高中物理10大难点强行突破之三圆周运动的实例分析
圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动的实例分析3(高中物理10大难点突破)

圆周运动的实例分析3(高中物理10大难点突破)3.杂技节目“水流星”表演时,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面内做圆周运动,在最高点杯口朝下,但水不会流下,如图所示,这是为什么?分析:以杯中之水为研究对象进行受力分析,根据牛顿第二定律可知:F 向=m r v 2,此时重力G 与FN 的合力充当了向心力即F 向=G +FN故:G +FN =m r v 2由上式可知v 减小,F 减小,当FN =0时,v 有最小值为gr 。
讨论:①当mg =m r v 2,即v =gr 时,水恰能过最高点不洒出,这就是水能过最高点的临界条件;②当mg >m r v 2,即v <gr 时,水不能过最高点而不洒出;③当mg <m r v 2,即v >gr 时,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力。
例8:绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m =0.5 kg ,绳长L =60 cm ,求:①最高点水不流出的最小速率。
②水在最高点速率v =3 m/s 时,水对桶底的压力。
【审题】当v0=gR 时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这个速度v 比较,v>v0时,有压力;v=v0时,恰好无压力;v ≤v0时,不能到达最高点。
【解析】①水在最高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg <L mv 2,则最小速度v0=gR =gL =2.42 m/s 。
②当水在最高点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F ,由牛顿第二定律F +mg =m L v 2得:F =2.6 N 。
由牛顿第三定律知,水对水桶的作用力F ′=-F=-2.6 N ,即方向竖直向上。
【总结】当速度大于临界速率时,重力已不足以提供向心力,所缺部分由桶底提供,因此桶底对水产生向下的压力。
例2:汽车质量m 为1.5×104 kg ,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m ,如图3-17所示.如果路面承受的最大压力不得超过2×105 N ,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?【审题】首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最图3-17低点时,汽车对路面的压力最大。
圆周运动的实例分析1(高中物理10大难点突破)

圆周运动的实例分析1(高中物理10大难点突破)一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T A B 211② 代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为T2,则有mg T =︒45cos 2 ③T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。
圆周运动的实例分析、离心现象、

圆周运动的实例分析、离心现象、知识归纳与总结1. 用向心力公式解题的一般方法:(1)明确研究对象,必要时要将它从转动系统中隔离出来; (2)找出物体圆周运动的轨道平面,从中找出圆心和半径; (3)对研究对象做受力分析,分析是哪些力提供了向心力 (4)建立正交坐标(以指向圆心方向为x 轴的正向),将力正交分解到坐标轴方向; ()()()5x 在轴方向,选用向心力公式向心F m R m v R m TR m f R ====ωππ222222==m n R y F y ()202π列方程求解,必要时再在轴方向按列方程求解合注意:列方程时要注意力、速度、运动半径的对应关系;有些问题还需配合其他辅助手段,需要具体问题具体分析。
2. 离心运动:做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。
3. 向心运动和离心运动产生的原因(如图所示,向心力用F n 表示)。
()/12当时,物体沿半径作匀速圆周运动;F mv R R n = ()/22当时,物体将作向心运动,半径减小;F mv R R n > ()/32当时,物体将作离心运动,半径增大;F mv R R n <(4)当F n =0时,即向心力消失时,半径R 趋于无限大,物体将沿切线方向飞出。
所以,向心运动和离心运动产生的原因是向心力多余和不足。
4. 离心运动的应用和防止:(1)洗衣机的脱水筒是利用离心运动把湿衣服甩干的。
把湿衣服放在脱水筒里,筒转得慢时,水滴跟物体的附着力F 足以提供所需向心力F ;当筒转得比较快时,附着力F 不足以提供所需向心力F ,于是水滴做离心运动,穿过网孔,飞到筒外面。
(2)在水平公路上行驶的汽车,转弯时所需向心力是由车轮与路面间的静摩擦力提供的,如果转弯时速度过大,所需向心力F 大于最大静摩擦力,汽车将做离心运动而造成交通事故。
【例1】. 如图所示,用细管弯成半径为r 的圆弧形轨道,并放置在竖直平面内,现有一小球在细管内运动,当小球通过轨道最高点时,若小球速度____________时,会对细管上部产生压力;若小球速度____________时,会对细管下部产生压力。
3、圆周运动的案例分析

