光催化氧化反应器的工业化应用

光催化氧化反应器的工业化应用
光催化氧化反应器的工业化应用

《光催化氧化反应器》在工业污水的应用:

l洗涤剂生产行业废水处理及废水处理后的回用工程;污水及工业废水深度处理(对现有污水处理后氨氮、COD不达标的系统,利用光催化氧化后实现达标排放和回收利用)

l主要适用行业:洗衣粉、洗涤剂及表面活性剂等有机精细化工生产行业;

l洗涤行业等用洗涤剂清洗洗涤行业的废水回用;

l食品、制药等有机污染废水的治理工程;

l有机废水处理及无膜中水回用工程;

《光催化氧化反应器》处理有机废水与传统工艺相比的优势:

1、设备占地面积小、反应停留时间短;

2、处理成本低,可根据后续处理的要求调整转化率或处理量;

3、可任意与其他工艺组合;作生化的前处理,改善难降解有机物的可生化性;或作有机废水处理后水质不达标的深度处理,以满足达标排放或回用。

4、运行维护成本低,不需要投加其他任何化学药物及更换催化剂;

一、光催化氧化反应器(在工业废水处理中的应用)

目前用于广州立白集团番禺公司480立方/天高浓度洗涤剂(LAS)废水处理工程.对洗涤剂(LAS)处理的平均去除转化率:90%.

本公司独有专利技术(专利号:ZL200720119600.5),有效实现了光催化氧化技术的工业化应用。主要用于各种难降解的有机污染废水废液的深度处理,特别是对高含量的有机废水富含表面活性剂(LAS)、COD以及其他有机污染物的处理,具有很好的去处效果。去除率在90%以上,分解后的产物为水和二氧化碳,不会产生二次污染问题;整套装臵集氧化分解及除臭功能为一体。

广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,是我公司《光催化氧化分解表面活性剂》专利技术第一次用于工业化应用的成功范例;也是国内真正实现光催化氧化工艺在污水处理方面成功进行工业化应用的首例。对洗衣粉行业的废水具有划时代的意义!洗衣粉制造行业都知道,洗衣粉废水处理的最大问题是:废水表面活性剂浓度高时,会严重影响生化效果,并造成生物菌种死亡,在生化瀑气池泡沫满天飞,不得不将生化池用致密的网罩于池上,以防止对环境的影响。

立白集团广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,于2009年4月正式投入运行,原预算该项目投入运行后吨水综合处理成本将增加1.8元/吨。在半年的实际运行中,其运行成本的变化完全出乎预料,其污水处理总体综合成本不但没有增加1.8元/吨,反而比原来没有改造前降低了0.2元/吨。这是一个意外而可喜的结果。最后从立白公司废水处理站操作及管理人员处得到答案。原处理系统设计能力为20吨/小时,由于增加光催化氧化设备后,大大

的减轻了生化池的负荷,平常运行时将处理量提高到30吨/小时,处理效率提高了,减少了设备运行时间,从而降低了处理成本。

工艺流程叙述

以提升泵自污水处理站一沉池内(取水口处需安装液位控制仪),经光催化氧化反应器,在外加空气的情况下,进行光催化氧化反应,处理后的水排至现有污水处理站水解酸化池第一格进水端。

反应过程中,由于外加空气,在反应器排气口有一定的泡沫排除,泡沫经常压节流式泡沫装臵处理成泡沫液回流至前处理调节池,循环处理。

本工艺光催化反应器特点

1、催化剂改性:通过离子掺杂对T i O2催化剂进行改性修饰,解决了光催化氧化技术中量子效率低,光生电子-空隙对易复合的问题。解决了催化剂对污染物的选择性问题。

2、通过外加空气(氧气),解决了光催化氧化反应产物二氧化碳,在催化剂表面吸附影响催化反应的问题;同时给光催化氧化反应提供足够的光生电子受体。氧分子接受电子后,形成具有极强氧化能力的超氧自由基或羟基自由基,其对光催化氧化反应速度具有决定性作用。

