2018年深圳中考真题(解析版)

合集下载

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2018年深圳市中考英语试卷(解析版)

2018年深圳市中考英语试卷(解析版)

2018年深圳市中考英语试卷(解析版)第一部分选择题(60分)I. 词汇测试(15分)i. 从下面每小题的A、B、C三个选项中选出可以替换划线部分的最佳选项,并在答题卡上将相应的字母编号涂黑。

(共8小题,每小题1分)()1. --- More than 400 street gardens will be built in Shenzhen next year.―Good news! Our city is becoming more and more beautiful.A. OverB. AroundC. Nearly【解析】Aover,意为“太,过于”;B选项around意为“大约”;C选项nearly意为“几乎,差不多"。

【考点】同义词转换^more than( )2.--- Tim, you spend too much time on computers. It’s harmful to your eyes.―I see. Thank you. I'll do more sports instead.A. is good forB. is bad forC. is useful to【解析】BA选项,be good for意为"对…有好处”;B选项be bad for意为“对什么有坏处”;C选项be useful to意为“对…有用”。

【考点】同义短语转换( )3. --- Hi, John! Would you like to go hiking with me tomorrow?―Sounds great! It’s a good way to keep fit.A. livelyB. activeC. healthy【解析】CA选项,lively意为"活泼的,令人兴奋的”;B选项active意为“活跃的”;C选项healthy 意为“健康的”。

精品解析:广东省深圳市2018年中考物理真题(解析版)

精品解析:广东省深圳市2018年中考物理真题(解析版)

广东省深圳市2018年中考物理试卷一、选择题1. 下列现象属于光的反射的是()A. 雨后的彩虹B. 树荫下的光斑C. 池水看起来“浅”D. 树在水中的倒影【答案】D【解析】分析:要解决此题,需要掌握:①光的反射现象,知道平面镜成像是由于光的反射形成的。

②光的折射现象,知道水底看起来比实际的要浅、斜插入水中的筷子向上折、海市蜃楼、凸透镜成像都是光的折射。

③光沿直线传播现象,知道影子的形成、日月食的形成、小孔成像都是光沿直线传播形成的。

④了解光的色散,是由光的折射形成的,由于不同色光折射程度不同,所以把白光折射分成各种色光。

彩虹就属于色散现象。

解答:A、雨后天空出现的彩虹,属于光的色散现象,是由光的折射形成的;故A不符合题意。

B. 树荫下的光斑是由于光沿直线传播而形成的;故B不符合题意。

C、池水变浅,是由于从池底反射出的光由水中射入空气中时,发生折射,折射角大于入射角而造成的;故C不符合题意。

D. 树在水中的倒影属于平面镜成像现象,是由光的反射形成的;故D符合题意。

故选D【点睛】此题主要考查了光的反射、光的折射、光的直线传播现象,平时要注意各个现象的形成原因,同时还考查了光的色散,知道色散是由光的折射形成的。

2. 用一个焦距为10cm的放大镜来观察邮票细节,放大镜与邮票的距离应()A. 大于20cmB. 等于10cmC. 小于10cmD. 在10cm与20cm之间【答案】C【解析】根据凸透镜成像的规律:当物距小于焦距时,物体通过凸透镜成正立放大的虚像,判断出放大镜与邮票间的距离,选出正确的选项。

放大镜成正立放大的虚像,满足u<f=10cm,所以放大镜与邮票间的距离应是小于10cm。

故选:C。

【点睛】熟记凸透镜成像的规律:u>2f,成倒立缩小的实像;u=2f,成倒立等大的实像;f<u<2f,成倒立放大的实像;u=f,不成像;u<f,成正立放大的虚像。

3. 对下列图象中的物理信息描述错误的是()A. 物体的重力与质量成正比B. 该物质可能是水C. 该物体处于静止状态D. 黑龙江北部(最低温度-52.3℃)可以使用水银温度计【答案】D【解析】分析:要看清图像中的横坐标、纵坐标代表的物理量;再根据图像形状反映的物理规律,结合选项中物理量的含义,可解答此题。

深圳市2018年中考语文试题及答案解析版

深圳市2018年中考语文试题及答案解析版

广东省深圳市2018中考语文试题注意事项:1.考试叶间100分钟,满分100分。

2.答题前,请将姓名、考号、考点、考场用黑色钢笔签字笔写在答题卡指定的位置上。

3.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

4.答题卡必须保持清洁,不能折叠选择题每小题选出答案后,用28B铅笔将答题卡选铎题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案;非选择题的答案必须用规定的笔,按作答题目的序号,写在答题卡非选择题答题区内。

5.考试结来,请将本试卷和答题卡一并交回。

积累与运用1. 请选出下列词语中加点字读音完全正确的一项()A. 抖擞.(sǒu)咫.尺(chǐ)驻.足(zhì)怏怏.不乐(yāng)B. 慰藉.(jí)寒噤.(jīn)赫.然(chì)味同嚼.蜡(jiáo)C. 溺.爱(nì)翩.然(piān)犷.野(guǎng)千山万壑.(hè)D. 殷.红(yīn)告罄.(qìng)屡.次(lǚ)正襟.危坐(jìn)2. 请选出下列句子中加点成语运用正确的一项()A. 校展览会惟妙惟肖....地展示了19套校服,勾起了许多人的回忆。

