初一下册数学角度几何解析题以及练习题附答案)

合集下载

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题(含答案)

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题(含答案)

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题1、如图,已知∠2=∠3,∠C=∠D,求证:∠A=∠F.证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3.∴DB∥CE.∴∠DBA=∠C.∵∠D=∠C,∴∠D=∠DBA.∴DF∥AC.∴∠A=∠F.2、如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).3、如图,∠1=115°,∠2=50°,∠3=65°,EG为∠NEF的平分线.求证:AB∥CD,EG∥FH.证明:∵∠1=115°,∴∠FCD=180°-∠1=180°-115°=65°.∵∠3=65°,∴∠FCD=∠3.∴AB∥CD.∵∠2=50°,∴∠NEF=180°-∠2=180°-50°=130°.∵EG为∠NEF的平分线,∴∠GEF=12∠NEF=65°.∴∠GEF=∠3.∴EG∥FH.4、如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.解:BC∥AD,理由:∴BE∥FD.∴∠B=∠BCF.又∵∠B=∠D,∴∠BCF=∠D.∴BC∥AD.5、如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠1=∠2,∠E=∠3.∵∠E=∠1,∴∠2=∠3.∴AD平分∠BAC.6、如图,B,C,E三点在一条直线上,A,F,E三点在一条直线上,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE.证明:∵AB∥CD,∴∠4=∠BAE.∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAF,即∠BAE=∠CAD.∴∠3=∠CAD.∴AD∥BE.7、如图,已知AB∥CD,试判断∠B,∠BED和∠D之间的关系,并说明理由.解:∠BED=∠B+∠D.理由如下:过点E作EF∥AB,则∠B=∠BEF.∵AB∥CD,∴EF∥CD.∴∠DEF=∠D.∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D.8、如图,∠AEF+∠CFE=180°,∠1=∠2,EG与HF平行吗?为什么?解:平行.理由:∵∠AEF+∠CFE=180°,∴AB∥CD.∴∠AEF=∠EFD.∴∠AEF -∠1=∠EFD -∠2,即∠GEF =∠HFE.∴EG ∥HF.9、如图,A ,B ,C 三点在同一直线上,∠1=∠2,∠3=∠D ,试判断BD 与CF 的位置关系,并说明理由.解:BD ∥CF.理由如下:∵∠1=∠2,∴AD ∥BF.∴∠D =∠DBF.∵∠3=∠D ,∴∠3=∠DBF.∴BD ∥CF.10、如图,∠ABC =∠ADC ,BF ,DE 分别是∠ABC ,∠ADC 的平分线,∠1=∠2,试说明:DC ∥AB.解:∵BF ,DE 分别是∠ABC ,∠ADC 的平分线,∴∠3=12∠ADC ,∠2=12∠ABC. ∵∠ABC =∠ADC ,∴∠3=∠2.∵∠1=∠2,∴∠1=∠3.∴DC∥AB.11、如图,AD平分∠BAC,AD⊥BC于D,点E,A,C共线,∠DAC=∠EFA,延长EF 交BC于点G.求证:EG⊥BC.证明:∵AD平分∠BAC,∴∠DAC=∠DAB.又∵∠DAC=∠EFA,∴∠DAB=∠EFA.∴AD∥EG.∴∠ADC=∠EGD.∵AD⊥BC,∴∠ADC=90°.∴∠EGD=90°.∴EG⊥BC.12、已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.13、如图,把一张长方形纸片ABCD沿EF折叠后,D,C分别落在D′和C′的位置上,ED′与BC的交点为G.若∠EFG=50°,求∠1,∠2,∠3的度数.解:根据折叠的性质可知,∠DEF=∠D′EF,∠EFC=∠EFC′.∵∠EFG=50°,∴∠EFC=180°-50°=130°.∴∠EFC′=∠EFC=130°.∴∠3=∠EFC′-∠EFG=130°-50°=80°.∵AD∥BC,∴∠DEF=∠EFG=50°.∴∠DED′=2∠DEF=100°.∴∠1=180°-∠DED′=180°-100°=80°.∵AD∥BC,∴∠1+∠2=180°.∴∠2=180°-∠1=100°.故∠1=80°,∠2=100°,∠3=80°.14、如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D =∠3+60°,∠CBD =70°,∴∠3=25°.∵AB ∥CD ,∴∠C =∠3=25°.15、(1)如图1,AB ∥CD ,则∠E +∠G 与∠B +∠F +∠D 有何关系?(2)如图2,若AB ∥CD ,又能得到什么结论?请直接写出结论.解:(1)过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥CD. ∵AB ∥CD ,∴AB ∥EM ∥FN ∥GH ∥CD.∴∠1=∠B ,∠2=∠3,∠4=∠5,∠6=∠D.∴∠1+∠2+∠5+∠6=∠B +∠3+∠4+∠D ,即∠BEF +∠FGD =∠B +∠EFG +∠D.(2)∠B +∠F 1+∠F 2+…+∠F n -1+∠D =∠E 1+∠E 2+…+∠E n .16、已知E ,F 分别是AB ,CD 上的动点,P 也为一动点.(1)如图1,若AB ∥CD ,求证:∠P =∠BEP +∠PFD ;(2)如图2,若∠P =∠PFD -∠BEP ,求证:AB ∥CD ;(3)如图3,AB ∥CD ,移动E ,F ,使∠EPF =90°,作∠PEG =∠BEP ,则∠AEG∠PFD =2.证明:(1)过点P作PG∥AB,则∠EPG=∠BEP.∵AB∥CD,∴PG∥CD.∴∠GPF=∠PFD.∴∠EPF=∠EPG+∠FPG=∠BEP+∠PFD.(2)过点P作PQ∥AB,则∠QPE=∠BEP.∵∠EPF=∠PFD-∠BEP,∴∠PFD=∠EPF+∠BEP=∠EPF+∠QPE=∠FPQ. ∴DC∥PQ.∴AB∥CD.。

七年级数学下册期末几何压轴题试题(带答案) (一)解析

七年级数学下册期末几何压轴题试题(带答案) (一)解析

一、解答题1.如图,在平面直角坐标系中,()()()A 1,0,B 3,0,C 0,2-,CD//x 轴,CD=AB .(1)求点D 的坐标:(2)四边形OCDB 的面积S 四边形OCDB ;(3)在y 轴上是否存在点P ,使S △PAB =S 四边形OCDB ;若存在,求出点P 的坐标,若不存在,请说明理由.2.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.3.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)4.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题解决:(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.5.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.6.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.7.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273,∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.8.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =.(1)计算:()342K 和()658K ;(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性.9.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 10.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n a a a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ;(2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭; (4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ; (5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.11.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.12.观察下面的变形规律:;;;….解答下面的问题:(1)仿照上面的格式请写出= ; (2)若n 为正整数,请你猜想= ; (3)基础应用:计算:. (4)拓展应用1:解方程:=2016 (5)拓展应用2:计算:. 13.如图1在平面直角坐标系中,大正方形OABC 的边长为m 厘米,小正方形ODEF 的边长为n 厘米,且|m ﹣4|+2n -=0.(1)求点B 、点D 的坐标.(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x 轴向右平移,如图2.设平移的时间为t 秒,在平移过程中两个正方形重叠部分的面积为S 平方厘米.①当t =1.5时,S = 平方厘米;②在2≤t ≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米; ③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为 秒.(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 14.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.15.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.16.对x ,y 定义一种新的运算P ,规定:,()(,),()mx ny x y P x y nx my x y +≥⎧=⎨+<⎩(其中0mn ≠).已知(2,1)7P =,(1,1)1P -=-.(1)求m 、n 的值;(2)若0a >,解不等式组(2,1)4111,523P a a P a a -<⎧⎪⎨⎛⎫---≤- ⎪⎪⎝⎭⎩. 17.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.18.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()22340a b c ---=.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫ ⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.19.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______.20.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2312x y +=,得:1222433x x y -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x 为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423x y =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩ 问题:(1)请你写出方程25x y +=的一组正整数解: .(2)若62x -为自然数,则满足条件的x 值为 .(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.23.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24.对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知关于x,y的方程组()()113028T aT a⎧-=-⎪⎨=⎪⎩,,,若a≥﹣2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA 沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.25.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。

