圆周运动讲解

合集下载

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。

一、两类模型——轻绳类和轻杆类1.轻绳类。

运动质点在一轻绳的作用下绕中心点作变速圆周运动。

由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。

所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。

2.轻杆类。

运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。

所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。

过最高点的最小向心加速度。

过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。

质点能在竖直平面内做圆周运动(轻绳或轻杆)最高点的向心力最低点的向心力,由机械能守恒,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。

物理圆周运动讲解

物理圆周运动讲解

物理圆周运动讲解
圆周运动是物理学中最常见的曲线运动之一。

质点在以某点为圆心,半径为 r 的圆周上运动时,其轨迹称为圆周运动。

圆周运动可分为匀速圆周运动和变速圆周运动两种。

在圆周运动中,向心力始终作用于质点,使质点始终保持向圆心运动的趋势,故向心力被视为维持质点圆周运动的动力。

匀速圆周运动时,质点所受的向心力大小不变,与质点的质量成反比,故质点的角速度与线速度的大小不变。

匀速圆周运动的周期即为质点转过一周所需的时间,转速即为每秒转过的弧度。

变速圆周运动则是由外力矩作用引起的,外力矩的大小和方向始终垂直于圆周平面,且与质点的速度方向相反。

当外力矩足够大时,质点将离开原来的圆周轨道,进入螺旋形轨道,并最终落地。

在圆周运动中,重要的公式包括向心力公式、角速度公式、线速度公式和周期公式等。

此外,圆周运动的规律也可以应用于其他形式的曲线运动,例如行星绕太阳的运动、地球的自转等。

26知识讲解 圆周运动(提高)

26知识讲解 圆周运动(提高)

物理总复习:圆周运动【考纲要求】1、知道匀速圆周运动的定义及相关物理量;2、知道匀速圆周运动的动力学特征;3、会正确分析向心力的来源;4、知道向心力的公式;5、理解圆周运动的临界条件;6、掌握利用牛顿运动定律分析匀速圆周运动问题。

【知识网络】角速度2vt T rθπω===线速度2s rv r t Tπω===向心加速度22224v ra r vr Tπωω====运行周期22r Tvππω==向心力22224vF ma m m r mrr Tπω====【考点梳理】考点一、描述圆周运动的物理量1、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等。

2、匀速圆周运动特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的。

要点诠释:1、匀速圆周运动是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动。

2、只存在向心加速度,向心力就是做匀速圆周运动的物体所受的合外力。

3、质点做匀速圆周运动的条件(1)物体具有初速度;(2)物体受到的合外力F的方向与速度v的方向始终垂直。

(匀速圆周运动)考点二、向心力的性质和来源要点诠释:向心力是按力的效果命名的,它可以是做圆周运动的物体受到的某一个力或是几个力的合力或是某一个力的分力,要视具体问题而定。

在匀速圆周运动中,由于物体运动的速率不变,动能不变,故物体所受合外力与速度时刻垂直、不做功,其方向指向圆心,充当向心力,只改变速度的方向,产生向心加速度。

考点三、传动装置中各物理量之间的关系在分析传动装置中各物理量的关系时,一定要明确哪个量是相等的,哪个量是不等的。

1、角速度相等:同轴转动的物体上的各点角速度相等。

2、线速度大小相等:(要求:在不打滑的条件下)(1)皮带传动的两轮在皮带不打滑的条件下,皮带上及两轮边缘各点的线速度大小相等;(2)齿轮传动;(3)链条传动;(4)摩擦轮传动;(5)交通工具的前后轮(自行车、摩托车、拖拉机、汽车、火车等等)考点四、圆周运动实例分析 1、火车转弯在转弯处,若向心力完全由重力G 和支持力N F 的合力F 合来提供,则铁轨不受轮缘的挤压,此时行车最安全。

圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。

高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。

高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。

匀速圆周运动加速度方向始终指向圆心。

做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。

速度(矢量,有大小有方向)改变的。

(或是大小,或是方向)(即a≠0)称为变速运动。

速度不变(即a=0)、方向不变的运动称为匀速运动。

而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。

所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。

匀变速运动加速度不变(须的大小和方向都不变)的运动。

匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。

圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。

本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。

本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。

(过渡句)知道了教材特点,我们再来了解一下学生特点。

也就是我说课的第二部分:学情分析。

第五章第四节圆周运动讲解

第五章第四节圆周运动讲解

第四节 圆周运动[学习目标] 1.理解线速度、角速度、转速、周期等概念,会对它们进行定量计算. 2.知道线速度、角速度、周期之间的关系. 3.理解匀速圆周运动的概念和特点.[学生用书P 19]一、线速度(阅读教材P 16~P 17)1.定义:物体做圆周运动通过的弧长与所用时间的比值.2.定义式:v =ΔsΔt.3.矢标性:线速度是矢量,其方向和半径垂直,和圆弧相切. 4.物理意义:描述质点沿圆周运动快慢的物理量. 5.匀速圆周运动(1)定义:线速度的大小处处相等的圆周运动.(2)性质:线速度的方向是时刻变化的,所以匀速圆周运动是一种变速运动.拓展延伸►———————————————————(解疑难)对线速度的理解如果时间Δt 较长,则线速度的大小实际上等同于以前学过的“平均速率”,因此理解线速度时必须强调Δt 表示很短的时间,此时线速度等同于以前学过的“瞬时速度”,因此理解线速度时只需理解为物体做圆周运动的瞬时速度即可.1.关于匀速圆周运动,下列说法正确的是( )A .匀速圆周运动是变速运动B .匀速圆周运动的速率不变C .任意相等时间内通过的位移相等D .任意相等时间内通过的路程相等提示:选ABD.由线速度的定义知,速度的大小不变,也就是速率不变,但速度方向时刻改变,选项A 、B 正确.做匀速圆周运动的物体在任意相等时间内通过的弧长即路程相等,选项C 错误,选项D 正确.二、角速度及单位(阅读教材P 17~P 18)1.定义:物体与圆心的连线扫过的角度与所用时间的比值.2.定义式:ω=ΔθΔt.3.单位:弧度每秒,符号是rad/s 或rad·s -1.4.物理意义:描述质点沿圆周转动快慢的物理量. 5.转速和周期 (1)转速:单位时间内物体转过的圈数,常用n 表示,单位为转每秒(r/s)或转每分(r/min). (2)周期:做匀速圆周运动的物体,转过一周所用的时间,用T 表示,国际制单位为秒(s).拓展延伸►———————————————————(解疑难)1.方向:角速度是矢量,其方向在中学阶段不做讨论. 2.对角速度的理解线速度和角速度都是描述做匀速圆周运动的物理量,线速度侧重于物体通过弧长的快慢程度;而角速度侧重于物体转过角度的快慢程度.它们都有一定的局限性.例如,地球围绕太阳运动的线速度约是3×104 m/s ,这个数值是较大的,但它的角速度却很小,其值为2×10-7 rad/s.事实上是因为地球绕太阳做圆周运动的轨道半径很大,所以线速度较大,但由于一年才转一周,角速度却很小.因此为了全面准确地描述物体做圆周运动的状态必须用线速度和角速度.3.匀速圆周运动是角速度大小、方向均不变的圆周运动.2.若钟表的指针都做匀速圆周运动,秒针和分针的角速度之比是多少?提示:转动一周,扫过的角度为Δθ=2π,秒针用时Δt =60秒,分针用时3 600秒,秒针角速度为:ω秒=2π60,分针角速度为:ω分=2π3 600,则ω秒ω分=3 60060=601.三、线速度与角速度的关系(阅读教材P 18)1.两者关系:在圆周运动中,线速度的大小等于角速度大小与半径的乘积. 2.关系式:v =ωr .拓展延伸►———————————————————(解疑难)对v 、ω、r 三者关系的理解1.当半径r 相同时,线速度v 与角速度ω成正比. 2.当角速度ω一定时,线速度v 与半径r 成正比. 3.当线速度一定时,角速度ω与半径r 成反比.3.质点做匀速圆周运动时,判断下列说法的正误:(1)因为v =ωr ,所以线速度v 与轨道半径r 成正比.( )(2)因为ω=vr,所以角速度ω与轨道半径r 成反比.( )(3)因为v =ωr ,所以线速度v 与角速度ω成正比.( )(4)因为r =vω,所以轨道半径与线速度成正比,与角速度成反比.( )提示:(1)× (2)× (3)× (4)×对匀速圆周运动的理解[学生用书P 20]1.匀速圆周运动的特点 (1)线速度大小是恒定的.(2)匀速圆周运动是角速度不变的运动.做匀速圆周运动的物体,在单位时间里所通过的弧长相等,转过的角度也相等. (3)匀速圆周运动的转速与周期也保持不变. 做匀速圆周运动的物体,在单位时间内所转过的圈数相等,每转一周所用的时间也相等. 2.匀速圆周运动中“匀速”的含义 匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的线速度大小不变,但线速度的方向时刻在发生变化,所以匀速圆周运动是速率不变的运动,而不是速度不变的运动.故“匀速”的含义是线速度的大小不变,角速度不变.——————————(自选例题,启迪思维)下列关于匀速圆周运动的说法中,正确的是()A.是线速度不变的运动B.是角速度不变的运动C.是角速度不断变化的运动D.是相对圆心位移不变的运动[解析]匀速圆周运动的角速度保持不变,线速度大小保持不变,方向时刻变化,选项A、C错误,选项B正确;相对圆心的位移大小不变,方向时刻变化,选项D错误.[答案] B质点做匀速圆周运动,则下列说法正确的是()①在任何相等的时间里,质点的位移都相等②在任何相等的时间里,质点通过的弧长都相等③在任何相等的时间里,质点运动的平均速度都相同④在任何相等的时间里,连接质点和圆心的半径转过的角度都相等A.①②B.③④C.①③D.②④[解析]匀速圆周运动是变速运动,故在相等的时间内通过的弧长相等,但位移方向不同,故①错,②正确.因为角速度是不变的,故④正确.平均速度是位移与时间的比值,所以③错.本题选D.[答案] D圆周运动中各物理量之间的关系[学生用书P21]——————————(自选例题,启迪思维)(2015·聊城高一检测)质点做匀速圆周运动时()A.线速度越大,其转速一定越大B.角速度大时,其转速一定大C.线速度一定时,半径越大,则周期越长D.无论半径大小如何,角速度越大,则质点的周期一定越长[思路点拨]解决这类题目的方法是:确定哪个量不变,寻找各物理量之间的联系,灵活选取公式进行分析.[解析] 匀速圆周运动的线速度v =Δs Δt =2πrn 1=2πrn ,则n =v2πr,故线速度越大,其转速不一定越大,因为还与r 有关,A 错误;匀速圆周运动的角速度ω=ΔθΔt =2πn1=2πn ,则n=ω2π,所以角速度大时,其转速一定大,B 正确;匀速圆周运动的周期T =2πrv,则线速度一定时,半径越大,则周期越长,C 正确;匀速圆周运动的周期T =2πω,与半径无关,且角速度越大,则质点的周期一定越短,D 错误.[答案] BC甲、乙两物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相等时间内甲转过60°,乙转过45°,则它们的线速度之比为( )A .1∶4B .2∶3C .4∶9D .9∶16[解析] 由题意知,甲、乙两物体的角速度之比ω1∶ω2=60°∶45°=4∶3,故两物体的线速度之比v 1∶v 2=ω1r ∶ω22r =2∶3.选项B 正确. [答案] B做匀速圆周运动的物体,10 s 内沿半径为20 m 的圆周运动100 m ,试求物体做匀速圆周运动时:(1)线速度的大小; (2)角速度的大小; (3)周期的大小.[解析] (1)依据线速度的定义式v =st可得v =s t =10010m/s =10 m/s. (2)依据v =ωr 可得ω=v r =1020rad/s =0.5 rad/s.(3)由ω=2πT 可知T =2πω=2π0.5s =4π s.[答案] (1)10 m/s (2)0.5 rad/s (3)4π s[感悟提升] (1)解决匀速圆周运动问题时,可以把ω、T 、f 、n 视为等价物理量,即知其一,便知其他三个物理量.(2)若比较物体沿圆周运动的快慢看线速度,若比较物体绕圆心转动的快慢看周期、角速度、转速或频率.三种传动装置及其特点[学生用书P 21]——————————(自选例题,启迪思维)如图所示的传动装置中,B 、C 两轮固定在一起绕同一转轴转动,A 、B 两轮用皮带传动,三轮半径关系为rA =rC =2rB .若皮带不打滑,求A 、B 、C 轮边缘的a 、b 、c 三点的角速度之比和线速度之比.[思路点拨] (1)A 、B 两轮之间属于皮带传动,a 、b 两点线速度大小相等. (2)B 、C 两轮之间属于同轴转动,b 、c 两点角速度相等. (3)v 、ω的关系式:v =ωr .[解析] A 、B两轮通过皮带传动,皮带不打滑,A 、B 两轮边缘上点的线速度大小相等,即v a =v b ,故v a ∶v b =1∶1B 、C 两个轮子固定在一起,绕同一转轴转动,它们上面的任何一点具有相同的角速度,即ωb ∶ωc =1∶1因为ω=vr,v a =v b ,r A =2r B所以ωa ∶ωb =r B ∶r A =1∶2 又因为v =rω,ωb =ωc ,r C =2r B 所以v b ∶v c =r B ∶r C =1∶2 综上可知:ωa ∶ωb ∶ωc =1∶2∶2 v a ∶v b ∶v c =1∶1∶2.[答案] 1∶2∶2 1∶1∶2如图所示为一种齿轮传动装置,忽略齿轮啮合部分的厚度,甲、乙两个轮子的半径之比为1∶3,则在传动的过程中( )A .甲、乙两轮的角速度之比为3∶1B .甲、乙两轮的周期之比为3∶1C .甲、乙两轮边缘处的线速度之比为3∶1D .甲、乙两轮边缘上的点相等时间内转过的弧长之比为1∶1[解析] 这种齿轮传动,与不打滑的皮带传动规律相同,即两轮边缘的线速度相等,故C 错误;根据线速度的定义v =Δs Δt 可知,弧长Δs =v Δt ,故D 正确;根据v =ωr 可知ω=vr ,又甲、乙两个轮子的半径之比r 1∶r 2=1∶3,故甲、乙两轮的角速度之比ω1∶ω2=r 2∶r 1=3∶1,故A 正确;周期T =2πω,所以甲、乙两轮的周期之比T 1∶T 2=ω2∶ω1=1∶3,故B 错误.[答案] AD (2015·成都外国语学校高一月考)如图所示的装置中,已知大齿轮的半径是小齿轮半径的3倍,A 点和B 点分别在两轮边缘,C 点离大轮轴距离等于小轮半径.若不打滑,则它们的线速度之比v A ∶v B ∶v C 为( )A .1∶3∶3B .1∶3∶1C .3∶3∶1D .3∶1∶3[解析] A 、C 两点转动的角速度相等,由v =ωr 可知,v A ∶v C =3∶1;A 、B 两点的线速度大小相等,即v A ∶v B =1∶1;则v A ∶v B ∶v C =3∶3∶1.[答案] C[规律总结] 在处理传动装置中各物理量间的关系时,首先确定相等的量(线速度或角速度),再由各物理量间的关系式确定其他各量间的关系.[学生用书P 22]典型问题——圆周运动的周期性引起的多解问题做匀速圆周运动的物体,经过周期的整数倍时间,其位置不变.由于周期性的存在,易引起运动中的时间、速度等存在多解性问题.[范例]如图所示,质点A 从某一时刻开始在竖直平面内沿顺时针方向做匀速圆周运动,出发点与圆心等高,与此同时位于圆心的质点B 自由下落.已知圆周半径为R ,求质点A 的角速度ω满足什么条件时,才能使A 、B 相遇.[解析] 要使质点A 和质点B 相遇,则它们从开始运动到相遇经历的时间应相等,即t A=t B ,考虑到圆周运动的周期性,质点A 从开始运动到相遇经历的时间为t A =34T +nT (n =0,1,2,3,…)对于质点B ,由自由落体运动规律R =12gt 2B得t B =2R g由圆周运动的周期公式有T =2πω解上述方程得ω=⎝⎛⎭⎫n +34π2g R (n =0,1,2,3,…) [答案] ω=⎝⎛⎭⎫n +34π2g R(n =0,1,2,3,…) [名师点评] (1)把圆周运动与其他形式的运动联系起来的“桥梁”通常是时间,因此找出两种运动的时间关系是解决这类问题的关键.