光催化氧化反应器设计综述

光催化氧化反应器设计综述
光催化氧化反应器设计综述

光催化氧化反应器设计综述

摘要:文章通过废水中有机物的降解问题引出光催化氧化降解有机物技术,再从技术问题引入更深层次的问题即如何提高降解效率,进而引出本文主题—光催化氧化反应器设计。文章详细叙述了反应器的结构形式及几种不同类型反应器的优点和缺陷,以及研究现状。

关键词:光催化氧化;反应器

随着经济的发展,大量工业废水、生活污水有机污染物的超标排放,造成了水体环境严重富营养化问题,目前很多地方的治理只注重对有毒重金属的处理,而忽略了有机污染物潜在的危害性,废水中大量的有机污染物。富含洗涤剂(LAS)、COD、BOD、含氮、磷等的有机物的污水本身具有一定的毒性,对动植物和人体有慢性毒害作用,还会引起水中传氧速率降低,使水体自净受阻,从而使水体变色发臭。所以对废水中的有机物进行处理是非常必要的。光催化氧化分解有机污染物是当今公认的最前沿最有效的处理技术,光催化氧化反应器成功的解决了光催化氧化技术的工业化运用难题,所采用光催化氧化技术,废水有机污染物分解后的产物为水、二氧化碳及无害的无机盐,从根本上解决了有机污染问题。

目前, 用金属氧化物半导体作催化剂进行光催化氧化降解有机污染物的研究, 已引起了国内外众多学者的关注[1]。为了提高光催化氧化反应效率,光催化氧化反应器是必不可少的。应用光催化氧化反应器可进行化学氧化、光氧化、光化学氧化、光催化氧化和光化学催化氧化等多种类型氧化反应, 并可进行多种组合试验, 为环境科研、环境工程提供试验设备, 亦可为高等院校师生提供教学试验设备。光催化氧化反应器的设计远比传统的化学反应器复杂,除了涉及质量传递与混合、反应物与催化剂的接触、流动方式、反应动力学、催化剂的安装、温度控制等问题外,还必须考虑光辐射这一重要因素。目前已有多种形式的光催化氧化反应器应用于光降解的研究及实际废水的处理,并取得了一些成果,但同时也暴露出许多问题,为此有许多人从不同的角度对如何提高光催化氧化反应器的效能及实用性开展了大量的工作[2]。

1 光催化氧化反应器的结构形式

催化剂以两种形式存在于反应器中:一是光催化剂颗粒分散于整个反应器系统中,二是光催化剂颗粒固定在载体上(如反应器壁或尼龙丝网等) ,据此可将相应的反应器形式称为悬浮式和固定式。

悬浮式是TiO2粉末直接与废水混合组成悬浮体系。优点是结构简单,能充分利用催化剂活性[3]。缺点是存在固液分离问题,无法连续使用;易流失;悬浮粒子阻挡光辐射深度,TiO2 =0.5mg/m3左右,反应速度达到极限[4]。固定式是TiO2粉末喷涂在多孔玻璃、玻璃纤维或玻璃板上。优点是TiO2不易流失,可连续使用;缺点是催化剂固定后降低了活性[5]。固定式又分非填充式和填充式两种。非填充式固定床型:以烧结或沉积法直接将光催化剂沉积在反应器内壁,部分光催化表面积与液相接触。填充式固定床型:烧结在载体上,然后填充到反应器里,与非填充式固定床型相比,增大了光催化剂与液相接触面积,克服了悬浮型固液分离问题。

Geisen 等[6 ]针对典型化合物二氯乙酸(DCA) 的降解分别进行了悬浮式TiO2和固定式TiO2液膜反应器( Flow-Film Reactor ,FFR) 研究,结果表明:与固定式催化剂反应系统相比,悬浮式系统能够获得更高的DCA降解率,达到了固定式系统的3倍,这是因为催化剂的固定限制了传质和降低了光催化活性。因此,如果能够通过固/ 液分离技术实现TiO2颗粒与处理水的分离及回收利用,那么悬浮式反应器将比固定式反应器有着明显的优势。为此,Xi等[7 ]采用带有斜板和不带有斜板的沉淀池及微滤膜继续进行了悬浮催化剂的分离研究:当进水的催化剂浓度> 5 g/ L、pH 在零电荷点附近时,通过沉淀作用可以对Degussa P 25 TiO2实现

高效分离;在沉淀池内添加斜板可以减少沉淀面积,确保出水浓度< 5 mg TiO2/ L :为进一步降低出水TiO2浓度,可采用微波技术同时实现TiO2 和病菌的完全截留。此外,膜对高分子物质的截留将增加其在光反应器内的浓度,从而获得较高的反应速率。

目前,常用的是流化床式。所谓流化床式即负载了TiO2颗粒的载体,在反应器中以悬浮状态存在。优点为一方面可使催化剂颗粒多方位受到光照,并且在悬浮扰动下可防止催化剂钝化,提高催化剂利用效率;另一方面也解决了悬浆体系固液分离难的问题。Wooseok等[8 ]采用流化床反应器(FBR) 对甲基橙在弱照射条件下(15 W 低压水银灯) 的光催化氧化进行了研究。试验过程中采用了两种不同类型的流化床,一种是FBR 的典型类型,另一种是内部带有导流管的FBR (DTFBR)。试验结果表明:FRSs 的几何结构对光催化氧化反应的影响是可以忽略的;反应器内气体的供给,不但可以用于催化剂颗粒的流化,而且还可以消除光生电子,提高反应效率;pH 值是确定反应速率的一个重要参数,在酸性条件下更有利于甲基橙的降解,反应物的初始浓度越高将会减少光的穿透,从而降低光催化氧化的反应速率;催化剂的负荷存在着一个最佳量,从而使催化剂的存在不对光的照射产生屏蔽效应。

2 提高DO浓度的反应器

通过向反应器内加入氧化剂以结合颗粒表面过剩的电子,可抑制表面光生电子和空穴的复合,提高光量子利用率。氧化剂中最易获得、最经济和最有效的电子受体就是分子氧,如何提高废水中的溶解氧量将是光催化反应器设计的关键技术之一。

为了促进有效界面上氧的转移,Chan等[9 ]设计了一种新型薄膜阶梯式光催化反应器(PTFCR),体现了完全混合式和推流式反应器的优点。反应器的设计是采用阶梯式的平板排列方式代替单层的平板结构,当反应液从一个平板落到另一个平板时形成了跌水,从而促进了液膜的曝气,同时紊流作用也加强了液膜内有机污染物向催化剂表面的传质。在提高液体溶液DO水平的研究中发现,阶梯式反应器的运行情况好。杨阳等[10 ] 设计了一种新型的浅槽型填充床光催化反应器,采用不锈钢曝气网实现了高效无动力曝气,并且在浅槽内交错地安置挡板,显著地改善了反应器中的水流状态,加强了废水与光催化剂间的传质,从而提高了光催化反应的效率。此种新型曝气网联结多层结构的光催化反应器具有加工简单、操作容易、工程造价和运转费用低等特点,易于实现工业化应用。