B. 中国足球队首次征战世界杯,许多媒体随声附和....,竟相报道。

C. 电影《战狼2》以抑扬顿挫....的情节和宏伟壮观的场面掀起了全民观影热潮。

D. 尽管霍金被疾病困在轮椅上,但他仍锲而不舍....,创作了一系列科学著作。

3. 请选出下列句子中没有语病的一项()A. 今天“数字阅读”企业成功的关键,是能否使年轻人体会到经典文章的魅力。

B. 许多城市开展了高考“爱心送考”,为考生提供“绿色通道”服务。

C. 在教师节庆祝大会上,学生们一起唱了《明天我就成了你》这首歌。

D. 如今初中生近视日益严重,是由于过度看手机的原因造成的。

4. 请选出下列选项中排序正确的一项()①考察表明,塔里木地区有非常长的聚水期。

2018年广东省深圳市中考数学试卷(带答案解析)

2018年广东省深圳市中考数学试卷(带答案解析)

8.(3 分)如图,直线 a,b 被 c,d 所截,且 a∥b,则下列结论中正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180° D.∠1+∠4=180° 【解答】解:∵直线 a,b 被 c,d 所截,且 a∥b, ∴∠3=∠4, 故选:B.
9.(3 分)某旅店一共 70 个房间,大房间每间住 8 个人,小房间每间住 6 个人, 一共 480 个学生刚好住满,设大房间有 x 个,小房间有 y 个.下列方程正确的是 ()
【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为: ,
故答案为: .
15.(3 分)如图,四边形 ACDF 是正方形,∠CEA 和∠ABF 都是直角且点 E,A, B 三点共线,AB=4,则阴影部分的面积是 8 .
【解答】解:∵四边形 ACDF 是正方形,
∴AC=AF,∠CAF=90°,
7.(3 分)把函数 y=x 向上平移 3 个单位,下列在该平移后的直线上的点是( ) A.(2,2) B.(2,3) C.(2,4) D.(2,5) 【解答】解:∵该直线向上平移 3 的单位, ∴平移后所得直线的解析式为:y=x+3; 把 x=2 代入解析式 y=x+3=5, 故选:D.
第 2页(共 17页)
根据题意得:3• = , 解得:x=8, 经检验,x=8 是分式方程的解. 答:第一批饮料进货单价为 8 元. (2)设销售单价为 m 元, 根据题意得:200(m﹣8)+600(m﹣10)≥1200, 解得:m≥11. 答:销售单价至少为 11 元.
22.(9 分)如图在⊙O 中,BC=2,AB=AC,点 D 为 AE 上的动点,且 cosB= . (1)求 AB 的长度; (2)求 AD•AE 的值; (3)过 A 点作 AH⊥BD,求证:BH=CD+DH.

2018深圳中考语文试卷及答案(解析版)

2018深圳中考语文试卷及答案(解析版)

深圳市2018年初中毕业生学业考试语文试卷一、本大题共5题,每题2分,共10分。

1.请选出下列词语中加点字读音完全正确的一项。

()A.抖擞.(sǒu)咫.尺(chǐ)驻.足(zhì)怏怏.不乐(yāng)B.慰藉.(jí)寒噤.(jīn)赫.然(chì)味同嚼.蜡(jiáo)C.溺.爱(nì)翩.然(piān)犷.野(guǎng)千山万壑.(hè)D.殷.红(yīn)告罄.(qìng)屡.次(lǚ)正襟.危坐(jìn)2.请选出下列句子中加点成语运用正确的一项。

()A.校展览会惟妙惟肖....地展示了19套校服,勾起了许多人的回忆。

B.中国足球队首次征战世界杯,许多媒体随声附和....,竞相报道。

C.电影《战狼2》以抑扬顿挫....的情节和宏伟壮观的场面掀起了全民观影热潮。

D.尽管霍金被疾病困在轮椅上,但他仍锲而不舍....,创作了一系列科学著作。

3.请选出下列句子中没有语病的一项。

()A.今天“数字阅读”企业成功的关键,是能否使年轻人体会到经典文章的魅力。

B.许多城市开展了高考“爱心送考”,为考生提供“绿色通道”服务。

C.在教师节庆祝大会上,学生们一起唱了《明天我就成了你》这首歌。

D.如今初中生近视日益严重,是由于过度看手机的原因造成的。

4.请选出下列选项中排序正确的一项。

()①考察表明,塔里木地区有非常长的聚水期。

②早在30万年前,塔里木盆地和柴达木盆地还是连在一起的大海,后来这里的地壳逐渐抬升。

③这一时期一直持续了数万年,使得塔里木地区积聚了大量地下水。

④但还是个湿润地带,降水比较丰富,草原、沼泽密布。

⑤为什么塔里木盆地地下会形成巨大的地下水库呢?A.①③②④⑤B.⑤①②④③C.⑤②①④③D.①⑤②④③5.请选出下列说法正确的一项。

()A.“白发三千丈”和“黄河之水天上来”这两句诗使用了夸张的修辞手法。

B.“市民可以在手机上申请车牌摇号。

2018年广东省深圳市中考真题英语试题(答案+解析)

