
bn cn 2an 0bn cn 2an 2a1 bn cn 2a1
又由题意,bn1 cn1
cn
bn 2
bn1 (2a1 bn1)
2a1 bn 2
bn
a1 bn
bn1
a1
1 2
(a1
bn )bn
a1
b1 a1 2a1 c1 a1 a1 c1 0b1 a1 c1
又 b1
c1
a1
2a1
c1
c1
a1
2c1
a1
c1
a1 2
由题意,b n1
cn1
bn
cn 2
a1 bn1
cn1
2a1
1 2
(bn
cn
2a1)
A、5030πcm3
B、8636πcm3
2013年高考数学全国卷1(完整版试题+答案+解析)
2013 年高考数学全国卷1(完整版试题 +答案 +解析 )2013 年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 6 页.考试时间120 分钟.满分150 分.答题前,考生务必用0.5 毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ 卷答题卡和第Ⅱ 卷答题纸规定的位置.参考公式:样本数据x1 , x2 ,x n的标准差( x1x) 2(x2x) 2( x n x)2s n其中 x 为样本平均数球的面积公式S 4 R2第Ⅰ卷(选择题共 60 分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数12i(i是虚数单位)的虚部是1 iA .31C.3 D .1 B.222. 已知R是实数集,M x 21 , N y y x 1 1 ,则N C R M xA.(1,2)B.0,2 C.D.1,23.现有 10 个数,其平均数是 4 ,且这 10 个数的平方和是 200 ,那么这个数组的标准差是A.1B.2C.3D.44.设 S n为等比数列 { a n } 的前 n 项和, 8a2a50,则S4 S2A.5B.8C.8D. 155.已知函数 f ( x)sin(2x) ,若存在a(0,) ,使得 f (x a) f (x a) 恒成立,则 a6的值是A .B .3C .4 D .626. 已知 m 、 n 表示直线, , , 表示平面,给出下列四个命题,其中真命题为( 1) m,n , nm, 则( 2) , m,n,则 nm( 3) m , m , 则 ∥( 4) m, n, mn,则A .( 1)、(2)B .(3)、( 4)C .(2)、( 3)D .(2)、( 4)7. 已知平面上不共线的四点O, A, B, C ,若 OA 3OB2OC,则| AB |等于|BC |A . 1B . 2C . 3D . 48. 已知三角形ABC 的三边长成公差为 2 的等差数列,且最大角的正弦值为3,则这个三2角形的周长是A . 18B . 21C . 24D . 159. 函数 f ( x)lg x1的零点所在的区间是xA . 0,1B . 1,10C . 10,100D . (100, )10. 过直线 yx 上一点 P 引圆 x 2y 26x 7 0 的切线,则切线长的最小值为23210 D . 2A .B .2C .2211. 已知函数 f ( x)x 2 ax 2b . 若 a,b 都是区间 0,4 内的数,则使 f (1)0 成立的概率是3B .13 5A .4C .D .48812. 已知双曲线的标准方程为x 2 y 2 1 ,F 为其右焦点, A 1 , A 2 是实轴的两端点, 设 P 为9 16双曲线上不同于A 1 , A 2 的任意一点, 直线 A 1 P, A 2 P 与直线 xa 分别交于两点 M , N , 若FM FN0 , 则 a 的值为16B .925 16A .5C .D .995第Ⅱ卷(非选择题共90分)注意事项:1.请用 0.5 毫米的黑色签字笔将每题的答案填写在第Ⅱ 卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ 卷共包括填空题和解答题两道大题.二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.开始13. 如图所示的程序框图输出的结果为__________.a2, i 1 否14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.i 10是1a1输出 aa111第14 题图i i1结束第13题图15. 地震的震级 R 与地震释放的能量 E 的关系为R 2(lg E 11.4).2011 年 3 月 11日,日3本东海岸发生了9.0 级特大地震, 2008 年中国汶川的地震级别为8.0 级,那么 2011年地震的能量是 2008年地震能量的倍.16.给出下列命题:①已知都是正数,且a1a,则a b;1bb②已知 f ( x) 是 f ( x) 的导函数,若x R , f (x) 0 ,则 f (1) f (2)一定成立;③命题“x R ,使得x2 2 x 1 0 ”的否定是真命题;④“ x1, 且 y 1 ”是“ x y 2 ”的充要条件.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)已知向量 a(1, cos x ) 与 b ( 3 sin x cos x, y) 共线,且有函数 yf ( x) .2 2 2(Ⅰ)若 f ( x) 1,求 cos(22x) 的值;3(Ⅱ)在ABC 中,角 A, B, C ,的对边分别是 a, b, c ,且满足 2a cosC c 2b ,求函数f ( B) 的取值范围 .18.(本小题满分 12 分)已知等差数列a n的前 n 项和为n ,公差d 0,且3 5 1413 成等比数列.SS S50, a , a , a(Ⅰ)求数列a n 的通项公式;(Ⅱ)设b n 是首项为 1,公比为 3 的等比数列,求数列b n 的前 n 项和 T n .a n19.(本小题满分 12 分)已知四棱锥A BCDE ,其中AB BC AC,2,CD面ABC ,BE 1CD BE∥CD,F 为 AD的中点.D(Ⅰ)求证:EF ∥面 ABC ;(Ⅱ)求证:面ADE面ACD ;F( III)求四棱锥 A BCDE 的体积.EC AB20. (本小题满分 12 分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x之间对应的一组数据:时间 x (秒)51015203040深度 y (微米)61010131617现确定的研究方案是:先从这 6 组数据中选取 2 组,用剩下的 4 组数据求线性回归方程,再对被选取的 2 组数据进行检验.(Ⅰ)求选取的 2 组数据恰好不相邻的概率;(Ⅱ)若选取的是第 2 组和第 5 组数据,根据其它 4 组数据,求得y 关于x的线性回归方程 y?4 x 139,规定由线性回归方程得到的估计数据与所选出的检验数据的误1326差均不超过 2 微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分 12 分)已知函数ax b1, f ( 1)) 的切线方程为x y 3 0 .f (x)2在点 (x1(Ⅰ)求函数 f ( x) 的解析式;(Ⅱ)设 g ( x) ln x ,求证: g (x) f ( x) 在 x [1, ) 上恒成立.22. (本小题满分14 分)实轴长为 4 3 的椭圆的中心在原点,其焦点F1,, F2在x轴上.抛物线的顶点在原点O ,对称轴为 y 轴,两曲线在第一象限内相交于点 A ,且AF1AF2,△ AF1 F2的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点 A 作直线 l 分别与抛物线和椭圆交于B,C ,若 AC 2 AB ,求直线l的斜率k.yAF1 B o F2xC参考答案及评分标准一.选择题(本大题共12 小题,每小题 5 分,共 60 分.)BDBADBBDBC CB二.填空题(本大题共4 小题,每小题 4 分,共 16 分.)313. 