3 太阳能反应器及聚光系统

利用太阳光作为光源的反应器可设计成平板型,并可设反射面以提高光能的利用率。如薄膜固定床反应器( TFFBR)、双层板反应器(DSSR) 及抛物线形槽反应器(PTR) 等[11]。按照光源照射方式的不同可将光反应器分为聚光式和非聚光式两种。聚光式反应器要求具有高光学精密度的反射镜,费用昂贵,而且设计复杂,并且它仅利用了UV 照射的直射光部分。而非聚光式反应器既利用了UV 照射的直射光又利用了散射光,而且不需要昂贵的反射镜,结构简单,因此有着更大的发展潜力。

复合抛物线形聚光器(CPC)是使反应管的表面不但具有均匀的镜面反射,而且还具有扩散辐射,因此能够最大限度地利用照射在上面的太阳光。Parra 等[12]针对不可生物降解的氯代烃类溶剂(NBCS) 及p - NTS 进行了不同程度聚集太阳光和非聚集太阳光系统的比较。由于较小的照射表面积致使聚集太阳光照射的抛物线形槽反应器(HM) 的活性较低,而CPC 聚光系统的降解速率约是抛物线形聚光器的 3 倍。两个反应器对p - NTS 的去除率为100 % ,但HM 和CPC 反应器所能达到的矿化程度分别为55 %和73 % ,这说明光解过程中中间体的形成及反应动力学等问题取决于反应器的类型。非聚集太阳光照射的CPC 反应器以其低廉的价格、高的反应活性及不需要附加的冷却步骤以确保最佳的反应温度成为当前太阳能利用技术中最好的方法。

4旋转式光催化反应器和光学纤维束光催化反应器

旋转式光催化反应器分为转盘式和圆筒式旋转光反应器。共同点是反应器主体可以旋

转,同时在旋转器上形成液膜,解决了固液分离问题。但固定在器壁上的催化剂利用率的且容易钝化。

光学纤维束光催化反应器内有1.2 m长的光学纤维束,包含72根1 mm粗的石英光学材料,每根光学纤维表面负载了一层TiO2膜,反应在水表面进行。优点是反应器内光、水、催化剂三相接触面积大,反应效率高。可通过增加光学纤维数量提高反应器的三相接触面积,避免了其它反应器所具有的诸如占地面积大、有效反应体积小等缺点。但光学纤维及其辅助设备造价太高,限制该反应器的推广应用。

5 反应器的设计

以层流降膜(L FFF) 悬浊液光催化氧化反应器为例[11],设计步骤如下:

①灯的选择:灯源必须能够提供具有半导体带隙能的光子,TiO2的带隙能是3. 2 eV ,可以用发射380 nm 波长或者较短波长的灯作为辐射源。“黑光”灯管的内壁覆盖有铈激活的Ca3 ( PO4) 2,该灯能发射300~410 nm 连续的宽波带的光,并在355 nm 处有一个峰值,因此L FFF 光催化氧化反应器选用了黑光灯。

②反应器的几何形状及结构:反应器采用与灯同样的圆筒形状。液膜沿着带灯和反应器中心轴的外壁流下,或沿着灯安装中心轴柱的内表面流过。后者的结构可以不加反射器,使光子的利用最优。

③反应器尺寸的确定:反应器尺寸对光子吸收率的影响可通过假设一个辐射源模式进行分析,对于长径比较大的灯可以用线型辐射源模式。

尽管各种光催化氧化反应器还存在许多问题,如反应器的光照面积与溶液体积的比率(A/V)是影响处理效果的重要因素;还有A/V值越大,反应速率越快,导致占地面积增加或水力负荷减小。但只要不断研发相关的新技术、新材料,高效廉价大型反应器将会很快问世。

参考文献

[1] 彭晓春, 陈新庚等. 半导体二氧化钛光催化技术在水处理中的应用. 工业用水与废水, 2002, 33(2): 7—15

[2] Shephard G S ,Stockenstrêm S ,Villiers D , et al . Degrada-tion of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst [ J ] .Wat Res ,2002 ,36 :140 - 146.

[3] An T1C1, Xiong Y1, L i G1Y1, et al. Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. J. Photochem. Photobiol. A: Chem. , 2002,152 (1~3) : 155~165

[4] 吴合进,吴鸣,谢茂松,等. 增强型电场协助光催化降解有机污染物. 催化学报, 2000, 21

(5) : 399~403

[5] 李田,黄伟星,等.固定膜光催化氧化反应器深度净化自来水研究[J].中国给水排水,1996.

[6] Geisen S - U ,Xi W,Weidemeyer A , et al . Comparison of suspended and fixed photocatalytic reactor systems [ J ] .Wat Sci Technol ,2001 ,44 (5) :245 - 249.

[7] Xi W,Geissen S - U ,Vogelpohl A. Solar detoxification of wastewater in a novel aerated cascade photoreactor(ACP) [J ] . Wat Sci Technol ,2001 ,44 (5) :237 - 244.

[8] Wooseok N ,Jimin K,Guiyong H. Photocatalytic oxidationof methyl orange in a three - phase

fluidized bed reactor[J ] . Chemosphere ,2002 ,47 :1019 - 1024.

[9] Chan A H C ,Porter J F ,Barford J P , et al . Photocatalytic thin film cascade reactor for treatment of organic com2pounds in wastewater [ J ] . Wat Sci Technol , 2001 , 44(5) :187 - 195.

[10] 杨阳,陈爱平,古宏晨.曝气网联结的新型多层结构太阳光光催化反应器[J ] . 上海环境科学,2002 ,21 (2) :86- 88.

[11] 王宝贞,王琳. 水与废水的深度氧化处理技术[M] . 南京:河海大学出版社,20001

[12] Para S ,malato S ,Blanco J , et al . Concentration versusnon-concentrating reactors for solar photocatalytic degradation of p - nitrotoluene - o - sulfonic [ J ] . Wat SciTechnol ,2001 ,44 (5) :219 - 227.