3、通过催化剂的固定化技术及光源的合理分布,使反应器形成一均匀等效的光和催化剂的融合体。

4、泡沫吸收装臵:利用节流负压装臵连续破泡技术,能耗远远低于真空破泡技术。在国内外应该属于绝无仅有的一套低能耗破泡装臵。

光催化氧化反应器的工业化应用

《光催化氧化反应器》在工业污水的应用: l洗涤剂生产行业废水处理及废水处理后的回用工程;污水及工业废水深度处理(对现有污水处理后氨氮、COD不达标的系统,利用光催化氧化后实现达标排放和回收利用) l主要适用行业:洗衣粉、洗涤剂及表面活性剂等有机精细化工生产行业; l洗涤行业等用洗涤剂清洗洗涤行业的废水回用; l食品、制药等有机污染废水的治理工程; l有机废水处理及无膜中水回用工程; 《光催化氧化反应器》处理有机废水与传统工艺相比的优势: 1、设备占地面积小、反应停留时间短; 2、处理成本低,可根据后续处理的要求调整转化率或处理量; 3、可任意与其他工艺组合;作生化的前处理,改善难降解有机物的可生化性;或作有机废水处理后水质不达标的深度处理,以满足达标排放或回用。 4、运行维护成本低,不需要投加其他任何化学药物及更换催化剂; 一、光催化氧化反应器(在工业废水处理中的应用) 目前用于广州立白集团番禺公司480立方/天高浓度洗涤剂(LAS)废水处理工程.对洗涤剂(LAS)处理的平均去除转化率:90%.

本公司独有专利技术(专利号:ZL200720119600.5),有效实现了光催化氧化技术的工业化应用。主要用于各种难降解的有机污染废水废液的深度处理,特别是对高含量的有机废水富含表面活性剂(LAS)、COD以及其他有机污染物的处理,具有很好的去处效果。去除率在90%以上,分解后的产物为水和二氧化碳,不会产生二次污染问题;整套装臵集氧化分解及除臭功能为一体。 广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,是我公司《光催化氧化分解表面活性剂》专利技术第一次用于工业化应用的成功范例;也是国内真正实现光催化氧化工艺在污水处理方面成功进行工业化应用的首例。对洗衣粉行业的废水具有划时代的意义!洗衣粉制造行业都知道,洗衣粉废水处理的最大问题是:废水表面活性剂浓度高时,会严重影响生化效果,并造成生物菌种死亡,在生化瀑气池泡沫满天飞,不得不将生化池用致密的网罩于池上,以防止对环境的影响。 立白集团广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,于2009年4月正式投入运行,原预算该项目投入运行后吨水综合处理成本将增加1.8元/吨。在半年的实际运行中,其运行成本的变化完全出乎预料,其污水处理总体综合成本不但没有增加1.8元/吨,反而比原来没有改造前降低了0.2元/吨。这是一个意外而可喜的结果。最后从立白公司废水处理站操作及管理人员处得到答案。原处理系统设计能力为20吨/小时,由于增加光催化氧化设备后,大大