214.1915. 10216. ①③3三.解答题17.(本小题满分 12 分)解:(Ⅰ)∵ a 与 b 共线1cos x∴xy 23 sin x cos2 2y3 sin x cosxcos 2x3sin x1(1 cos x) sin( x) 1 ⋯⋯⋯⋯ 3 分22 2226 2∴ f ( x)sin( x ) 1 1 ,即 sin(x) 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分62 2 cos(26 12x) cos2( x) 2cos 2 ( x) 1 2sin 2 ( x ) 1 33 3 62⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分(Ⅱ)已知2a cosC c2b由正弦定理得:2sin A cosC sin C2sin B 2 sin( A C )2sin A cosC sin C2sin A cosC2 cos Asin C∴ cosA1 ,∴在ABC 中 ∠ A231f (B)sin(B)26 25 ∵∠ A∴ 0 B ,B3 3 666∴1sin(B) 1, 1 f ( B) 32623∴函数f (B) 的取值范围为 (1, ]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分10 分12 分2013 年高考数学全国卷1(完整版试题 +答案 +解析 )18.(本小题满分12 分)解:(Ⅰ)依题意得3a132d5a1455022d⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( a13d ) 2a1 ( a112d )解得 a13,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分d2a n a1,即2n 1. 6 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( Ⅱ) bn3n1, bn a n3n1(2n 1) 3n 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分a nT n353732(2n 1) 3n 13T n 3 3 5327 33(2n 1) 3n 1(2n 1) 3n⋯⋯⋯⋯⋯⋯⋯⋯9分2T n 3 2 3 2 32 2 3n 1(2n1)3n32 3(13n 1 )( 2n 1)3n132n 3n∴ T n n 3n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分19.(本小题满分12 分)解:(Ⅰ)取AC 中点 G,连结 FG、 BG,∵F,G分别是 AD,AC的中点D1∴FG∥ CD,且 FG= DC=1 .2∵ BE∥ CD ∴ FG 与 BE 平行且相等F∴ EF∥ BG.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分EEF 面 ABC, BG面 ABC GC ∴ EF ∥面 ABC A⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)∵△ ABC 为等边三角形∴ BG⊥ AC B 又∵ DC⊥面 ABC,BG面 ABC∴ DC⊥ BG2013 年高考数学全国卷1(完整版试题 +答案 +解析 )∴ BG 垂直于面 ADC 的两条相交直线AC,DC,∴ BG⊥面 ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵EF∥ BG∴EF⊥面 ADC∵ EF面 ADE,∴面 ADE⊥面 ADC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分(Ⅲ)连结 EC,该四棱锥分为两个三棱锥E-ABC和 E- ADC .V A BCDE V E ABC V E ACD131113333.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分34321264另法:取 BC 的中点为 O ,连结AO ,则 AO BC ,又 CD平面ABC ,∴CD AO, BC CD C , ∴AO平面,∴AO为V A BCDE的高,BCDEAO 3, S BCDE(12)1 3 ,V A BCDE1333.222322420.(本小题满分12 分)解:(Ⅰ)设 6 组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A,从 6组数据中选取 2 组数据共有15 种情况:( 1,2 )( 1,3 )(1,4 )( 1,5 )( 1,6 )( 2,3 )( 2,4 )( 2,5 )( 2,6 )( 3,4 )( 3,5 )( 3,6 )( 4,5)( 4,6)( 5,6),其中事件A包含的基本事件有10种.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以P( A)102.所以选取的 2 组数据恰好不相邻的概率是2.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分1533( Ⅱ )当 x10时, ?413921921910 |2;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分26261326当x30时, ?413937937916 |2;2626132612 分所以,该研究所得到的回归方程是可靠的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.(本小题满分12 分)解:(Ⅰ)将 x 1 代入切线方程得y2∴ f ( 1)b a2 ,化简得 b a 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分11f ( x)a( x21)(ax b) 2 x(1x 2 ) 22013 年高考数学全国卷1(完整版试题 +答案 +解析 )f ( 1)2a2(b a)2b b1 .442解得: a2, b2∴ f ( x)2x2x 2.12x2(Ⅱ)由已知得ln x在 [1,) 上恒成立x21化简得 ( x21) ln x2x2即 x2 ln x ln x 2 x20在 [1,) 上恒成立.设 h(x)x 2 ln x ln x 2x 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分6分8分h (x)2xln x x 12x1∵ x 1∴ 2x ln x0,2,即 h ( x) 0 .10 分x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x∴ h(x) 在 [1,) 上单调递增, h( x)h(1) 0∴ g(x) f (x) 在 x[1,) 上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分22.(本小题满分 14分)解( 1)设椭圆方程为x2y21 (a b 0) , AF1 m, AF2 n a2b2m 2n24c2由题意知m n 4 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分mn 6解得 c 29 ,∴ b 212 9 3 .∴椭圆的方程为x 2y2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1213∵ y A c3,∴ y A1,代入椭圆的方程得x A 2 2 ,将点 A 坐标代入得抛物线方程为x 28 y .