膜生物反应器设计方案及详细参数介绍讲解

膜生物反应器(MBR)介绍及设计应用 (内部资料) 北京碧水源科技发展有限公司 https://www.360docs.net/doc/18820038.html,

目录 1膜生物反应器(MBR)介绍 (1) 1.1原理 (1) 1.2工艺特点 (1) 2设计 (3) 2.1设计进水水质 (3) 2.2设计出水水质 (3) 2.3优质杂排水→城市杂用水(中水) (3) 2.3.1工艺流程 (3) 2.3.2设计说明 (4) 2.4生活污水→二级出水 (5) 2.4.1工艺流程 (5) 2.4.2设计说明 (6) 2.5生活污水→国家一级A标准 (9) 2.5.1工艺流程 (9) 2.5.2设计说明 (9)

1膜生物反应器(MBR)介绍 1.1原理 膜生物反应器(Membrane Bio-Reactor)简称MBR,是二十世纪末发展起来的新技术。它是膜分离技术和生物技术的有机结合。它不同于活性污泥法,不使用沉淀池进行固液分离,而是使用微滤膜分离技术取代传统活性污泥法的沉淀池和常规过滤单元,使水力停留时间(HRT)和泥龄(STR)完全分离。因此具有高效固液分离性能,同时利用膜的特性,使活性污泥不随出水流失,在生化池中形成8000-12000 mg/L超高浓度的活性污泥浓度,使污染物分解彻底,因此出水水质良好、稳定,出水细菌、悬浮物和浊度接近于零,并可截留粪大肠菌等生物性污染物,处理后出水可直接回用。 图1 膜生物反应器工作原理简图 1.2工艺特点 (1)出水水质优良、稳定。高效的固液分离将废水中的悬浮物质、胶体物质、生物单元流失的微生物菌群与已净化的水分开,不须经三级处理即直接可回用。具有较高的水质安全性。

光催化氧化反应器的工业化应用

《光催化氧化反应器》在工业污水的应用: l洗涤剂生产行业废水处理及废水处理后的回用工程;污水及工业废水深度处理(对现有污水处理后氨氮、COD不达标的系统,利用光催化氧化后实现达标排放和回收利用) l主要适用行业:洗衣粉、洗涤剂及表面活性剂等有机精细化工生产行业; l洗涤行业等用洗涤剂清洗洗涤行业的废水回用; l食品、制药等有机污染废水的治理工程; l有机废水处理及无膜中水回用工程; 《光催化氧化反应器》处理有机废水与传统工艺相比的优势: 1、设备占地面积小、反应停留时间短; 2、处理成本低,可根据后续处理的要求调整转化率或处理量; 3、可任意与其他工艺组合;作生化的前处理,改善难降解有机物的可生化性;或作有机废水处理后水质不达标的深度处理,以满足达标排放或回用。 4、运行维护成本低,不需要投加其他任何化学药物及更换催化剂; 一、光催化氧化反应器(在工业废水处理中的应用) 目前用于广州立白集团番禺公司480立方/天高浓度洗涤剂(LAS)废水处理工程.对洗涤剂(LAS)处理的平均去除转化率:90%.

本公司独有专利技术(专利号:ZL200720119600.5),有效实现了光催化氧化技术的工业化应用。主要用于各种难降解的有机污染废水废液的深度处理,特别是对高含量的有机废水富含表面活性剂(LAS)、COD以及其他有机污染物的处理,具有很好的去处效果。去除率在90%以上,分解后的产物为水和二氧化碳,不会产生二次污染问题;整套装臵集氧化分解及除臭功能为一体。 广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,是我公司《光催化氧化分解表面活性剂》专利技术第一次用于工业化应用的成功范例;也是国内真正实现光催化氧化工艺在污水处理方面成功进行工业化应用的首例。对洗衣粉行业的废水具有划时代的意义!洗衣粉制造行业都知道,洗衣粉废水处理的最大问题是:废水表面活性剂浓度高时,会严重影响生化效果,并造成生物菌种死亡,在生化瀑气池泡沫满天飞,不得不将生化池用致密的网罩于池上,以防止对环境的影响。 立白集团广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,于2009年4月正式投入运行,原预算该项目投入运行后吨水综合处理成本将增加1.8元/吨。在半年的实际运行中,其运行成本的变化完全出乎预料,其污水处理总体综合成本不但没有增加1.8元/吨,反而比原来没有改造前降低了0.2元/吨。这是一个意外而可喜的结果。最后从立白公司废水处理站操作及管理人员处得到答案。原处理系统设计能力为20吨/小时,由于增加光催化氧化设备后,大大

光催化氧化反应器设计综述

光催化氧化反应器设计综述 摘要:文章通过废水中有机物的降解问题引出光催化氧化降解有机物技术,再从技术问题引入更深层次的问题即如何提高降解效率,进而引出本文主题—光催化氧化反应器设计。文章详细叙述了反应器的结构形式及几种不同类型反应器的优点和缺陷,以及研究现状。 关键词:光催化氧化;反应器 随着经济的发展,大量工业废水、生活污水有机污染物的超标排放,造成了水体环境严重富营养化问题,目前很多地方的治理只注重对有毒重金属的处理,而忽略了有机污染物潜在的危害性,废水中大量的有机污染物。富含洗涤剂(LAS)、COD、BOD、含氮、磷等的有机物的污水本身具有一定的毒性,对动植物和人体有慢性毒害作用,还会引起水中传氧速率降低,使水体自净受阻,从而使水体变色发臭。所以对废水中的有机物进行处理是非常必要的。光催化氧化分解有机污染物是当今公认的最前沿最有效的处理技术,光催化氧化反应器成功的解决了光催化氧化技术的工业化运用难题,所采用光催化氧化技术,废水有机污染物分解后的产物为水、二氧化碳及无害的无机盐,从根本上解决了有机污染问题。 目前, 用金属氧化物半导体作催化剂进行光催化氧化降解有机污染物的研究, 已引起了国内外众多学者的关注[1]。为了提高光催化氧化反应效率,光催化氧化反应器是必不可少的。应用光催化氧化反应器可进行化学氧化、光氧化、光化学氧化、光催化氧化和光化学催化氧化等多种类型氧化反应, 并可进行多种组合试验, 为环境科研、环境工程提供试验设备, 亦可为高等院校师生提供教学试验设备。光催化氧化反应器的设计远比传统的化学反应器复杂,除了涉及质量传递与混合、反应物与催化剂的接触、流动方式、反应动力学、催化剂的安装、温度控制等问题外,还必须考虑光辐射这一重要因素。目前已有多种形式的光催化氧化反应器应用于光降解的研究及实际废水的处理,并取得了一些成果,但同时也暴露出许多问题,为此有许多人从不同的角度对如何提高光催化氧化反应器的效能及实用性开展了大量的工作[2]。 1 光催化氧化反应器的结构形式 催化剂以两种形式存在于反应器中:一是光催化剂颗粒分散于整个反应器系统中,二是光催化剂颗粒固定在载体上(如反应器壁或尼龙丝网等) ,据此可将相应的反应器形式称为悬浮式和固定式。 悬浮式是TiO2粉末直接与废水混合组成悬浮体系。优点是结构简单,能充分利用催化剂活性[3]。缺点是存在固液分离问题,无法连续使用;易流失;悬浮粒子阻挡光辐射深度,TiO2 =0.5mg/m3左右,反应速度达到极限[4]。固定式是TiO2粉末喷涂在多孔玻璃、玻璃纤维或玻璃板上。优点是TiO2不易流失,可连续使用;缺点是催化剂固定后降低了活性[5]。固定式又分非填充式和填充式两种。非填充式固定床型:以烧结或沉积法直接将光催化剂沉积在反应器内壁,部分光催化表面积与液相接触。填充式固定床型:烧结在载体上,然后填充到反应器里,与非填充式固定床型相比,增大了光催化剂与液相接触面积,克服了悬浮型固液分离问题。 Geisen 等[6 ]针对典型化合物二氯乙酸(DCA) 的降解分别进行了悬浮式TiO2和固定式TiO2液膜反应器( Flow-Film Reactor ,FFR) 研究,结果表明:与固定式催化剂反应系统相比,悬浮式系统能够获得更高的DCA降解率,达到了固定式系统的3倍,这是因为催化剂的固定限制了传质和降低了光催化活性。因此,如果能够通过固/ 液分离技术实现TiO2颗粒与处理水的分离及回收利用,那么悬浮式反应器将比固定式反应器有着明显的优势。为此,Xi等[7 ]采用带有斜板和不带有斜板的沉淀池及微滤膜继续进行了悬浮催化剂的分离研究:当进水的催化剂浓度> 5 g/ L、pH 在零电荷点附近时,通过沉淀作用可以对Degussa P 25 TiO2实现