(2)注意圆周运动的周期性造成的多解.分析问题时可表示出一个周期内的情况,再根据周期性,在转过的角度θ上再加上2n π,n 的取值应视情况而定.为了测定子弹的飞行速度,在一根水平放置的轴上固定两个薄圆盘A 、B ,A 、B 平行相距2 m ,轴杆的转速为3 600 r/min ,子弹穿过两盘留下两弹孔a 、b ,测得两弹孔半径的夹角是30°,如图所示,则该子弹的速度可能是( )A .360 m/sB .720 m/sC .1 440 m/sD .108 m/s解析:选C.子弹从A 盘到B 盘,盘转动的角度θ=2πn +π6(n =0,1,2,3,…),盘转动的角速度ω=2πT =2πf =2πn =2π×3 60060rad/s =120π rad/s.子弹在A 、B 间运动的时间等于圆盘转动θ角所用的时间,即 2 m v =θω, 所以v =2ωθ=2×120π2πn +π6m/s(n =0,1,2,3,…),v =1 44012n +1 m/s(n =0,1,2,3,…). n =0时,v =1 440 m/s ; n =1时,v ≈110.77 m/s ; n =2时,v =57.6 m/s ; ……[学生用书P 23][随堂达标]1.做匀速圆周运动的物体( )A .因相等时间内通过的弧长相等,所以线速度恒定B .如果物体在0.1 s 内转过30°,则角速度为300 rad/sC .若半径r 一定,则线速度与角速度成正比D .若半径为r ,周期为T ,则线速度v =2πrT解析:选CD.线速度v =st,反映质点沿圆弧运动的快慢程度,是矢量,大小恒定,方向沿圆弧切线方向,在不断地改变,故不能说线速度恒定,故A 错误.角速度ω=φt,反映质点与圆心的连线转动的快慢,国际单位为rad/s ,B 中应为ω=π60.1 rad/s =5π3 rad/s ,故B 错误.线速度与角速度的关系为v =ωr ,由该式可知,r 一定时,v ∝ω;ω一定时,v ∝r ,故C 正确.物体转动一周时间为T ,由线速度与角速度的定义,在特殊情况下(转一周)线速度与角速度的表达式分别为v =2πr T ,ω=2πT ,故D 正确.2.(2015·济南高一检测)关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下面说法中正确的是( )A .线速度大的角速度一定大B .线速度大的周期一定小C .角速度大的半径一定小D .角速度大的周期一定小解析:选D.由v =ωr 知ω=vr ,角速度与线速度、半径两个因素有关,线速度大的角速度不一定大,A 错误.r =vω,只有当线速度一定时,角速度大的半径才小,C 错误.由T =2πr v 知,周期与半径、线速度两个因素有关,线速度大的周期不一定小,B 错误.而由T =2πω可知,ω越大,T 越小,D 正确.3.(2015·唐山一中高一检测)一小球被细线拴着做匀速圆周运动,其半径为2 m ,角速度为1 rad/s ,则( )A .小球的线速度为1.5 m/sB .小球在3 s 的时间内通过的路程为6 mC .小球做圆周运动的周期为5 sD .以上说法都不正确 解析:选B.由v =ωr 知线速度大小为2 m/s ,A 错误;3 s 内路程s =vt =6 m ,B 正确;由T =2πω知周期为2π s ,C 错误.4.如图所示,主动轮M 通过皮带带动从动轮N 做匀速转动,a 是M 轮上距轴O 1的距离等于M 轮半径一半的点,b 、c 分别是N 轮和M 轮轮缘上的点,已知在皮带不打滑的情况下,N 轮的转速是M 轮的3倍,则()A .a 、b 两点的角速度之比为3∶1B .a 、b 两点的线速度之比为1∶2C .b 、c 两点的周期之比为1∶3D .a 、c 两点的线速度之比为1∶2解析:选BCD.因n N =3n M ,即n b =3n c .ωb =3ωc ,a 、c 两点同轴转动,所以ωa =ωc ,ωb=3ωa ,即ωa ∶ωb =1∶3,A 错误;因v b =v c ,v c =2v a ,所以v a ∶v b =1∶2,B 正确;因T b =2πωb,T c =2πωc,所以T b ∶T c =1∶3,C 正确;因r c =2r a ,所以v a ∶v c =1∶2,D 正确.5.(选做题)(2014·高考天津卷)半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h =________,圆盘转动的角速度大小ω=________.解析:由平抛运动的规律结合圆周运动的知识求解.小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =vt ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得:ω=2n πvR(n =1,2,3,…)答案:见解析[课时作业]一、选择题 1.(2015·廊坊高一检测)有一棵大树将要被伐倒的时候,有经验的伐木工人就会双眼紧盯树梢,根据树梢的运动情形就能判断大树正在朝哪个方向倒下,从而避免被倒下的大树砸伤.从物理知识的角度来解释,以下说法正确的是( )A .树木开始倒下时,树梢的角速度最大,易于判断B .树木开始倒下时,树梢的线速度最大,易于判断C .树木开始倒下时,树梢的周期较大,易于判断D .伐木工人的经验缺乏科学依据解析:选B.树木开始倒下时,树各处的角速度一样大,故A 项错误.由T =2πω知,树各处的周期也一样大,故C 项错误.由v =ωr 知,树梢的线速度最大,易判断树倒下的方向,故B 项正确,D 项错误.2.甲、乙两物体分别做匀速圆周运动,如果它们转动的半径之比为1∶5,线速度之比为3∶2,则下列说法正确的是( )A .甲、乙两物体的角速度之比是2∶15B .甲、乙两物体的角速度之比是10∶3C .甲、乙两物体的周期之比是2∶15D .甲、乙两物体的周期之比是10∶3解析:选C.由v =ωr 得ω1ω2=v 1r 1∶v 2r 2=v 1v 2·r 2r 1=32×51=152,A 、B 错误,由ω=2πT 得T 1T 2=ω2ω1=215,C 正确、D 错误. 3.(多选)如图所示为某一皮带传动装 置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:选BC.因为皮带不打滑,两轮缘上各点的线速度大小相等,各点做圆周运动的速度方向为切线方向,则皮带上的M 、N 点均沿MN 方向运动,从动轮沿逆时针方向转动,A错B 对.根据线速度与角速度的关系式:v =rω,ω=2πn 得n ∶n 2=r 2∶r 1,所以n 2=r 1r 2n ,C对D 错.4.(多选)如图所示,一个环绕中心线AB 以一定的角速度转动,下列说法中正确的是( ) A .P 、Q 两点的角速度相同 B .P 、Q 两点的线速度相同C .P 、Q 两点的角速度之比为3∶1D .P 、Q 两点的线速度之比为3∶1解析:选AD.同一圆周上各点的周期和角速度都是相同的,选项A 正确,选项C 错误;设角速度为ω,半径为r ,则P 、Q 两点的线速度分别为v P =ωr sin 60°,v Q =ωr sin 30°,得v P ∶v Q =3∶1,选项B 错误,选项D 正确.5.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为( )A.r 1ω1r 3B.r 3ω1r 1C.r 3ω1r 2D.r 1ω1r 2解析:选A.本题属于摩擦传动,摩擦传动的特点是各个轮边缘的线速度大小相等,即v 1=v 2=v 3,则有ω1r 1=ω2r 2=ω3r 3,可得A 选项正确. 6.机械手表(如图)的分针与秒针从第一次重合至第二次重合,中间经历的时间为( ) A.5960min B .1 min C.6059 min D.6160min 解析:选C.先求出分针与秒针的角速度为ω分=2π3 600 rad/s ,ω秒=2π60 rad/s.设两次重合的时间间隔为Δt ,则有φ分=ω分Δt ,φ秒=ω秒Δt ,φ秒-φ分=2π,即Δt =2πω秒-ω分=2π2π60-2π3 600s =3 60059s =6059 min ,故选项C 正确.7.(2015·福州高一检测)半径为R 的大圆盘以角速度ω旋转,如图所示.有人站在盘边P 点上随盘转动,他想用枪击中圆盘中心的目标O ,若子弹的速度为v 0,则( )A .枪应瞄准目标O 射去B .枪应向PO 的右方偏过θ角射去,而cos θ=ωRv 0C .枪应向PO 的左方偏过θ角射去,而tan θ=ωRv 0D .枪应向PO 的左方偏过θ角射去,而sin θ=ωRv 0解析:选D.子弹同时参与两个运动:沿P 点切线方向的运动,速度为ωR ;沿枪口方向的匀速运动.合成的速度沿PO 方向,如图所示,枪应向PO 的左方偏过θ角射去,且sin θ=ωRv 0,故D 正确. 8.(2015·绵阳高一检测)如图所示,直径为d 的纸制圆筒,以角速度ω绕中心轴匀速转动,把枪口垂直对准圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,则子弹的速度不可能是( )A.dωπB.dω2πC.dω3πD.dω5π 解析:选B.圆筒上只有一个弹孔,表明子弹从同一个位置进入和离开圆筒,故子弹穿过圆筒的时间t 内,转过的角度θ=(2n +1)π(n =0,1,2…),故子弹的速度v =d t =dωθ=dω(2n +1)π.n =0时,v =dωπ,A 对.n =1时,v =dω3π,C 对.n =2时,v =dω5π,D 对.故子弹的速度不可能是dω2π,选项B 符合题意.☆9.某机器内有两个围绕各自的固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度相同,都是4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值应为( )A .0.56 sB .0.28 sC .0.16 sD .0.07 s解析:选A.根据公式T =2πrv 可求出,P 、Q 转动的周期分别为T 1=0.14 s 和T 2=0.08 s ,根据题意,只有当P 、Q 同时转到题图所示位置时,Q 才能接收到红外线信号,所以所求的最小时间应该是它们转动周期的最小公倍数,即0.56 s ,所以选项A 正确.☆10.如图所示是磁带录音机的磁带盒的示意图,A 、B 为缠绕磁带的两个轮子,其半径均为r .在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径为R ,且R =3r .现在进行倒带,使磁带绕到A 轮上.倒带时A 轮是主动轮,其角速度是恒定的,B 轮是从动轮.经测定磁带全部绕到A 轮上需要的时间为t .则从开始倒带到A 、B 两轮的角速度相等所需要的时间为( )A.t2 B.5-12t C.6-12t D.7-12t解析:选B.因为A 轮角速度一定,A 轮磁带外缘半径随时间均匀增加,线速度v =ωr ,故线速度大小随时间t 均匀增加,可将磁带的运动等效为匀变速直线运动模型处理.整个过程中,设A 轮外缘初速度为v ,则末速度为3v ,运动时间为t ,加速度为a ,位移即磁带总长度为x ,由匀变速直线运动规律:(3v )2-v 2=2ax,3v =v +at ,当磁带有一半绕到A 轮上时,两轮半径相等、两轮角速度相同,此时,v ′2-v 2=ax ,v ′=v +at ′,解得:v ′=5v ,t ′=5-12t ,B 项正确.二、非选择题 11.(2015·厦门高一检测)如图所示,一雨伞边缘的圆周半径为r ,距地面高为h ,当雨伞在水平面内以角速度ω匀速转动时,雨滴从伞边缘甩出,这些雨滴在地面形成一个圆,则此圆的半径R 为多少?解析:甩出的雨滴沿伞边缘飞出做平抛运动,其速度v 0=ωr ,平抛下落的时间为t =2hg;水平位移x =v 0t .由 图可知,甩出的雨滴落地形成的圆半径为R =r 2+x 2=r 2+ω2r 22hg=rg +2ω2hg.答案:r g +2ω2hg12.如图所示,B 物体放在光滑的水平地面上,在水平力F 的作用下由静止开始运动,B 物体的质量为m ,同时A 物体在竖直面内由M 点开始做半径为r 、角速度为ω的匀速圆周运动.求满足使A 、B 速度相同的力F 的取值.解析:速度相同即大小、方向相同,B 为水平向右,A 一定要在最低点才能保证速度水平向右.由题意可知,当A 从M 点运动到最低点时t =nT +34T (n =0,1,2,…),线速度v =ωr对于B (初速度为0):v =at =F m ⎝⎛⎭⎫nT +34T =Fm ⎝⎛⎭⎫n +342πω 解得F =2mω2rπ(4n +3)(n =0,1,2,…).答案:F =2mω2rπ(4n +3)(n =0,1,2,…)。