2018年广东省深圳市中考真题英语试题(答案+解析)

深圳市2018年初中毕业生学业考试英语试卷(解析版)第一部分选择题(60分)I.词汇测试(15分)i. 从下面每小题的A、B、C三个选项中选出可以替换划线部分的最佳选项,并在答题卡上将相应的字母编号涂黑。

(共8小题,每小题1分)()1.—More than 400 street gardens will be built in Shenzhen next year.―Good news! Our city is becoming more and more beautiful.A. OverB. AroundC. Nearly【解析】Aover,意为“太,过于”;B选项around意为“大约”;C选项nearly意为“几乎,差不多"。

【考点】同义词转换more than短语意思近义词/短语more than 超出、多于over()2.—Tim, you spend too much time on computers. It’s harmful to your eyes.―I see. Thank you. I'll do more sports instead.A. is good forB. is bad forC. is useful to【解析】BA选项,be good for意为"对…有好处”;B选项be bad for意为“对什么有坏处”;C选项be useful to意为“对…有用”。

【考点】同义短语转换()3. —Hi, John! Would you like to go hiking with me tomorrow?―Sounds great! It’s a good way to keep fit.A. livelyB. activeC. healthy【解析】CA选项,lively意为"活泼的,令人兴奋的”;B选项active意为“活跃的”;C选项healthy意为“健康的”。

2018年广东省深圳市中考数学真题试卷(含解析)

2018年广东省深圳市中考数学真题试卷(含解析)