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)设直线l的方程为y 1 k ( x 2 2 ) , B(x1, y1 ), C (x2 , y2 )---2013 年高考数学全国卷1(完整版试题 +答案 +解析 )由 AC 2AB得 x22 22( x 2 2),1化简得 2x1x222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分联立直线与抛物线的方程y1k( x 2 2),x 28 y得 x28kx162k80∴ x1 2 28k ①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分联立直线与椭圆的方程y1k( x2 2 )x 24y 212得2)2(8 1622)32216 28 0k x k x k kk∴ x2 2 2162k 28k②⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分14k2∴ 2x1x22(8k2 2 )162k 28k2 2 2 214k 2整理得: (16k42)(112k)0 4k 2∴ k2,所以直线 l的斜率为2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分44-11-/11。
2013年全国高考理数真题试卷(新课标Ⅰ卷)及解析
外…………○…………装………学校:___________姓名:_______内…………○…………装………2013年全国高考理数真题试卷(新课标Ⅰ卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合A={x|x 2﹣2x >0}, B ={x|−√5<x <√5} ,则( ) A.A∩B=∅ B.A∪B=R C.B ⊆A D.A ⊆B2.已知双曲线C : x 2a 2−y 2b2=1(a >0,b >0)的离心率为 √52 ,则C 的渐近线方程为( ) A.y= ±14xB.y= ±13xC.y=±xD.y= ±12x3.执行程序框图,如果输入的t∈[﹣1,3],则输出的s 属于( )A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]4.设等差数列{a n }的前n 项和为S n , 若S m ﹣1=﹣2,S m =0,S m+1=3,则m=( ) A.3 B.4 C.5 D.6答案第2页,总14页 订…………○…………线…………○内※※答※※题※※订…………○…………线…………○5.某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π6.设m 为正整数,(x+y )2m 展开式的二项式系数的最大值为a ,(x+y )2m+1展开式的二项式系数的最大值为b ,若13a=7b ,则m=( ) A.5 B.6 C.7 D.87.已知函数f (x )= {−x 2+2x,x ≤0ln(x +1),x >0,若|f (x )|≥ax,则a 的取值范围是( )A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]8.设△A n B n C n 的三边长分别为a n , b n , c n , △A n B n C n 的面积为S n , n=1,2,3…若b 1>c 1 , b 1+c 1=2a 1 , a n+1=a n , b n+1=c n +a n2, c n+1=b n +a n2,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n ﹣1}为递增数列,{S 2n }为递减数列D.{S 2n ﹣1}为递减数列,{S 2n }为递增数列第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)9.已知两个单位向量 a →, b →的夹角为60°, c → =t a →+(1﹣t ) b → .若 b →• c →=0,则t= .10.若数列{a n }的前n 项和为S n = 23 a n + 13 ,则数列{a n }的通项公式是a n = .………○…………装………………○…………线……学校:___________姓名:________:___________………○…………装………………○…………线……11.设当x=θ时,函数f (x )=sinx ﹣2cosx 取得最大值,则cosθ= .12.若函数f (x )=(1﹣x 2)(x 2+ax+b )的图象关于直线x=﹣2对称,则f (x )的最大值为 .三、解答题(题型注释)13.如图,三棱柱ABC ﹣A 1B 1C 1中,CA=CB ,AB=AA 1 , ∠BAA 1=60°.(1)证明AB⊥A 1C ;(2)若平面ABC⊥平面AA 1B 1B ,AB=CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.14.已知圆M :(x+1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.15.已知函数f (x )=x 2+ax+b ,g (x )=e x (cx+d )若曲线y=f (x )和曲线y=g (x )都过点P (0,2),且在点P 处有相同的切线y=4x+2. (1)求a ,b ,c ,d 的值;(2)若x≥﹣2时,f (x )≤kg(x ),求k 的取值范围. 16.(选修4﹣1:几何证明选讲)如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D .(1)证明:DB=DC ;(2)设圆的半径为1,BC= √3 ,延长CE 交AB 于点F ,求△BCF 外接圆的半径. 17.(选修4﹣4:坐标系与参数方程) 已知曲线C 1的参数方程为 {x =4+5costy =5+5sint(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π) 18.(选修4﹣5:不等式选讲)已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3.答案第4页,总14页(1)当a=﹣2时,求不等式f (x )<g (x )的解集;(2)设a >﹣1,且当 x ∈[−a 2,12) 时,f (x )≤g(x ),求a 的取值范围.…………○…………线……:___________…………○…………线……参数答案1.B【解析】1.解:∵集合A={x|x 2﹣2x >0}={x|x >2或x <0}, ∴A∩B={x|2<x < √5 或﹣ √5 <x <0},A∪B=R,故选B .【考点精析】利用集合的并集运算和解一元二次不等式对题目进行判断即可得到答案,需要熟知并集的性质:(1)A A∪B,B A∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB ,反之也成立;求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边. 2.D【解析】2.解:由双曲线C : x 2a 2−y 2b 2=1 (a >0,b >0),则离心率e= c a = √a 2+b 2a = √52 ,即4b 2=a 2 ,故渐近线方程为y=± b ax= ±12x ,故选:D . 3.A【解析】3.解:由判断框中的条件为t <1,可得: 函数分为两段,即t <1与t≥1,又由满足条件时函数的解析式为:s=3t ;不满足条件时,即t≥1时,函数的解析式为:s=4t ﹣t 2 故分段函数的解析式为:s= {3t,t <14t −t 2,t ≥1,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象, 则输出的s 属于[﹣3,4]. 故选A .