pvd和cvd是有区别的
PVD与CVD
2.蒸发镀用途
蒸镀只适用于镀 制对结合强度要 求不高的某些功 能膜,例如用作 电极的导电膜, 光学透镜的反射 膜及装饰用的金 膜、银膜。
2.蒸发镀用途
蒸镀纯金属膜中90%是铝膜,铝膜有广泛的用 途。 目前在制镜工业中已经广泛采用蒸镀,以铝代 银,节约贵重金属。 集成电路是镀铝进行金属化,然后再刻蚀出导 线。在聚酯薄膜上镀铝具有多种用途,可制造 小体积的电容器;制作防止紫外线照射的食品 软包装袋等;经阳极氧化和着色后即得色彩鲜 艳的装饰膜。 双面蒸镀铝的薄钢板可代替镀锡的马口铁制造 罐头盒。
一、 蒸发镀
在真空条件下,用加热蒸发的方法使镀膜材 料转化为气相,然后凝聚在基体表面的方法 称为蒸发镀膜,简称蒸镀。 蒸发镀是PVD方法中最早用于工业生产的一 种方法,该方法工艺成熟,设备较完善,低 熔点金属蒸发效率高,可用于制备介质膜、 电阻、电容等,也可以在塑料薄膜和纸张上 连续蒸镀铝膜。
绕射性好。
基片的正面反面甚至内孔、凹槽、狭缝等,都能沉积上薄膜。
沉积速率快,镀层质量好 。
离子镀膜获得的镀层组织致密,针孔、气泡少。而且镀前对工件 ( 基片 )清洗处理较简单。成膜速度快,可达 75m/min ,可镀制厚 达30m的镀层,是制备厚膜的重要手段。
2 离子镀膜的特点
可镀材质广泛
真空蒸镀时,蒸发粒子动能为0.1~1.0eV,膜对 基体的附着力较弱,为了改进结合力,一般采 用: 在基板背面设臵一个加热器,加热基极,使基 板保持适当的温度,这既净化了基板,又使膜 和基体之间形成一薄的扩散层,增大了附着力。 对于蒸镀像Au这样附着力弱的金属,可以先蒸 镀像Cr,Al等结合力高的薄膜作底层。
1.基本原理
其中靶是一平板,由欲沉积的材料组成,一般 将它与电源的负极相连,故此法又常称为阴极 溅射镀膜。 固定装臵可以使工件接地、悬空、偏臵、加热、 冷却或同时兼有上述几种功能。真空室中需要 充入气体作为媒介,使辉光放电得以启动和维 持,最常用的气体是氩气。
cvd或pvd镀膜原理
cvd或pvd镀膜原理CVD或PVD镀膜原理引言:随着科技的不断进步,各种高科技产品的需求也越来越大。
在许多电子产品和工业设备中,镀膜技术被广泛应用。
其中,CVD(化学气相沉积)和PVD(物理气相沉积)是两种常见的镀膜方法。
本文将重点介绍这两种方法的原理及其应用。
一、CVD镀膜原理:CVD是一种基于气相反应的镀膜技术。
其原理是通过在高温和低压环境下,将气体中的化学物质分解并沉积在基底表面上,形成一层致密且均匀的薄膜。
具体步骤如下:1. 基底表面的预处理:在进行CVD镀膜之前,需要对基底表面进行预处理,以去除杂质和提高表面的粗糙度,以便更好地与镀膜层结合。
2. 反应物的供给:在CVD过程中,需要提供反应物。
这些反应物可以是气体或液体形式,根据需要选择不同的反应物。
例如,金属气体、有机化合物或金属有机化合物可以作为反应物。
3. 反应室的设置:CVD镀膜通常在封闭的反应室中进行。
反应室内的温度和压力可以根据所需的镀膜材料和薄膜性质进行调节。
4. 反应过程:在反应室内,反应物会在高温下分解,并与基底表面上的活性位点发生反应,生成新的化合物。
这些化合物在基底表面沉积,逐渐形成一层均匀的薄膜。
5. 薄膜性质的调节:通过调节反应室内的温度、压力和反应物的浓度,可以控制薄膜的成分、结构和性质。
这些参数的调节可以实现对薄膜的硬度、抗腐蚀性、电学性能等特性的控制。
6. 后处理:在CVD过程结束后,需要对镀膜进行后处理,以去除残余的反应物和提高薄膜的质量。
这可以通过热处理、溶剂洗涤或化学处理等方法来实现。
二、PVD镀膜原理:PVD是一种基于物理过程的镀膜技术。
其原理是通过蒸发或溅射源,将固体材料转化为气体或离子态,并沉积在基底表面上,形成一层致密且均匀的薄膜。
具体步骤如下:1. 蒸发源或溅射源的选择:PVD镀膜过程需要使用蒸发源或溅射源来提供镀膜材料。
蒸发源可以是电子束蒸发源或电阻加热蒸发源,而溅射源可以是直流或射频溅射源。
pvd和cvd是有区别的
CVD与PVD的区别及比较2009年03月06日 17:17 www.elecfans.co 作者:本站用户评论(0)关键字:CVD与PVD的区别及比较(一)选材:化学蒸镀-装饰品、超硬合金、陶瓷物理蒸镀-高温回火之工、模具钢(二)蒸镀温度、时间及膜厚比较:化学蒸镀-1000℃附近,2~8小时,1~30μm(通常5~10μm)物理蒸镀-400~600℃,1~3小时,1~10μm (三) 物性比较:化学蒸镀皮膜之结合性良好,较复杂之形状及小孔隙都能蒸镀;唯若用于工、模具钢,因其蒸镀温度高于钢料之回火温度,故蒸镀后需重施予淬火-回火,不适用于具精密尺寸要求之工、模具。