光催化氧化反应器设计综述

光催化氧化反应器设计综述 摘要:文章通过废水中有机物的降解问题引出光催化氧化降解有机物技术,再从技术问题引入更深层次的问题即如何提高降解效率,进而引出本文主题—光催化氧化反应器设计。文章详细叙述了反应器的结构形式及几种不同类型反应器的优点和缺陷,以及研究现状。 关键词:光催化氧化;反应器 随着经济的发展,大量工业废水、生活污水有机污染物的超标排放,造成了水体环境严重富营养化问题,目前很多地方的治理只注重对有毒重金属的处理,而忽略了有机污染物潜在的危害性,废水中大量的有机污染物。富含洗涤剂(LAS)、COD、BOD、含氮、磷等的有机物的污水本身具有一定的毒性,对动植物和人体有慢性毒害作用,还会引起水中传氧速率降低,使水体自净受阻,从而使水体变色发臭。所以对废水中的有机物进行处理是非常必要的。光催化氧化分解有机污染物是当今公认的最前沿最有效的处理技术,光催化氧化反应器成功的解决了光催化氧化技术的工业化运用难题,所采用光催化氧化技术,废水有机污染物分解后的产物为水、二氧化碳及无害的无机盐,从根本上解决了有机污染问题。 目前, 用金属氧化物半导体作催化剂进行光催化氧化降解有机污染物的研究, 已引起了国内外众多学者的关注[1]。为了提高光催化氧化反应效率,光催化氧化反应器是必不可少的。应用光催化氧化反应器可进行化学氧化、光氧化、光化学氧化、光催化氧化和光化学催化氧化等多种类型氧化反应, 并可进行多种组合试验, 为环境科研、环境工程提供试验设备, 亦可为高等院校师生提供教学试验设备。光催化氧化反应器的设计远比传统的化学反应器复杂,除了涉及质量传递与混合、反应物与催化剂的接触、流动方式、反应动力学、催化剂的安装、温度控制等问题外,还必须考虑光辐射这一重要因素。目前已有多种形式的光催化氧化反应器应用于光降解的研究及实际废水的处理,并取得了一些成果,但同时也暴露出许多问题,为此有许多人从不同的角度对如何提高光催化氧化反应器的效能及实用性开展了大量的工作[2]。 1 光催化氧化反应器的结构形式 催化剂以两种形式存在于反应器中:一是光催化剂颗粒分散于整个反应器系统中,二是光催化剂颗粒固定在载体上(如反应器壁或尼龙丝网等) ,据此可将相应的反应器形式称为悬浮式和固定式。 悬浮式是TiO2粉末直接与废水混合组成悬浮体系。优点是结构简单,能充分利用催化剂活性[3]。缺点是存在固液分离问题,无法连续使用;易流失;悬浮粒子阻挡光辐射深度,TiO2 =0.5mg/m3左右,反应速度达到极限[4]。固定式是TiO2粉末喷涂在多孔玻璃、玻璃纤维或玻璃板上。优点是TiO2不易流失,可连续使用;缺点是催化剂固定后降低了活性[5]。固定式又分非填充式和填充式两种。非填充式固定床型:以烧结或沉积法直接将光催化剂沉积在反应器内壁,部分光催化表面积与液相接触。填充式固定床型:烧结在载体上,然后填充到反应器里,与非填充式固定床型相比,增大了光催化剂与液相接触面积,克服了悬浮型固液分离问题。 Geisen 等[6 ]针对典型化合物二氯乙酸(DCA) 的降解分别进行了悬浮式TiO2和固定式TiO2液膜反应器( Flow-Film Reactor ,FFR) 研究,结果表明:与固定式催化剂反应系统相比,悬浮式系统能够获得更高的DCA降解率,达到了固定式系统的3倍,这是因为催化剂的固定限制了传质和降低了光催化活性。因此,如果能够通过固/ 液分离技术实现TiO2颗粒与处理水的分离及回收利用,那么悬浮式反应器将比固定式反应器有着明显的优势。为此,Xi等[7 ]采用带有斜板和不带有斜板的沉淀池及微滤膜继续进行了悬浮催化剂的分离研究:当进水的催化剂浓度> 5 g/ L、pH 在零电荷点附近时,通过沉淀作用可以对Degussa P 25 TiO2实现

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题 摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。 关键词:光催化氧化氧化技术 1前言 随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。目前许多国家的地表水和地下水均受到不同程度的污染,水污染物主要来自工业、农业以及生活污水。当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。因此, 开发能将各种化学污染物降解至无害化的实用技术( 尤其是污水处理和空气净化) 成为各国科研工作者 的重要研究内容。 光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP) 。光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。 1972 年, Fujishima 等在《Nature 》上发表了“Electrochemical potolysis of water at asemiconductor electrode”一文, 揭开了光催化氧化技术的序幕。1976 年, Cr aey [ 4] 等发现, 在TiO2 光催化剂存在的条件下, 多氯联苯、卤代烷烃等可发生有效的光催化降解. 这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境 污染提供了一种新方法, 立即成为半导体光催化研究中 最为活跃的领域。近30 年来, 光催化氧化技术在有机污染物处理方面得到了广泛的研究,几乎所有在水中可能存在的有机污染物都可被光催化氧化法降解并矿化。将光催化工艺与混凝、生物处理等常规水处理工艺结合起来可达到优势互补的效果。近年来, 人们围绕光催化剂活性的提高以及降低反应成本等方面进行了大量的研究, 相关文献每年都有150 篇 以上。 2光催化氧化反应的机理 Sch iavello等认为, 光触媒表面的光催化反应基 本包括4个步骤: (1)光激发催化剂表面形成电子- 电洞对; (2)电子- 电洞对必须能有效地分离; (3)电子- 电洞对在催化剂表面与被吸附物质发生氧化还原反应; ( 4) 光催化剂表面产物的脱附与再吸附。