2018年广东省深圳市中考试卷数学试卷时间.90分W 满分.100分一,ttffK 代12小El,泚分邡分〉.1.6的W 反&圮().A.-6U ._6D.6【巧点】相反a【答案】A2.26()000000用H 学记S 法衮示为(C.2.6x10-A.0.26x10’B,2.6x10*【考点】fl 学记ft 泛【托案】B[fi?rri m -viYLi ^r ;aA xjo-K 中图屮立沐囝已扪工《1压足().K 26xl07A.U.【考点】三赃【答案】BI-观察下XRIFi,足中心対柞RI 形的适C.A. B. C.D.【考点】中心对钤K 杉【筏案】D【wwjAMtui 柃芘朽•BjMiiumir:形.c:^rnrnB.中心对msff 义5.75.80.85.85.85,脚这《1钕抛的众《1和极挖坧(>•A.85.10 D.85.5 C.80.85D.80.10【考点】m\tiiR【答案】Ah8x+6j =706.下K 运n 正明I 的/£<).A.a :-a 1=<?* B.?HI -a =2a C .<i B -}-f?'=a ! D.^/Ir【々点J K 式的迗W ITr %}B7.把函Kc>-.t 向上T•柊3个午.位,下K 在该T•移fi 的乜线上的点坫().A.(2.2) B.(2.3) C.(2.4) D.(2.5)【今点】一次换妗平哆【答案】D【解析】平移的料析式为y.r +3,只?fD 迄颂苻合篆件.8.如E.Titia .b ^,c .d 所政,且“/^,则下列结沦中正确的€()-A.Z»=Z2n.Z3=Z4C.Z2*Z4=I80J D,ZI-Z4180r Tnn ^[Tx ^]»9.浆旅店一:m 70个饵M,人历M 符M 住8个人•小坊M 埒阏fL6个人•-共480个卞tm 好住满.设大坑问“.r 个,小贫间•个."F 列方e 正确的延(>..r +>*«70f.v+^»70+少》480十6)=480•|6A +8y=430.l6.v +8/=70【秀点】二it -次方【答案1A10.如图.一把n 尺.60--的5角三角权和尤盘如图裎放.Z 为6(p 角与S尺交*..AB =^.则九£的宜径是(>.A.3C.6D.oji [rrt]I))0-^oh.A.abc>0n.2a +b <i )C..ki +r<0D,rn:2+&r+r-3=Otm 个不扣等的实玫报【芩虫】二次妗的S 爷忭硪【答案】C【解拆】由函数良象歼n 向下可称轴-^1徇出6=-2a,V</<().•••/>>():当:r=0时.函与y 轴的交点任正1•轴.:.0().':a <0.b >iXc >0.:.ahc <0.=l ojfcjfr =-2rt.所以2«+/»=0.tiniimim:当:r =-l 时.由压笨可妇rt-fr+r<0.2<J\b =-2a..*.«-(-2fl)+c<0.^+c<Oii:Bfi,C iVMu 巾匡象咁幻.m 3+Av+c-3=0flI^f m ttRl 戈向Tf 卩:Mm VrWiff —个交点,.*.m-J +bx+c-3=0{:i»;1'»l]:;tfi^Vi «J.故DiilMfl议.所以《«3选C.I2.如B]./I、»**»>•■¥上两点,/’力一动点,作/诏"广袖,/JI//.V 轴.T列说法正痛的逆<①A^OPi2AZ?OP :②S 从,=S 的”A.dx3)n.⑽c.⑽D._【芩虫】反比氕闲纹【?m B【鮮折】^P{o.h).(3;tarn,ii r ft rn i on .n :i o .\'•^X*c?=S A 5:"OA—OB.-■nr 故④错误.二、iftfilS 灼4小题,满分12分;.13.分4?因式:0^-9=__________________________.【芩点】W 式分好>、/?£相交子点F.I1.-1F-4.EF ^j 2A/nor -z.iori<、—ah =4.ohl2-12+uft)=8,14.一个庀六厅汴的《^投择一次卑到|1:席向上的钕宁力命&的挝率:_________________.【芩点】W 率【符案】1215.{IllIt.四边彤.〖CDF 足正方形,和乙WFffi 坫乜/All 点£:,/I./?三点G 线.,1/?一4.则阴杉部分的11:积纪________.1肢1£方斤 5.今:3二州形,积【S 案】8[*?t »r J V A-ICE^I AFW (A A S ).:.AB-CE-A,:.5W V .=I x 4*4=816.________________在RtA*i£?C 屮.^'\AC-【答案】sVio 【解折】如TO.AD^^T/IUC.:-90':,/..\FD 90^*-ZC 135°8>ff05+2.y+l^-1(A-flK-v-1)(r+l)J 具屮.v=2.【解析】«式-x*\*AVl m-体M)0.4 m25a艺术b0.15具它200.2o体宵科n艺术K它分组:.Fa in\XV.J/--4:.AG-}.%,!/;Tio连!5CF.刑CF〒分ZACB:•ZACFmFE.计好:d)-2s i n45o+|-VI|+(2018-;r)0.【彻【答案】318.宄化茂,再求【考点】分式化ra求把.r-2代入1:原式19.某学校为坨2学生的朽埂2好,抽2了ftC分学生,并制作了如下表格与篆FJ统计I?:频a_________________________________Aiim拥上涔亢戍下〖ten:(1)总人钕为_______人.a-____________.b-__________.(2)W你扑令条朽统iULC3)7?企咬灯600人,muvw—下企校5欢X术炎卞生的入数打多少?【考A】tftim【答案J(1>100:0.25:15(2)tort/Tc(3)90人【貪?折】(1>0.4-f40=100(人)•<1=25+100=0.25.£.=100x0.15=15<人〉.(2>娜:C3)600x0.15=90(人>•20.己妇箜形的一个角》j三角杉的一个知在合,然^它的对炻卩点在这个由合角的对1!1上.U个茭杉称为这个三角形的苽?专KS.亂在AC7石中,CF=6,C£'=12,ZfVE=4y.以•为阀心.以仔总拉'Jrm^AD,内分从以点,.1权^0祕1|心,人T+IDKiM.fHH5!/J-T A/i.MU/CO.(1)ikih^Hl^ACD/i liAFl^C(2)求四边形.■icrw的it:积.【考点】的SIP!与ff积求t4【It?析】<n E明:AC=CD,AB=DH z?c纪^/文'£的用7-分线则:Z^iCD=ZDCD X':AH//CD••■/AliC-/:DCH•••Z.ICD^ZADC:.AC-AD又V/lC’•⑦.AH•DU:.AC=CD=D/i=R\:.miL^ACDB钇$5HDV Z.-ICD 'jAFCft:.ni*m ,\am AA/7.r•的(2)M.YiZ .n ,K %nnm^.r "JiiEi /\F :lli^(\FCF 则,=p;i^=(2Zl/•r Ch :126解徇:-t =4过/I 点作/IW 1(7)于〃点在RtAACff 中,ZAClI =Ay=^=2^2V2••■四的rtf 枳A:21.某《!币颅澜装饮H 仁发泯前途.《H(SOO 元购进一批饮料,iSrb‘后朱然供不应求.又/H6000元防进这jtttxn.苋二奴M 这s—fit 的3仔,fti 咕价比第一沘讥2元.(I)访一批多少元?(2〉若二次wutKM 拎问-价Bmw.两批全邡杓完获利不少子1200元,a 么ntt»r•.价至少为多少元?【考汽】分式方桴与不苫式的应用迖[«V r ]<D I ?:设第一批饮H 进货电价为无元*则:,l«K)«XKJ 3--------=—-x x +2x =8x =8纪分式方P i 的杉n:氕一批饮f i 进泛笮价为8圯.(2>解:电价为w 元,则:(m-K)-20rt +(m-10)WM)^!2(K)il^lt 2(m -8)+6(m -10)i l 2n.t f m 单价电少为H 元.CD••_,w =a\f-i-cosiiC2)ISitDC AH =AC Z.[CB =^[HC(3)在BZ >上収m ,守勺i?.\•W =AC Z3=Z1B \=CDA.WX A.K'D (SAS)A \=ADAX =AD ..1//丄"/).\7/=III )H \=CD .Ml =111)=CD +//D =B//.内!umo./AIX '>/:AK '-\ta \ZACEy /:ACB mr./AlX '^/ACi :(1)求/1W 的K 度:(2)}HAD A/:tntH,(3>iU 点fl .I//丄说),求证:B //=CD +D //.【考点】四、三角mx ^mu 战长扑短、T ?.R =-角巧三线六一【料析】u>m/丄/r':AB =AC..1U 丄衫C.BC =2m /=c.'/=l /?c =iVcos/? B.M -Jw=■=,10n\/=a)(2)m.i.与;rWi相夂丁•紬栉交了•点/■:*•Art线..i«上存一点尸,Z^Or.U^^\LlF.求△/,(从的rtf积:(3>如图2,点(?足折线.上一点,过点C?n:pAV/y轴.过点£^:£^//文轴.ft线(?^4汽线£V扣交于点A%'^QE.朽△(?£?/沿£»£H折得到A^:v,.若贞:在X轴h,iSlta写出2点的史标.。