不需强度要求之装饰品、超硬合金、陶瓷等则无上述顾虑,故能适用。
物理蒸镀皮膜之结合性较差,且背对金属蒸发源之处理组件会产生蒸镀不良现象;但其蒸镀温度可低于工、模具钢的高温回火温度,且其蒸镀后之变形甚微,故适用于经高温回火之精密工具、模具。
(4) 半导体制程概要-离子布植郑硕贤4.1前言在半导体组件工业中,常在半导体晶体中加入杂质以控制带电载子数目,来增加导电性。
这种加入杂质的方法称为掺入杂质(Doping) 。
一般来说,掺入杂质的方法有两种:1. 化学蒸镀法2. 扩散法3. 离子布植法其中1、3两项在微电子组件工业中已普遍使用,这两种方法虽简易实用,但却牺牲了完整晶型的要求。
如化学蒸镀法在较低温度下进行,则蒸镀层常为非晶质或是多晶质。
离子布植则造成许多表面有许多点缺陷,甚至使表面层变成非晶质;因此一般均须经一道恢复完整晶格的退火处理,使表面层能回复晶型的样子。
4.2原理离子布植是将高能量带电粒子射入硅基晶中。
离子进入硅靶材后,会和硅原子发生碰撞而逐渐损失能量;直到能量耗损殆尽,即停止在该深度。
在与硅原子碰撞过程中,离子会传递部份能量给硅原子,若此能量大于硅和硅间的键结能量,则可使其产生位移而产生新的入射粒子;这新获得动能的粒子,也会与其它硅原子产生碰撞。
CVD和PVD工艺比较
CVD工艺的沉积温度较低,有利于保持材料的原有性能。
CVD和PVD工艺优缺点总结
CVD和PVD工艺优缺点总结
高能耗
CVD工艺需要高温反应,因此能耗 较高。
设备复杂
CVD工艺需要复杂的反应设备和管道 系统,增加了设备的维护成本。
CVD和PVD工艺优缺点总结
环保
PVD工艺不产生有害物质,对环境友好。
ABCD
在材料科学领域,CVD工 艺可用于制备各种高性能 材料,如碳纳米管、金刚 石等。
在光学领域,CVD工艺可 用于制备各种光学薄膜和 增透膜。
03 PVD工艺简介
PVD工艺定义
PVD工艺是一种物理气相沉积技术,利用物理方法将材料从 源物质中蒸发出来,并在基材上沉积形成薄膜。
与CVD工艺不同,PVD工艺不涉及化学反应,而是通过物理 过程实现材料的沉积。
CVD工艺原理
CVD工艺原理是利用气态的先驱反应 物在高温或催化剂的作用下发生化学 反应,生成固态沉积物。
反应过程中,先驱反应物通过扩散作 用到达基材表面,并在表面发生化学 反应,形成固态沉积物。
CVD工艺应用
CVD工艺广泛应用于材料 科学、电子学、光学等领 域。
在电子学领域,CVD工艺 可用于制备各种电子器件 和集成电路的薄膜材料。
薄膜质量比较
总结词
CVD工艺生成的薄膜质量通常优于PVD工艺。
详细描述
CVD工艺可以生成结构致密、与基材结合紧密的薄膜,同时具有较高的表面光洁度。相比之下,PVD 工艺生成的薄膜可能在致密性和附着力方面稍逊于CVD工艺。
适用材料比较
总结词
CVD工艺适用于多种材料,而PVD工艺 在某些材料上表现更佳。
高附着力
PVD工艺制备的涂层与基材之间具有高附着 力。
PVDCVD工艺参数
PVDCVD工艺参数PVD(Physical Vapor Deposition)和CVD(Chemical Vapor Deposition)是两种常用的表面涂层工艺,用于为材料表面添加附着性、耐磨性、耐腐蚀性等功能薄膜。
下面将详细介绍PVD和CVD的工艺参数,以及它们各自的特点和应用。
PVD工艺参数:1.作用气体:PVD过程通常使用惰性气体,如氩气,用于提供等离子体和清除反应生成物。
2.工作压力:标准PVD系统通常在0.1-1Pa的真空范围内工作,以减少气体碰撞和增加薄膜的纯度。
3.沉积速率:沉积速率取决于多个因素,包括材料的性质、沉积温度、工艺参数等。
一般来说,PVD的沉积速率较低,通常在几纳米到几十纳米每分钟。
4.沉积温度:PVD可以在较低的温度下进行,通常在室温到几百摄氏度之间。
较低的沉积温度使得PVD可以用于对温度敏感的基底材料。
5.靶材料:PVD将以所需物质构成的靶材放置在真空腔室中,并使用极性放电和磁控制来释放蒸汽,并形成薄膜。
PVD的特点和应用:1.高纯度薄膜:PVD薄膜具有高纯度和致密性,能够提供优异的耐磨、耐腐蚀和美观性能。
2.可控薄膜厚度:通过调整沉积时间和速率,可以精确控制薄膜的厚度和均匀性,以满足不同的应用需求。
3.易于制备复杂形状薄膜:PVD可以在复杂形状的基底表面上均匀沉积,适用于制备微细结构、凹凸不平的薄膜表面。
4.应用广泛:PVD在很多领域得到应用,如太阳能电池板、LED光源、汽车零部件、钟表、饰品等。