高中物理 圆周运动 详细讲解

高中物理 圆周运动 详细讲解
v r 两式相除得: T
思考题:
“物体做匀速圆周运动时,其速度 是恒定不变的。”
(这种说法正确吗?)
请选择: 正确
错误
弧 S 跟所用的时间 t 之比是个定
值,这个比值就是匀速圆周运动的速 率(速度的大小):
v s 单位 m/s t
(线速度的大小)
(v在数值上等于质点在单位时间内通过 的弧长)
周期:质点做匀速圆周
运动时,运动一周所用
的时间。用 T 表示。
T质点沿半径为r的Fra bibliotek周做圆周 运动,周期为T,则
v 2r
T
轨迹是圆周的运动叫圆周运动。
皮带轮 飞轮 电动机转子各部分
在我们日常生活中,最常见最简 单的圆周运动是匀速圆周运动。
匀速圆周运动:质点沿圆周运动,如 果在任何相等的时间里通过的圆弧相 等,这种运动就叫做匀速圆周运动。
砂轮上各点
电子钟指针上每 一点
速度
v
s t
s
时间 t
质点做匀速圆周运动时,它通过的圆
角速度
t
时间 t
t 角速度:半径转过的角度 跟所用的
时间 之比。用 表示。
角度的单位是rad,时间的单位是s,故角速 度的单位是rad/s.
( 在数值上等于质点在单位时间内沿
半径所转过的角度 )
质点做匀速圆周运动,周期是T
则有: 2
T
例1. 半径10cm的砂轮,每0.2秒转一周,砂 砂轮旋转的角速度多大?砂轮边沿一
点的速度大小为多少?
解:从题中知r=10cm=0.1m,T=0.2s
2 2 10 rad/s
T 0.2
v 2 2 0.10 m/s
t
0.2