光催化氧化技术在水处理中的应用

光催化氧化技术及其在水处理中的应用 摘要:介绍了光催化氧化的机理及光催化氧化反应的主要影响因素,就TiO2固定化制备、改性、光催化氧化在工业废水以及饮用水处理中的应用进行了阐述。 关键词:光催化氧化Ti02光催化剂水处理 1 引言 光催化氧化法是近二十年才出现的水处理技术,1972年,Fu—jishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976年,Carey等在光催化降解水中污染物方面进行了开拓性的工作。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点[1],在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。 2 光催化氧化原理 光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2、WO3等。TiO2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以TiO2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基OH-,生成强氧化性的羟基自由基(OH)将污染物氧化[2]。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。水溶液中的OH- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理[3]如下(以TiO2为例): TiO2 + hν→h+ + eh++ e- →热量 H2O →OH- + H+ h+ + OH-→OH h+ + H2O + O2- →·OH + H+ + O2- h+ + H2O →·OH + H+ e- + O2 →O2- O2- + H+ →HO2· 2 HO2·→O2 + H2O2 H2O2 + O2- →OH + OH- + O2 H2O2 + hν→2 OH Mn+(金属离子) + ne+ →M 3 光催化氧化反应的主要影响因素 3.1催化剂性质及用量 可用于光催化氧化的催化剂大多是金属氧化物或硫化物等半导体材料,如TiO2、ZnO、CeO2、CdS、ZnS等.在众多光催化剂中,Ti02是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐

光催化材料的项目报告书

项目报告书

光催化材料的研究概况 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文主要综述了光催化反应基本原理、新型光催化材料开发策略及研究进展。分析了提高光催化材料量子效率的关键所在及开展新型光催化材料研究工作的重要性,展望了该领域的未来发展方向。 关键词:光催化原理、光催化材料、研究与开发 正文:光催化的由来 早在1839年,Becquerel 就发现了光电现象,然而未能对其进行理论解释。直到1955年,Brattain和Gareet 才对光电现象进行了合理的解释,标志着光电化学的诞生。1972年,日本东京大学Fujishima和Honda研究发现,利用TiO2单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去40年里,人们在光催化材料开发与应用方面的研究取得了丰硕的成果 光催化材料 光催化材料是指在光作用下可以诱发光氧化一还原反应的一类半导体材料。世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。 例如光催化净化空气: 图表1 光催化涂料 光催化材料对净化空气具有以下功效: 具有光催化降解甲醛、苯、氨等有害气体的功效。 具有抗污、屏蔽紫外线功效。

光催化反应器的设计

光催化反应器的设计 摘要 光化学反应过程由于具有选择性好且可在常温常压下进行等特点而在许多领域有着良好的应用前景。其中光催化技术作为一种真正环境友好的绿色技术,既可以在能源领域应用,将低密度的太阳能转化为可储存的高密度的洁净能源氢能;也可在环境领域应用,利用光能降解和矿化环境中的有机和无机污染物。光催化反应器作为光催化技术的核心设备,在光催化技术的应用中具有十分重要的地位。本文介绍了光催化反应的相关内容,并以FCC汽油光催化脱硫工艺为例,对实际情况作合理简化,建立了光催化反应器的数学模型。 关键词:光催化、反应器、数学模型。 1、前言 1.1 光化学反应工程 光化学反应是指在外界光源的照射下所发生的化学反应过程。[1]光化学反应器作为光化学生产中的关键设备,其性能优劣对于光化学反应过程的应用有十分重要的作用。因此,从工程应用的角度出发,研究光化学反应器的特性、模拟、设计、放大等问题已引起重视,并逐渐发展成化学反应工程学的一个新的分支—光化学反应工程。 与一般反应器相比,光化学反应器的设计与开发有很大的差异。光源的种类,光子的传播、吸收、发射及光化学反应器的几何形状,与光源间的相互位置等均会对光化学反应过程产生直接影响。[2] 1.2 光化学反应器类型 与普通的化学反应器一样,光化学反应器也可以按不同的方法分类。如按操作方式的不同可分为连续式和间歇式;按反应器内包括的流体的相数不同可分为均相和非均相;按反应器内流体流动状况可分为全混流、部分返混、活塞流等。然而,对于光化学反应器,除了操作方式、流动状况等会对其性能造成影响,更能反映光化学反应器特征并直接影响光化学反应器性能的则是光源种类、反应器几何形状及反应器与光源间的相互位置。[3]这些因素的不同组合就构成了不同类型的光化学反应器。光化学反应器可以有许多变化方式,大体可分为均相和非均相两大类。[4] 光化学反应器的选型包括光源、透光材料、反应器几何形状的确定等几个方面。光化学反应过程一般均需要紫外或近紫外光,当反应需要紫外光时,只能选择石英为透光材料。如反应可在近紫外光照射下进行,则可选用硼硅玻璃。[5] 1.3光催化反应器 1.3.1 光催化反应器的研究现状 最早出现的光催化反应器是为在实验室中进行研究而设计的,其结构简单,操作方便。反应器主体为一敞开的容器,并置于磁力搅拌机上,反应液在荧光或紫外灯的照射下反应,灯与液面的距离可调,现在仍有许多研究者用这种反应器来评价催化剂的活性或进行污染物降解规律的研究。[6] 目前应用较为广泛的光催化反应器是一种间歇式分批反应器它的特点是采用纳米TiO 2粉体形成的悬浆体系。但悬浆体系最大的问题是TiO 难以回收,要将催化剂粉末颗粒从流 2 动相中分离出来,一般需经过滤、离心、混凝、絮凝等方法,因而反应器只能为间歇式分批反应器,即每处理一批就要进行一次分离,使处理过程过于复杂,还增加了经济成本。因此,将催化剂固定在载体上,制成负载型光催化反应器已成为主要的研究方向。将TiO 负载后 2 可将其作为固定相,待处理废水或气体作为流动相,一般不存在后处理问题,可实现连续化处理,便于设计出各种实用化、商品化、工业化的光化学反应器。[7]