答案第6页,总14页○…………装…………○………订…………○…………线…………○※※请※※不※※要※※在※※装※※订线※※内※※答※※题※※○…………装…………○………订…………○…………线…………○【考点精析】根据题目的已知条件,利用程序框图的相关知识可以得到问题的答案,需要掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明. 4.C【解析】4.解:a m =S m ﹣S m ﹣1=2,a m+1=S m+1﹣S m =3, 所以公差d=a m+1﹣a m =1, S m =m(a 1+a m )2=0,得a 1=﹣2,所以a m =﹣2+(m ﹣1)•1=2,解得m=5, 故选C .【考点精析】解答此题的关键在于理解等差数列的前n 项和公式的相关知识,掌握前n 项和公式:,以及对等差数列的性质的理解,了解在等差数列{a n }中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列. 5.A【解析】5.解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4. ∴长方体的体积=4×2×2=16, 半个圆柱的体积= 12 ×22×π×4=8π 所以这个几何体的体积是16+8π; 故选A .外…………○…………装…………○………线…………○…学校:___________姓名:___________班内…………○…………装…………○………线…………○…【考点精析】解答此题的关键在于理解由三视图求面积、体积的相关知识,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积. 6.B【解析】6.解:∵m 为正整数,由(x+y )2m 展开式的二项式系数的最大值为a ,以及二项式系数的性质可得a= c 2m m ,同理,由(x+y )2m+1展开式的二项式系数的最大值为b ,可得 b= c 2m+1m = c 2m+1m+1 . 再由13a=7b ,可得13 c 2m m =7 c 2m+1m ,即 13× (2m)!m!⋅m! =7× (2m+1)!m!(m+1)! ,即 13=7× 2m+1m+1 ,即 13(m+1)=7(2m+1),解得m=6,故选:B . 7.D【解析】7.解:由题意可作出函数y=|f (x )|的图象,和函数y=ax 的图象,由图象可知:函数y=ax 的图象为过原点的直线,当直线介于l 和x 轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f (x )|在第二象限的部分解析式为y=x 2﹣2x , 求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l 的斜率为﹣2, 故只需直线y=ax 的斜率a 介于﹣2与0之间即可,即a∈[﹣2,0] 故选:D 8.B【解析】8.解:b 1=2a 1﹣c 1且b 1>c 1 , ∴2a 1﹣c 1>c 1 , ∴a 1>c 1 , ∴b 1﹣a 1=2a 1﹣c 1﹣a 1=a 1﹣c 1>0,∴b 1>a 1>c 1 ,又b 1﹣c 1<a 1 , ∴2a 1﹣c 1﹣c 1<a 1 , ∴2c 1>a 1 , ∴ c 1>a 12,答案第8页,总14页……○…………装…………○…………订…………○…………线…………○※※请※※不※※要※※※※装※※订※※线※※内※※答※※题※※……○…………装…………○…………订…………○…………线…………○由题意,+a n , ∴b n+1+c n+1﹣2a n = 12 (b n +c n ﹣2a n ),∴b n +c n ﹣2a n =0,∴b n +c n =2a n =2a 1 , ∴b n +c n =2a 1 , 又由题意,b n+1﹣c n+1=c n −b n2,∴ =a 1﹣b n ,∴b n+1﹣a 1= 12(a 1−b n ) ,∴b n ﹣a 1= (−12)n−1,∴ ,c n =2a 1﹣b n = ,∴[ ][ ]= [ ﹣ ]单调递增(可证当n=1时 >0)故选B .【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列a n 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式. 9.2【解析】9.解:∵, c →⋅b →=0 ,∴=0,∴tcos60°+1﹣t=0,∴1 −12t =0,解得t=2.所以答案是2.【考点精析】解答此题的关键在于理解平面向量的基本定理及其意义的相关知识,掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.10.(﹣2)n ﹣1【解析】10.解:当n=1时,a 1=S 1= 23a 1+13 ,解得a 1=1当n≥2时,a n =S n ﹣S n ﹣1=( 23a n +13 )﹣( 23a n−1+13 )= 23a n +13a n−1 , 整理可得 13a n =−13a n−1 ,即 a nan−1=﹣2,故数列{a n }从第二项开始是以﹣2为首项,﹣2为公比的等比数列,…○…………订…………○………线…………○…___班级:___________考号:___________…○…………订…………○………线…………○…故当n≥2时,a n =(﹣2)n ﹣1=(﹣2)n ﹣1 经验证当n=1时,上式也适合, 所以答案是:(﹣2)n ﹣1【考点精析】利用等比数列的通项公式(及其变式)对题目进行判断即可得到答案,需要熟知通项公式:.11.- 2√55【解析】11.解:f (x )=sinx ﹣2cosx= √5 ( √55 sinx ﹣ 2√55cosx )= √5 sin (x ﹣α)(其中cosα= √55 ,sinα=2√55), ∵x=θ时,函数f (x )取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ= √5 , 又sin 2θ+cos 2θ=1,联立得(2cosθ+ √5 )2+cos 2θ=1,解得cosθ=﹣ 2√55. 所以答案是:﹣2√55【考点精析】通过灵活运用两角和与差的正弦公式,掌握两角和与差的正弦公式:即可以解答此题.12.16【解析】12.解:∵函数f (x )=(1﹣x 2)(x 2+ax+b )的图象关于直线x=﹣2对称, ∴f(﹣1)=f (﹣3)=0且f (1)=f (﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0, 解之得 {a =8b =15,因此,f (x )=(1﹣x 2)(x 2+8x+15)=﹣x 4﹣8x 3﹣14x 2+8x+15, 求导数,得f′(x )=﹣4x 3﹣24x 2﹣28x+8,令f′(x )=0,得x 1=﹣2﹣ √5 ,x 2=﹣2,x 3=﹣2+ √5 ,当x∈(﹣∞,﹣2﹣ √5 )时,f′(x )>0;当x∈(﹣2﹣ √5 ,﹣2)时,f′(x )<0;当x∈(﹣2,﹣2+ √5 )时,f′(x )>0; 当x∈(﹣2+ √5 ,+∞)时,f′(x )<0 ∴f(x )在区间(﹣∞,﹣2﹣ √5 )、(﹣2,﹣2+ √5 )上是增函数,在区间(﹣2﹣ √5 ,﹣2)、(﹣2+ √5 ,+∞)上是减函数. 又∵f(﹣2﹣ √5 )=f (﹣2+ √5 )=16,答案第10页,总14页……外…………○………线…………○※※……内…………○………线…………○∴f(x )的最大值为16. 所以答案是:16.【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2) 将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题. 13.