最新初中数学几何图形初步技巧及练习题附答案(1)

最新初中数学几何图形初步技巧及练习题附答案(1)

最新初中数学几何图形初步技巧及练习题附答案(1)一、选择题1.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°故选:A.【点睛】本题考查余角、补角的计算.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.首先判断直角三角形ACB 绕直角边AC 旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.5.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.⊥,从A地测得B地在A地的北偏东43︒6.如图,有A,B,C三个地点,且AB BC的方向上,那么从B地测得C地在B地的()A.北偏西43︒B.北偏西90︒C.北偏东47︒D.北偏西47︒【答案】D【解析】【分析】根据方向角的概念和平行线的性质求解.【详解】如图,过点B作BF∥AE,则∠DBF=∠DAE=43︒,∴∠CBF=∠DBC-∠DBF=90°-43°=47°,∴从B地测得C地在B地的北偏西47°方向上,故选:D.【点睛】此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.7.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.8.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.9.下列图形经过折叠不能围成棱柱的是().A .B .C .D .【答案】B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成.考点:棱柱的侧面展开图.10.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A.厉B.害C.了D.我【答案】D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.13.如果α∠和β∠互余,下列表β∠的补角的式子中:①180°-β∠,②90°+α∠,③2α∠+β∠,④2β∠+α∠,正确的有( )A .①②B .①②③C .①②④D .①②③④ 【答案】B【解析】【分析】根据互余的两角之和为90°,进行判断即可.【详解】∠β的补角=180°﹣∠β,故①正确;∵∠α和∠β互余,∴∠β=90°-∠α,∴∠β的补角=180°﹣∠β=180°﹣(90°-∠α)=90°+α∠,故②正确;∵∠α和∠β互余,∠α+∠β=90°,∴∠β的补角=180°﹣∠β=2(∠α+∠β)﹣∠β=2∠α+∠β,故③正确;∵∠α+∠β=90°,∴2∠β+∠α=90°+∠β,不是∠β的补角,故④错误.故正确的有①②③.故选B .【点睛】本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.14.下列图形中,不是正方体平面展开图的是( )A .B .C .D .【答案】D【解析】【分析】 由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A ,B ,C 选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.15.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.16.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.17.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.18.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.19.将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是()A.B.C.D.【答案】B【解析】分析:根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.详解:由图可知,只有B选项图形绕直线l旋转一周得到如图所示立体图形.故选:B.点睛:本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.20.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.。

七年级数学角度的计算(专题)(含答案)

七年级数学角度的计算(专题)(含答案)

角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。

2020年初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数

2020年初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数

作者:非成败作品编号:92032155GZ5702241547853215475102 时间:2020.12.13七年级下册数学几何解析题以及练习题(附答案)9.(2011·扬州)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC .(1)求∠DEB 的度数; (2)求∠EDC 的度数.解 (1)在△ABC 中,∠A =80°,∠B =30°,∴∠ACB =180°-∠A -∠B =70°. ∵DE ∥AC ,∴∠DEB =∠ACB =70°. (2)∵CD 平分∠ACB , ∴∠DCE =12∠ACB =35°.∵∠DEB =∠DCE +∠EDC , ∴∠EDC =70°-35°=35°.13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明补充完整)证明∵CF⊥AB,DE⊥AB(已知),∴ED∥FC( ).∴∠1=∠BCF( ).又∵∠1=∠2(已知),∴∠2=∠BCF(等量代换),∴FG∥BC( ).解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下:证法1:如图甲,延长BC到D,过C画CE∥BA.∵BA∥CE(作图所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.解∵FH∥AC,∴∠BHF=∠A,∠1=∠C.∵FG∥AB,∴∠BHF=∠2,∠3=∠B,∴∠2=∠A.∵∠BFC=180°,∴∠1+∠2+∠3=180°, 即∠A +∠B +∠C =180°.15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若AB ∥CD ,点P 在AB 、CD 外部,则有∠B =∠BOD .又因∠BOD 是△POD 的外角,故∠BOD =∠BPD +∠D ,得∠BPD =∠B -∠D .将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;(2)在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?(不需证明) (3)根据(2)的结论求图d 中∠A +∠B +∠C +∠D +∠E +∠F 的度数.解 (1)不成立,结论是∠BPD =∠B +∠D .延长BP 交CD 于点E , ∵AB ∥CD ,∴∠B =∠BED . 又∠BPD =∠BED +∠D , ∴∠BPD =∠B +∠D .(2)结论:∠BPD =∠BQD +∠B +∠D . (3)设AC 与BF 交于点G .由(2)的结论得:∠AGB =∠A +∠B +∠E .又∵∠AGB =∠CGF ,∠CGF +∠C +∠D +∠F =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度.AB CDE第14题2.如图,在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2。