第二章光催化氧化技术

第二章光催化氧化技术 第1节光催化概述 光催化(Phntocatalv}i} }是在光的照射下产生类似光合作用的光催化反应,产生出氧化能力极强的自山氢氧基和活性氧,具有很}},的光氧化还原功能,可氧化分解各种有机化合物 和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋白质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水和.二氧化碳,因而具有极强的杀菌、除臭、防霉、防r} ;自 洁、字泞除甲醛和净化空气功能。 光催化的特性为利用空气中的氧分子及水分子将所接触的有机物转换为二氧化碳和水,自身不起变化,却可以促进化学反应的物质,理论.r-有效期较长、维护费用低。同时,二氧化钦本身无毒无害。已广泛用于食品、民药、化妆品等各种领域。 光催化在光的照射下产生氧化能力极强的 氢氧自由基和活性氧,具有很强的光氧化还原 功能。可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋臼质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水(HZO)和二氧化碳 }co}),因而具有极强的杀菌、除臭、防霉、防污自洁及净化空气的功能。 (川光催化基本原理光催化的原理是光催化剂纳米材料被太阳光、灯光(紫外线) 照射后,表面电子(e)被激励,同时生成带电的正孔(h+},正孔(h+)和空气中的氧 (o:)、水(HZo)发生反应,产生具有极强氧化作用的活性氧。有机物污染物、臭气、细 菌等被氧化分解,而电子(e)还原成空气中的氧。 光催化反应可分为下列几个步骤: ①反应物、氧气及水分子吸附于二氧化钦表而;②经光照射后。二氧化钦产生电子及空穴;③电子和空穴分别扩散到二氧化钦粒子表面;④电子、空穴和氧及水分子形成氢氧自由基;⑤氢氧自由基和反应物进行氧化反应; 光催化是利用特定波长光源的能量产生催化作用,使周围氧及水分子激发成极具活性的OH一及02一自由离子基,这些氧化力极强的自由基儿乎可分解所有对人体或环境有害的有机物质及部分无机物质 第2节光催化氧化技术在污水处理中的应用 }.光催化叙化技术的应用 光催化技术的研究始于20世纪70年代的后半期,用作催化的化学物有T1}} ,硫化锅、硫化亚铅、妮或钦系层状复合氧化物、二氧化铁等。用光照射催化剂时山于光生成空穴。氧化力强。大都采用不溶解的、稳定的半导体粉末二氧化钦,与水分解成氧和氢。从含乙醇的水溶液中生成氢,因水和氮合成氨,还原二氧化碳。含氨和.二氧化碳的水溶液合成氨基酸,氰基化离子或酪酸离子,变为纳米Tif}.}能处理多种有毒化合物。包括工业有毒溶剂、化学杀虫剂、木材光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使H}}被还原成Hg而沉积在TiO}表面;此法同样适川于铅。`Ti0:光催化可能降 解的尤机污染物还有氰化物,5}1}、I} }S , LV}和No:等有害气休也能被吸附在}'i。}表面,在光的作用下转化成无毒无害物质,井可回收贵金属。水污染有机物的分解研究儿乎都涉及到'}'i(}}光催化。 光催化是与常规热能催化相对应的催化技术,.光催化主要是有机盒属络合物和半导体。现在商用的光催化剂儿乎都是二氧化钦(Ti}} }可以说是半导体光催化。半甘体光催化的 一般机能是脱臭、抗菌、灭菌、防污、去除有害物等:.