(1)解:取AB 的中点O ,连接OC ,OA 1,A 1B ,因为CA=CB ,所以OC⊥AB,由于AB=AA 1,∠BAA 1=60°, 所以△AA 1B 为等边三角形,所以OA 1⊥AB, 又因为OC∩OA 1=O ,所以AB⊥平面OA 1C , 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)解:由(1)知OC⊥AB,OA 1⊥AB,又平面ABC⊥平面AA 1B 1B ,交线为AB , 所以OC⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两垂直.以O 为坐标原点, OA → 的方向为x 轴的正向,| OA →|为单位长,建立如图所示的坐标系, 可得A (1,0,0),A 1(0, √3 ,0),C (0,0, √3 ),B (﹣1,0,0),则 BC →=(1,0, √3 ), BB 1→=AA 1→=(﹣1, √3 ,0), A 1C →=(0,﹣ √3 , √3 ), 设 n → =(x ,y ,z )为平面BB 1C 1C 的法向量,则 {n →⋅BC →=0n →⋅BB 1→=0,即 {x +√3z =0−x +√3y =0,可取y=1,可得 n →=( √3 ,1,﹣1),故cos < n →, A 1C→>= n →⋅A 1C →|n →|⋅|A 1C →|=- √510 ,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值, 故直线A 1C 与平面BB 1C 1C 所成角的正弦值为: √510 .【解析】13.(1)取AB 的中点O ,连接OC ,OA 1 , A 1B ,由已知可证OA 1⊥AB,AB⊥平面OA 1C ,进而可得AB⊥A 1C ;(2)易证OA ,OA 1 , OC 两两垂直.以O 为坐标原点, OA →的方向为x 轴的正向,| OA →|为单位长,建立坐标系,可得 BC →, BB 1→, A 1C →的坐标,设 n →=(x ,y ,z )为平面BB 1C 1C 的法向量,则 {n →⋅BC →=0n →⋅BB 1→=0,可解得 n →=( √3 ,1,﹣1),可求|cos < n →, A 1C → >|,即为所求正弦值.【考点精析】关于本题考查的直线与平面垂直的性质和平面与平面垂直的判定,需要了解垂直于同一个平面的两条直线平行;一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案. 14.(1)解:由圆M :(x+1)2+y 2=1,可知圆心M (﹣1,0);圆N :(x ﹣1)2+y 2=9,圆心N (1,0),半径3. 设动圆的半径为R ,∵动圆P 与圆M 外切并与圆N 内切,∴|PM|+|PN|=R+1+(3﹣R )=4,而|NM|=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆, ∴a=2,c=1,b 2=a 2﹣c 2=3. ∴曲线C的方程为 x 24+y 23=1 (x≠﹣2).(2)解:设曲线C 上任意一点P (x ,y ),由于|PM|﹣|PN|=2R ﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P 的圆心为(2,0)R=2时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 √3 .②若l 的倾斜角不为90°,由于⊙M 的半径1≠R,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,则 |QP||QM|=Rr 1,可得Q (﹣4,0),所以可设l :y=k (x+4),由l 于M 相切可得:√1+k2=1 ,解得 k =±√24.当 k =√24时,联立 {y =√24x +√2x 24+y 23=1,得到7x 2+8x ﹣8=0.∴ x 1+x 2=−87 , x 1x 2=−87 .∴|AB|= √1+k 2|x 2−x 1| = √1+(√24)2√(−87)2−4×(−87) = 187由于对称性可知:当 k =−√24时,也有|AB|= 187 .综上可知:|AB|=2 √3 或 18.答案第12页,总14页【解析】14.(1)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得|PM|+|PN|=R+1+(3﹣R )=4,而|NM|=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(2)设曲线C 上任意一点P (x ,y ),由于|PM|﹣|PN|=2R ﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P 的圆心为(2,0)R=2时,其半径最大,其方程为(x ﹣2)2+y 2=4.分①l 的倾斜角为90°,此时l 与y 轴重合,可得|AB|.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,根据 |QP||QM|=Rr 1可得Q (﹣4,0),所以可设l :y=k (x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出. 15.(1)解:由题意知f (0)=2,g (0)=2,f′(0)=4,g′(0)=4, 而f′(x )=2x+a ,g′(x )=e x (cx+d+c ),故b=2,d=2,a=4,d+c=4, 从而a=4,b=2,c=2,d=2;(2)解:由(1)知,f (x )=x 2+4x+2,g (x )=2e x (x+1) 设F (x )=kg (x )﹣f (x )=2ke x (x+1)﹣x 2﹣4x ﹣2, 则F′(x )=2ke x (x+2)﹣2x ﹣4=2(x+2)(ke x ﹣1), 由题设得F (0)≥0,即k≥1,令F′(x )=0,得x 1=﹣lnk ,x 2=﹣2,①若1≤k<e 2,则﹣2<x 1≤0,从而当x∈(﹣2,x 1)时,F′(x )<0,当x∈(x 1,+∞)时,F′(x )>0,即F (x )在(﹣2,x 1)上减,在(x 1,+∞)上是增,故F (x )在[﹣2,+∞)上的最小值为F (x 1),而F (x 1)=﹣x 1(x 1+2)≥0,x≥﹣2时F (x )≥0,即f (x )≤kg(x )恒成立. ②若k=e 2,则F′(x )=2e 2(x+2)(e x ﹣e ﹣2),从而当x∈(﹣2,+∞)时,F′(x )>0, 即F (x )在(﹣2,+∞)上是增,而F (﹣2)=0,故当x≥﹣2时,F (x )≥0,即f (x )≤kg(x )恒成立.③若k >e 2时,F′(x )>2e 2(x+2)(e x ﹣e ﹣2),而F (﹣2)=﹣2ke ﹣2+2<0,所以当x >﹣2时,f (x )≤kg(x )不恒成立, 综上,k 的取值范围是[1,e 2].【解析】15.(1)对f (x ),g (x )进行求导,已知在交点处有相同的切线及曲线y=f (x )和曲线y=g (x )都过点P (0,2),从而解出a ,b ,c ,d 的值;(2)由(1)得出f (x ),g (x )的解析式,再求出F (x )及它的导函数,通过对k 的讨论,判断出F (x )的最值,从而判断出f (x )≤kg(x )恒成立,从而求出k 的范围. 16.(1)证明:连接DE 交BC 于点G .由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE, ∴∠CBE=∠BCE,BE=CE .又∵DB⊥BE,∴DE 为⊙O 的直径,∠DCE=90°. ∴△DBE≌△DCE,∴DC=DB.………○………__________………○………(2)证明:由(1)可知:∠CDE=∠BDE,DB=DC . 故DG 是BC 的垂直平分线,∴BG= √32 . 设DE 的中点为O ,连接BO ,则∠BOG=60°. 从而∠ABE=∠BCE=∠CBE=30°. ∴CF⊥BF.∴Rt△BCF 的外接圆的半径= √32 .