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案类型一、猪脚模型例.问题情境:如图① 直线AB CD ∥ 点E F 分别在直线AB CD 上.(1)猜想:若1130∠=︒ 2150∠=︒ 试猜想P ∠=______°;(2)探究:在图①中探究1∠ 2∠ P ∠之间的数量关系 并证明你的结论;(3)拓展:将图①变为图② 若12325∠+∠=︒ 75EPG ∠=︒ 求PGF ∠的度数. 【答案】(1)80︒(2)36012P ∠=︒-∠-∠;证明见详解(3)140︒【详解】(1)解:如图过点P 作MN AB ∥∵AB CD ∥∵AB MN CD ∥∥.∵1180EPN ∠+∠=︒2180FPN ∠+∠=︒.∵1130∠=︒ 2150∠=︒∵12360EPN FPN ∠+∠+∠+∠=︒∵36013015080EPN FPN ∠+=︒-︒-︒=︒.∵P EPN FPN ∠=∠+∠∵∵P =80°.故答案为:80︒;(2)解:36012P ∠=︒-∠-∠ 理由如下:如图过点P 作MN AB ∥∵AB CD ∥∵AB MN CD ∥∥.∵1180EPN ∠+∠=︒2180FPN ∠+∠=︒.∵12360EPN FPN ∠+∠+∠+∠=︒∵EPN FPN P ∠+∠=∠36012P ∠=︒-∠-∠.(3)如图分别过点P 、点G 作MN AB ∥、KR AB ∥∵AB CD ∥∵AB MN KR CD ∥∥∥.∵1180EPN ∠+∠=︒180NPG PGR ∠+∠=︒2180RGF ∠+∠=︒.∵12540EPN NPG PGR RGF ∠+∠+∠+∠++∠=︒∵75EPG EPN NPG ∠=∠+∠=︒PGR RGF PGF ∠+∠=∠12325∠+∠=︒∵12540PGF EPG ∠+∠+∠+∠=︒∵54032575140PGF ∠=︒-︒-︒=︒故答案为:140︒.【变式训练1】已知直线a b ∥ 直线EF 分别与直线a b 相交于点E F 点A B 分别在直线a b 上 且在直线EF 的左侧 点P 是直线EF 上一动点(不与点E F 重合)设∵P AE =∵1 ∵APB =∵2 ∵PBF =∵3.(1)如图1 当点P 在线段EF 上运动时 试说明∵1+∵3=∵2;(2)当点P 在线段EF 外运动时有两种情况.①如图2写出∵1 ∵2 ∵3之间的关系并给出证明;②如图3所示 猜想∵1 ∵2 ∵3之间的关系(不要求证明).【答案】(1)证明见详解(2)①312∠=∠+∠;证明见详解;②123∠=∠+∠;证明见详解【详解】(1)解:如图4所示:过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵1APC ∠=∠ 3BPC ∠=∠∵2APC BPC ∠=∠+∠∵213∠=∠+∠;(2)解:①如图5过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵3BPC ∠=∠ 1APC ∠=∠∵2BPC APC ∠=∠+∠∵312;②如图6过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵1APC ∠=∠ 3BPC ∠=∠∵2APC BPC ∠=∠+∠∵123∠=∠+∠.【变式训练2】阅读下面内容 并解答问题.已知:如图1 AB CD 直线EF 分别交AB CD 于点E F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG ⊥;(2)填空 并从下列①、②两题中任选一题说明理由.我选择 题.①在图1的基础上 分别作BEG ∠的平分线与DFG ∠的平分线交于点M 得到图2 则EMF ∠的度数为 .②如图3 AB CD 直线EF 分别交AB CD 于点E F .点O 在直线AB CD 之间 且在直线EF 右侧 BEO ∠的平分线与DFO ∠的平分线交于点P 则EOF ∠与EPF ∠满足的数量关系为 . GH ABAB CD AB GH CD ∴BEG EGH DFG FGH ∠∠∠∠∴==,180BEF DFE ∴∠+∠=︒EG 平分GEB ∴∠=GEB ∴∠+在EFG ∆中EGF ∴∠=EM 平分BEM ∴∠45EMF BEM MFD ∴∠=∠+∠=︒故答案为:45︒;②结论:2EOF EPF ∠=∠.理由:如图3中 由题意 EOF BEO DFO ∠=∠+∠ EPF BEP DFP ∠=∠+∠PE 平分BEO ∠ PF 平分DFO ∠2BEO BEP ∴∠=∠ 2DFO DFP ∠=∠2EOF EPF ∴∠=∠故答案为:2EOF EPF ∠=∠.【变式训练3】如图:(1)如图1 AB CD ∥ =45ABE ∠︒ 21CDE ∠=︒ 直接写出BED ∠的度数.(2)如图2 AB CD ∥ 点E 为直线AB CD 间的一点 BF 平分ABE ∠ DF 平分CDE ∠ 写出BED ∠与F ∠之间的关系并说明理由.(3)如图3 AB 与CD 相交于点G 点E 为BGD ∠内一点 BF 平分ABE ∠ DF 平分CDE ∠ 若60BGD ∠=︒ 95BFD ∠=︒ 直接写出BED ∠的度数. 【答案】(1)∵BED =66°;(2)∵BED =2∵F 见解析;(3)∵BED 的度数为130°.【详解】(1)解:(1)如图 作EF ∵AB∵直线AB ∵CD∵EF ∵CD∵∵ABE =∵1=45° ∵CDE =∵2=21°∵∵BED =∵1+∵2=66°;(2)解:∵BED =2∵F理由是:过点E作EG∥AB延长DE交BF于点H∵AB∥CD∵AB∥CD∥EG∵∵5=∵1+∵2∵6=∵3+∵4又∵BF平分∵ABE DF平分∵CDE∵∵2=∵1∵3=∵4则∵5=2∵2∵6=2∵3∵∵BED=2(∵2+∵3)又∵F+∵3=∵BHD∵BHD+∵2=∵BED∵∵3+∵2+∵F=∵BED综上∵BED=∵F+12∵BED即∵BED=2∵F;(3)解:延长DF交AB于点H延长GE到I∵∵BGD=60°∵∵3=∵1+∵BGD=∵1+60° ∵BFD=∵2+∵3=∵2+∵1+60°=95°∵∵2+∵1=35° 即2(∵2+∵1) =70°∵BF平分∵ABE DF平分∵CDE∵∵ABE=2∵2∵CDE=2∵1∵∵BEI=∵ABE +∵BGE=2∵2+∵BGE∵DEI=∵CDE+∵DGE=2∵1+∵DGE ∵∵BED=∵BEI+∵DEI=2(∵2+∵1)+( ∵BGE+∵DGE)=70°+60°=130°∵∵BED的度数为130°.类型二、铅笔模型例.问题情景:如图1 AB ∵CD ∵P AB =140° ∵PCD =135° 求∵APC 的度数.(1)丽丽同学看过图形后立即口答出:∵APC =85° 请补全她的推理依据.如图2 过点P 作PE ∵AB因为AB ∵CD 所以PE ∵CD .( )所以∵A +∵APE =180° ∵C +∵CPE =180°.( )因为∵P AB =140° ∵PCD =135° 所以∵APE =40° ∵CPE =45°∵APC =∵APE +∵CPE =85°.问题迁移:(2)如图3 AD ∵BC 当点P 在A 、B 两点之间运动时 ∵ADP =∵α ∵BCP =∵β 求∵CPD 与∵α、∵β之间有什么数量关系?请说明理由.(3)在(2)的条件下 如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合) 请直接写出∵CPD 与∵α、∵β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论) 两直线平行 同旁内角互补;(2)CPD αβ∠=∠+∠ 理由见解析;(3)CPD βα∠=∠-∠或CPD αβ∠=∠-∠【详解】解:(1)如图2 过点P 作PE ∵AB因为AB ∵CD 所以PE ∵CD .(平行于同一条直线的两条直线平行)所以∵A +∵APE =180° ∵C +∵CPE =180°.(两直线平行同旁内角互补)因为∵P AB=140° ∵PCD=135°所以∵APE=40° ∵CPE=45°∵APC=∵APE+∵CPE=85°.故答案为:平行于同一条直线的两条直线平行;两直线平行同旁内角互补;(2)∵CPD=∵α+∵β理由如下:如图3所示过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵DPE+∵CPE=∵α+∵β;(3)当P在BA延长线时如图4所示:过P作PE∵AD交CD于E同(2)可知:∵α=∵DPE∵β=∵CPE∵∵CPD=∵β-∵α;当P在AB延长线时如图5所示:同(2)可知:∵α=∵DPE∵β=∵CPE∵∵CPD=∵α-∵β.综上所述∵CPD与∵α、∵β之间的数量关系为:∵CPD=∵β-∵α或∵CPD=∵α-∵β.【变式训练1】已知直线AB∥CD(1)如图(1)点G为AB、CD间的一点联结AG、CG.若∵A=140° ∵C=150° 则∵AGC 的度数是多少?(2)如图(2)点G为AB、CD间的一点联结AG、CG.∵A=x° ∵C=y° 则∵AGC的度数是多少?(3)如图(3)写出∵BAE、∵AEF、∵EFG、∵FGC、∵GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∵AGC=(x+y)°;(3)∵BAE+∵EFG+∵GCD=∵AEF+∵FGC.【详解】解:(1)如图过点G作GE∥AB∵AB∥GE∵∵A+∵AGE=180°(两直线平行同旁内角互补).∵∵A=140°∵∵AGE=40°.∵AB∥GE AB∥CD∵GE∥CD.∵∵C+∵CGE=180°(两直线平行同旁内角互补).∵∵C=150°∵∵CGE=30°.∵∵AGC=∵AGE+∵CGE=40°+30°=70°.(2)如图过点G作GF∥AB∵AB∥GF∵∵A=AGF(两直线平行内错角相等).∵AB∥GF AB∥CD∵GF∥CD.∵∵C=∵CGF.∵∵AGC=∵AGF+∵CGF=∵A+∵C.∵∵A=x° ∵C=y°∵∵AGC=(x+y)°.