圆周运动——精选推荐

圆周运动——精选推荐

圆周运动与平抛运动类似,圆周运动也是最为典型的曲线运动之⼀。

我们来分析圆周运动都有哪些特点?圆周运动的概念质点在以某点为圆⼼半径为r的圆周上运动时,即其轨迹是圆周的运动叫圆周运动。

在运动过程中速率的⼤⼩维持不变⽽仅仅是⽅向变化,这样的圆周运动称之为匀速圆周运动。

严格来说,匀速圆周运动应该叫做匀速率圆周运动。

因为其速度并⾮“均匀不变”的,速度是⽮量,其⼤⼩速率不变。

在圆周运动的过程中,速度⼤⼩不变,其⽅向时刻发⽣变化。

圆周运动是⼀种最常见的曲线运动。

例如电动机转⼦、车轮、⽪带轮等都作圆周运动。

圆周运动分为,匀速圆周运动和变速圆周运动。

变速圆周运动的代表是:竖直平⾯内绳或杆转动⼩球、竖直平⾯内的圆锥摆运动等。

在讲解机械振动的时候,我们研究的单摆其实在做的就是⾮匀速的圆周运动(往复性质)。

从运动性质上来说,匀速圆周运动是变速运动(v⽅向时刻在变),⽽且是变加速运动(a⽅向时刻在变)。

请同学们注意,只要物体做圆周运动,那么必然受⼒不平衡,必须有外⼒提供向⼼⼒。

描述匀速圆周运动的物理量描述匀速圆周运动的物理量有很多,包括线速度v、⾓速度ω、周期T、频率f、转速n、向⼼加速度a、向⼼⼒F等等。

转速n的单位是r/s(转每秒)或r/min(转每分),注意区分r/s和rad/s。

凡是直接⽤⽪带传动(包括链条传动、摩擦传动)的两个轮⼦,两轮边缘上各点的线速度⼤⼩相等;凡是同⼀个轮轴上(各个轮都绕同⼀根轴同步转动)的各点⾓速度相等(轴上的点除外)。

圆周运动向⼼⼒和向⼼加速度向⼼加速度的定义a = v^2/r;同时也可证明a =(2π)^2r/T^2;向⼼⼒的定义F = mv^2/r;也可表⽰为F=mω^2r(v是线速度,ω是⾓速度)⽜顿第⼆定律在圆周运动中的应⽤(1)做匀速圆周运动物体所受的合⼒为向⼼⼒。

“向⼼⼒”是⼀种效果⼒。

可以是⼀个⼒,也可以是⼏个⼒的合⼒,只要其最终效果是使物体做匀速圆周运动的,都可以作为向⼼⼒。

高中物理圆周运动和向心加速度专题讲解

高中物理圆周运动和向心加速度专题讲解

圆周运动和向心加速度【要点梳理】要点一、圆周运动的线速度 要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。

公式:tlv ∆∆=(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、 说明1)线速度是指物体做圆周运动时的瞬时速度。

2)线速度的方向就是圆周上某点的切线方向线速度的大小是tl∆∆的比值。

所以v 是矢量。

3)匀速圆周运动是一个线速度大小不变的圆周运动。

4)线速度的定义式tlv ∆∆=,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ∆取得足够小,公式计算的结果就是瞬时线速度注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。

【典型例题】类型一、描述匀速圆周运动的各个物理量例1、一个直径为1.4m 的圆盘以中心为轴匀速转动,转速为2转/秒,求圆盘边缘一点的线速度、角速度、周期和向心加速度。

例2、 (2015 海南会考模拟)如图所示,钟表的秒针、分针、时针转动周期、角速度都不同,下列说法中正确的是( )A .秒针的周期最大,角速度最大B .秒针的周期最小,角速度最大C .时针的周期最大,角速度最大D .时针的周期最小,角速度最大 【解析】时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,秒针的周期最小,根据2Tπω=可知秒针的角速度最大,故A 错误B 正确;时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,时针的周期最大,根据2Tπω=可知时针的角速度最小,故CD 错误。

【变式】电风扇叶片边缘一点的线速度为56.7m/s ,若它转动半径为18cm ,求电扇转动的角速度和周期。

【解析】根据线速度与角速度的关系r v ω=得)s (02.022)rad/s (315=====v rT T rv rv ππω所以又因为要点二、描写圆周运动的角速度 要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度θ∆与所用时间t ∆的比值叫做角速度。

高中物理生活中的圆周运动专题讲解

高中物理生活中的圆周运动专题讲解

生活中的圆周运动要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释:1、水平面上的匀速圆周运动,静摩擦力的大小和方向物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。

这个静摩擦力的大小2f ma mr ω==向,它正比于物体的质量、半径和角速度的平方。

当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。

临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。

此时物体的角速度rgμω=(μ为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。

2、水平面上的变速圆周运动中的静摩擦力的大小和方向无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。

如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图)【典型例题】类型一、生活中的水平圆周运动 例1(多选)、(2015 安阳二模)如图所示,粗糙水平圆盘上,质量相等的A 、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )A .B 的向心力是A 的向心力的2倍B .盘对B 的摩擦力是B 对A 的摩擦力的2倍C .A 、B 都有沿半径向外滑动的趋势D .若B 先滑动,则B 对A 的动摩擦因数A μ小于盘对B 的动摩擦因数B μ 【答案】BC【解析】因为A 、B 两物体的角速度大小相等,根据2n F mr ω=,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等;对A 、B 整体分析,22B f mr ω=,对A 分析,有2A f mr ω=,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,则B 正确;A 所受的摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C 正确;对AB 整体分析,222B B mg mr μω=,解得:B B grμω=,对A 分析,2A A mg mr μω=,解得A A grμω=,因为B 先滑动,可知B 先到达临界角速度,可知B 的临界角速度较小,即B A μμ<,故D 错误。

知识讲解 圆周运动的向心力及其应用 基础

知识讲解 圆周运动的向心力及其应用 基础

圆周运动的向心力及其应用要点一、物体做匀速圆周运动的条件要点诠释:物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。

说明:从物体受到的合外力、初速度以及它们的方向关系上探讨物体的运动情况,是理解运动和力关系的基本方法。

要点二、关于向心力及其来源1、向心力要点诠释(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力.(2)向心力的作用:是改变线速度的方向产生向心加速度的原因。

(3)向心力的大小:22vF ma m mrrω===向向向心力的大小等于物体的质量和向心加速度的乘积;对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。

如果是匀速圆周运动则有:22222244vF ma m mr mr mr fr Tπωπ=====向向(4)向心力的方向:与速度方向垂直,沿半径指向圆心。

(5)关于向心力的说明:①向心力是按效果命名的,它不是某种性质的力;②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小;③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。

2、向心力的来源要点诠释(1)向心力不是一种特殊的力。

重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。

(2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):要点三、匀速圆周运动与变速圆周运动的区别1、从向心力看匀速圆周运动和变速圆周运动要点诠释:(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。