CVD工艺参数:1.反应气体:CVD过程通常使用易于分解的反应气体,如氨、硅烷、四氯化钛等。
反应气体的选择和纯度对薄膜的品质和成分有重要影响。
2.工作压力:CVD系统通常需要较高的工作压力,以保持反应气体在腔体中的适当浓度,并促进分解和沉积。
3.沉积温度:CVD需要较高的沉积温度,通常在数百到上千摄氏度之间。
高温可以促进气体分解和反应的进行,形成致密的薄膜。
4.沉积速率:CVD的沉积速率通常较高,可以达到几微米到几十微米每小时,因此适用于快速生长较厚的薄膜。
薄膜技术中PVD和CVD的区别详解
Page 24
Page 14
溅射法
直流溅射沉积装置
真空系统中,靶材
是需要溅射的材料, 它作为阴极。相对于 作为阳极的衬底加有 数千伏的电压。在对 系统预抽真空以后, 充入适当压力的惰性 气体。
Page 15
溅射法
溅射法分类
(1)直流溅射; (2)高频溅射; (3)磁控溅射; (4)反应溅射; (5)离子镀。
Page 16
Page 10
真空蒸镀
蒸发源分类
(一)电阻加热蒸发 (二)电子束加热蒸发 (三)电弧加热蒸发 (四)激光加热蒸发
Page 11
真空蒸镀
真空蒸发的影响因素
1.物质的蒸发速度 2.元素的蒸汽压 3.薄膜沉积的均匀性 4.薄膜沉积的纯度
Page 12
真空蒸镀
薄膜沉积的纯度
蒸发源的纯度; 加热装置、坩埚可能造成的污染; 真空系统中的残留气体。
物理气相沉积(PVD)
物理气相沉积法过程的三个阶段: 1,从原材料中发射出粒子; 2,粒子运输到基片; 3,粒子在基片上凝结、成核、长大、成膜。
Page 6
物理气相沉积(PVD)
PVD
物理气相沉积技术中最为基本的两种方法就 是蒸发法和溅射法,另外还有离子束和离子助等 等方法。
蒸发法相对溅射法具有一些明显的优点,包 括较高的沉积速度,相对较高的真空度,以及由 此导致的较高的薄膜质址等。
薄膜制备
张洋洋
薄膜制备工艺包括:薄膜制备方法的 选择,基体材料的选择及表面处理, 薄膜制备条件的选择和薄膜结构、性 能与工艺参数的关系等。
Page 2
薄
膜
物理气相沉积(PVD)
制
化学气相沉积 ( CVD)
PVD和CVD涂层方法
.PVD和CVD涂层方法涂层方法目前生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。
前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。
因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。
硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。
近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。
国外还用PVD/CVD相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。
即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(目前涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。
据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。
用CVD法涂层时,切削刃需预先进行钝化处理(钝圆半径一般为0.02~0.08mm,切削刃强度随钝圆半径增大而提高),故刃口没有未涂层刀片锋利。
所以,对精加工产生薄切屑、要求切削刃锋利的刀具应采用PVD法。
涂层除可涂覆在普通切削刀片上外,还可涂覆到整体刀具上,目前已发展到涂覆在焊的硬质合金刀具上。
据报道,国外某公司在焊接;..式的硬质合金钻头上采用了PCVD法,结果使加工钢料时的钻头寿命比高速钢钻头长10倍,效率提高5倍。
涂层成份又有哪些呢?各自的区别在哪里,应用面怎样。
通常使用的涂层有:TiC、TiN、Ti(C.N)、Gr7O3、Al2O3等。
以上几种CVD的硬质涂层基本具备低的滑动摩擦系数,高的抗磨能力,高的抗接触疲劳能力,高的表面强度,保证表面具有足够的尺寸稳定性与基体之间有高的粘附强度。
PVD与CVD涂层工艺比较;..PVD与CVD涂层工艺比较涂层涂层表面主要涂层对环境主要应用领域结合强沉积温度涂层厚度状态材料影响度1.高速钢通用刀具:TiN钻头、丝锥、物立铣刀。
CVD和PVD工艺比较