(3)如图所示过点E作EM∥AB过点F作FN∥AB过点G作GQ∥CD∵AB∥CD∵AB∥EM∥FN∥GQ∥CD.∵∵BAE=∵AEM∵MEF=∵EFN∵NFG=∵FGQ∵QGC=∵GCD(两直线平行内错角相等).∵∵AEF=∵BAE+∵EFN∵FGC=∵NFG+GCD.∵∵EFN+∵NFG=∵EFG∵∵BAE+∵EFG+∵GCD=∵AEF+∵FGC.【变式训练2】问题情境:如图1 AB∵CD∵P AB=130° ∵PCD=120° 求∵APC度数.思路点拨:小明的思路是:如图2 过P作PE∵AB通过平行线性质可分别求出∵APE、∵CPE的度数从而可求出∵APC的度数;小丽的思路是:如图3 连接AC通过平行线性质以及三角形内角和的知识可求出∵APC的度数;小芳的思路是:如图4 延长AP交DC的延长线于E通过平行线性质以及三角形外角的相关知识可求出∵APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算你求得的∵APC的度数为°;问题迁移:(1)如图5 AD∵BC点P在射线OM上运动当点P在A、B两点之间运动时∵ADP=∵α ∵BCP=∵β.∵CPD、∵α、∵β之间有何数量关系?请说明理由;(2)在(1)的条件下如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合)请你直接写出∵CPD、∵α、∵β间的数量关系.【答案】问题解决:110°;问题迁移:(1)∵CPD=∵α+∵β 理由见解析;(2)∵CPD=∵β﹣∵α 理由见解析【详解】解:小明的思路:如图2 过P作PE∵AB∵AB∵CD∵PE∵AB∵CD∵∵APE=180°﹣∵A=50° ∵CPE=180°﹣∵C=60°∵∵APC=50°+60°=110°故答案为:110;(1)∵CPD=∵α+∵β 理由如下:如图5 过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵DPE+∵CPE=∵α+∵β;(2)当P在BA延长线时∵CPD=∵β﹣∵α;理由:如图6 过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵CPE﹣∵DPE=∵β﹣∵α;当P在BO 之间时 ∵CPD =∵α﹣∵β.理由:如图7 过P 作PE ∵AD 交CD 于E∵AD ∵BC∵AD ∵PE ∵BC∵∵α=∵DPE ∵β=∵CPE∵∵CPD =∵DPE ﹣∵CPE =∵α﹣∵β.类型三、锄头模型例.已知 AB ∵CD .点M 在AB 上 点N 在CD 上.(1)如图1中 ∵BME 、∵E 、∵END 的数量关系为: ;(不需要证明) 如图2中 ∵BMF 、∵F 、∵FND 的数量关系为: ;(不需要证明)(2)如图3中 NE 平分∵FND MB 平分∵FME 且2∵E +∵F =180° 求∵FME 的度数;(3)如图4中 ∵BME =60° EF 平分∵MEN NP 平分∵END 且EQ ∵NP 则∵FEQ 的大小A BC D P123是否发生变化若变化请说明理由若不变化求出∵FEQ的度数.【答案】(1)∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND;(2)120°;(3)不变30°【详解】解:(1)过E作EH∵AB如图1∵∵BME=∵MEH∵AB∵CD∵HE∵CD∵∵END=∵HEN∵∵MEN=∵MEH+∵HEN=∵BME+∵END即∵BME=∵MEN﹣∵END.如图2 过F作FH∵AB∵∵BMF=∵MFK∵AB∵CD∵FH∵CD∵∵FND=∵KFN∵∵MFN=∵MFK﹣∵KFN=∵BMF﹣∵FND即:∵BMF=∵MFN+∵FND.故答案为∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND.(2)由(1)得∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND.(2)观察图(2)已知AB∵CD猜想图中的∵BPD与∵B、∵D的关系并说明理由.(3)观察图(3)和(4)已知AB∵CD猜想图中的∵BPD与∵B、∵D的关系不需要说明理由.【答案】(1)∵B+∵BPD+∵D=360° 理由见解析;(2)∵BPD=∵B+∵D理由见解析;(3)∵BPD=∵D-∵B或∵BPD=∵B-∵D理由见解析【详解】解:(1)如图(1)过点P作EF∵AB∵∵B+∵BPE=180°∵AB∵CD EF∵AB∵EF∵CD∵∵EPD+∵D=180°∵∵B+∵BPE+∵EPD+∵D=360°∵∵B+∵BPD+∵D=360°.(2)∵BPD=∵B+∵D.理由:如图2 过点P作PE∵AB∵AB∵CD∵PE∵AB∵CD∵∵1=∵B∵2=∵D∵∵BPD=∵1+∵2=∵B+∵D.(3)如图(3)∵BPD=∵D-∵B.理由:∵AB∵CD∵∵1=∵D∵∵1=∵B+∵BPD∵∵D=∵B+∵BPD即∵BPD=∵D-∵B;如图(4)∵BPD=∵B-∵D.理由:∵AB ∵CD∵∵1=∵B∵∵1=∵D +∵BPD∵∵B =∵D +∵BPD即∵BPD =∵B -∵D .【变式训练2】已知//AM CN 点B 为平面内一点 AB BC ⊥于B .(1)如图1 点B 在两条平行线外 则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间 过点B 作BD AM ⊥于点D . ①如图2 说明ABD C ∠=∠成立的理由;②如图3 BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒= 求EBC ∠的度数.【答案】(1)∵A +∵C =90°;(2)①见解析;②105°【详解】解:(1)如图1 AM 与BC 的交点记作点O∵AM ∵CN∵∵C =∵AOB∵AB ∵BC∵∵A +∵AOB =90°∵∵A +∵C =90°;(2)①如图2 过点B作BG∵DM∵BD∵AM∵DB∵BG∵∵DBG=90°∵∵ABD+∵ABG=90°∵AB∵BC∵∵CBG+∵ABG=90°∵∵ABD=∵CBG∵AM∵CN BG∵DMBG CN//,∵∵C=∵CBG∵ABD=∵C;②如图3 过点B作BG∵DM∵BF平分∵DBC BE平分∵ABD∵∵DBF=∵CBF∵DBE=∵ABE由(2)知∵ABD=∵CBG∵∵ABF=∵GBF设∵DBE=α∵ABF=β则∵ABE=α∵ABD=2α=∵CBG∵GBF=∵AFB=β∵BFC=3∵DBE=3α∵∵AFC=3α+β∵∵AFC+∵NCF=180° ∵FCB+∵NCF=180° ∵∵FCB=∵AFC=3α+β∵BCF中由∵CBF+∵BFC+∵BCF=180°得:2α+β+3α+3α+β=180°∵AB∵BC∵β+β+2α=90°∵α=15° ∵∵ABE=15°∵∵EBC=∵ABE+∵ABC=15°+90°=105°.类型四、齿距模型例.如图AB∵EF设∵C=90° 那么x y z的关系式为______.【答案】y=90°-x+z.【详解】解:作CG//AB DH//EF∵AB//EF∵AB//CG//HD//EF∵∵x=∵1 ∵CDH=∵2 ∵HDE=∵z∵∵BCD=90°∵∵1+∵2=90°∵y=∵CDH+∵HDE=∵z+∵2∵∵2=90°-∵1=90°-∵x∵∵y=∵z+90°-∵x.即y=90°-x+z.【变式训练1】如图1 已知AB ∵CD ∵B =30° ∵D =120°;(1)若∵E =60° 则∵F = ;(2)请探索∵E 与∵F 之间满足的数量关系?说明理由;(3)如图2 已知EP 平分∵BEF FG 平分∵EFD 反向延长FG 交EP 于点P 求∵P 的度数.【答案】(1)90︒;(2)30F E ∠=∠+︒ 理由见解析;(3)15︒【详解】(1)解:如图1 分别过点E F 作//EM AB //FN AB////EM AB FN ∴30B BEM ∴∠=∠=︒ MEF EFN ∠=∠又//AB CD //AB FN//CD FN ∴180D DFN ∴∠+∠=︒又120D ∠=︒60DFN ∴∠=︒30BEF MEF ∴∠=∠+︒ 60EFD EFN ∠=∠+︒60EFD MEF ∴∠=∠+︒3090EFD BEF ∴∠=∠+︒=︒;故答案为:90︒;(2)解:如图1 分别过点E F 作//EM AB //FN AB////EM AB FN ∴30B BEM ∴∠=∠=︒ MEF EFN ∠=∠又//AB CD //AB FN//CD FN ∴又120D ∠=60DFN ∴∠=BEF MEF ∴∠=∠EFD MEF ∴∠=∠(3)解:如图设2BEF ∠=EP 平分PEF ∴∠=//FH EP HFG ∠=【变式训练2】如图1 点A 、B 分别在直线GH 、MN 上 GAC NBD ∠=∠ C D ∠=∠.(1)求证://GH MN ;(提示:可延长AC 交MN 于点P 进行证明) (2)如图2 AE 平分GAC ∠ DE 平分BDC ∠ 若AED GAC ∠=∠ 求GAC ∠与ACD ∠之间的数量关系;(3)在(2)的条件下 如图3 BF 平分DBM ∠ 点K 在射线BF 上 13KAG GAC ∠=∠ 若AKB ACD ∠=∠ 直接写出GAC ∠的度数.∵ACD C ∠=∠∵//AP BD∵NBD NPA ∠=∠∵GAC NBD ∠=∠∵GAC NPA ∠=∠∵//GH MN ;(2)延长AC 交MN 于点P 交DE 于点Q∵180E EAQ AQE ∠+∠+∠=° 180AQE AQD ∠+∠=° ∵AQD E EAQ ∠=∠+∠∵//AP BD∵AQD BDQ ∠=∠∵BDQ E EAQ ∠=∠+∠∵AE 平分GAC ∠ DE 平分BDC ∠∵2GAC EAQ ∠=∠ 2CDB BDQ ∠=∠∵2CDB E GAC ∠=∠+∠∵AED GAC ∠=∠ ACD CDB ∠=∠∵23ACD GAC GAC GAC ∠=∠+∠=∠;(3)当K 在直线GH 下方时 如图 设射线BF 交GH 于I⎫.⎪⎭上方时如图-∠(180GAC⎫.⎪⎭°︒。