生物反应器

生物反应器 指以活细胞或酶为生物催化剂进行细胞增殖或生化反应提供适宜环境的设备,它是生物反应过程中的关键设备。生物反应器的结构、操作方式和操作条件的选定对生物化工产品的质量、收率(转化率)和能耗有密切关系。生物反应器的设计、放大是生化反应工程的中心内容,也是生物化学工程的重要组成部分。 分类从生物反应过程说,发酵过程用的反应器称为发酵罐;酶反应过程用的反应器则称为酶反应器。另一些专为动植物细胞大量培养用的生物反应器,专称为动植物细胞培养装置。 发酵罐发酵罐若根据其使用对象区分,可有:嫌气发酵罐、好气发酵罐、污水生物处理装置等。其中嫌气发酵罐最为简单,生产中不必导入空气,仅为立式或卧式的筒形容器,可借发酵中产生的二氧化碳搅拌液体。 若以操作方式区分,有分批操作和连续操作两种。前者一般用釜式反应器,后者可用连续搅拌式反应器或管式及塔式反应器。好气发酵罐按其能量输入方式或作用原理区分,可有: ①具有机械搅拌器和空气分布器的发酵罐这类发酵罐应用最普遍,称为通用式发酵罐。所用的搅拌器一般为使罐内物料产生径向流动的六平叶涡轮搅拌器,它的作用为破碎上升的空气泡和混合罐内的物料。若利用上下都装有蔽板的搅拌叶轮,搅拌时在叶轮中心产生的局部真空,以吸入外界的空气,则称为自吸式机械搅拌发酵罐。 ②循环泵发酵罐用离心浆料泵将料液从罐中引出,通过外循环管返入罐内。在循环管顶端再接上液体喷嘴,使之能吸入外界空气的,称喷射自吸发酵罐。 ③鼓泡塔式发酵罐以压缩空气为动力进行液料搅拌,同时进行通气的气升发酵罐。目前,世界所发展的大型发酵罐是英国卜内门化学工业公司的发酵罐,它以甲醇为原料生产单细胞蛋白的压力循环气升发酵罐,其直径为7m,高为60m,总容量为 2300m□,自上至下有5000~8000 个喷嘴进料。目前,还有些发酵产品,如固体曲等,使用专门设计的能调节温、湿度的旋转式固体发酵装置。 生产甲烷(沼气)用的是嫌气发酵罐,也称消化器或沼气发生器,这种发酵罐装有搅拌器,顶部有的有浮顶。 污水生物处理装置中,最简单的是曝气池,装有表面曝气叶轮。为了节省占地面积,开发了一种利用气升式发酵罐原理的深井式污水处理池或大至 20000m□的多循环管式曝气装置。此外,还有生物滤池和生物转盘等装置,把能降解污水中有害物质的菌或原生动物,以生物膜的形式附在填料或转盘上。 酶反应器可分游离酶及固定化酶反应器两大类。 ①游离酶反应器以水溶液状态与底物反应。若为分批釜式反应器,酶就不能回收;若用连续釜式反应器并附有一个能把大分子的酶留在系统内的超滤装置则可使酶连续使用。也可将酶液置于用超滤材料制成的U形管或中空纤维管中,并将其置于釜式或管式反应器进行操作,这样也可使酶连续使用。后者接近连续管式反应器。 ②固定化酶反应器除了和化学反应器类似的固定床反应器和流化床反应器外,还有多种特殊设计。例如:将酶固定在惰性膜片上,再卷成螺旋状置于反应器中,或将酶固定在中空纤维的内壁制成反应器;也可将固定化酶置于金属网框中进行酶反应。在反应中产气(如CO2)严重时,可考虑采用多层酶反应器。采用固定化细胞时的反应器,基本上和固定化酶反应器相同,但在好气培养时要便于空气导入和废气排出。

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题 摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。 关键词:光催化氧化氧化技术 1前言 随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。目前许多国家的地表水和地下水均受到不同程度的污染,水污染物主要来自工业、农业以及生活污水。当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。因此, 开发能将各种化学污染物降解至无害化的实用技术( 尤其是污水处理和空气净化) 成为各国科研工作者 的重要研究内容。 光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP) 。光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。 1972 年, Fujishima 等在《Nature 》上发表了“Electrochemical potolysis of water at asemiconductor electrode”一文, 揭开了光催化氧化技术的序幕。1976 年, Cr aey [ 4] 等发现, 在TiO2 光催化剂存在的条件下, 多氯联苯、卤代烷烃等可发生有效的光催化降解. 这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境 污染提供了一种新方法, 立即成为半导体光催化研究中 最为活跃的领域。近30 年来, 光催化氧化技术在有机污染物处理方面得到了广泛的研究,几乎所有在水中可能存在的有机污染物都可被光催化氧化法降解并矿化。将光催化工艺与混凝、生物处理等常规水处理工艺结合起来可达到优势互补的效果。近年来, 人们围绕光催化剂活性的提高以及降低反应成本等方面进行了大量的研究, 相关文献每年都有150 篇 以上。 2光催化氧化反应的机理 Sch iavello等认为, 光触媒表面的光催化反应基 本包括4个步骤: (1)光激发催化剂表面形成电子- 电洞对; (2)电子- 电洞对必须能有效地分离; (3)电子- 电洞对在催化剂表面与被吸附物质发生氧化还原反应; ( 4) 光催化剂表面产物的脱附与再吸附。