光催化材料080804210

光催化材料的研究概况 目前,人类使用的主要能源有石油、天然气和煤炭三种。根据国际能源机构的统计,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年。值得注意的是,中国剩余可开采储蓄仅为1390亿吨标准煤,按照中国2003年的开采速度16.67亿吨/年,仅能维持83年。中国石油资源不足,天然气资源也不够丰富,中国已成为世界第二大石油进口国。因此,开发新能源,特别是用清洁能源替代传统能源,迅速地逐年降低它们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展方向可以锁定在前景看好的五种清洁能源: 水电、风能、太阳能、氢能和生物质。 太阳能不仅清洁干净,而且供应充足,每天照射到地球上的太阳能是全球每天所需能源的一万倍以上。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、直接、有效的方法。 光催化就是利用太阳能的一种新技术。它不仅可以直接分解水、环境中的有毒有害物质,还可以直接将太阳能转化为电能与化学能(如氢能)等清洁能源。对于从根本上解决环境污染和能源短缺等问题具有重要意义。下面,从光催化材料的几个方面来简述其研究概况。 一、光催化材料的基本原理 半导体光催化材料大多是n型半导体材料,都具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子和空穴。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的以TiO 2 影响机制;采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可

10_典型的光催化反应器

典型的光催化反应器 光催化是废水净化的一个很有前途的技术,因而引起了国内外的重视,已经有了二十多年的经验积累,在光催化降解有机污染物、光催化剂的改性等方面受到了广泛的关注,有关光催化氧化法在水污染治理方面应用研究的报道很多,而在反应器的设计和选材也有一些相关的报道,但涉及到光反应器应用的报道较少。在光催化反应中,反应器的材料、结构、形状、光源的几何位置等很多因素对光催化反应速率有很大的影响。气相光催化反应器的设计有静态配气和动态配气的两种,种类和相关的研究较少,所以下面着重介绍液相光催化反应器的结构、种类和影响因素。 影响光催化反应器效率的因素很多,如光源(光源强度、波段与光照方式)、催化剂性质(催化剂粒径、类型与载体)、废液的外加氧化剂(如O2 ,H2O2,O3等)、待处理废水性质(废液的初始浓度组成、pH值、抑制物含量)、温度、废液的流动力学特征、停留时间等因素对反应器的最佳运行都有影响,反应器的整体设计要综合考虑这些因素。 1.光源 用于光催化的光源有电光源和太阳光源。电光源有高压汞灯、荧光灯、黑光灯、氨灯等。光源的选择、布置及使用既要考虑效能又必须考虑经济性,因此,在设计光催化反应器时,要综合考虑各方面的影响因素。过去,更多研究放在电光源上,使用的光波多限于光谱紫外区。太阳光源是经济又环保的光源,开发出利用太阳能的光催化反应器一直是研究者追求的目标,但是由于在光催化反应中,太阳光的利用率很低,因此这类反应器的成功开发和真正实现工业应用目前还有很大难度,需要解决催化剂改性等许多方面的技术问题。 光源波长、光强及光源几何位置对催化反应有至关重要的影响,一般情况下,光源波长越短,效率越高;在同等波长的条件下,光强越高,效率越高,但并非线性相关的。一般在低光强时,有机物降解速度与光强呈线性关系,高光强时,降解速度与光强的平方根存在线性关系。 光线的照射方式可分为直接照射和直接一反光结合照射,后者的使用更能充分利用光能。光源与废水、催化剂的位置对光转化效果有重要的影响,研究结果表明,催化剂处在废水中时,在光源与催化剂之间的液层会吸收光、散射光,从而使催化剂的光吸收减弱。因此,浸在液体中的负载催化剂应尽量靠近液体的近光面,减少光吸收障碍。 2.催化剂在应用中的存在形态 催化剂在光催化反应器中有两种存在形式,即悬浮态和固定态。在悬浮相光催化过程中,催化剂以悬浮态存在于水溶液中,与污染物接触面积大,但催化剂在溶液中容易凝聚且回收困难,不适合规模操作。催化剂以固定态存在时,负载在载体上,这样虽然可避免催化剂的分离和回收过程,但仅部分催化剂的面积有效地与液相接触,活性降低。催化剂制备或选择载体要考虑多种因素影响,应尽量满足(1)吸光性能强。(2)催化剂粒径小,比表面积大。(3)不易中毒,能保持催化剂有高活性。(4)吸附反应物及反应后易于固液分离。(5)载体与催化剂结合牢固,抗冲击、耐腐蚀。 负载型催化剂所使用的载体要求透光性好,与催化剂结合较牢固,易于分散,不影响传质等。可选形状有颗粒型、管型、丝网、平板型和转盘型等。颗粒型载体一般有玻璃球、硅胶、砂石、活性炭、沸石等。 3. 光催化反应器材料 要保证光催化反应的顺利进行,最首要的条件之一是光催化反应器的材料必须透光性能好,尤其是对催化反应所需波长范围的光的透过率要好。一般光催化反应利用紫外光,所以要使用对紫外光不吸收或吸收很少的材料,很多人选用石英玻璃。石英玻璃是高纯单组分玻璃,具有优良的热,光,电和机械性能,耐腐蚀,对大多数物质是稳定的,包括除氢氟酸以