北师大版七年级数学下册几何常见模型练习题(有答案)

北师大版七年级数学下册几何常见模型练习题(有答案)

全等三角形判定的三种类型已知一边一角型一次全等型1.已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC.2.如图,在△ABC中,D是BC边上的一点,连接AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF.求证:AD是△ABC的中线.两次全等型3.如图,已知,在四边形ABCD中,E是AC上一点,∠DAC=∠BAC,∠DCA=∠BCA.求证:∠DEC =∠BEC.4.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于F交BC于E.(1)求证:∠ABD=∠CAE.(2)求证:∠ADB=∠CDE.(3)直接写出BD、AE、ED之间满足的数量关系.已知两边型一次全等型5.如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.两次全等型6.如图所示,AB=CB,AD=CD,E是BD上任意一点,求证:AE=CE.7.如图:已知AE交BD于点C,∠DAC=∠EBC=∠BAC,AB=AC.试说明:DC与BE有怎样的数量关系.已知两角型一次全等型8.如图,已知∠BDC=∠CEB=90°,BE、CD交于点O,且AO平分∠BAC,求证:OB=OC.三角形中的四种常见说理类型说明相等关系1.如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.说明位置关系说明平行关系2.已知△ABC为等边三角形,点P在AB上,以CP为边长作等边三角形△PCE.求证:AE∥BC.说明垂直关系3.如图,△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF.说明倍分关系说明角的倍分关系4.如图,△ABC中,AB=AC,BD⊥AC于D.猜想:∠DBC与∠BAC之间的数量关系,并予以证明.说明线段的倍分关系5.如图,△ABC中,AB=AC,AD和BE是高,它们相交于H,且AE=BE.(1)求∠C的度数.(2)求证:AH=2BD.说明和、差关系6.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.线段垂直平分线与角平分线的应用类型典例例1.已知:如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB边的垂直平分线相交于点D,DE⊥AC,DF⊥BC,垂足分别是E、F.(1)求证:AE=BF;(2)求线段DG的长.利用线段垂直平分线的性质求线段的长1.如图,已知AB比AC长3cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.利用线段垂直平分线的性质求角的度数2.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,连接AD.(1)若△ADC的周长为16,AB=12,求△ABC的周长;(2)若AD将∠CAB分成两个角,且∠CAD:∠DAB=2:5,求∠ADC的度数.利用线段垂直平分线的性质解决实际问题3.某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?利用线段垂直平分线的性质说明线段的数量关系4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P放在射线OM上,两直角边分别与OA,OB交于点C,D.(1)证明:PC=PD.(2)若OP=4,求OC+OD的长度.利用线段垂直平分线的性质说明线段的位置关系5.如图所示,AD为△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,EF交AD于点M,求证:AM ⊥EF.全等三角形判定的三种类型1.证明:如右图所示,∵BD=DC,∴∠3=∠4,又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC=∠ACB,∴△ABC是等腰三角形,∴AB=AC,在△ABD和△ACD中,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD平分∠BAC.2.证明:∵BE⊥AD,CF⊥AD,∴∠BED=∠F=90°,在△BED和△CFD中,,∴△BED≌△CFD,∴BD=CD,∴AD是△ABC的中线.3.证明:在△ACD和△ACB中,,∴△ACD≌△ACB,(ASA)∴BC=CD,在△DCE和△BCE中,,∴△DCE≌△BCE(ASA),∴∠DEC=∠BEC.4.(1)证明:∵AE⊥BD,∴∠AFB=∠BAC=90°,∴∠ABD+∠BAF=90°,∠BAF+∠CAE=90°,∴∠ABD=∠CAE.(2)证明:过C作CM⊥AC,交AE的延长线于M,则∠ACM=90°=∠BAC,∴CM∥AB,∴∠MCE=∠ABC=∠ACB,∵∠BAF=∠ADB,∠ADB+∠F AD=90°,∠ABD+∠BAF=90°,∴∠ABD=∠CAM,在△ABD和△CAM中,,∴△ABD≌△CAM(ASA),∴∠ADB=∠M,AD=CM,BD=AM,∵D为AC中点,∴AD=DC=CM,在△CDE和△CME中,,∴△CDE≌△CME(SAS),∴∠M=∠CDE,∴∠ADB=∠CDE.(3)解:结论:BD=AE+DE.理由:∵△CDE≌△CME,∴ME=DE,∵AM=AE+ME=AE+DE,∵BD=AM,∴BD=AE+DE.5.(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)解:结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.6.证明:在△ABD与△CBD中,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,在△ABE与△CBE中,△ABE≌△CBE(SAS),∴AE=CE.7.解:DC=BE,∵∠EBC=∠BAC,∠ACD=∠BAC+∠ABC,∠ABE=∠EBC+∠ABC,∴∠ACD=∠ABE,在△ACD和△ABE中,,∴△ACD≌△ABE(ASA),∴DC=BE.8.证明:∵∠BDC=∠CEB=90°,∴CD⊥AB,BE⊥AC,∵AO平分∠BAC,∴OD=OE,在△BDO和△CEO中∴△BDO≌△CEO(ASA),∴OB=OC.三角形中的四种常见说理类型1.证明:连接AD,∵AB=AC,D是BC的中点,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴DE=DF.2、证明:∵△ABC与△PCE为等边三角形,∴AC=BC,EC=PC,∠BCA=∠PCE=60°,∴∠BCP=∠ACE,在△BCP和△ACE中,,∴△CBP≌△CAE(SAS),∴∠CAE=∠B=60゜=∠ACB,∴AE∥BC.3.证明:连ED,DF,∵AB=AC,∴∠B=∠C,在△BED和△CDF中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G是EF的中点,∴DG⊥EF.4.解:∠DBC=∠BAC.设∠C=β,∵AB=AC,∴∠ABC=∠C=β,∴∠BAC=180°﹣2β,∠BAD=∠ABC+∠C=2β,∵BD⊥AC,∴∠ABD=90°﹣2β,∴∠DBC=90°﹣β,∴∠DBC=∠BAC.5.(1)解:∵AE=BE,BE⊥AC,∴∠BAE=45°,又∵AB=AC,∴∠C=(180°﹣∠BAE)=(180°﹣45°)=67.5°;(2)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∠1+∠C=90°,∵BE⊥AC,∴∠2+∠C=90°,∴∠1=∠2,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC,∴AH=2BD.6.证明:如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠CAD=∠BAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴DE=BD,∠AED=∠ABC,∵∠AED=∠C+∠CDE,∠ABC=2∠C,∴∠CDE=∠C,∴CE=DE,∵AE+CE=AC,∴AB+BD=AC.线段垂直平分线与角平分线的应用类型例1.(1)证明:连接AD、BD,∵AD是∠BCA的平分线,DE⊥AC,DF⊥BC,∴DE=DF,∵DG是AB边的垂直平分线,∴AD=DB,在Rt△AED和Rt△DFB中,,∴Rt△AED≌Rt△BFD(HL),∴AE=BF;(2)由(1)得:CE=CF==7,∴AE=EC﹣AC=1,∵∠ECD=∠EDC=45°,∴DE=CE=7,由题意可得:AG=BG=5,∴AD2=AE2+DE2=50,∴DG2=AD2﹣AG2=25,∴DG=5.1.解:∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+AD+CD=AC+BD+AD=AC+AB,由题意得,,解得.∴AB和AC的长分别为8.5cm,5.5cm.2.解:(1)∵DE是AB的垂直平分线,∴AD=BD,又∵△ADC的周长为16,∴AD+CD+AC=16,即BD+CD+AC=BC+AC=16,又AB=12,∴AB+BC+AC=16+12=28,则△ABC的周长为28;(2)∵AD=BD,∴∠BAD=∠ABD,∵∠CAD:∠DAB=2:5,设一份为x,即∠CAD=2x,∠DAB=∠ABD=5x,又∠C=90°,∴∠ABD+∠BAC=90°,即2x+5x+5x=90°,解得:x=7.5°,∵∠ADC为△ABD的外角,∴∠ADC=∠DAB+∠ABD=5x+5x=10x=75°.3.解:如图,这所中学建在P点位置(点P为△ABC的外心).连结AB、BC、AC,作AB和BC的垂直平分线,两垂直平分线相交于点P,则点P到点A、B、C的距离相等.4.证明:(1)如图,过点P作PE⊥OA于点E,PF⊥OB于点F,∴∠PEC=∠PFD=90°.∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°.而∠PDO+∠PDF=180°,∴∠PCE=∠PDF在△PCE和△PDF中∴△PCE≌△PDF(AAS)∴PC=PD;(2)∵∠AOB=90°,OM平分∠AOB,∴△POE与△POF为等腰直角三角形,∴OE=PE=PF=OF,∵OP=4,∴OE=2,由(1)知△PCE≌△PDF ∴CE=DF ∴OC+OD=OE+OF=2OE=4.5.证明:∵DE⊥AC于点E,DF⊥AB于点F,∴∠AED=∠AFD=90°,∵AD为三角形ABC的角平分线,∴∠EAD=∠F AD,而AD=AD,∴△AED≌△AFD∴ED=DF,AE=AF∴△AEF为等腰三角形,AM为∠BAC的平分线∴AM是△AEF的高,即AM⊥EF.。