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.62.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,106.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =7010.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√311.(3.00分)(2018•深圳)二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( )A .abc >0B .2a +b <0C .3a +c <0D .ax 2+bx +c ﹣3=0有两个不相等的实数根12.(3.00分)(2018•深圳)如图,A 、B 是函数y=12x上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是( )①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x +3;把x=2代入解析式y=x +3=5,故选:D .【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a ,b 被c ,d 所截,且a ∥b ,则下列结论中正确的是( )A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°【考点】JA :平行线的性质. 【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a ,b 被c ,d 所截,且a ∥b ,∴∠3=∠4,故选:B .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480, 故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan ∠OAB 可得答案.【解答】解:设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知AB=AC=3,OA 平分∠BAC ,∴∠OAB=60°,在Rt △ABO 中,OB=ABtan ∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,12m),∴BP=|12m﹣n |, ∴S △BOP =12|12m ﹣n |×m=12|12﹣mn | ∵PA ∥x 轴,∴A (12n,n ), ∴AP=|12n﹣m |, ∴S △AOP =12|12n ﹣m |×n=12|12﹣mn |, ∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE , ∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上, ∴S △AMO =S △BNO =6,∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4,∴m=4n , ∴BP=|12m ﹣n |=|3n ﹣n |=2|n |,AP=|12n ﹣m |=8|n|,∴S△APB=12AP×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=(a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:36=12, 故答案为:12. 【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF 是正方形,∠CEA 和∠ABF 都是直角且点E ,A ,B 三点共线,AB=4,则阴影部分的面积是 8 .【考点】KD :全等三角形的判定与性质;LE :正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC +∠FAB=90°,∵∠ABF=90°,∴∠AFB +∠FAB=90°,∴∠EAC=∠AFB ,在△CAE 和△AFB 中,{∠CAE =∠AFB ∠AEC =∠FBA AC =AF,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=12×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=8√105.【考点】IJ:角平分线的定义;KQ:勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE=√AG2+EG2=√10,连接CF,∵AD 平分∠CAB ,BE 平分∠ABC ,∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC ,∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105, 故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0. 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1 =3. 【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD ,AB=DB ,∠ACB=∠DCB ,求出AC=AB ,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD ,AB=DB ,由已知尺规作图痕迹得:BC 是∠FCE 的角平分线,∴∠ACB=∠DCB ,又∵AB ∥CD ,∴∠ABC=∠DCB ,∴∠ACB=∠ABC ,∴AC=AB ,又∵AC=CD ,AB=DB ,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE, 即x 12=6−x 6, 解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt△ACH中,∠ACH=45°,∴AH=AC√2=2√2,∴四边形ACDB的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴ACAD =AE AC,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中{AB=AC ∠3=∠1 BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【考点】HF:二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y=a(x−12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2), 设直线AB 解析式为:y=kx +b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b, 解得:{k =−2b =−1, ∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0), 若∠OPM=∠MAF ,∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43, ∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23, 由对称性知;当t 1=−215时,也满足∠OPM=∠MAF , ∴t 1=−215,t 2=−23都满足条件, ∵△POE 的面积=12OE ⋅|l|, ∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QRN′S =RN′ES=QN′EN′,即QR1=−2a−1ES=−2a−a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR可得﹣a+−2a−12=2,解得:a=﹣5 4,∴Q(﹣54,32);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(﹣3√55,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(3√55,2).综上,点Q的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2018年深圳中考英语试卷试题答案及解析

2018年深圳中考英语试卷试题答案及解析

2018年深圳中考英语试卷试题答案及解析2018深圳中考英语试题(满分:85分时间:80分钟)第一部分选择题(60分)I.词汇测试(15分)i.从下面每小题的A、B、C三个选项中选出可以替换划线部分的最佳选项,并在答题卡上将相应的字母编号涂黑。

(共8小题,每小题1分)( ) 1.--- More than 400 street gardens will be built in Shenzhen next year.--- Good news! Our city is becoming more and more beautiful.A. OverB. AroundC. Nearly( ) 2.--- Tim, you spend too much time on computers. It’s harmful to your eyes.--- I see. Thank you. I'll do more sports instead.A. is good forB. is bad forC. is useful to( ) 3.--- Hi, John! Would you like to go hiking with me tomorrow?--- Sounds great! It's a good way to keep fit.A. livelyB. activeC. healthy( ) 4.--- Mr. Li, I feel a little nervous before the coming exam.--- You’d better take a break from studies and relax yourself.A. restB. breathC. walk( ) 5.---1 dream to be a great dancer when I grow up.---That’s great. But it requires confidence and a lot of practice.A. getsB. hasC. needs( ) 6.--- Excuse me, could you please tell me how to get to the Concert Hall?---Sure. Go down the street, and you’ll find it close to the Book City.A. behindB. oppositeC. near( ) 7.--- Tony, have you got any plan for the summer vacation?--- Not yet. Perhaps I'll go back to my hometown with my family.A. MaybeB. ActuallyC. Generally( ) 8.--- Our English club will put on a famous play during the school art week.---Really? l can't wait to watch it.A. work onB. act outC. make upii. 根据句子意思,从下面每小题的A.B.C三个选项中选出最恰当的词语完成句子,并在答题卡上将相应的字母编号涂黑。