光催化氧化技术在水处理中的应用

光催化氧化技术及其在水处理中的应用 摘要:介绍了光催化氧化的机理及光催化氧化反应的主要影响因素,就TiO2固定化制备、改性、光催化氧化在工业废水以及饮用水处理中的应用进行了阐述。 关键词:光催化氧化Ti02光催化剂水处理 1 引言 光催化氧化法是近二十年才出现的水处理技术,1972年,Fu—jishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976年,Carey等在光催化降解水中污染物方面进行了开拓性的工作。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点[1],在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。 2 光催化氧化原理 光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2、WO3等。TiO2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以TiO2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基OH-,生成强氧化性的羟基自由基(OH)将污染物氧化[2]。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。水溶液中的OH- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理[3]如下(以TiO2为例): TiO2 + hν→h+ + eh++ e- →热量 H2O →OH- + H+ h+ + OH-→OH h+ + H2O + O2- →·OH + H+ + O2- h+ + H2O →·OH + H+ e- + O2 →O2- O2- + H+ →HO2· 2 HO2·→O2 + H2O2 H2O2 + O2- →OH + OH- + O2 H2O2 + hν→2 OH Mn+(金属离子) + ne+ →M 3 光催化氧化反应的主要影响因素 3.1催化剂性质及用量 可用于光催化氧化的催化剂大多是金属氧化物或硫化物等半导体材料,如TiO2、ZnO、CeO2、CdS、ZnS等.在众多光催化剂中,Ti02是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐

光催化反应器的设计

光催化反应器的设计 摘要 光化学反应过程由于具有选择性好且可在常温常压下进行等特点而在许多领域有着良好的应用前景。其中光催化技术作为一种真正环境友好的绿色技术,既可以在能源领域应用,将低密度的太阳能转化为可储存的高密度的洁净能源氢能;也可在环境领域应用,利用光能降解和矿化环境中的有机和无机污染物。光催化反应器作为光催化技术的核心设备,在光催化技术的应用中具有十分重要的地位。本文介绍了光催化反应的相关内容,并以FCC汽油光催化脱硫工艺为例,对实际情况作合理简化,建立了光催化反应器的数学模型。 关键词:光催化、反应器、数学模型。 1、前言 1.1 光化学反应工程 光化学反应是指在外界光源的照射下所发生的化学反应过程。[1]光化学反应器作为光化学生产中的关键设备,其性能优劣对于光化学反应过程的应用有十分重要的作用。因此,从工程应用的角度出发,研究光化学反应器的特性、模拟、设计、放大等问题已引起重视,并逐渐发展成化学反应工程学的一个新的分支—光化学反应工程。 与一般反应器相比,光化学反应器的设计与开发有很大的差异。光源的种类,光子的传播、吸收、发射及光化学反应器的几何形状,与光源间的相互位置等均会对光化学反应过程产生直接影响。[2] 1.2 光化学反应器类型 与普通的化学反应器一样,光化学反应器也可以按不同的方法分类。如按操作方式的不同可分为连续式和间歇式;按反应器内包括的流体的相数不同可分为均相和非均相;按反应器内流体流动状况可分为全混流、部分返混、活塞流等。然而,对于光化学反应器,除了操作方式、流动状况等会对其性能造成影响,更能反映光化学反应器特征并直接影响光化学反应器性能的则是光源种类、反应器几何形状及反应器与光源间的相互位置。[3]这些因素的不同组合就构成了不同类型的光化学反应器。光化学反应器可以有许多变化方式,大体可分为均相和非均相两大类。[4] 光化学反应器的选型包括光源、透光材料、反应器几何形状的确定等几个方面。光化学反应过程一般均需要紫外或近紫外光,当反应需要紫外光时,只能选择石英为透光材料。如反应可在近紫外光照射下进行,则可选用硼硅玻璃。[5] 1.3光催化反应器 1.3.1 光催化反应器的研究现状 最早出现的光催化反应器是为在实验室中进行研究而设计的,其结构简单,操作方便。反应器主体为一敞开的容器,并置于磁力搅拌机上,反应液在荧光或紫外灯的照射下反应,灯与液面的距离可调,现在仍有许多研究者用这种反应器来评价催化剂的活性或进行污染物降解规律的研究。[6] 目前应用较为广泛的光催化反应器是一种间歇式分批反应器它的特点是采用纳米TiO 2粉体形成的悬浆体系。但悬浆体系最大的问题是TiO 难以回收,要将催化剂粉末颗粒从流 2 动相中分离出来,一般需经过滤、离心、混凝、絮凝等方法,因而反应器只能为间歇式分批反应器,即每处理一批就要进行一次分离,使处理过程过于复杂,还增加了经济成本。因此,将催化剂固定在载体上,制成负载型光催化反应器已成为主要的研究方向。将TiO 负载后 2 可将其作为固定相,待处理废水或气体作为流动相,一般不存在后处理问题,可实现连续化处理,便于设计出各种实用化、商品化、工业化的光化学反应器。[7]

第二章光催化氧化技术

第二章光催化氧化技术 第1节光催化概述 光催化(Phntocatalv}i} }是在光的照射下产生类似光合作用的光催化反应,产生出氧化能力极强的自山氢氧基和活性氧,具有很}},的光氧化还原功能,可氧化分解各种有机化合物 和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋白质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水和.二氧化碳,因而具有极强的杀菌、除臭、防霉、防r} ;自 洁、字泞除甲醛和净化空气功能。 光催化的特性为利用空气中的氧分子及水分子将所接触的有机物转换为二氧化碳和水,自身不起变化,却可以促进化学反应的物质,理论.r-有效期较长、维护费用低。同时,二氧化钦本身无毒无害。已广泛用于食品、民药、化妆品等各种领域。 光催化在光的照射下产生氧化能力极强的 氢氧自由基和活性氧,具有很强的光氧化还原 功能。可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋臼质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水(HZO)和二氧化碳 }co}),因而具有极强的杀菌、除臭、防霉、防污自洁及净化空气的功能。 (川光催化基本原理光催化的原理是光催化剂纳米材料被太阳光、灯光(紫外线) 照射后,表面电子(e)被激励,同时生成带电的正孔(h+},正孔(h+)和空气中的氧 (o:)、水(HZo)发生反应,产生具有极强氧化作用的活性氧。有机物污染物、臭气、细 菌等被氧化分解,而电子(e)还原成空气中的氧。 光催化反应可分为下列几个步骤: ①反应物、氧气及水分子吸附于二氧化钦表而;②经光照射后。二氧化钦产生电子及空穴;③电子和空穴分别扩散到二氧化钦粒子表面;④电子、空穴和氧及水分子形成氢氧自由基;⑤氢氧自由基和反应物进行氧化反应; 光催化是利用特定波长光源的能量产生催化作用,使周围氧及水分子激发成极具活性的OH一及02一自由离子基,这些氧化力极强的自由基儿乎可分解所有对人体或环境有害的有机物质及部分无机物质 第2节光催化氧化技术在污水处理中的应用 }.光催化叙化技术的应用 光催化技术的研究始于20世纪70年代的后半期,用作催化的化学物有T1}} ,硫化锅、硫化亚铅、妮或钦系层状复合氧化物、二氧化铁等。用光照射催化剂时山于光生成空穴。氧化力强。大都采用不溶解的、稳定的半导体粉末二氧化钦,与水分解成氧和氢。从含乙醇的水溶液中生成氢,因水和氮合成氨,还原二氧化碳。含氨和.二氧化碳的水溶液合成氨基酸,氰基化离子或酪酸离子,变为纳米Tif}.}能处理多种有毒化合物。包括工业有毒溶剂、化学杀虫剂、木材光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使H}}被还原成Hg而沉积在TiO}表面;此法同样适川于铅。`Ti0:光催化可能降 解的尤机污染物还有氰化物,5}1}、I} }S , LV}和No:等有害气休也能被吸附在}'i。}表面,在光的作用下转化成无毒无害物质,井可回收贵金属。水污染有机物的分解研究儿乎都涉及到'}'i(}}光催化。 光催化是与常规热能催化相对应的催化技术,.光催化主要是有机盒属络合物和半导体。现在商用的光催化剂儿乎都是二氧化钦(Ti}} }可以说是半导体光催化。半甘体光催化的 一般机能是脱臭、抗菌、灭菌、防污、去除有害物等:.