(完整版)初一下册数学角度几何解析题以及练习题(附答案).doc

(完整版)初一下册数学角度几何解析题以及练习题(附答案).doc

七年级下册数学几何解析题以及练习题(附答案)9.(2011 ·扬州 ) 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西 45°方向,则从C岛看 A、 B 两岛的视角∠ ACB=________.答案105°解析如图,∵ (60 °+∠CAB)+(45 °+∠ABC)=180°,∴∠CAB+∠ABC=75°,在△ ABC中,得∠ C=105°.12.如图所示,在△ABC中,∠ A=80°,∠ B=30°, CD平分∠ ACB, DE∥AC.(1)求∠ DEB的度数;(2)求∠ EDC的度数.解(1) 在△ABC中,∠A=80°,∠B=30°,∴∠ ACB=180°-∠ A-∠ B=70°.∵ DE∥AC,∴∠ DEB=∠ ACB=70°.(2)∵ CD平分∠ ACB,1∴∠ DCE=2∠ ACB=35°.∵∠ DEB=∠ DCE+∠ EDC,∴∠ EDC=70°-35°=35°.13.已知,如图,∠1=∠ 2,CF⊥AB于F,DE⊥AB于E,求证:FG∥BC.( 请将证明补充完整 )证明∵ CF⊥ AB, DE⊥ AB(已知),∴ ED∥FC() .∴∠ 1=∠BCF() .又∵∠ 1=∠ 2( 已知 ) ,1∴ FG ∥BC () .解 在同一平面内, 垂直于同一直线的两条直线互相平行;两直线平行, 同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC ,求证:∠ A +∠ B +∠ C =180°.分析:通过画平行线,将∠A 、∠B 、∠C 作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下:证法 1:如图甲,延长 BC 到 D ,过 C 画 CE ∥ BA .∵BA ∥ CE ( 作图所知 ) ,∴∠ B =∠ 1,∠ A =∠ 2( 两直线平行,同位角、内错角相等) .又∵∠ BCD =∠ BCA +∠ 2+∠ 1=180°( 平角的定义 ) ,∴∠ A +∠ B +∠ ACB =180°( 等量代换 ) .如图乙,过 BC 上任一点 F ,画 FH ∥AC , FG ∥ AB ,这种添加辅助线的方法能证明∠A +∠B +∠C =180°吗?请你试一试.解 ∵ FH ∥AC ,∴∠ BHF =∠ A ,∠ 1=∠ C .∵ FG ∥AB ,∴∠ BHF =∠ 2,∠ 3=∠ B ,∴∠ 2=∠ A .∵∠ BFC =180°,∴∠ 1+∠ 2+∠ 3=180°,即∠ A +∠ B +∠ C =180°.15.(2010 ·玉溪 ) 平面内的两条直线有相交和平行两种位置关系.(1) 如图 a ,若 AB ∥ CD ,点 P 在 AB 、 CD 外部,则有∠ B =∠ BOD .又因∠ BOD 是△ POD的外角,故∠ BOD =∠ BPD +∠ D ,得∠ BPD =∠ B -∠ D . 将点 P 移到 AB 、CD 内部,如图 b ,以上结论是否成立?若成立,说明理由;若不成立,则∠、∠ 、∠ D 之BPD B间有何数量关系?请证明你的结论;(2) 在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点 Q,如图 c,则∠ BPD、∠ B、∠ D、∠ BQD之间有何数量关系?( 不需证明 )(3)根据 (2) 的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.解(1) 不成立,结论是∠BPD=∠B+∠D.延长 BP交 CD于点 E,∵ AB∥CD,∴∠ B=∠ BED.又∠ BPD=∠ BED+∠ D,∴∠ BPD=∠ B+∠ D.(2)结论:∠ BPD=∠ BQD+∠ B+∠ D.(3)设 AC与 BF交于点 G.由 (2) 的结论得:∠AGB=∠ A+∠ B+∠ E.又∵∠ AGB=∠ CGF,∠ CGF+∠ C+∠ D+∠ F=360°,∴∠ A+∠ B+∠ C+∠D+∠ E+∠ F=360°.A 14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度. DEBC第 14 题2.如图,在△ ABC和△ ABD中,现给出如下三个论断:①AD=BC;②∠C=∠D;③∠1=∠2。

人教版初中数学几何图形初步技巧及练习题附答案

人教版初中数学几何图形初步技巧及练习题附答案

人教版初中数学几何图形初步技巧及练习题附答案一、选择题1.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..2.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】∵AB=AC,BD=BC,∴AD⊥BC,∴PB=PC,∴PC+PE=PB+PE,+≥,∵PB PE BE∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,∵AD也是中线,∴点P是△ABC的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.5.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.6.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.8.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.9.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.10.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.11.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD ,D G ∴∠=∠,//BF DE ,G ABF ∴∠=∠,D ABF ∴∠=∠, BF 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.13.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.14.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友【答案】A【解析】【分析】 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°【答案】A【解析】【分析】 根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【点睛】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是( ) A . B .C .D .【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A .【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.∠=∠的图形的个数是()20.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4【答案】C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。

2024年数学七年级下册几何基础练习题(含答案)

2024年数学七年级下册几何基础练习题(含答案)

2024年数学七年级下册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 在一个等边三角形中,每个角的度数是()。

A. 60°B. 90°C. 120°D. 180°2. 下列哪个图形是一个四边形?()A. 圆B. 三角形C. 正方形D. 直线3. 一个三角形的两个角分别是30°和60°,那么第三个角的度数是()。

A. 30°B. 60°C. 90°D. 120°4. 下列哪个图形是一个平行四边形?()A. 矩形C. 正方形D. 菱形5. 一个等腰三角形的底边长度是10厘米,腰长是12厘米,那么这个三角形的周长是()厘米。

A. 22B. 24C. 26D. 286. 下列哪个图形是一个圆形?()A. 正方形B. 长方形C. 椭圆D. 三角形7. 一个三角形的两个边长分别是5厘米和8厘米,那么这个三角形的周长最小可能是()厘米。

A. 10B. 12C. 13D. 148. 下列哪个图形是一个梯形?()A. 正方形B. 矩形C. 平行四边形9. 一个等腰三角形的底边长度是8厘米,腰长是10厘米,那么这个三角形的周长是()厘米。

A. 18B. 20C. 22D. 2410. 下列哪个图形是一个正方形?()A. 长方形B. 梯形C. 菱形D. 圆二、判断题(每题2分,共10分)1. 一个等边三角形的每个角都是60°。

()2. 一个四边形的内角和是360°。

()3. 一个等腰三角形的两个腰长相等。

()4. 一个正方形的四个角都是90°。

()5. 一个三角形的两个边长分别是5厘米和8厘米,那么这个三角形的周长最小可能是13厘米。

()以上是一个练习题的示例,你可以根据实际情况进行调整和扩展。

希望对你有所帮助!一、选择题(每题2分,共20分)1. 在一个等边三角形中,每个角的度数是()。

初一数学几何难题练习题(含答案),提高能力专用

初一数学几何难题练习题(含答案),提高能力专用

1、证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:
(1)制造的全等三角形应分别包括求证中一量;(2)添辅助线能够直接得到的两个全等三角形。