例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。

第六章圆周运动重难点题型讲解-高一下学期物理人教版(2019)必修第二册

第六章圆周运动重难点题型讲解-高一下学期物理人教版(2019)必修第二册
系中正确的是( D )
A.
v0=
ωd 2
dv0 =L2g
B. 2
C.dω2=gπ2(1+2n)2 (n=0,1,2,…)
D.ωL=π(1+2n)v0 (n=0,1,2,…)
A
解析:飞镖在空中做平抛运动飞镖最终落在圆盘的下
A点随圆盘做匀速圆周运动 :t
沿击中A点,在t时间段内,A点转过(2n+1)π的角度。
物理必修二 第六章重难点题型讲解
授课教师:
一. 圆周运动公式及各物理量的计算式:
角速度
2 2n
t r T t
线速度 向心加速度 运行周期
s r 2r s
t
Tt
an
2 r
2r
4 2 T2
r
T 2r 2 1 n
向心力
Fn
ma n
2
m r
m 2r
m
m 4 2
T2
r
gr gr
时,FN = 0,
时,mg FN =
mg
2 m
r
2
=m r
,FN指向圆心并随v的增大而增大
十. 竖直平面内的球—杆模型:对轨道最高点的运动和受力分析
v
r杆
受重力、弹力 受力特点: 弹力指向圆心,等于零或 沿半径背离圆心
小球固定在带转轴的轻杆上
最高点的向心力公式:
2
Fn mg FN m r
需要注意的是,标量计算式可适用于匀速圆周运动, 矢量计算式可适用于所有圆周运动。
二. 常见传动装置:
同轴传动
皮带传动
齿轮传动
示意图
装置
A、B两点在同轴的 一个圆盘上
两接个,轮A子、用B—两皮点带分连 别是两个轮子边缘

圆周运动讲解

圆周运动讲解

圆周运动圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。

2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。

它们之间的关系大多是用半径r 联系在一起的。

如:Tr r v πω2=⋅=,22224T r r r v a πω===。

要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。

(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。

只适用于匀速圆周运动的公式有:224T ra π= ,因为周期T 和转速n 没有瞬时值。

二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T rt s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。

圆周运动讲解

圆周运动讲解

圆周运动圆周运动是非匀变速曲线运动。

要理解描写它的各个物理量的意义:如线速度、角速度、周期、转速、向心加速度。

速度方向的变化和向心加速度的产生是理解上的重点和关键。

1、物体做匀速圆周运动的条件合外力的大小不变,且方向总是与速度的方向垂直要注重理解圆周运动的动力学原因:圆周运动实际上是惯性运动和外力作用这一对矛盾的统一。

2、描写圆周运动的物理量及其相互关系线速度:角速度:周期T:周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动的快。

3、几个量的关系:线速度、角速度、周期以及转速之间的关系(转速n的单位取r/s)4、向心加速度大小的计算方法(1)由牛顿第二定律计算:;(2)由运动学公式计算:5、圆周运动的向心力圆周运动的向心力可以是重力、万有引力、弹力、摩擦力以及电磁力等某种性质的力; 可以是单独的一个力或几个力的合力,还可以认为是某个力的分力;向心力是按效果命名的;注意:匀速圆周运动和变速圆周运动的区别:匀速圆周运动的物体受到的合外力完全用来提供向心力,而在变速圆周运动中向心力是合外力的一个分量,合外力沿着切线方向的分量改变圆周运动速度的大小。

6、向心运动和离心运动注意需要的向心力和提供的向心力之不同,如是质量为m的物体做圆周运动时需要向心力的大小;提供的向心力是实实在在的相互作用力。

需要的向心力和提供的向心力之间的关系决定着物体的运动情况,即决定着物体是沿着圆周运动还是离心运动或者向心运动。

向心运动和离心运动已经不是圆周运动,圆周运动的公式已经不再适用。

7、方法解决圆周运动的方法就是解决动力学问题的一般方法,学习过程中要特别注意方法的迁移和圆周运动的特点。

(1)根据解决问题的需要,选取某一位置对物体进行受力分析(2)明确向心力的方向,通过对物体受到的力进行分解或合成求出向心力(3)用适当的量(如线速度、角速度或周期等)表示处物体在该位置的向心加速度(4)用牛顿第二定律列方程求解,必要时进行讨论说明:要重视分析圆周运动中的临界状态8、一些特别关注的问题①同一转动物体上的各点的角速度相同;皮带传动、链条传动以及齿轮传动时,各轮边缘上的点的线速度大小相等。

高中物理圆周运动的向心力及其应用专题讲解

高中物理圆周运动的向心力及其应用专题讲解

圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件 要点诠释:物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。

说明:从物体受到的合外力、初速度以及它们的方向关系上探讨物体的运动情况,是理解运动和力关系的基本方法。

【典型例题】类型一、水平面上的圆周运动例1(多选)、 (2015 哈尔滨校级期末)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO’的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速运动,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等 C .当2kglω=时,b 开始滑动的临界角速度 D .当23kglω=时,a 所受的摩擦力大小为kmg 【解析】两个木块的最大静摩擦力相等,木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力2f m r ω=,m 、ω相等,f r ∝,所以b 所受的静摩擦力大于a 的静摩擦力,当圆盘的角速度增大时b 的静摩擦力先达到最大值,所以b 一定比a 先开始滑动,故A 正确,B 错误;当b 刚要滑动时,有22kmg m l ω=,解得:2kglω=,故C 正确;以a 为研究对象,当23kgl ω=时,由牛顿第二定律知:2f m l ω=,可解得:23f kmg =,故D 错误。

【变式】原长为L 的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO ′上,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L/4,现将弹簧长度拉长到6L/5后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO ′以一定角速度匀速转动,如图所示.已知小铁块的质量为m ,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少? 【答案】max 3/(8)k m ω=【解析】以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为max f ,由平衡条件得max /4f kL =.二定律得2max max (6/5)kx f m L ω+=.又因为x =L/5.解以上三式得角速度的最大值max ω=要点二、关于向心力及其来源 1、向心力 要点诠释(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。

圆周运动 参考系-概述说明以及解释

圆周运动 参考系-概述说明以及解释

圆周运动参考系-概述说明以及解释1.引言1.1 概述在圆周运动中,物体围绕固定轴或点以特定的路径进行运动。

圆周运动是物体运动的一种普遍形式,广泛应用于日常生活、自然界和科学研究中。

圆周运动的基本特点是物体在运动过程中不断改变方向,但保持距离固定。

在圆周运动中,物体会沿着一个圆形轨道或弧线进行运动,同时遵循特定的速度和加速度规律。

圆周运动可以以直观、美学和实用的方式展示出来,例如地球围绕太阳的公转、行星围绕恒星的运动,或者钟表上指针的转动等。

在物理学中,圆周运动可以通过数学方法进行描述。

通过引入角度的概念,我们可以用角度来表示物体在圆周运动中所处的位置。

同时,线速度和角速度的概念也被引入,用于描述物体在圆周运动中的速度和旋转快慢。

而参考系则是指观察和描述物体运动时所选择的参考框架。

在圆周运动中,选择不同的参考系会对我们对运动的观察和描述产生影响。

不同的参考系可能导致不同的运动轨迹、速度和加速度的测量结果。

因此,对于准确理解和描述圆周运动,必须明确所选择的参考系。

本文旨在探讨圆周运动及其数学描述,并重点研究参考系对圆周运动的影响。

通过分析不同参考系下的运动特点和描述方法,旨在揭示圆周运动中的规律和规则,并深入探讨参考系对圆周运动的影响以及其在科学研究和实际应用中的重要性。

总之,圆周运动是一种常见且重要的物体运动形式,它在日常生活和科学研究中都具有重要的应用价值。

通过研究圆周运动的定义、基本概念、数学描述以及参考系对其影响的现象,我们可以更好地理解和应用圆周运动的规律,并为未来的研究提供新的思路和方向。

1.2文章结构文章结构(Article Structure)是指文章的整体组织和布局,它决定了文章的逻辑序列和篇章框架,使读者能够清晰地理解和吸收文章中的内容。

本文的文章结构主要分为引言、正文、参考系对圆周运动的影响、结论四个部分。

引言(Introduction)部分主要是对文章的研究对象进行概述,并说明文章的目的和意义。

圆周运动问题分析

圆周运动问题分析

圆周运动问题分析【专题分析】圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合(衰变后在磁场中做圆周运动)。