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便 的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO 2、ZnO、CdS、WO 、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研3 究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密

度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,而在照射到地球表面的太阳光中,紫外光部分所占的比例还不到5%。从利用太阳能的角度来看,二氧化钛对太阳光的利用率较低,因此,如何缩

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

光催化氧化法简介

光催化氧化法简介 光催化氧化法是近20年才出现的水处理技术,在足够的反应时间内通常可以将有机物完全矿化为CO2和H2O 等简单无机物,避免了二次污染,简单高效而有发展前途。所谓光催化反应,就是在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,然后会发生化学反应生成新的物质,或者变成引发热反应的中间化学产物。光化学反应的活化能来源于光子的能量,在太阳能的利用中光电转化以及光化学转化一直是十分活跃的研究领域。由于以二氧化钛粉末为催化剂的光催化氧化法存在催化剂分离回收的问题,影响了该技术在实际中的应用,因此将催化剂固定在某些载体上以避免或更容易使其分离回收的技术引起了国内外学者的广泛兴趣。 在我国工业废水中,印染废水因其有机物含量高、色度深、水质复杂、排放量大而成为难处理的工业废水之一。印染废水中含有大量卤化物、硝基物、氨基物、苯胺、酚类及各种染料等有机物,主要来自纤维、纺织浆料和印染加工所使用的染料、化学药剂、表面活性剂和各类整理剂。其COD浓度达数千至数万mg/L,色度也高达数千至数万倍,可生化性差,很多废水还含有高浓度无机盐:如氯化钠、硫化物等,严重污染水环境。国内处理染料废水普遍以生物法为主,同时辅以化学法,但脱色及COD去除效果差,出水难以稳定达到国家规定的排放标准。光催化氧化法是近年来水处理研究的热点之一,实验证明,此方法对印染废水有较好的处理效果。当进水COD Cr为1300 mg/L左右,色度为800倍时,经本法处理的废水,出水COD Cr达188 mg/L,色度为0~10倍,COD Cr 去除率达92%,脱色率几近100%。主要水质指标达到了GB8978—1996《污水综合排放标准》中染料工业的二级标准。本法可取代常规的生物法,适合中小型印染厂的废水处理。 光催化氧化法原理 光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物最终生成CO2、H2O及其他的离子如NO3-、PO43-、Cl-等。有机物的光降解可分为直接光降解、间接光降解。前者是指有机物分子吸收光能后进一步发生的化学反应。后者是周围环境存在的某些物质吸收光能成激发态,再诱导一系列有机污染的反应。间接光降解对环境中难生物降解的有机污染物更为重要。 利用光化学反应降解污染物的途径,包括无催化剂和有催化剂参与的光化学氧化过程。前者多采用氧和过氧化氢作为氧化剂,在紫外光的照射下使污染物氧化分解;后者又称光催化氧化,一般可分为均相和非均相催化两种类型。均相光催化降解中较常见的是以Fe2+或Fe3+及H2O2为介质,通过photo-Fenton 反应产生?HO使污染物得到降解,非均相光催化降解中较常见的是在污染体系中投加一定量的光敏半导体材料,同时结合一定量的光辐射,使光敏半导体在光的照射下激发产生电子-空穴对,吸附在半导体上的溶解氧、水分子等与电子-空穴作用,产生?HO等氧化性极强的自由基,再通过与污染物之间的羟基加和、取代、电子转移等使污染物全部或接近全部矿化。 新型高效光催化氧化的原理 新型高效光催化氧化的原理就是在表面催化剂存在的条件下,利用一定波长的紫外光波在常温常压下催化、通过一定量的曝气来氧化废水中的有机污染物,或直接氧化有机污染物,或将大分子有机污染物氧化成小分子有机污染物,提高废水的可生化性,较好的去除有机污染物。在降解COD的过程中,通过催化氧化来打断有机分子中的双键发色团,如偶氮基,硝基,硫化羟基,碳亚氨基等,达到脱色的目的,同时有效地降低BOD/COD值,使之易与生化降解。这样,光催化氧化反应在高浓度,高毒性,高含盐量废水中充当常规物化预处理和生化处理之间的桥梁。 该技术的核心为三相催化氧化。这三相分别是:由风机送入罐内的压缩空气曝气(气相),一定波长