【解析】16.(1)连接DE 交BC 于点G ,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE .由已知DB⊥BE,可知DE 为⊙O 的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB .(2)由(1)可知:DG 是BC 的垂直平分线,即可得到BG= √32 .设DE 的中点为O ,连接BO ,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF 的外接圆的半径= 12BC . 17.(1)解:曲线C 1的参数方程式 {x =4+5costy =5+5sint(t 为参数),得(x ﹣4)2+(y ﹣5)2=25即为圆C 1的普通方程, 即x 2+y 2﹣8x ﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C 1的极坐标方程;(2)解:曲线C 2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x 2+y 2﹣2y=0,由 {x 2+y 2−8x −10y +16=0x 2+y 2−2y =0,解得 {x =1y =1 或 {x =0y =2 . ∴C 1与C 2交点的极坐标分别为( √2 , π4 ),(2, π2 ).【解析】17.(1)对于曲线C 1利用三角函数的平方关系式sin 2t+cos 2t=1即可得到圆C 1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C 1的极坐标方程;(2)先求出曲线C 2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C 1与C 2交点的极坐标. 18.答案第14页,总14页……○…………订………※※装※※订※※线※※内※※答※※题……○…………订………设y=|2x ﹣1|+|2x ﹣2|﹣x ﹣3,则 y= {−5x,x <12−x −2,12≤x ≤13x −6,x >1,它的图象如图所示:结合图象可得,y <0的解集为(0,2),故原不等式的解集为(0,2).(2)解:设a >﹣1,且当 x ∈[−a 2,12) 时,f (x )=1+a ,不等式化为 1+a≤x+3,故 x≥a﹣2对 x ∈[−a 2,12) 都成立.故﹣ a2 ≥a﹣2,解得 a≤ 43 ,故a 的取值范围为(﹣1, 43].【解析】18.(1)当a=﹣2时,求不等式f (x )<g (x )化为|2x ﹣1|+|2x ﹣2|﹣x ﹣3<0.设y=|2x ﹣1|+|2x ﹣2|﹣x ﹣3,画出函数y 的图象,数形结合可得结论.(2)不等式化即 1+a≤x+3,故 x≥a﹣2对 x ∈[−a 2,12) 都成立.故﹣ a2 ≥a﹣2,由此解得a 的取值范围.【考点精析】本题主要考查了函数单调性的性质和绝对值不等式的解法的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.。
2013年高考理科数学全国新课标卷1试题与答案解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a.∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2)上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan αtan ∠PBA 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直. 以O 为坐标原点,OA u u u r 的方向为x 轴的正方向,|OA u u u r |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,0),C (0,0,B (-1,0,0).则BC uuu r =(1,0,1BB u u u r =1AA u u u r =(-1,0),1AC u u u r =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =1,-1). 故cos 〈n ,1AC u u u r 〉=11A C A C⋅u u u r n n=. 所以A 1C 与平面BB 1C 1C19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M , 解得k =4±. 当k =4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187. 21.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1). 而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增.而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.综上,k 的取值范围是[1,e 2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°,由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG =2. 设DE 的中点为O ,连结BO ,则∠BOG =60°.从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt△BCF . 23. 解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年高考数学全国卷1(完整版试题+答案+解析)
2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2013年高考理科数学全国新课标卷1试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,2013 全国新课标卷1理科数学 第11页 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.x x y ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y=k (x +4).由l 与圆M , 解得k =当k y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x1,2=47-±.所以|AB|2118|7x x-=.当k=|AB|=187.综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-21x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.2013 全国新课标卷1理科数学第12页2013 全国新课标卷1理科数学 第13页 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年高考理科数学全国卷1(含详细答案)
数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
2013年高考全国一卷(理)高清+完整解答
解得 m 6 .
(10)已知椭圆
E
:ax
2 2
y2 b2
1(a
b
0) 的右焦点为 F (3,0) ,过点 F
的直线交椭圆 E 于
A 、 B 两点。若 AB 的中点坐标为 (1,1) ,则 E 的方程为
(A)
x2 45
y2 36
1
(C)
x2 27
y2 18
1
【答案】D .
(B)
讨论 y f x 单调性得到当 x 2 5 时 ymax 16 . 注 这是填空题,且最大值是一定存在的,只须将 x1 2 , x2 2 5 , x3 2 5 代入 y f x 计算即可.