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.62.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,106.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =7010.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√311.(3.00分)(2018•深圳)二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( )A .abc >0B .2a +b <0C .3a +c <0D .ax 2+bx +c ﹣3=0有两个不相等的实数根12.(3.00分)(2018•深圳)如图,A 、B 是函数y=12x上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是( )①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x +3;把x=2代入解析式y=x +3=5,故选:D .【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a ,b 被c ,d 所截,且a ∥b ,则下列结论中正确的是( )A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°【考点】JA :平行线的性质. 【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a ,b 被c ,d 所截,且a ∥b ,∴∠3=∠4,故选:B .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组. 【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可. 【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan ∠OAB 可得答案.【解答】解:设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知AB=AC=3,OA 平分∠BAC , ∴∠OAB=60°,在Rt △ABO 中,OB=ABtan ∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,12m),∴BP=|12m ﹣n |, ∴S △BOP =12|12m ﹣n |×m=12|12﹣mn |∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m |,∴S △AOP =12|12n ﹣m |×n=12|12﹣mn |,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP , ∴OB ×PE=OA ×PE , ∵OA=OB , ∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M , ∴AM ⊥y 轴,BN ⊥x 轴, ∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4, ∴S △PMO =S △PNO =2, ∴S 矩形OMPN =4, ∴mn=4,∴m=4n ,∴BP=|12m ﹣n |=|3n ﹣n |=2|n |,AP=|12n ﹣m |=8|n|,∴S△APB=12AP×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=(a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式. 【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:36=12, 故答案为:12.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF 是正方形,∠CEA 和∠ABF 都是直角且点E ,A ,B 三点共线,AB=4,则阴影部分的面积是 8 .【考点】KD :全等三角形的判定与性质;LE :正方形的性质. 【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可. 【解答】解:∵四边形ACDF 是正方形, ∴AC=AF ,∠CAF=90°, ∴∠EAC +∠FAB=90°, ∵∠ABF=90°, ∴∠AFB +∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中, {∠CAE =∠AFB ∠AEC =∠FBA AC =AF,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=12×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=8√105.【考点】IJ:角平分线的定义;KQ:勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE=√AG2+EG2=√10,连接CF,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线, ∴∠ACF=45°=∠AFE , ∵∠CAF=∠FAE , ∴△AEF ∽△AFC ,∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD ,AB=DB ,∠ACB=∠DCB ,求出AC=AB ,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD ,AB=DB ,由已知尺规作图痕迹得:BC 是∠FCE 的角平分线,∴∠ACB=∠DCB ,又∵AB ∥CD ,∴∠ABC=∠DCB ,∴∠ACB=∠ABC ,∴AC=AB ,又∵AC=CD ,AB=DB ,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE, 即x 12=6−x 6, 解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt△ACH中,∠ACH=45°,∴AH=AC√2=2√2,∴四边形ACDB的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴ACAD =AE AC,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中{AB=AC ∠3=∠1 BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【考点】HF:二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y=a(x−12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2), 设直线AB 解析式为:y=kx +b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b, 解得:{k =−2b =−1, ∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0), 若∠OPM=∠MAF ,∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43, ∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23, 由对称性知;当t 1=−215时,也满足∠OPM=∠MAF , ∴t 1=−215,t 2=−23都满足条件, ∵△POE 的面积=12OE ⋅|l|, ∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QRN′S =RN′ES=QN′EN′,即QR1=−2a−1ES=−2a−a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR可得﹣a+−2a−12=2,解得:a=﹣5 4,∴Q(﹣54,32);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(﹣3√55,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(3√55,2).综上,点Q的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2018年深圳市中考数学试卷(含答案解析版)