生活中的圆周运动
Page 2
案例一:游乐园中的圆周运动——过山车
在轨道最高点: mg N m v 2 R
(1)当N=0时,有 mg mv 2 , R
v临界= Rg
mv2
(2)当v<v临界时,由F向=
得:F向<mg,
R
说明只有部分重力充当向心力,剩余的重力会使过 山车有向下脱离轨道的趋势。
(3)若小球在最低点速度为4 2 m/s时,细线的拉力是 多少?
(4)若绳子能够承受的最大拉力是130N,则小球通过 最低点时的最大速度为多大?
Page 7
解:(1)小球在最高点有最小速度时,重力充当向心
力:
mg
mv
2 1
①
得:
L
②
v1 gL 2m / s
(2)由
mg
T1
B.小球通过最高点的最小速度为零 C.小球在水平线ab以下的管道中运动时外侧管壁对小球一定无作用力 D.小球在水平线ab以下的管道中运动时外侧管壁对小球一定有作用力
Page 12
例4:如图,质量为0.2kg的小球固定在长为0.9m的轻杆一 端,杆可绕O点在竖直平面内做圆周运动,g=10m/s2 ,求 :
⑧
Page 9
案例三:球杆模型
FN
o mg
mg
FN
mv 2 L
mg=g
当v增大到 v gL
FN=0时,mg
mv 2 L
Page 10
T
o mg
v继续增大,重力不 足以提供向心力, 杆对球的弹力表现 为竖直向下的拉力,
有 mg T mv 2 L
圆周运动实例分析

圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
高一物理难点突破——《圆周运动、向心力》,重难点精析,收藏

高一物理难点突破——《圆周运动、向心力》,重难点精析,
收藏
高中物理涵盖运动学、力学(功和能)、电磁学、光学、热力学和相对论及量子理论(初步)等多个版块,每个版块都有一定的难度,而且各个版块之间还有着千丝万缕的联系。
想学好高中物理,我们要对每一个版块中的重难点都吃透。
理科笔记会整理各个版块的重难点讲解,配套经典的例题和练习解析,希望能够帮助到各位高中的小伙伴。
也希望各位小伙伴能够关注理科笔记,每天进步一点点,为高考提早做好准备。
今天带来高一必修二的难点之一——《圆周运动的向心力及应用》。
高中物理 10大难点强行突破 圆周运动的实例分析

难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①οο30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
难点之三:圆周运动的实例分析

难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①οο30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
圆周运动实例分析的全面分析

圆周运动实例分析的全面分析圆周运动指的是物体沿着一条固定半径的圆周路径进行运动。
在物理学中,圆周运动是一种常见的运动形式,涉及到转速、角度、力的作用等多个因素。
下面我们将以钟摆和行星绕太阳的运动为例,对圆周运动的全面分析进行说明。
一、钟摆的圆周运动钟摆是一种简单的圆周运动示例,其中重物连接到一个固定点,并通过绳子或杆支撑。
钟摆的运动是一个反复来回摆动的运动,具体分析如下:1.转速:钟摆的转速指的是摆动的快慢程度,可以通过摆动的周期来衡量。
周期定义为钟摆从一个极端位置运动到另一个极端位置所需的时间。
转速与摆动的周期成反比,即转速越大,周期越短。
2.角度:钟摆的运动可以通过摆角来描述,摆角是摆锤与竖直方向的夹角。
在理想情况下,钟摆的摆角保持不变。
当摆角小于摆锤所能达到的最大角度时,钟摆会产生稳定的圆周运动。
3.力的作用:钟摆的圆周运动由重力产生的恢复力驱动。
当钟摆从最高点开始运动时,它受到重力的作用而加速下降。
在达到最底点后,重力会使钟摆发生反向运动,并且带有一定缓冲,然后又开始往返。
这是一个周期性的过程,重力提供了必要的力来维持钟摆的圆周运动。
二、行星绕太阳的圆周运动行星绕太阳的运动是一个更加复杂的圆周运动示例,涉及到引力、转动力矩等因素。
具体分析如下:1.引力:行星绕太阳的圆周运动是由太阳的引力驱动的。
根据开普勒定律,行星和太阳之间的引力使行星沿椭圆形轨道运动。
当行星沿着椭圆的一条较短的轴运动时,其速度较快;而当行星沿着较长轴运动时,速度较慢。
2.动量守恒:根据角动量守恒定律,行星绕太阳的圆周运动可以通过转动力矩来描述。
行星的角动量保持不变,因此在运动过程中,行星围绕太阳的速度和轨道半径成反比。
当行星靠近太阳时,速度增加,而当行星离太阳较远时,速度减小。
3.公转周期:行星围绕太阳的圆周运动的周期称为行星的公转周期。
公转周期与行星到太阳的距离有关,根据开普勒第三定律,公转周期的平方与行星到太阳的平均距离的立方成正比。
圆周运动的实例分析