三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分 12 分)
x2 36
y2 27
1
(D)
x2 18
y2 9
1
【解析】设 A x1 , y1 , B x2 , y2 ,
则
x12 a2
x22
a2
y12 b2
y22 b2
1, 1.
两式相减得
2 x1
a2
x2
2
y1 b2
y2
0
,
b2 a2
(4)已知双曲线 C
:
x2 a2
y2 b2
1(a 0,b 0) 的离心率为
5 2
,则
C
的渐近线方程为
(A)
y
1 4
x
(B)
2013年高考理科数学全国卷1及答案
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则 ( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器 高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()x g x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围. 请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析|2{A B x=A B=R,故选【提示】根据一元二次不等式的解法,求出集合A,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D【解析】解:3i|,∴4i)342555z==+故选A.1)12=,解得进而得到公差d,由前故选A.数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)。
2013年全国1卷高考理科数学试卷及答案(精校word详细解析版)
2013年普通高等学校招生全国统一考试全国课标Ⅰ理科数学一、 选择题:共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项. 1.已知集合{}{}2|20,|55A x x x B x x =->=-<<,则 ( ) A.A∩B=∅ B.A ∪B=R C.B ⊆AD.A ⊆B2.若复数z 满足(34)|43|i z i -=+,则z 的虚部为()A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C.按学段分层抽样 D.系统抽样4.已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为A.14y x =±B.13y x =± C.12y x =± D.y x =±5.运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( ) A .35003cm π B . 38663cm π C. 313723cm π D. 320483cm π7.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A .3B .4 C.5 D.68.某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 9.设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( )A .5B.6C.7D.810.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆E 于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A .2214536x y +=B .2213627x y +=C.2212718x y += D.221189x y += 11.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-12.设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A .{S n }为递减数列 B .{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列二.填空题:本大题共四小题,每小题5分。
2013全国高考1卷理科数学试题与答案解析
WORD 格式整理2012 年普通高等学校招生全国统一考试理科数学 第 I 卷一、选择题: 本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
( 1)已知集合 A {1,2,3,4,5} , B {( x, y) |x A, yA, x y A} ,则 B 中所含元素的个数为 ( A ) 3 ( B )6 (C ) 8 (D ) 10( 2)将 2 名教师, 4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1 名教师和2 名学生组成,不同的安排方案共有 ( A ) 12 种 ( B ) 10 种 ( C ) 9种 (D ) 8 种( 3)下面是关于复数 z 2 的四个命题 1ip 1 : | z | 2 p 2 : z 22i p 3 : z 的共轭复数为 1 i p 4 : z 的虚部为1其中真命题为(A ) p 2 , p 3( B ) p 1 ,p 2( C ) p 2 ,p 4 ( D ) p 3 , p 4( 4)设 F 1, F 2 是椭圆 E : x2 y 21(a b 0) 的左、右焦点, P 为a 2b 23aF PF 是底角为 30 的等腰三角形,则直线 x 上的一点,2 2 1E 的离心率为(A) 1 2 3 4 (B) 3 (C) (D) 2 4 5( 5)已知 { a n } 为等比数列, a 4a 7 2 , a 5 a 6 8 ,则 a 1 a10(A) 7 (B) 5 (C) 5 (D) 7( 6)如果执行右边的程序图,输入正整数N ( N 2) 和实数 a 1 , a 2 ,..., a N 输入A, B , 则(A) A B 为 a 1 , a 2 ,..., a N 的和( B )AB为 a ,a ,..., a 的算式平均数 2 1 2 N( C ) A 和 B 分别是 a 1 , a 2 ,..., a N 中最大的数和最小的数专业技术参考资料WORD 格式整理( D ) A 和 B 分别是 a 1 , a 2 ,..., a N 中最小的数和最大的数( 7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( A ) 6 (B)9 ( C ) 12 ( D ) 18( 8)等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 216x 的准线交于 A, B 两点,| AB | 4 3 ,则 C 的实轴长为( A ) 2 ( B ) 2 2 ( C ) 4 ( D ) 8( 9)已知 0 ,函数 f (x) sin( x ) 在 , 单调递减,则 的取值范围4 2(A) [ 1 ,5 ](B) [ 1 , 3] (C) (0, 1 ](D) (0, 2]2 4 2 4 2( 10)已知函数 f ( x) 1 ,则 y f ( x) 的图像大致为1) ln(x x( 11)已知三棱锥 S ABC 的所有顶点都在球 O 的球面上,ABC 是边长为 1 SC 为 O的正三角形, 的直径,且 SC 2 ,则此棱锥的体积为(A)2(B)3 (C)2(D)2 6 63 2( 12)设点 P 在曲线 y 1 e x上,点 Q 在曲线 yln(2 x) 上,则 | PQ |的最小值为2(A) 1 ln 2 (B)2(1 ln2) (C) 1 ln 2 (D)2(1 ln 2) 专业技术参考资料WORD 格式整理第Ⅱ卷本卷包括必考题和选考题两部分。