VII. 最后一个比较因素是操作运行安全问题 操作运行安全问题。PVD 操作运行安全问题 是一种完全没有污染的工序,有人称它为“绿色工 程”。而CVD的反应气体、反应尾气都可能具有一 定的腐蚀性,可燃性及毒性,反应尾气中还可能有 粉末状以及碎片状的物质,因此对设备、环境、操 作人员都必须采取一定的措施加以防范。
V. 在CVD工艺过程中,要严格控制工艺条件 控制工艺条件,否 控制工艺条件 则,系统中的反应气体或反应产物的腐蚀作用会使 基体脆化。 VI. 比较CVD和PVD这两种工艺的成本 成本比较困难, 成本 有人认为最初的设备投资PVD是CVD的3一4倍,而 PVD工艺的生产周期是CVD的1/10。在CVD的一个 操作循环中,可以对各式各样的工件进行处理,而 PVD就受到很大限制。综合比较可以看出,在两种 工艺都可用的范围内,采用PVD要比CVD代价高。
厚度上的区别正好可以弥补 PVD阶梯覆盖性能的不足 阶梯覆盖性能的不足
III. CVD镀层往往比各种PVD镀层略厚一些,前者厚 厚 度在7.5µm左右,后者通常不到2.5µm厚。CVD镀层的 表面略比基体的表面粗糙些。相反,PVD镀膜如实地 反映材料的表面,不用研磨就具有很好的金属光泽, 这在装饰镀膜方面十分重要。
I. 工艺温度高低 CVD 和 PVD 之间的主要区别。 工艺温度高低是 温度对于高速钢镀膜具有重大意义。 CVD 法的工艺 温度超过了高速钢的回火温度,用 CVD 法镀制的高 速钢工件,必须进行镀膜后的真空热处理,以恢复硬 度。镀后热处理会产生不容许的变形。 II. CVD 工艺对进人反应器工件的清洁 要求 PVD 清洁要求 清洁 要求比 工艺低一些,因为工件表面的一些脏东西很容易在高 温下烧掉。此外,高温下得到的镀层结合强度要更好 些。
PVD和CVD涂层方法
PVD和CVD涂层方法涂层方法目前生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。
前者沉积温度为500℃,涂层厚度为2~5µm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10µm,并且设备简单,涂层均匀。
因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。
硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。
近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。
国外还用PVD/CVD相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。
即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(目前涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。
据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。
用CVD法涂层时,切削刃需预先进行钝化处理(钝圆半径一般为0.02~0.08mm,切削刃强度随钝圆半径增大而提高),故刃口没有未涂层刀片锋利。
所以,对精加工产生薄切屑、要求切削刃锋利的刀具应采用PVD法。
涂层除可涂覆在普通切削刀片上外,还可涂覆到整体刀具上,目前已发展到涂覆在焊的硬质合金刀具上。
据报道,国外某公司在焊接式的硬质合金钻头上采用了PCVD法,结果使加工钢料时的钻头寿命比高速钢钻头长10倍,效率提高5倍。
涂层成份又有哪些呢?各自的区别在哪里,应用面怎样。
通常使用的涂层有:TiC、TiN、Ti(C.N)、Gr7O3、Al2O3等。
以上几种CVD的硬质涂层基本具备低的滑动摩擦系数,高的抗磨能力,高的抗接触疲劳能力,高的表面强度,保证表面具有足够的尺寸稳定性与基体之间有高的粘附强度。
PVD与CVD涂层工艺比较PVD与CVD涂层工艺比较沉积温度涂层厚度涂层表面状态主要涂层材料涂层结合强度对环境影响主要应用领域物理气相沉积500℃或更低,沉积温度低刀具变型不,基体的硬度强度不降低。
PVD与CVD涂层工艺比较区分
物 理 气 相 沉 积
化 学 气 相 沉 积
1000℃, 沉积温度 高,基体 的 硬度、 强度降低 ,需开发 专门的基 体用于涂层 。
5~20μ m 或更厚, 适合于开 发多层厚 膜涂层, 高耐磨性。
TiN TiC TiCN A12o3 ZrO2 金刚石等 。艺比较