解答: 由地面对 车的静摩擦力 提供 有关系,倾 斜度越大,向心 力越大
课堂练习:
1、用绳系一个小球,使它在光滑水平桌面上 做匀速圆周运动,小球受几个力的作用?有人 说,受4个力的作用:重力、桌面的支持力、 绳的拉力、向心力。这种分析对吗?为什么?
不对,受三个力作用
向心力(绳的拉力)是它们的合力
O
FN
O
O
F
G
向心力由小球受到的桌面支持力FN、小球的重力G、绳子 的拉力的合力提供。
F 向= F 合= F
匀速圆周运动实例分析——向心力的来源
讨论:物块随着圆桶一起匀速转动时,物块的受力?物块向 心力的来源?
ω
FN
Ff
G 物块做匀速圆周运动时,合力提供向心力,即桶对物块的支 持力。
• 沿光滑漏斗或碗内壁做圆周运动的小球
一、竖直面内的圆周运动 1、“轻绳”模型(均是没有支撑的小球)
2、“轻杆”模型(均是有物体支撑的小球)
1、“轻绳”模型(均是没有支撑的小球)
过最高点的临界条件:
v2 由 m g m 得v临 gr r
v 讨论分析:1、过最高点时, 球产生弹力 FN 0 ,方向指向圆心;
v2 gr , FN m g m r
N外
N内
实例5:汽车转弯
N F牵 f静 G
f切 俯视图:
F牵
f静
f切
v
汽车在水平路面上转弯的向心力由哪个力提供?
例2:在一段半径为r的圆形水平轨道上,已知路面对汽 车轮胎的最大静摩擦力是车重的μ倍(μ<1),求汽 车拐弯时的最大安全速度?
f静
v
v f静 m r 2 v m g m r
2
物体拉回到原圆周轨道上,物体逐渐远离圆心而做离心运动,即 ““需要”大于提供”或“提供不足”。 (4)若
2.3 课堂圆周运动的案例分析