可见,圆周运动一直受到命题人员的厚爱是有一定原因的。

不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。

同时,也可以把常用的解题方法归结为两条。

1、匀速圆周运动匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。

只要受力分析找到合外力,再写出向心力的表达式就可解决问题。

2、竖直面内的非匀速圆周运动物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。

特点:在最高点和最低点都满足“合外力等于向心力”,其他位置满足“半径方向的合外力等于向心力”,整个过程中机械能守恒。

注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。

另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。

基本解题方法:1、涉及受力,使用向心力方程;2、涉及速度,使用机械能守恒定律或动能定理。

【题型讲解】题型一匀速圆周运动问题例题1:如图所示,两小球A、B在一漏斗形的光滑容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为r A>r B,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?(只比较大小)解析:题目中两个小球都在做匀速圆周运动,其向心力由合外力提供,由受力分析可知,重力与支持力的合力提供向心力,如图3-2-2所示,由几图3-2-1何关系,两小球运动的向心力相等,所受支持力相等。

两小球圆周运动的向心力相等,半径关系为r A >r B ,由公式rv m F 2=向,可得v A >v B ;由公式2ωmr F =向,可得ωA <ωB ;由公式ωπ2=T ,可得T A >T B ;[变式训练]如图3-3-3所示,三条长度不同的轻绳分别悬挂三个小球A 、B 、C ,轻绳的另一端都固定于天花板上的P 点。

《圆周运动》教案完美版

《圆周运动》教案完美版

《圆周运动》教案完美版一、教学目标1. 让学生了解圆周运动的概念,理解圆周运动的特点和基本性质。

2. 使学生掌握圆周运动的基本公式,能够运用公式进行简单的计算。

3. 培养学生运用数学知识解决物理问题的能力,提高学生的科学思维能力。

二、教学内容1. 圆周运动的概念及特点2. 圆周运动的向心力3. 圆周运动的线速度、角速度和周期4. 圆周运动的基本公式及应用5. 圆周运动的实例分析三、教学重点与难点1. 教学重点:圆周运动的概念、特点、基本公式及应用。

2. 教学难点:圆周运动的向心力、线速度、角速度和周期的关系。

四、教学方法1. 采用问题驱动法,引导学生思考和探索圆周运动的特点和规律。

2. 利用公式推导法,让学生掌握圆周运动的基本公式。

3. 通过实例分析,使学生能够将理论知识应用于实际问题。

4. 利用多媒体教学,形象直观地展示圆周运动的现象。

五、教学过程1. 引入新课:通过讲解生活中的圆周运动实例,如钟表、Ferris 轮等,引导学生关注圆周运动现象。

2. 讲解圆周运动的概念及特点:阐述圆周运动的定义,分析其特点和基本性质。

3. 向心力的概念及计算:讲解向心力的来源,引导学生理解向心力与圆周运动的关系。

4. 线速度、角速度和周期的概念及计算:推导线速度、角速度和周期的定义及计算公式。

5. 圆周运动的基本公式及应用:总结圆周运动的基本公式,举例说明公式的应用。

6. 实例分析:分析实际生活中的圆周运动问题,让学生运用所学知识解决实际问题。

7. 课堂小结:回顾本节课所学内容,强调圆周运动的特点和基本公式。

8. 作业布置:布置相关习题,巩固所学知识。

9. 课后反思:对本节课的教学过程进行总结,查找不足,提高教学质量。

10. 教学评价:对学生的学习情况进行评价,了解学生对圆周运动的掌握程度。

六、教学策略与方法1. 采用互动式教学法,鼓励学生积极参与课堂讨论,提问和解答问题。

2. 通过实验演示,让学生直观地理解圆周运动的现象和原理。

高中物理圆周运动讲解

高中物理圆周运动讲解

高中物理圆周运动讲解一、教学任务及对象1、教学任务本节课的教学任务为对高中物理中的圆周运动进行深入讲解。

圆周运动是物体运动的一种基本形式,广泛应用于日常生活和工业生产中。

通过本节课的学习,学生应能理解圆周运动的定义,掌握圆周运动的物理量,如线速度、角速度、向心加速度等,并能运用相关公式进行计算。

此外,还要求学生能够分析圆周运动在实际应用中的问题,提高解决实际问题的能力。

2、教学对象本节课的教学对象为高中二年级学生。

经过之前的学习,他们已经掌握了匀速直线运动、匀加速直线运动等基本运动形式,具备了一定的物理基础。

此外,学生对物理现象具有较强的观察力和好奇心,对圆周运动有一定的了解,但可能对其中的物理量关系和计算方法尚不明确。

因此,本节课将针对学生的实际情况,采取合适的教学策略,帮助他们更好地理解和掌握圆周运动相关知识。

二、教学目标1、知识与技能(1)理解圆周运动的定义,掌握圆周运动的物理量,如线速度、角速度、向心加速度等;(2)掌握圆周运动相关公式,并能运用这些公式进行计算;(3)了解圆周运动在实际应用中的例子,如汽车转弯、地球绕太阳旋转等;(4)能够分析圆周运动中的问题,如物体在圆周运动中的受力分析、能量转换等。

2、过程与方法(1)通过观察生活中的圆周运动实例,培养学生的观察能力和发现问题的能力;(2)采用以退为进、以点带面、以动带静等教学策略,引导学生主动探究圆周运动的规律,培养他们的逻辑思维能力和解决问题的方法;(3)通过小组讨论、合作学习等方式,让学生在交流互动中加深对圆周运动知识的理解,提高合作能力;(4)设计实验和动手操作环节,让学生在实践中掌握圆周运动的物理量测量方法,培养实验操作能力。

3、情感,态度与价值观(1)激发学生对圆周运动的兴趣,培养他们探究自然现象的好奇心;(2)通过学习圆周运动,使学生认识到物理学在生活中的应用,增强学以致用的意识;(3)培养学生勇于挑战、克服困难的意志,使他们具备面对问题时敢于迎难而上、积极寻求解决方案的态度;(4)引导学生关注环保、节能等社会问题,让他们明白科学技术在解决这些问题中的重要作用,树立正确的价值观。

圆周运动、圆周运动本质讲解

圆周运动、圆周运动本质讲解

法向加速度又称为向心加速度,用公式表示为:an=v*(dθ /dt)*en,其大小为: an=r*(ω^2) = (v^2)/r。这个加速度就是因为速度方向变化而引起的,从这里 可以看出,如果做圆周运动的物体的速度大小不发生变化,只有方向变化,那 么他的切向加速度便不存在,也就是说法向加速度时刻指向圆心,这就是匀速 率圆周运动;如果速度大小发生了变化,那么合加速度的方向就会指向圆周内 测, 这就是变速圆周运动。
切向加速度与法向加速度
我们知道了圆周运动的线速度也是一个矢量,其大小或方向变化都能导致线速 度发生变化,于是线速度可以分解为切向单位矢量et和速度的大小v,即有v=vet, 如图3所示;
根据加速度的定义,圆周上任意一点的加速度就可以表示为a= dv/dt,现在速度的大小v和速度的方向et都要随时间变化,也就是要对这两个函 数的乘积求导,根据乘积函数的求导法则可得:a=(dv/dt)*et + v*(det/dt),这 时圆周运动的加速度被分成两个部分,第一个是由于速度大小的变化所引起的, 我们称之为切向加速度,用at表示;其方向就是切向单位矢量et的方向。
《圆周运动为何需要力来维持,从这两个方面来看 一目了然》
上一章讲了普通运动中的速度与加速度,那圆周运动中的速度与加速度又有什 么特点呢,我们先来看看圆周运动的角速度,一质点P在一平面上做半径为r的 圆周运动,t1时刻位于位置A,角度为θ 1;
t2时刻位于位置B,角度为θ 2, 如图1所示,定义角度坐标θ (t)随时间的变化率ω =dθ /dt为圆周运动的角速度, 这里的角度用弧度(rad)来表示,所以角速度的单位为弧度每秒。又因为圆弧 的弧长Δs=rΔθ ,当Δt趋近于零时,定义ds/dt=r*(dθ /dt)为质点做圆周运动的线 速度,即v多的度量词就是空间与时间,它们是最常 见、也是最重要的,下章我们将讨论伽利略对空间与时间的理解,即《伽利略 的速度变换式以及对时间、空间的理解,虽然单纯却真实》。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。