沉积温度 500℃或更 低, 沉积温度低 刀具变型 不, 基体的 硬度 强度不降低 。 涂层厚度 2~5μ m, 涂层较薄 ,刃口锋 利。 涂层表面 状态 涂层为压 应力,有 利于抑制 裂缝的扩 展;刃口 可不作钝 处理;表 面致密, 粗糙度低 。 涂层为拉 应力,易 生成裂 缝;刃口 必须作钝 化处理; 表面较粗 糙。 主要涂层 材料 TiN TiCN TiA1N A12o3 A1CrN MoS2 WC/C 等。 涂层 结合 强度 低 对环境 影响 无污染 主要应用领域 1.高速钢通用刀 具:钻头、丝锥 、立铣刀。 2.高速钢精密复 杂刀具:拉刀、 齿轮刀具。 3.整体硬质合金 刀具。 4.可转位螺纹刀 片、切断、切槽 刀片。 1.硬质合金可转 为刀片:车刀片 、铣刀片等。 2.金刚石涂层。
薄膜技术中PVD和CVD的区别详解
薄膜的化学气相沉积(CVD)
最基本的CVD装置 高温和低温CVD装置 低压CVD (LPCVD)装置 等离子体增强CVD(PECVD)装置 激光辅助CVD装置 金属有机化合物CVD (MOCVD)装置
场中加速后具有一定动能的特点,将 离子引向欲被溅射的靶电极。在离子 能量合适的情况下,入射的离子将在 与靶表面的原子的碰撞过程中使后者 溅射出来。这些被溅射出来的原子将 带有一定的动能,并且会沿着一定的 方向射向衬底,从而实现在衬底上薄 膜的沉积。
溅直射流溅法射沉积装置
真空系统中,靶材 是需要溅射的材料, 它作为阴极。相对于 作为阳极的衬底加有 数千伏的电压。在对 系统预抽真空以后, 充入适当压力的惰性 气体。
物理气相沉积法过程的三个阶段:
1,从原材料中发射出粒子; 2,粒子运输到基片; 3,粒子在基片上凝结、成核、长大、成膜。
物理气相沉积P(VDPVD)
物理气相沉积技术中最为基本的两种方法就 是蒸发法和溅射法,另外还有离子束和离子助等 等方法。
蒸发法相对溅射法具有一些明显的优点,包 括较高的沉积速度,相对较高的真空度,以及由 此导致的较高的薄膜质址等。
特别值得一提的是,在高质量的半导体晶 体外延技术以及各种绝缘材料薄膜的制备 中大量使用了化学气相沉积技术。比如, 在MOS场效应管中,应用化学气相方法沉 积的薄膜就包括多晶Si、 SiO2、SiN等。
薄膜的化学气相沉积(CVD)
CVD所涉及的化学反应类型
1.热解反应 2.还原反应 3.氧化反应 4.化合反应 5.歧化反应 6.可逆反应
蒸发源分类
(一)电阻加热蒸发 (二)电子束加热蒸发 (三)电弧加热蒸发 (四)激光加热蒸发
优选薄膜技术中PVD和CVD的区别详解
物理气相沉积(PVD)
PVD
这种薄膜制备方法相对于下面还要介绍的化 学气相沉积方法而言,具有以下几个特点: 1.需要使用固态的或者熔化态的物质作为沉积过 程的源物质。 2.源物质要经过物理过程进入气相。 3.需要相对较低的气体压力环境。 4.在气相中及衬底表面并不发生化学反应。
物理气相沉积(PVD)
真空蒸镀
蒸发源分类
(一)电阻加热蒸发 (二)电子束加热蒸发 (三)电弧加热蒸发 (四)激光加热蒸发
真空蒸镀
真空蒸发的影响因素
1.物质的蒸发速度 2.元素的蒸汽压 3.薄膜沉积的均匀性 4.薄膜沉积的纯度
真空蒸镀
薄膜沉积的纯度
• 蒸发源的纯度; • 加热装置、坩埚可能造成的污染; • 真空系统中的残留气体。
溅射法
溅射法利用带有电荷的离子在电 场中加速后具有一定动能的特点,将 离子引向欲被溅射的靶电极。在离子 能量合适的情况下,入射的离子将在 与靶表面的原子的碰撞过程中使后者 溅射出来。这些被溅射出来的原子将 带有一定的动能,并且会沿着一定的 方向射向衬底,从而实现在衬底上薄 膜的沉积。
溅射法
直流溅射沉积装置
真空蒸镀
• 装置: • 真空系统 • 蒸发系统 • 基片支撑 • 挡板 • 监控系统
真空蒸镀
大量材料皆可以在真空中蒸发,最终 在基片上凝结以形成薄膜。真空蒸发沉积 过程由三个步骤组成: ①蒸发源材料由凝聚相转变成气相; ②在蒸发源与基片之间蒸发粒子的输运; ③蒸发粒子到达基片后凝结、成核、长大、 成膜。
薄膜的化学气相沉积(CVD)
CVD所涉及的化学反应类型
1.热解反应 2.还原反应 3.氧化反应 4.化合反应 5.歧化反应 6.可逆反应
薄膜的化学气相沉积(CVD)
pvd与cvd技术适用的薄膜制程
pvd与cvd技术适用的薄膜制程薄膜制程是一种利用物理或化学方法在基底上形成一层薄膜的工艺。
在材料科学和工程中,薄膜制程被广泛应用于各种领域,如电子器件、光学器件、表面涂层等。
其中,物理气相沉积(Physical Vapor Deposition,PVD)和化学气相沉积(Chemical Vapor Deposition,CVD)是两种常见的薄膜制备技术。