说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。

我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。

说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。

证明二:如图5所示,延长ED到M,使DM=ED,连结FE,FM,BM
说明:证明两直线垂直的方法如下:
(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。

(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。

(3)证明二直线的夹角等于90°。

2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手
法。

“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。

初中数学几何图形初步技巧及练习题附答案

初中数学几何图形初步技巧及练习题附答案

初中数学几何图形初步技巧及练习题附答案一.选择题1. 一把直尺和一块三角板ABC(含30。

,60。

角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点4且ZCED= 50% 那么ZBAF=()【答案】A【解析】【分析】先根据ZCED = 50。

,DE//AF,即可得到ZCAF= 50°,最后根据ZBAC=60°,即可得出Z 弘F的大小.【详解】•:DE//AF, ZCED=50\:.ZCAF=ZCED=5Q°,VZe/AC=60°,:.ZBAF= 60° - 50° = 10%故选:4【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.2・如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()面【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特 点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D 选项平面图一个长方形和两个圆折叠后,能 围成的几何体是圆柱.A 选项平面图折叠后是一个圆锥:B 选项平面图折叠后是一个正方 体;C 选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特 征,是解决此类问题的关键.E 是 AB±一点,BE = 2,AE = 3EE, 是 4C 上一动点,则PB+PE 的最小值是() A. 8B. 9 C ・ 10 D ・ 11【答案】C【解析】【分析】 连接DE,交AC 于P,连接BP,则此时PB+PE 的值最小,进而利用勾股定理求岀即可.•••四边形ABCD 是正方形3.如图,在正方形ABCD 中,交4C 于P,连接BP,则此时PB+PE 的值最小【详解】:.B、D关于AC对称:・PB = PD.•.PB+PE = PD+PE = DE•••BE = 2,AE = 3BE/. AE = 6, AB = 8.•.DE =佃+F =10:故PB+PE的最小值是10,故选:C.【点睛】本题考查了轴对称一一最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.4.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.【详解】解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确:AB、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;BC、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;CD、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.【点睛】本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.【答案】C【解析】【分析】根据直角三角板可得第一个图形Zp=45°,进而可得Za=45°:根据余角和补角的性质可得第二个图形、第四个图形中Za=Zp,第三个图形Za和ZB互补.【详解】根据角的和差关系可得第一个图形Za=Zp=45%根据等角的补角相等可得第二个图形Za=Zp,第三个图形Za+Zp=180%不相等,根据同角的余角相等可得第四个图形Za=Zp,因此Za=Zp的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.6. 如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A. 10cm2B. lOncm2C. 20cm2D. 20ncm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长X高.【详解】根据圆柱的侧面积计算公式可得nx2x2x5=20ncm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.7. 把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是()【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.【详解】结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有c, D,再根据三角形的位置,即可排除D选项.故选C.【点睛】考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.& 在直角三角形ABC中,ZC=90°, AD平分ZBAC交BC于点D, BE平分ZABC交AC于点E, AD、BE相交于点F,过点D作DG〃AB,过点B作BG丄DG交DG于点G.下列结论:①ZAFB = 135°;②ZBDG = 2ZCBE;③BC 平分ZABG;④ZBEC=ZFBG.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确:根据等角的余角相等,即可判定④正确.【详解】VAD平分ZBAC交BC于点D, BE平分ZABC交AC于点E,1 1AZBAF=-ZBAC, ZABF= - ZABC,2 2又VZC=90\••• ZABC+ZBAC=90%AZBAF+ZABF = 45°,A ZAFB=135°,故①正确;•••DG〃AB,AZBDG=ZABC=2ZCBE.故②正确;•・• ZABC的度数不确定,•••BC平分ZABG不一定成立,故③错误;TBE 平分ZABC,:.ZABF=ZCBE,又VZC=ZABG=90°,AZBEC+ZCBE=90°, ZABF+ZFBG=90°,AZBEC=ZFBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.9.已知点C在线段上,则下列条件中,不能确定点C是线段中点的是()A. AC=BC B・AB=2AC C・AC^BC=AB D・BC = -AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然&、B、D都可以确定点C是线段朋中点【详解】解:久AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB±任意一点;D、BC=-AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10・如图是由若干个人小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小A.主视图B.俯视图C.左视图D. 一样人【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C・主视图左视图倆视图□・如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则(x+y)的值为()【答案】c【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出X、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1"与面“X”相对,面"-3"与面"y”相 对.因为相对面上的两个数互为相反数,[l+x = O所以彳c c[-3 + y = 0fx = -1解得:V = 3则 x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题・12.如图,直线AC//BD. A0. 30分别是ABAC. ZABD 的平分线,那么下列结论错误的C. ZBA0 与 ZAB 0 互余【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得ZBAC+ZABD=180°,选项B 正确;因AO 、B0分别是ZBAC. ZABD 的平分线,根据角平分线的定义可得ZBA0=ZCA0, ZAB0=ZDB0,选项 A 正确,选项 D 不正确;由 ZBAC+ZABD=180% ZBA0=ZCA0, ZAB0=ZDB0即可得ZBAO+ZABO=90°,选项A 正确,故选D ・ 13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm 的点C 处有 一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的&处,则蚂蚁到达蜂 蜜的最短距离( )cm ・蚂蚁月A. 14B. 15C. 16D. 17【答案】B【解析】【分析】 在侧面展开图中,过C 作CQ 丄EF 于Q,作A 关于EH 的对称点连接"C 交EH 于P, 连接AP,则AP+PC就是B. ZBAC 与Z&3D 互补D. ZAB0 与 ZDB0 不等蚂蚁到达蜂蜜的最短距离,求出AQ, CQ,根据勾股定理求出A,C 即可.【详解】解:沿过人的圆柱的高剪开,得出矩形EFGH,过C作CQ丄FF于Q,作4关于的对称点4,连接AC交EH于P,连接AP,贝ljAP+PC就是蚂蚁到达蜂蜜的最短距离,•:AE=A'E, A,P=AP,:.AP+PC=A,P+PC=A,C,VCQ= — xl8cm = 9cm, A'Q = 12cm - 4cm+4cm = 12cm,2在Rt3VQC中,由勾股定理得:AC= =15cm,【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如果厶Z和Z0互余,下列表Z0的补角的式子中:①180。

初中数学几何图形初步技巧及练习题附答案

初中数学几何图形初步技巧及练习题附答案
A.①B.②C.③D.④
【答案】B
【解析】
【分析】
依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.
【详解】
①过两点有且只有一条直线,正确;
②连接两点的线段的长度叫两点间的距离,错误
③两点之间线段最短,正确;
④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;
故选B.
考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.
8.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()
本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.
10.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图B.俯视图C.左视图D.一样大
【答案】C
【解析】
如图,该几何体主视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.
【详解】
∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,
∴∠BAF= ∠BAC,∠ABF= ∠ABC,
又∵∠C=90°,
∴∠ABC+∠BAC=90°,