10_典型的光催化反应器

典型的光催化反应器 光催化是废水净化的一个很有前途的技术,因而引起了国内外的重视,已经有了二十多年的经验积累,在光催化降解有机污染物、光催化剂的改性等方面受到了广泛的关注,有关光催化氧化法在水污染治理方面应用研究的报道很多,而在反应器的设计和选材也有一些相关的报道,但涉及到光反应器应用的报道较少。在光催化反应中,反应器的材料、结构、形状、光源的几何位置等很多因素对光催化反应速率有很大的影响。气相光催化反应器的设计有静态配气和动态配气的两种,种类和相关的研究较少,所以下面着重介绍液相光催化反应器的结构、种类和影响因素。 影响光催化反应器效率的因素很多,如光源(光源强度、波段与光照方式)、催化剂性质(催化剂粒径、类型与载体)、废液的外加氧化剂(如O2 ,H2O2,O3等)、待处理废水性质(废液的初始浓度组成、pH值、抑制物含量)、温度、废液的流动力学特征、停留时间等因素对反应器的最佳运行都有影响,反应器的整体设计要综合考虑这些因素。 1.光源 用于光催化的光源有电光源和太阳光源。电光源有高压汞灯、荧光灯、黑光灯、氨灯等。光源的选择、布置及使用既要考虑效能又必须考虑经济性,因此,在设计光催化反应器时,要综合考虑各方面的影响因素。过去,更多研究放在电光源上,使用的光波多限于光谱紫外区。太阳光源是经济又环保的光源,开发出利用太阳能的光催化反应器一直是研究者追求的目标,但是由于在光催化反应中,太阳光的利用率很低,因此这类反应器的成功开发和真正实现工业应用目前还有很大难度,需要解决催化剂改性等许多方面的技术问题。 光源波长、光强及光源几何位置对催化反应有至关重要的影响,一般情况下,光源波长越短,效率越高;在同等波长的条件下,光强越高,效率越高,但并非线性相关的。一般在低光强时,有机物降解速度与光强呈线性关系,高光强时,降解速度与光强的平方根存在线性关系。 光线的照射方式可分为直接照射和直接一反光结合照射,后者的使用更能充分利用光能。光源与废水、催化剂的位置对光转化效果有重要的影响,研究结果表明,催化剂处在废水中时,在光源与催化剂之间的液层会吸收光、散射光,从而使催化剂的光吸收减弱。因此,浸在液体中的负载催化剂应尽量靠近液体的近光面,减少光吸收障碍。 2.催化剂在应用中的存在形态 催化剂在光催化反应器中有两种存在形式,即悬浮态和固定态。在悬浮相光催化过程中,催化剂以悬浮态存在于水溶液中,与污染物接触面积大,但催化剂在溶液中容易凝聚且回收困难,不适合规模操作。催化剂以固定态存在时,负载在载体上,这样虽然可避免催化剂的分离和回收过程,但仅部分催化剂的面积有效地与液相接触,活性降低。催化剂制备或选择载体要考虑多种因素影响,应尽量满足(1)吸光性能强。(2)催化剂粒径小,比表面积大。(3)不易中毒,能保持催化剂有高活性。(4)吸附反应物及反应后易于固液分离。(5)载体与催化剂结合牢固,抗冲击、耐腐蚀。 负载型催化剂所使用的载体要求透光性好,与催化剂结合较牢固,易于分散,不影响传质等。可选形状有颗粒型、管型、丝网、平板型和转盘型等。颗粒型载体一般有玻璃球、硅胶、砂石、活性炭、沸石等。 3. 光催化反应器材料 要保证光催化反应的顺利进行,最首要的条件之一是光催化反应器的材料必须透光性能好,尤其是对催化反应所需波长范围的光的透过率要好。一般光催化反应利用紫外光,所以要使用对紫外光不吸收或吸收很少的材料,很多人选用石英玻璃。石英玻璃是高纯单组分玻璃,具有优良的热,光,电和机械性能,耐腐蚀,对大多数物质是稳定的,包括除氢氟酸以