PVD技术是一种将固态材料通过物理蒸发或溅射的方式沉积在基底上的方法。
它通常包括蒸发、溅射和离子镀三种方式。
蒸发是将材料加热至高温,使其蒸发并沉积在基底上;溅射是通过离子轰击的方式将材料从固态转变为气态,并在真空环境中沉积在基底上;离子镀是利用离子束轰击材料表面,使其释放出离子,并将离子沉积在基底上。
PVD技术具有高纯度、致密性好、结构均匀等优点,适用于制备金属薄膜、合金薄膜、氧化物薄膜等。
CVD技术是一种将气态或液态前体物质在基底表面化学反应生成固态产物的方法。
它通常包括化学气相沉积和低压化学气相沉积两种方式。
化学气相沉积是将气态前体物质与氧化剂在基底表面进行反应,生成固态产物;低压化学气相沉积是在较低的压力和温度下进行沉积。
CVD技术具有成膜速度快、控制性好、沉积均匀等优点,适用于制备金属薄膜、氧化物薄膜、氮化物薄膜等。
PVD和CVD技术在薄膜制程中有着不同的适用性。
PVD技术适用于制备厚度较薄的薄膜,通常在几纳米到几十微米之间。
由于PVD 技术在沉积过程中,材料以固态形式进行转移,因此PVD制备的薄膜具有较高的致密性和纯度。
此外,PVD技术还可以在复杂的表面结构上进行沉积,如孔洞、凹槽等,适用于制备具有特殊形状要求的薄膜。
相比之下,CVD技术适用于制备较厚的薄膜,通常在几十纳米到几百微米之间。
由于CVD技术是通过化学反应生成固态产物,因此可以在基底表面上形成较为均匀的薄膜。
此外,CVD技术还可以在较低的温度下进行沉积,适用于对基底温度敏感的材料。
pvd和cvd的应用场景
pvd和cvd的应用场景
PVD(Physical Vapor Deposition)和CVD(Chemical Vapor Deposition)是两种常见的薄膜沉积技术,它们在许多不同的应用场景中发挥着重要作用。
首先,让我们来看PVD的应用场景。
PVD技术广泛应用于表面涂层领域,比如在工具涂层、装饰涂层和光学薄膜等方面。
在工具涂层方面,PVD被用于在刀具、模具和车削刀具等工具上涂覆陶瓷涂层或金属涂层,以提高工具的耐磨性和延长使用寿命。
在装饰涂层方面,PVD技术可用于在钟表、珠宝、门把手和卫浴设备等产品上制作金属薄膜,赋予其金属光泽和耐腐蚀性。
在光学薄膜方面,PVD技术被广泛应用于制造镜片、滤光片和反射镜等光学元件,以改善光学性能。
接下来,我们来看CVD的应用场景。
CVD技术在半导体制造、光学薄膜、涂层和纳米材料合成等领域有着广泛的应用。
在半导体制造方面,CVD被用于沉积绝缘层、导电层和掺杂层等薄膜,用于制造集成电路和光伏电池等器件。
在光学薄膜方面,CVD技术可用于制备具有特定光学性能的薄膜,如抗反射膜、光学滤波器和激光膜等。
在涂层方面,CVD可用于制备防腐蚀涂层、耐磨涂层和导热
涂层等功能性涂层。
此外,CVD还被广泛应用于纳米材料的合成,如碳纳米管、石墨烯和纳米颗粒等。
总的来说,PVD和CVD技术在工业生产、科研领域和日常生活中都有着重要的应用,它们通过沉积不同性质的薄膜,为各种材料赋予特定的功能和性能,推动着许多领域的发展和进步。
PVD与CVD涂层工艺比较
TiN TiCN TiA1N A12o3 A1CrN MoS2 WC/C 等。
低 无污染 1.高速钢通用刀 具:钻头、丝锥 、立铣刀。 2.高速钢精密复 杂刀具:拉刀、 齿轮刀具。 3.整体硬质合金 刀具。 4.可转位螺纹刀 片、切断、切槽 刀片。
1000℃, 5~20μm 涂层为拉 TiN
高
化 沉积温度 学 高,基体
或更厚, 应力,易 TiC 适合于开 生成裂 TiCN
气 的 硬度、 发多层厚 缝;刃口 A12o3
相 强度降低
膜涂层, 必须作钝 ZrO2
沉 ,需开发 高耐磨性。 化处理; 金刚石等
积 专门的基 体用于涂层
表面较粗
1.硬质合金可转 为刀片:车刀片 、铣刀片等。 2.金刚石涂层。
PVD与CVD涂层工艺比较
沉积温度
涂层厚度
涂层表面 主要涂层
状态
材料
涂层 结合 强度
对环境 影响
主要应用领域
500℃或更 2~5μm,
低,
涂层较薄
沉积温度低 ,刃口锋 物 刀具变型 利。 理 不, 气 基体的 硬度
相 强度不降低 沉。 积
涂层为压 应力,有 利于抑制 裂缝的扩 展;刃口 可不作钝 处理;表 面致密, 粗糙度低 。
气相沉积CVD、PVD简介
气相沉积简介CVD(Chemical Vapor Deposition,化学气相沉积),指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。
在超大规模集成电路中很多薄膜都是采用CVD方法制备。