2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。

它们之间的关系大多是用半径r 联系在一起的。

如:Tr r v πω2=⋅=,22224T r r r v a πω===。

要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。

(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。

只适用于匀速圆周运动的公式有:224T ra π= ,因为周期T 和转速n 没有瞬时值。

二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T rt s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。

二、向心力和加速度1、大小F =m ω2r rv m F 2=向心加速度a :(1)大小:a =ππω442222===r Tr r v 2 f 2r (2)方向:总指向圆心,时刻变化(3)物理意义:描述线速度方向改变的快慢。

例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。

b 点在小轮上,到小轮中心的距离为r 。

c 点和d 点分别于小轮和大轮的边缘上。

若在传动过程中,皮带不打滑。

则( )A .a 点与b 点的线速度大小相等B .a 点与b 点的角速度大小相等C .a 点与c 点的线速度大小相等D .a 点与d 点的向心加速度大小相等解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。

因为a 、c 两点在同一皮带上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。

所以选项C 正确,选项A 、B 错误。

设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2/r 可分析出:A 点的向心加速度大小为图3-1r v a A 2=;D 点的向心加速度大小为:rv r r r a D 222)2(4=⋅=⋅=ωω。

所以选项D 正确。

选项CD 正确。

说明:在分析传动装置的各物理量时,要抓住等量和不等量之间的关系。

如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传动(不考虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及齿轮上的各点线速度大小相等、角速度与半径成反比。

练习1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。

假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。

2.图示为某一皮带传动装置。

主动轮的半径为r 1,从动轮的半径为r 2。

已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。

下列说法正确的是( )。

A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为21r r nD .从动轮的转速为12r r n 3.(92)图3-7中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的切线是水平的。

一质点自A 点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小为______,刚滑过B 点时的加速度大小为_____。

3.描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是做匀速圆周运动的物体所受外力的合力。

向心力是根据力的作用效果命名的,不是一种特殊的性质力。

向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。

例如水平转盘上跟着匀速转动的物体由静摩擦力提供向心力;带电粒子垂直射入匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力;电子绕原子核旋转由库仑力提供向心力;圆锥摆由重力和弹力的合力提供向心力。

做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。

(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224Tr m r m r v m F πω=== 其中r 为圆运动半径。

图3-7AB图3-4(3)向心力的方向:总是沿半径指向圆心,与速度方向永远垂直。

(4)向心力的作用效果:只改变线速度的方向,不改变线速度的大小。

几种常见的匀速圆周运动的实例图表图形受力分析利用向心力公式2tan sinmg m lθωθ=2tan(sin)mg m l dθωθ=+2tanmg m rθω=2tanmg m rθω=例题2.如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m,B、C质量均为m ,A、B离轴R,C离轴2R,则当圆台旋转时(设A、B、C都没有滑动),A、B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说法正确的是( )A. C物的向心加速度最大;B. B物的静摩擦力最小;C. 当圆台转速增加时,C比A先滑动;D. 当圆台转速增加时,B比A先滑动。

解析:当三者都相对圆盘静止时,角速度相同,所以向心加速度分别为:ω2R 、ω2R 、ω22R ,所以C物的向心加速度最大,选项A 正确。

A、B、C三个物体随圆台转动所需要的向心力由静摩擦力提供,大小分别为:2mω2R 、mω2R 、mω22R ,B物体的静摩擦力最小,选项B 正确。

要比较哪个物体最先打滑,就要比较哪个物体与圆台间的最大静摩擦力,三者为:μ2mg 、μmg 、μmg,可见C 物体先滑动,选项C 正确,B 错误说明:一定要注意做匀速圆周运动的物体受力能提供的向心力和实际运动所需要的向心力的关系,当旋转圆转速增加时,物体随圆盘转动需要的向心力(静摩擦力提供)也要增加,当提供不足时物体就做离心运动。

练习4. 如图3—12所示,一转盘可绕其竖直轴在水平面内转动,转动半径为R ,在转台边缘放一物块A ,当转台的角速度为ω0时,物块刚能被甩出转盘。

若在物块A 与转轴中心O 连线中点再放一与A 完全相同的物块B (A 、B 均可视为质点),并用细线相连接。

当转动角速度ω为多大时,两物块将开始滑动?4.竖直平面内圆周运动的临界问题:由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同。

如图3-7所示,由于绳对球只能产生沿绳收缩方向的拉力,所以小球通过最高点的临界条件是:向心力只由重力提供,即Rv m mg 2=,则有临界速度gR v =。

只有当gR v ≥时,小球才能通过最高点。

如图3-8所示,由于轻杆对球既能产生拉力,也能产生支持力,所以小球通过最高点时合外力可图3-12OB AmgN 图3-7mg O以为零,即小球在最高点的最小速度可以为零。

这样gR v =就变成了小球所受弹力方向变化的临界值,即当v <gR 时,小球受向上的弹力;当gR v =时,球和杆之间无相互作用力;当v >gR 时,球受向下的弹力。

可见,物体在最高点的最小速度决定于物体在最高点受的最小合外力,不同情况下的最小合外力决定了不同情况下的最小速度。

例题3.(99)如图4-4所示,细杆的一端与一小球相连,可绕过O 点的水平轴自由转动。

现给小球一初速度,使它做圆周运动,图3中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 ( )A.a 处为拉力,b 处为拉力B.a 处为拉力,b 处为推力C.a 处为推力,b 处为拉力D.a 处为推力,b 处为推力解析:由于小球在竖直面内做圆周运动,所以当小球运动到a 、b 两点时,所受的合力都为指向O 点。

当小球运动到a 点时,受到竖直向下的重力,为使其所受合力指向O 点,则要求杆必对小球施竖直向上的拉力。

当小球运动到b 点时,小球受到竖直向下的重力mg 的作用,当球的速度较小时(小于gl ,l 为杆的长度),mg 大于球做圆周运动所需的向心力时,杆将对球施竖直向上的推力;当小球的速度较大时(大于gl ),mg 小于球做圆周运动所需的向心力,此时要球杆对小球放竖直向下的拉力,使重力和拉力的合力提供小球在b 点时所需要的向心力。

因此小球在b 点时杆对球的作用力是推力还是拉力,取决于小球在b 点时的速度大小。

综上所述,本题的正确选项为A 、B 。

练习7.如图3-14所示,一细圆管弯成的开口圆环,环面处于一竖直平面内。

一光滑小球从开口A 处进入管内,并恰好能通过圆环的最高点。

则下述说法正确的是( ) A.球在最高点时对管的作用力为零B.小球在最高点时对管的作用力为mgC.若增大小球的初速度,则在最高点时球对管的力一定增大D.若减小小球的初速度,则在最高点时球对管的力可能增大图4-4 图3-148. 如图3-13所示,半径为R 的光滑半圆球固定在水平面上,顶部有一小物体A 。

相关文档
最新文档