2013年高考理科数学全国卷1-答案
故选A.故选A.综上可知:[,0]2a ∈-.(步骤4)【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案.51111得1AB AC ⊥; (Ⅱ)易证OA ,1OA ,OC 两两垂直.以O 为坐标原点,OA u u u r的方向为x 轴的正向,||OA u u u r 为单位长,建立r u u u r【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出. 【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系. 21.【答案】(Ⅰ)4a =2b = 2c = 2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+xg x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
2013年高考理科数学全国新课标卷Ⅰ试题与答案word解析版
解得 =6,故选B.
10、已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点。若AB的中点坐标为(1,-1),则E的方程为()
A、+=1B、+=1 C、+=1D、+=1
【命题意图】本题主要考查椭圆中点弦的问题,是中档题.
∴输出s属于[-3,4],故选 .
6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )
A、cm3B、cm3 C、cm3D、cm3
【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.
【命题意图】本题主要考查分层抽样方法,是容易题.
【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.
4、已知双曲线C:-=1(a>0,b>0)的离心率为 ,则C的渐近线方程为()
A、y=± x(B)y=± x(C)y=± x(D)y=±x
【命题意图】本题主要考查双曲线的几何性质,是简单题.
2013年高考理科数学全国新课标卷(Ⅰ)
试题与答案word解析版
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页。全卷满分150分。考试时间120分钟。
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
【解析】由题知, ,即 = = ,∴ = ,∴ = ,∴ 的渐近线方程为 ,故选 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校夏季招生全国统一考试数学理工农医类
(全国新课标卷I)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2
-2x >0},B ={x |-5<x <5},则( ). A .A ∩B= B.A ∪B =R C .B ⊆A D.A ⊆B
2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i |,则z 的虚部为( ). A .-4 B.45-
C .4 D.4
5 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).
A .简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样
4.(2013课标全国Ⅰ,理4)已知双曲线C:2222=1x y a b
-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).
A.y =14x ±
B .y=13x ±
C .y =12x
± D.y=±x
5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出
的s 属于( ).
A.[-3,4]
B.[-5,2]
C.[-4,3]
D .[-2,5]
6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 c m,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).
A.500π3cm3 B.866π
3cm 3
C .1372π3cm3 D.2048π
3cm3
7.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n项和为S n ,若S m -1=-2,S m =0,S
m
+1=3,则m =( ).
A.3 B .4 C .5 D.6
8.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则
该几何体的体积为( ).
A.16+8π
B .8+8π
C .16+16π
D.8+16π
9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x+y )2m +1展开式
的二项式系数的最大值为b.若13a =7b ,则m =( ).
A.5 B.6 C.7 D.8 10.(2013课标全国Ⅰ,理10)已知椭圆E:22
22=1x y a b
+(a>b>0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ). A.22=14536x y + B.22=13627x y + C .22
=1
2718x y + D.22=1189x y +
11.(2013课标全国Ⅰ,理11)已知函数f(x )=220ln(1)0.
x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是
( ).
A .(-∞,0]
B .(-∞,1] C.[-2,1] D.[-2,0]
12.(2013课标全国Ⅰ,理12)设△A n Bn C n的三边长分别为a n ,bn ,cn,△A n B nCn 的面积为Sn ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,bn +1=2n n c a +,c n+1=2
n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列
C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列
第Ⅱ卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分.
13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c =ta +(1-t )b.若b·c =0,则t =__________.
14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和
2133n n S a =+,则{an}的通项公式是an =_______.
15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f (x)=sin x-2co s x取得最大值,则c os θ=__________.
16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x=-2对称,则f(x)的最大值为__________.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠AB C=90°,AB
,BC =1,P 为△AB C内一点,∠BPC =90°.
(1)若PB =12
,求P A; (2)若∠APB =150°,求tan ∠PB A
.。