经过CVD处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。
特点沉积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。
制备的必要条件1)在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2)反应产物除了形成固态薄膜物质外,都必须是挥发性的;3)沉积薄膜和基体材料必须具有足够低的蒸气压。
PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
涂层技术增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。
增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。
过滤阴极弧:过滤阴极电弧(FCA )配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。
磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。
根据使用的电离电源的不同,导体和非导体材料均可作为靶材被溅射。
离子束DLC:碳氢气体在离子源中被离化成等离子体,在电磁场的共同作用下,离子源释放出碳离子。
物理气相沉积和化学气相沉积
物理气相沉积和化学气相沉积物理气相沉积(Physical Vapor Deposition, PVD) 是一种通过物理方式将源材料转化为薄膜的技术。
在PVD 过程中,源材料通常是固体或液体,通过热或电子束等方式将其转化为气态,再沉积在被涂层表面上。
常用的PVD 技术有阴极溅射、磁控溅射和真空电镀。
化学气相沉积(Chemical Vapor Deposition, CVD) 是一种通过化学反应将源材料转化为薄膜的技术。
在CVD 过程中,源材料通常是气体,在高温和特定气氛下通过化学反应形成薄膜。
常用的CVD 技术有热化学气相沉积、等离子体化学气相沉积和电化学气相沉积。
物理气相沉积和化学气相沉积都是广泛应用于半导体、电子和化学工业中的技术。
两者都可以用来制造薄膜材料,但它们在原理和应用上有一些差异。
PVD 技术通常用于制造高纯度、高强度的金属和合金薄膜,如钛、钨、铬等,常用于制造高级工具、航空航天、医疗器械等领域。
PVD 还可以用于制造磁性薄膜、光学薄膜、耐热薄膜等。
CVD 技术通常用于制造高纯度、高热稳定性的非金属薄膜,如碳、硅、氧化物等,常用于制造半导体、液晶显示器、燃料电池等领域。
CVD 还可以用于制造生物医学材料、生物传感器等。
所以,PVD 技术适用于制造金属薄膜,而CVD 技术适用于制造非金属薄膜。
除了制备薄膜材料,物理气相沉积和化学气相沉积还有其他应用,如:•PVD 技术可以用于硬质合金和工具的涂层,提高其耐磨性和耐腐蚀性。
•PVD 技术可以用于涂覆晶体管、太阳能电池和LED 等半导体器件上的金属膜,提高其电学性能。
•CVD 技术可以用于制造纳米材料,如碳纳米管和金纳米颗粒等。
•CVD 技术可以用于涂覆硬盘驱动器、汽车零部件和智能手机等电子设备上的防静电膜。
PVD和CVD技术都具有一些共同点和不同点。
共同点:•都是用于制备薄膜材料的技术•都需要使用真空设备•都可以在实验室和工业生产环境中使用不同点:•PVD技术是通过物理方式将源材料转化为薄膜,而CVD技术是通过化学反应将源材料转化为薄膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CVD与PVD的区别及比较
2009年03月06日 17:17 www.elecfans.co 作者:本站用户评论(0)
关键字:
CVD与PVD的区别及比较
(一)选材:化学蒸镀-装饰品、超硬合金、陶瓷物理蒸镀-高温回火之工、模具钢(二)蒸镀温度、时间及膜厚比较:化学蒸镀-1000℃附近,2~8小时,1~30μm(通常5~10μm)物理蒸镀-400~600℃,1~3小时,1~10μm (三) 物性比较:化学蒸镀皮膜之结合性良好,较复杂之形状及小孔隙都能蒸镀;唯若用于工、模具钢,因其蒸镀温度高于钢料之回火温度,故蒸镀后需重施予淬火-回火,不适用于具精密尺寸要求之工、模具。
不需强度要求之装饰品、超硬合金、陶瓷等则无上述顾虑,故能适用。
物理蒸镀皮膜之结合性较差,且背对金属蒸发源之处理组件会产生蒸镀不良现象;但其蒸镀温度可低于工、模具钢的高温回火温度,且其蒸镀后之变形甚微,故适用于经高温回火之精密工具、模具。
(4) 半导体制程概要-离子布植郑硕贤