心力为 F=mgtanθ
根据牛顿第二定律得 F=mgtanθ=mrω2 解得直杆和球的角速度为 ω= gtanθ r = 10×tan37° rad/s=3.5 rad/s 0.6
当直杆和球的角速度 ω>3.5 rad/s 时,b 中才有张力.
例2 如图所示,匀速转动的水 平圆盘上,沿半径方向放置着 两个用细线相连的小物体A、B, 它们的质量均为m,它们到转 轴的距离分别为 rA = 20 cm , rB = 30 cm , A 、 B 与盘面 间的最大静摩擦力均为重力的 0.4 倍,试求: (g 取 10 m/s2) (1)当细线上开始出现张力时,圆盘的角速度ω0; (2)当A开始滑动时,圆盘的角速度ω;
解:已知 a、b 绳长均为 1 m,即 1 AC=BC=1 m,AO= AB=0.8 m, 2 如图所示,在△AOC 中, AO 0.8 cosθ=AC = =0.8,得 sinθ=0.6,θ=37° 1
小球做圆周运动的轨道半径 r=OC=AC· sinθ=1×0.6 m=0.6 m.b 绳 被拉直但无张力时,小球所受的重力 mg 与 a 绳拉力 FTa 的合力 F 提供向心力,其 受力分析如图所示,由图可知小球的向
2.3
圆周运动的案例分析
1.通过日常生活中的常见例子,学会分析具体问题 中的向心力来源。 2.知道向心力是圆周运动的物体受到的沿半径方向 的合力,不管是匀速圆周运动还是变速圆周运动。 3.能运用匀速圆周运动规律分析和处理生活中的具 体实例。(重点)
复习回顾 1. 对向心力的理解: 向心力是按效果命名的力。任何一个力或几个力的 合力只要它的作用效果是使物体产生向心加速度,它就 是物体所受的向心力。不能认为做匀速圆周运动的物体 除了受到另外物体的作用力外,还要受到向心力 所需向心力的计算:(牛顿第二定律 Fn man )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T A B 211②代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有:图3-1mg T =θcos 2T 2cos θ=m ω2L BC sin θ ⑤ 而L AC sin30°=L BC sin45° L BC =2m ⑥ 由⑤、⑥可解得N T 3.22=;01=T【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必然为零。
(2)同轴装置与皮带传动装置在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等,这两点往往是我们解决皮带传动的基本方法。
例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 A .a 点与b 点线速度大小相等 B .a 点与c 点角速度大小相等C .a 点与d 点向心加速度大小相等D .a 、b 、c 、d 四点,加速度最小的是b 点【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度大小相同。
这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。
【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即v a =v c ,又v =ωR , 所以ωa r =ωc ·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21ωa ,所以选项B错.又v b =ωb ·r =21ωa r =2v a ,所以选项A 也错.向心加速度:a a =ωa 2r ;a b =ωb 2·r =(2ωa )2r=41ωa 2r =41a a ;a c =ωc 2·2r =(21ωa )2·2r = 21ωa 2r =21a a ;a d =ωd 2·4r =(21ωa )2·4r =ωa 2r =a a .所以选项C 、D 均正确。
【总结】该题除了同轴角速度相等和同皮带线速度大小相等的关系外,在皮带传动装置中,从动轮的转动是静摩擦力作用的结果.从动轮受到的摩擦力带动轮子转动,故轮子受到的摩擦力方向沿从动轮的切线与轮的转动方向相同;主动轮靠摩擦力带动皮带,故主动轮所受摩擦力方向沿轮的切线与轮的转动方向相反。
是不是所有的题目都要是例1这种类型的呢?当然不是,当轮与轮之间不是依靠皮带相连图3-2转动,而是依靠摩擦力的作用或者是齿轮的啮合,如图3-3所示,同样符合例1的条件。
(3)向心力的来源a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再添加一个向心力。
b .对于匀速圆周运动的问题,一般可按如下步骤进行分析: ①确定做匀速圆周运动的物体作为研究对象。
②明确运动情况,包括搞清运动速率v ,轨迹半径R 及轨迹圆心O 的位置等。
只有明确了上述几点后,才能知道运动物体在运动过程中所需的向心力大小( mv 2/R )和向心力方向(指向圆心)。
③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F (即提供向心力)。
④选用公式F=m R v 2=mR ω2=mR 22⎪⎭⎫ ⎝⎛T π解得结果。
c .圆周运动中向心力的特点:①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。
可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。
②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。
求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。
合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。
③当物体所受的合外力F 小于所需要提供的向心力mv 2/R 时,物体做离心运动。
例3:如图3-4所示,半径为R 的半球形碗内,有一个具有一定质量的物体A ,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO /匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.【审题】物体A 随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。
物体A 做匀速圆周运动所需的向心力方向指向球心O ,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。
【解析】物体A 做匀速圆周运动,向心力: R m F n 2ω= 而摩擦力与重力平衡,则有: mg F n =μ 即: μmgF n =由以上两式可得: μωmgR m =2即碗匀速转动的角速度为: Rg μω=图3-4【总结】分析受力时一定要明确向心力的来源,即搞清楚什么力充当向心力.本题还考查了摩擦力的有关知识:水平方向的弹力为提供摩擦力的正压力,若在刚好紧贴碗口的基础上,角速度再大,此后摩擦力为静摩擦力,摩擦力大小不变,正压力变大。
例4:如图3-5所示,在电机距轴O 为r 处固定一质量为m 的铁块.电机启动后,铁块以角速度ω绕轴O 匀速转动.则电机对地面的最大压力和最小压力之差为__________。
【审题】铁块在竖直面内做匀速圆周运动,其向心力是重力mg 与轮对它的力F 的合力.由圆周运动的规律可知:当m 转到最低点时F 最大,当m 转到最高点时F 最小。
【解析】设铁块在最高点和最低点时,电机对其作用力分别为F 1和F 2,且都指向轴心,根据牛顿第二定律有:在最高点:mg +F 1=m ω2r ①在最低点:F 2-mg =m ω2r ②电机对地面的最大压力和最小压力分别出现在铁块m 位于最低点和最高点时,且压力差的大小为:ΔF N =F 2+F 1 ③由①②③式可解得:ΔF N =2m ω2r【总结】(1)若m 在最高点时突然与电机脱离,它将如何运动?(2)当角速度ω为何值时,铁块在最高点与电机恰无作用力?(3)本题也可认为是一电动打夯机的原理示意图。
若电机的质量为M ,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少? 解:(1)做初速度沿圆周切线方向,只受重力的平抛运动。
(2)电机对铁块无作用力时,重力提供铁块的向心力,则mg =m ω12r 即 ω1=rg (3)铁块在最高点时,铁块与电动机的相互做用力大小为F 1,则F 1+mg =m ω22r F 1=Mg 即当ω2≥mrgm M )(+时,电动机可以跳起来,当ω2=mr g m M )(+时,铁块在最低点时电机对地面压力最大,则F 2-mg =m ω22r F N =F 2+Mg解得电机对地面的最大压力为F N =2(M +m )g (4)圆周运动的周期性利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。
圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。
在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。
同时,要注意圆周运动具有周期性,因此往往有多个答案。
例5:如图3-6所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正图3-5上方h 处沿OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v =_________,圆盘转动的角速度ω=_________。
【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。