2018年深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.62.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,106.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =7010.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√311.(3.00分)(2018•深圳)二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( )A .abc >0B .2a +b <0C .3a +c <0D .ax 2+bx +c ﹣3=0有两个不相等的实数根12.(3.00分)(2018•深圳)如图,A 、B 是函数y=12x上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是( )①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x +3;把x=2代入解析式y=x +3=5,故选:D .【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a ,b 被c ,d 所截,且a ∥b ,则下列结论中正确的是( )A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°【考点】JA :平行线的性质. 【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a ,b 被c ,d 所截,且a ∥b ,∴∠3=∠4,故选:B .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组. 【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可. 【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan ∠OAB 可得答案.【解答】解:设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知AB=AC=3,OA 平分∠BAC , ∴∠OAB=60°,在Rt △ABO 中,OB=ABtan ∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,12m),∴BP=|12m ﹣n |, ∴S △BOP =12|12m ﹣n |×m=12|12﹣mn |∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m |,∴S △AOP =12|12n ﹣m |×n=12|12﹣mn |,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP , ∴OB ×PE=OA ×PE , ∵OA=OB , ∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M , ∴AM ⊥y 轴,BN ⊥x 轴, ∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4, ∴S △PMO =S △PNO =2, ∴S 矩形OMPN =4, ∴mn=4,∴m=4n ,∴BP=|12m ﹣n |=|3n ﹣n |=2|n |,AP=|12n ﹣m |=8|n|,∴S△APB=12AP×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=(a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式. 【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:36=12, 故答案为:12.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF 是正方形,∠CEA 和∠ABF 都是直角且点E ,A ,B 三点共线,AB=4,则阴影部分的面积是 8 .【考点】KD :全等三角形的判定与性质;LE :正方形的性质. 【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可. 【解答】解:∵四边形ACDF 是正方形, ∴AC=AF ,∠CAF=90°, ∴∠EAC +∠FAB=90°, ∵∠ABF=90°, ∴∠AFB +∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中, {∠CAE =∠AFB ∠AEC =∠FBA AC =AF,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=12×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=8√105.【考点】IJ:角平分线的定义;KQ:勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE=√AG2+EG2=√10,连接CF,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线, ∴∠ACF=45°=∠AFE , ∵∠CAF=∠FAE , ∴△AEF ∽△AFC ,∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD ,AB=DB ,∠ACB=∠DCB ,求出AC=AB ,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD ,AB=DB ,由已知尺规作图痕迹得:BC 是∠FCE 的角平分线,∴∠ACB=∠DCB ,又∵AB ∥CD ,∴∠ABC=∠DCB ,∴∠ACB=∠ABC ,∴AC=AB ,又∵AC=CD ,AB=DB ,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE, 即x 12=6−x 6, 解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt△ACH中,∠ACH=45°,∴AH=AC√2=2√2,∴四边形ACDB的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴ACAD =AE AC,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中{AB=AC ∠3=∠1 BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【考点】HF:二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y=a(x−12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2), 设直线AB 解析式为:y=kx +b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b, 解得:{k =−2b =−1, ∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0), 若∠OPM=∠MAF ,∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43, ∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23, 由对称性知;当t 1=−215时,也满足∠OPM=∠MAF , ∴t 1=−215,t 2=−23都满足条件, ∵△POE 的面积=12OE ⋅|l|, ∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QRN′S =RN′ES=QN′EN′,即QR1=−2a−1ES=−2a−a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR可得﹣a+−2a−12=2,解得:a=﹣5 4,∴Q(﹣54,32);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(﹣3√55,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(3√55,2).综上,点Q的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.12018年深圳市中考英语试卷(解析版)第一部分选择题(60分)I.词汇测试(15分)i.从下面每小题的A 、B 、C 三个选项中选出可以替换划线部分的最佳选项,并在答题卡上 将相应的字母编号涂黑。

(共8小题,每小题1分)( )1. --- More than 400 street gardens will be built in Shenzhen next year.―Good news! Our city is becoming more and more beautiful.A. OverB. AroundC. Nearly 【解析】Aover,意为“太,过于”;B 选项around 意为“大约”;C 选项nearly 意为“几乎,差 不多"。

( )2.--- Tim, you spend too much time on computers. It’s harmful to your eyes.―I see. Thank you. I'll do more sports instead.A. is good forB. is bad forC. is useful to 【解析】BA 选项,be good for 意为"对…有好处”;B 选项be bad for 意为“对什么有坏处”;C 选 项be useful to 意为“对…有用”。

( )3. --- Hi, John! Would you like to go hiking with me tomorrow?―Sounds great! It’s a good way to keep fit.A. livelyB. activeC. healthy 【解析】CA 选项,lively 意为"活泼的,令人兴奋的”;B 选项active 意为“活跃的”;C 选项healthy 意为“健康的”。

( )4.--- Mr. Li, I feel a little nervous before the coming exam. —You'd better take a break from studies and relax yourself.A. restB. breathC. walk 【解析】AA 选项,rest 意为"休息”;B 选项breath 意为"呼吸";C 选项walk 意为"散步' 【考点】同义词转换*>.2 ( )5. ---1 dream to be a great dancer when I grow up.―That’s great. But it requires confidence and a lot of practice. A. gets B. has C. needs【解析】CA 选项,get 意为"获得”;B 选项has 意为“有”;C 选项need 意为“需要”。

( )6. --- Excuse me, could you please tell me how to get to the Concert Hall?Sure. Go down the street, and you’ll find it dose to the Book City.A. behindB. oppositeC. near【解析】CA 选项,behind 意为"在...后面”;B 选项opposite 意为“在…对面";C 选项near 意为 “在...附近”。