4.1前言
在半导体组件工业中,常在半导体晶体中加入杂质以控制带电载子数目,来增加导电性。
这种加入杂质的方法称为掺入杂质(Doping) 。
一般来说,掺入杂质的方法有两种:
1. 化学蒸镀法
2. 扩散法
3. 离子布植法
其中1、3两项在微电子组件工业中已普遍使用,这两种方法虽简易实用,但却牺牲了完整晶型的要求。
如化学蒸镀法在较低温度下进行,则蒸镀层常为非晶质或是多晶质。
离子布植则造成许多表面有许多点缺陷,甚至使表面层变成非晶质;因此一般均须经一道恢复完整晶格的退火处理,使表面层能回复晶型的样子。
4.2原理
离子布植是将高能量带电粒子射入硅基晶中。
离子进入硅靶材后,会和硅原子发生碰撞而逐渐损失能量;直到能量耗损殆尽,即停止在该深度。
在与硅原子碰撞过程中,离子会传递部份能量给硅原子,若此能量大于硅和硅间的键结能量,则可使其产生位移而产生新的入射粒子;这新获得动能的粒子,也会与其它硅原子产生碰撞。
这个连锁碰撞过程会随着不断进入的入射离子与碰撞所产生的移动粒子,因不断重新发生而继续进行,进而达到布植的效果。
4.3能量耗损机制
离子布植时离子能量的损耗,主要由两个机制产生:一个是离子被本身电子屏蔽后与靶材原子核间的弹性库伦作用,又称为原子核阻滞(Nuclear Stopping);另一个是离子与靶材中之自由电子或被靶材原子束缚之电子间的非弹性交互作用,又称为电子阻滞(Electronic Stopping)。
整个离子能量的损失是由这两个分量所组成,可以表示如下:
Stotal = Sn + Se Sn: 原子核阻滞, Se: 电子阻滞
在双球体碰撞散射(Two Body Scattering)过程中,能量的传递是和双粒子间的作用位能有关,在Born-Mayer作用位能下是下列之型式:
Subscript为1及2,分别代表离子与靶材原子,Z为原子序,M为原子量。
当离子速度大于K层电子的速度,根据Born理论是下列之型式:
在高原子序、中低入射能量情况下,原子核阻滞为主要的能量损耗与阻挡机制。
它是二粒子近距离的进行库伦力作用,可用双硬球体进行弹性碰撞来描述。
而在低原子序、高入射能量的情况下,入射离子与硅靶材中的电子云产生远距作用,将能量损耗在将电子激发至高能上,电子阻滞即为此情况的主要阻挡机制。
离子能量大速度快,电子阻滞也大,能量主要损耗在与靶材电子的作用上;当能量持续损耗,离子速度也减慢,使得离子受电子阻挡作用降低而能接近靶材的原子核,如此原子核阻挡的能力成为主要耗能机制。
在离子布植过程中,只有在原子核阻滞为主要耗能机制时,才会造成靶材硅原子离开其晶格位置,而形成点缺陷或其聚合体,甚至失去晶体结构而产生非晶质结构。
而当离子能量在电子阻挡为主要耗能机制时,并不会造成靶材硅原子位移,致使晶体结构有所缺陷。
以下附图以便了解两种阻滞的差别:
图(三) 不同形式碰撞下,离子所行进之途径
4.4布植离子在靶材中的纵深分布
入射离子在植入靶材的过程中,经由多次碰撞将其所带之能量,陆续传递至硅靶材。
所以总合整个离子布植时,能量传递是随深度而有所变化,这可由计算机的仿真而获得。
若是比对最大能量吸收位置,可知并不和植入离子分布的离子浓度最大值的位置重迭,而是较接近表面。
也就是说当布植剂量刚足够让硅靶材产生非晶质硅时,其起始位置即在此能量吸收最大值的位置,而不是离子浓度最大值的位置。
而非晶质硅,即由此位置开始随剂量增加而向上下两个方向扩展,最后形成连续的非晶质硅层。
利用此能量传递分布图,然后以横截面电子显微镜所量测实际布植硅中的非晶硅层厚度来校正时,即可获得形成非晶硅的临界起始能量传递值。
之后可利用计算机仿真各项离子布植能量与剂量条件所获得的能量传递分布,搭配已获得的非晶硅的临界起始能量传递值来预测非晶硅层的厚度。
在非晶靶材的情况下,模拟布植后离子在靶材的分布,与实验的结果非常吻合。
但是相对应于单晶靶材的情形下,实验的结果总是会显示在射程末端是一个指数递减的离子分布,这是无法由先前的分布函数
法来获得准确预测的。
这个末端离子分布,是肇因于离子在晶体靶材内,沿着晶轴或是原子面间的空隙行进,降低其与靶材原子的核碰撞与电子云作用的机率,因而可以植入更深些,这也就是所谓的通道效应(Channeling)。
当离子入射方向与晶轴相夹的角度小于某临界角度时,就会发生此一效应。
临界角度Ψ与入射离子及靶材的关系可由下列的式子来显示︰
其中Z为原子序,E为入射能量,单位为keV,d为入射方向上靶材原子间的距离,单位为埃。
由上式可知,通道效应会随着离子的能量降低与原子序的增加而增加。
但是当离子布植所产生的损伤程度增加时,则可降低离子穿隧的程度。