光催化氧化法简介

光催化氧化法简介 光催化氧化法是近20年才出现的水处理技术,在足够的反应时间内通常可以将有机物完全矿化为CO2和H2O 等简单无机物,避免了二次污染,简单高效而有发展前途。所谓光催化反应,就是在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,然后会发生化学反应生成新的物质,或者变成引发热反应的中间化学产物。光化学反应的活化能来源于光子的能量,在太阳能的利用中光电转化以及光化学转化一直是十分活跃的研究领域。由于以二氧化钛粉末为催化剂的光催化氧化法存在催化剂分离回收的问题,影响了该技术在实际中的应用,因此将催化剂固定在某些载体上以避免或更容易使其分离回收的技术引起了国内外学者的广泛兴趣。 在我国工业废水中,印染废水因其有机物含量高、色度深、水质复杂、排放量大而成为难处理的工业废水之一。印染废水中含有大量卤化物、硝基物、氨基物、苯胺、酚类及各种染料等有机物,主要来自纤维、纺织浆料和印染加工所使用的染料、化学药剂、表面活性剂和各类整理剂。其COD浓度达数千至数万mg/L,色度也高达数千至数万倍,可生化性差,很多废水还含有高浓度无机盐:如氯化钠、硫化物等,严重污染水环境。国内处理染料废水普遍以生物法为主,同时辅以化学法,但脱色及COD去除效果差,出水难以稳定达到国家规定的排放标准。光催化氧化法是近年来水处理研究的热点之一,实验证明,此方法对印染废水有较好的处理效果。当进水COD Cr为1300 mg/L左右,色度为800倍时,经本法处理的废水,出水COD Cr达188 mg/L,色度为0~10倍,COD Cr 去除率达92%,脱色率几近100%。主要水质指标达到了GB8978—1996《污水综合排放标准》中染料工业的二级标准。本法可取代常规的生物法,适合中小型印染厂的废水处理。 光催化氧化法原理 光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物最终生成CO2、H2O及其他的离子如NO3-、PO43-、Cl-等。有机物的光降解可分为直接光降解、间接光降解。前者是指有机物分子吸收光能后进一步发生的化学反应。后者是周围环境存在的某些物质吸收光能成激发态,再诱导一系列有机污染的反应。间接光降解对环境中难生物降解的有机污染物更为重要。 利用光化学反应降解污染物的途径,包括无催化剂和有催化剂参与的光化学氧化过程。前者多采用氧和过氧化氢作为氧化剂,在紫外光的照射下使污染物氧化分解;后者又称光催化氧化,一般可分为均相和非均相催化两种类型。均相光催化降解中较常见的是以Fe2+或Fe3+及H2O2为介质,通过photo-Fenton 反应产生?HO使污染物得到降解,非均相光催化降解中较常见的是在污染体系中投加一定量的光敏半导体材料,同时结合一定量的光辐射,使光敏半导体在光的照射下激发产生电子-空穴对,吸附在半导体上的溶解氧、水分子等与电子-空穴作用,产生?HO等氧化性极强的自由基,再通过与污染物之间的羟基加和、取代、电子转移等使污染物全部或接近全部矿化。 新型高效光催化氧化的原理 新型高效光催化氧化的原理就是在表面催化剂存在的条件下,利用一定波长的紫外光波在常温常压下催化、通过一定量的曝气来氧化废水中的有机污染物,或直接氧化有机污染物,或将大分子有机污染物氧化成小分子有机污染物,提高废水的可生化性,较好的去除有机污染物。在降解COD的过程中,通过催化氧化来打断有机分子中的双键发色团,如偶氮基,硝基,硫化羟基,碳亚氨基等,达到脱色的目的,同时有效地降低BOD/COD值,使之易与生化降解。这样,光催化氧化反应在高浓度,高毒性,高含盐量废水中充当常规物化预处理和生化处理之间的桥梁。 该技术的核心为三相催化氧化。这三相分别是:由风机送入罐内的压缩空气曝气(气相),一定波长

生物反应器课程设计报告

. 生物反应器设计(啤酒露天发酵罐设计) XX:高金利 班级:生工2072 学号:3072106245 时间:2010年11月20日

第一章啤酒发酵罐结构与动力学特征 一、啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。 就发酵罐的外形来分,主要有圆柱锥形底罐、圆柱蝶形罐、圆柱加斜底的朝日罐和球形罐等。 二、啤酒发酵罐的特点 1、单位占地面积的啤酒产量大;而且可以节约土建费用; 2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

3、发酵温度控制方便、有效,麦汁发酵时对流好,发酵速度快,可以缩短发酵周期(相对卧式罐、发酵槽而言); 4、可以回收利用二氧化碳,并可有利于啤酒的口味稳定性与非生物稳定性(相对开口容器而言); 5、可以一关多用,生产工艺比较灵活;简化生产过程与操作,而且酒损也现对减少; 6、制作相应要比其他发酵罐简单; 7、便于自动控制,如自动清洗和自动灭菌,节省人力与洗涤费用,卫生条件好。 三、露天圆锥发酵罐的结构 (一)罐体部分 露天圆锥发酵罐的罐体有灌顶、圆柱体与锥底3部分组成,其中:灌顶:为圆拱形,中央开孔用于可拆卸大直径法兰,以安装CO2与CIP管道及其连接件,灌顶还装有真空阀,安全阀与压力传感器。圆柱体:为发酵罐主体,发酵罐的高度主要决定于圆柱体的直径与径高比,由于大直径的光耐压低,考虑到使用钢板的厚度,一般直径<6.0m。 圆锥底:它的夹角多为60—90°,也有90—120°,但这多用于大直径的罐及大容量的罐;如夹角过小会使椎体部分很高。露天圆锥发酵罐圆锥底的高度与夹角有关,大致占总高的1/4—1/3。圆锥底的外壁一般安装冷却夹套、阀门与视镜、取样管阀、测温、测压的传感元件或温度计,CO2洗涤装置等。

化学反应器自动控制系统设计

目录 摘要.............................................................................................................................III 1 关于化学反应 (1) 2 关于化学反应器 (2) 2.1 反应器的类型 (2) 2.2 反应器的性能指标 (2) 2.3 反应器的控制要求 (2) 3 反应器的控制方案 (4) 3.1 反应器常用的控制方式 (4) 3.2 温度被控变量的选择 (5) 3.3 控制系统的选择 (6) 4 反应器串级系统的控制原理 (9) 4.1 系统方框图 (9) 4.2 系统原理分析 (9) 5 反应器的部分实现 (11) 5.1 原料的比值控制 (11) 5.2 仪器仪表的选择 (12) 6 设计总结与展望 (13) 参考文献 (14)

化学反应器自动控制系统设计 1 关于化学反应 化学反应的本质是物质的原子、离子重新组合,使一种或者几种物质变成另一种或几种物质。化学反应过程具备以下特点: 1) 化学反应遵循物质守恒和能量守恒定律。因此,反应前后物料平衡,总热量也平衡; 2) 反应严格按反应方程式所示的摩尔比例进行; 3) 化学反应过程中,除发生化学变化外,还发生相应的物理等变化,其中比较重要的有热量和体积的变化; 4) 许多反应应需在一定的温度、压力和催化剂存在等条件下才能进行。 此外,反应器的控制方案决定于化学反应的基本规律: 1.化学反应速度 化学反应速度定义为:单位时间单位容积内某一部分A 生成或反应掉的摩尔数,即 t A A Vd dn r 1± = (1-1) 若容积V 为恒值,则有 dt dC dt V dn r A A A ±=± =/ (1-2) 式中 r A ——组分A 的反应速度,mol/m 3·h ; n A ——组分A 的摩尔数,mol ; C A ——组分A 的摩尔浓度,mol/m 3; V ——反应容积,m 3。 2.影响化学反应速度的因素 实验和理论表明,反应物浓度(包括气体浓度,溶液浓度等)对化学反应速度有关键作用。温度对化学反应速度影响较为复杂,最普遍的是反应速度与温度成正比。而对于气相反应或有气相存在的反应,增大压力(压强)会加速反应的进行。化学反应还受催化剂,反应深度等因素的影响,这些都是要在设计反应器是需要考虑的。