( ) 7. --- Tony, have you got any plan for the summer vacation?—Not yet. Perhaps I’ll go back to my hometown with my family.A. MaybeB. ActuallyC. Generally 【解析】AA 选项,maybe 意为"也许,大概”;B 选项actually 意为“实际上”;C 选项generally 意为“普遍地,广泛地'( )8.--- Our English club will put on a famous play during the school art week.---Really? I can’t wait to watch it.A. work onB. act outC. make up 【解析】BA 选项,work on 意为"对...起作用,企图影响,说服”;B 选项act out 意为"表演”;C 选项make up 意为“化妆"。

ii.根据句子意思,从下面每小題的A 、B 、C 三个选项中选出最怡当的词语完成句子, 并在答题卡上将相应的字母编号涂黑。

(共7小题,每小题1分)( ) 9. --- Simon always reads for half an hour before bedtime every day.—That’s good _____. Reading makes a full man.A. dreamB. wishC. habit 【解析】C*>. 3 A 选项,dream 意为"梦想”;B 选项wish 意为”愿望”;C 选项habit 意为”习惯”。

( )10. -— Do you still remember our primary school teacher, Mrs. Liu? —Yes, she always encouraged us and gave us support ____we met difficulties.A. wheneverB. whateverC. however【解析】A根据句意A 选项,whenever 意为"每当,无论何时”,她总会鼓励我们并给子我们支持; B 选项whatever 意为”无论什么”;C 选项however 意为“无论怎样”。

( )11. — I’m looking forward to the final of the 2018 World Cup.—Me too. I hope the German team will be the_____.It’s my favorite.A. playerB. winnerC. loser 【解析】B根据句意B 选项,winner 意为"胜者”,语境分析得知德国队是"我”的最爱;A 选项 player 意为“运动员”;C 选项loser 意为”失败者"。

( )12. -— The piano lessons are too hard for me. I nearly give up.一 Please be more ____. I believe you’ll make it.A.carefulB. helpfulC. patient 【解析】C根据句意C 选项,patient 意为"有耐心的",语境分析得知对方在鼓励钢琴恐惧症的朋 友,要有耐心不泄气就一定会成功的;A 选项careful 意为“细心的;B 选项helpful 意为“有 帮助的”。

( )13. — Have you heard about Shenzhen International Magic Festival?—____ ! It's a big event for magic lovers like me.A.WellB. CertainlyC. Exactly 【解析】B根据句意B 选项,certainly 意为"无疑,确定地”,语境分析得知对方肯定知道深圳有魔术节,因为他就是魔术迷;A选项well 意为“好;好吧(口语)” ;C 选项exactly 意为“精 确地,准确地”。

( ) 14.-一 Jack usually to help at the underground station on weekends.一-Cool! Let's join him next Saturday.A.offersB. refusesC. forgets 【解析】A根据句意A 选项,offer 意为"主动提出,自动给予",语境分析得知Jack 志愿*>.4 地铁义工, 对方很热心地表示想参与进来;B 选项refuse 意为“拒绝”;C 选项forget 意为“忘记"。

( ) 15. -一 Have you noticed that Anna's great progress in spoken English?一 Yes. She sets us a good example. Hard work always.A.makes a dealB. makes a differenceC. makes a problem【解析】B根据句意B 选项,make a difference 意为"有影响,有关系”,语境分析得知Anna 的 口语水平提高了很多,归功于她的勤奋;A 选项make a deal 意为“成交,达成交易”;C 选项make a problem 意为“有问题"。

II.完形填空(15分)阅读下面短文,从短文后所给的A 、B 、C 三个选项中选出能填入相应空白处的最佳选 项,并在答题卡上将相应的字母编号涂黑。

(共10小题,每小题1.5分)When I was young, I went to a boarding (寄宿)school in Edinburgh. It was far from home because I ___16___on an island in the north of Scotland.It was a music school, and I studied the violin. At the end of the term, we all packed our bags and our___17___to go home for our holidays. Most kids went by train or bus.Some were ___18___ by their parents. But I had to go home by ferry — 14 hours overnight on the open sea.One summer, after packing my suitcase and violin, I said ___19___ to my friends. I took the train to the ferry terminal (渡船码头)and then got on the ferry. But when the ferry started moving, I realized a (n )___20___ thing! I left my violin on the train!Oh no! What should I do? What would my dad say? He’d be really ___21___ ! I got so scared (害怕)that I didn’t sleep all night.The next morning, I ___22___ the ferry to meet my dad. After I told him everything, he laughed. I looked at him coul dn’t believe it. ___23___ was he laughing?I always had a label (标签)in my violin case with my address and a telephone number. My dad told me, “A cleaner found your violin on the train and took it to the police. They___24___ me and put it on a plane. It arr ived an hour ago.”___25___ ,my violin was safe.I was so happy!( ) 16. A. lived B. played C. worked ( ) 17. A. introductions B. instructions C. instruments( ) 18. A. picked up B. cared for C.woken up*>. 5( ) 19. A. hello B. sorryC.goodbye ( ) 20. A. wonderful B. awfulC.successful ( )21. A. happyB. helpfulC.angry ( ) 22. A. got offB. got onC.got up ( ) 23. A. WhatB. WhyC.When ( ) 24. A. called B. caught C.heard( ) 25. A. Suddenly B. LuckilyC.Sadly 16.A【解析】结合上下文语境,句意为:这所学校里我家很远,因为我家住在苏格兰北部的一座 小岛上,故选A 。

相关文档
最新文档