初一数学角度题30道

初一数学角度题30道

初一数学角度题30道1. 一个角的补角比这个角大30°,求这个角的度数。

- 咱设这个角是x度哦。

那它的补角就是180 - x度。

题目说补角比这个角大30°,那就可以列方程啦,180 - x=x + 30。

移项可得180 - 30 = x+x,也就是150 = 2x,解得x = 75度。

2. 已知∠A = 50°,它的余角是多少度呢?- 余角的定义就是两个角加起来等于90°嘛。

那∠A的余角就是90 - 50 = 40°,简单吧。

3. 一个角是它的余角的2倍,这个角是多少度?- 设这个角的余角是x度,那这个角就是2x度。

因为它们是余角关系,所以x+2x = 90。

3x = 90,解得x = 30度,那这个角就是2x = 60度。

4. 若∠α和∠β互为补角,且∠α - ∠β = 40°,求∠α和∠β的度数。

- 因为∠α和∠β互为补角,所以∠α+∠β = 180°。

又知道∠α - ∠β = 40°。

把这两个方程相加,就是2∠α=180 + 40 = 220°,所以∠α = 110°,那∠β = 180 - 110 = 70°。

5. 一个角的补角与这个角的余角的和是120°,求这个角。

- 设这个角是x度,它的补角是180 - x度,余角是90 - x度。

根据题意,(180 - x)+(90 - x)=120。

化简一下就是270 - 2x = 120,移项得到2x = 270 - 120 = 150,解得x = 75度。

6. 在一个直角三角形中,一个锐角是另一个锐角的3倍,求这两个锐角的度数。

- 直角三角形里,两个锐角和是90°。

设小的锐角是x度,那大的锐角就是3x度。

x + 3x = 90,4x = 90,解得x = 22.5度,3x = 67.5度。

7. 已知∠AOB = 80°,OC是∠AOB内的一条射线,∠AOC = 30°,求∠BOC的度数。

初一下册数学角度几何解析题以及练习题(附答案)汇编

初一下册数学角度几何解析题以及练习题(附答案)汇编

七年级下册数学几何解析题以及练习题(附答案)9.(2011·扬州)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC .(1)求∠DEB 的度数; (2)求∠EDC 的度数.解 (1)在△ABC 中,∠A =80°,∠B =30°,∴∠ACB =180°-∠A -∠B =70°. ∵DE ∥AC ,∴∠DEB =∠ACB =70°. (2)∵CD 平分∠ACB , ∴∠DCE =12∠ACB =35°.∵∠DEB =∠DCE +∠EDC , ∴∠EDC =70°-35°=35°.13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明补充完整)证明 ∵CF ⊥AB ,DE ⊥AB (已知),∴ED ∥FC ( ). ∴∠1=∠BCF ( ). 又∵∠1=∠2(已知), ∴∠2=∠BCF (等量代换),∴FG∥BC( ).解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下:证法1:如图甲,延长BC到D,过C画CE∥BA.∵BA∥CE(作图所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.解∵FH∥AC,∴∠BHF=∠A,∠1=∠C.∵FG∥AB,∴∠BHF=∠2,∠3=∠B,∴∠2=∠A.∵∠BFC=180°,∴∠1+∠2+∠3=180°,即∠A+∠B+∠C=180°.15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?(不需证明) (3)根据(2)的结论求图d 中∠A +∠B +∠C +∠D +∠E +∠F 的度数.解 (1)不成立,结论是∠BPD =∠B +∠D .延长BP 交CD 于点E , ∵AB ∥CD ,∴∠B =∠BED . 又∠BPD =∠BED +∠D , ∴∠BPD =∠B +∠D .(2)结论:∠BPD =∠BQD +∠B +∠D . (3)设AC 与BF 交于点G .由(2)的结论得:∠AGB =∠A +∠B +∠E .又∵∠AGB =∠CGF ,∠CGF +∠C +∠D +∠F =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度.2.如图,在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以△ABD≌△BAC(SSA)
所以AC=BD.
3.(10分)如图15,在△ABC中,点D在AB上,BD=BE,
(1)请你再添加一个条件,使得△BEA≌△BDC,
并说明理由,你添加 的条件是
理由是:
(2)根据你添加的条件,再写出图中的一对全等三角形
(只要求写出一对 全等三角形,不再添加其它线段,不再标注或使用其它字母,不必说明理由).
12.如图所示,在△ABC中,∠A=80°,∠B=30°,CD平分∠ACB,DE∥AC.
(1)求∠DEB的度数;
(2)求∠ EDC的度数.
解(1)在△ABC中,∠A=80°,∠B=30°,
∴∠ACB=180°-∠A-∠B=70°.
∵DE∥AC,
∴∠DEB=∠ACB=70°.
(2)∵CD平分∠ACB,
七年级下册数学几何解析题以及练习题(附答案)
9.(2011·扬州)如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=________.
答案105°
解析 如图,∵(60°+∠CAB)+(45°+∠ABC)=180°,∴∠CAB+∠ABC=75°,在△ABC中,得∠C=105°.
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
解(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD,∴∠B=∠BED.
∴∠2=∠BCF(等量代换 ),
∴FG∥BC().
解 在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.
14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°.
分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下:
2.如图,在△ABC和△ABD中,现给出如下三个论断:①AD=BC;②∠C=∠D;③∠1=∠2。请选择其中两个论断为条件,一个论断为结论,另外构造一个命题.
(1)写出所有的正确命题(写成“ ”形式,用序号表示):.
(2)请选择一个正确的命题加以说明.你选择的正确命题是:
说明:
3.如图,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.
∴∠DCE= ∠ACB=35°.
∵∠DEB=∠DCE+∠EDC,
∴∠EDC=70°-35°=35°.
13.已知,如图,∠1=∠2,CF⊥AB于F,DE⊥AB于E,求证:FG∥BC.(请将证明补充完整)
证明∵CF⊥AB,DE⊥AB(已知),
∴ED∥FC().
∴∠1=∠BCF().
又∵∠1=∠2(已知),
证法1:如图甲,延长 BC到D,过C画CE∥BA.
∵BA∥CE(作图所知),
∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),
∴∠A+∠B+∠ACB=180°(等量代换).
如图乙,过BC上任一点F,画FH ∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.
4.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AB,垂足为G,那么∠AHE=∠CHG吗?为什么?
5.如图17,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是 ,AB=20厘米,AC=8厘米,求DE的长.
6.如图,已知AB⊥CD,垂足为B,AB=DB,AC=DE.请你判断∠D与∠A的关系,并说明理由.
4.(10分)已知:如图16,Rt△ABC≌Rt△ADE,∠ABC=
∠ADE=90°,试以图中标有的字母的点为端点,连接两条线
解∵FH∥AC,
∴∠BHF=∠A,∠1=∠C.
∵FG∥AB,
∴∠BHF=∠2,∠3=∠B,
∴∠2=∠A.
∵∠BFC=180°,
∴∠1+∠2+∠3=180°,
即∠A+∠B+∠C=180°.
15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点 P在AB、 CD外部,则有∠B=∠BOD.又因 ∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
11.如图,∠ACB=∠BDA=90°,AD=BC,AB//CD.试说明:∠1=∠2.
12.如图3,AC⊥BD,AC=DC,CB=CE,试说明:DE⊥AB.
13.如图,已知AB//DE,AB=DE,BE=CF,试说明△ABC≌DEF的理由.
小明的说理过程如下:
因为AB//DE,所以∠1=∠2,
在△ABC和△DEF中
因为BE=CF,∠1=∠2,AB=DE,所以△ABC≌△DEF(SAS).
小明的说理正确吗?若不正确,请你指出错误,帮助小明走出说理误区.
14.如图2,AC与BD相交于点E,AD=BC,∠D=∠C,试说明AC与BD全等的理由.
小华的说理过程如下:
在△ABD和△BAC中,
因为AD=BC,AB=BA,∠C=∠D,
第6题
7.如图,AD=BC,DC=AB,AE=CF,找出图中的一对全等三角形,并说明你的理由.
第7题
8.如图,已知M在AB上,BC=BD,MC=MD.请说明:AC=AD.
第8题
9.如图,在△ABC中,AB=AC,AC边上中线BD把△ABC的周长分为21厘米
12厘米两部分,求△ABC各边的长.
10.已知AE⊥BD,CF⊥BD,且AD=BC,BE=DF,试判断AD和BC的位置关系.说明你的结论.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)设AC与BF交于点G.
由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF ,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度.
相关文档
最新文档