管式反应器课程设计

化学化工学院 化工专业课程设计 设计题目:管式反应器设计 化工系

化工专业课程设计——设计文档质量评分表(100分) 评委签名: 日期:

目录 绪论 .........................................................错误!未定义书签。1设计内容与方法介绍..........................................错误!未定义书签。 反应器设计概述............................................错误!未定义书签。 设计内容..................................................错误!未定义书签。 生产方法介绍..............................................错误!未定义书签。 反应器类型特点............................................错误!未定义书签。 反应器选择及操作条件说明..................................错误!未定义书签。2工艺计算....................................................错误!未定义书签。 主要物性数据..............................................错误!未定义书签。 计算,确定管长,主副反应收率.............................错误!未定义书签。 管数计算..................................................错误!未定义书签。3压降计算公式................................................错误!未定义书签。4催化剂用量计算..............................................错误!未定义书签。5换热面积计算................................................错误!未定义书签。6反应器外径计算..............................................错误!未定义书签。7壁厚计算....................................................错误!未定义书签。 8 筒体封头计算................................................错误!未定义书签。9管板厚度计算................................................错误!未定义书签。10设计结果汇总...............................................错误!未定义书签。11设计小结...................................................错误!未定义书签。

半导体光催化氧化技术探讨

半导体光催化氧化技术探讨 摘要:目前来说,半导体光催化氧化技术取得了较大的进步,本文主要介绍了半导体光催化氧化技术的探讨,为从事相关的工作人员提供了参考意义。 关键词:半导体;光催化;氧化 前言: 上个世纪70年代,科学家们通过紫外光的照射,采用TiO2成功对多氯联苯进行了降解,这也是人类历史上首次利用半导体光催化达到剧毒物质降解的目的。从那以后,人们就开创了一条半导体光催化氧化在环境处理污染中展开应用的道路。而最近几年,有关光催化氧化的研究也取得了相对来说较大的进展,TiO2的光催化效率和催化剂的选择等之类的问题成为了其研究的重心。 一、半导体光催化氧化技术特点 1.催化所用光的选择性 我们知道,最初的光催化氧化反应所采用的光是紫外光,而随着科学技术的不断进步,目前阶段的光催化氧化不但可以利用紫外光,太阳光等可见光都可以成为其反应的条件。而通过半导体催化后,可以把吸收的光能转化为电能或者化学能进一步使反应进行。从能源利用的角度上来说,使用太阳能这一新兴能源,恰恰为光催化的开发动力和应用潜能打了一个长长的省略号。 2.对污染物有很高的矿化作用 光催化技术对有机污染物的矿化程度非常高。其原理如下所述:当所用的光催化剂的能量不低于禁带宽度的光照射时,价带电子就会在紫外光或其他光的催化作用下自禁带向导带移动,然后于导带上产生e-、价带上留下h+;有着超强氧化性的正电空穴可把附着在半导体表面的OH-氧化成羟基自由基· OH、·O-2、HOO· 以及H2O2等具有活性的氧化物。其中,·OH属于一种强氧化剂,强到对反应物无选择性,几乎能使任何具备还原性的有机污染物发生氧化反应,并进一步对其矿化将其最

光催化氧化反应的研究进展

杨 尧(浙江大学材料与化学工程学院,浙江杭州310027) 摘要:概述了光催化氧化技术降解废水废气的原理,影响因素,提高光催化剂活性的途 径,以及光催化技术在有机合成中的应用。制备高效的催化剂,解决太阳光的利用问题,开发光催化反应器将是今后研究的重点。 关键词:光催化氧化;光催化反应器 以太阳能化学转化和储存为主要背景的半导体光催化特性的研究始于1917年,1972年Fujishima和Honda在Nature杂志发表关于TiO2电极分解水的论文标志着光催化新时代的开始。1977年Bard提出利用半导体光催化反应处理工业废水中的有害物质以后,在半导体微粒悬浮体系中进行光催化消除污染物的研究日趋活跃起来。光催化过程采用半导体材料作为光催化剂,在常温常压下进行,如果利用太阳光作光源,则可大大降低污水处理费用。更主要的是,光催化技术可将污染物降解为无毒的无机小分子物质如CO2、H2O及各种相应的无机离子而实现无害化,为治理水污染提供了一条新的、有潜力的途径。 科学技术的进步和对光催化技术广泛而深入的研究,使光催化技术得到迅速发展。除了利用半导体材料来进行光催化氧化降解废水、废气以外,也有不少研究机构利用该技术为有机合成提供了一条新途径。 1光催化氧化处理废水、废气的研究现状 1.1TiO2光催化氧化处理废水、 废气的原理1976年Garey等首先应用二氧化钛光催化降解水中的氯代联苯并取得成功。三十多年来,TiO2光催化氧化技术迅速发展,研究者已利用TiO2催化降解了水和空气中几千种不同的有毒化合物,其中包括许多难解有机化合物,如有机氯化物、农药、氯酚类、染料类以及近年来倍受人们关注的环境荷尔蒙 类物质。因此,可以说TiO2光催化技术是国内外的研究前沿和开发热点。 TiO2是一种多晶形的化合物,目前研究最多的 是锐钛矿型TiO2。它是一种N型半导体材料,它的光催化活性高,反应速率快,对有机物的降解无选择性且能使之完全矿化。它的能带结构一般由填满电子的低能价带和空的高能导带构成,它们之间由禁带分开,其禁带宽度为3.2eV,根据λg(nm)=l240/Eg(eV)可知,其激发波长为387.5nm。当吸收了波长小于或等于387.5nm的光子后,价带电子被激发,越过禁带进入导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+。在电场的作用下,电子与空穴发生分离,迁移到粒子表现的不同位置。热力学理论表明,电子具有还原性,空穴具有氧化性。吸附在 TiO2表面的氧俘获电子形成O2-,分布在表面的h+可 以将吸附在TiO2表面OH-和H2O分子氧化成?OH自由基,而?OH自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化大多数的有机污染物及部分无机污染物,并将其最终降解为CO2、H2O等无害物质。由于?OH自由基对反应物几乎无选择性,因而在光催化氧化中起着决定性的作用。 1.2影响光催化氧化的因素 以TiO2为例,TiO2的粒径小,光生电子和空穴 从TiO2体内扩散到表面的时间短,它们在TiO2体内的复合几率减小,到达表面的电子和空穴数量多,因此光催化活性高。 此外,粒径小,比表面积大,有助于氧气及被降解有机物在TiO2表面的预先吸附,则反应速率快,光催化效率必然增大。当颗粒大小为1~10nm时,出 收稿日期:2007-01-18 作者简介:杨尧(1983 ̄),男,浙江大学材料与化学工程学院化工所研究生,应用化学专业。主要从事精细有机化工产品的合成与研究。 光催化氧化反应的研究进展 文章编号:1006-4184(2007)05-0017-05

相关文档
最新文档