光催化反应器举例简介

光催化反应器举例简介反应器设计结业论文 天津大学 化工学院 09化工一班 王一斌 3009207018

随着现代工农业的发展,产生了大量污染物并随之释放到环境中去,其中存在大量有毒有害物质,严重影响了人类的正常生活与生产。多年来,研究人员采用了包括生物处理,化学处理,热处理,催化氧化,相转移和光解等方法应用于废水处理中。但目前这些方法,都存在着局限,而且处理费用太高。而光催化作为一种新型的污染处理技术自上个世纪70 年代出现以来,以其能完全降解环境中的污染物,加上费用相对较少,日益受到研究人员的重视。 在光化学处理有机废水的催化剂中,二氧化钛由于其化学性质稳定、难溶、无毒、成本低、催化效率高等优点被广泛运用。同时,光催化反应器作为反应的主体设备,其决定了催化剂活性的发挥和对光的利用等问题,而这两个因素直接决定了光催化反应的效率。一个成功的反应器必然体现了催化剂活性和光源利用的最优化组合。所以,光化学反应器的研制和开发作为光催化处理废水工艺中的重中之重,已成为研究的热点之一,本文对该方面研究给予了举例简介。 关键词:二氧化钛( TiO ) 光催化反应器废水处理 2

一,光催化反应机理 当能量大于催化剂(TiO 2等金属氧化物)禁带宽度的光照射半导体时,光激发电子跃迁到导带,形成导带电子(矿),同时在价带留下空穴(矿)。由于半导体能带的不连续性,电子和空穴的寿命较长,它们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。空穴和电子在催化剂粒子内部或表面也可能直接复合。空穴能够同吸附在催化剂粒子表面的OH 或H 2O 发生作用生成HO·。HO·是一种活性很高的粒子,能够无选择地氧化多种有机物并使之矿化,通常认为是光催化反应体系中主要的氧化剂。光生电子也能够与O 2发生作用生成HO 2·和O 2-·等活性氧类,这些活性氧自由基也能参与氧化还原反应。该过程可用如下反应式表示: ),(22+-=+h e TiO hv TiO hv heat h e +=++- ?=++-HO h OH ads +++?=+H HO h O H ads 2 ?=+--22O O e HO·能与电子给体作用,将之氧化,电子(矿)能够与电子受体作用将之还原,同时h +也能够直接与有机物作用将之氧化: O H D D HO 2+?=+?+ --?=+A A e ++?=+D D h 二,光催化反应器的类型 利用TiO 2 作为光催化剂降解有机污染物已逐渐由实验研究转向实际应用的研究,光催化氧化法的大规模应用需要解决的主要技术问题是TiO 2 催化剂的固定化以及与之相应的结构简单、效率高、可长期稳定运行的反应器的设计。光催化反应器设计的问题远比传统的化学反应器的复杂。除了涉及质量传递与混合、反应物与催化剂的接触、流动方式、反应动力学、催化剂的安装、温度控制等问题外,还必须考虑光辐射这一重要因素。 催化剂只有吸收适当的光子才能被激活而具有催化活性,为了提供尽可能多的激活光催化剂,光反应器必须能提供可能大的催化剂表面积。 为了减少反应器的体积,还要求单位体积的反应器提供尽可能大的安装催化剂的空间。 最早出现的光催化反应器是为在实验室中进行研究而设计的,其结构简单,

半导体光催化氧化技术探讨

半导体光催化氧化技术探讨 摘要:目前来说,半导体光催化氧化技术取得了较大的进步,本文主要介绍了半导体光催化氧化技术的探讨,为从事相关的工作人员提供了参考意义。 关键词:半导体;光催化;氧化 前言: 上个世纪70年代,科学家们通过紫外光的照射,采用TiO2成功对多氯联苯进行了降解,这也是人类历史上首次利用半导体光催化达到剧毒物质降解的目的。从那以后,人们就开创了一条半导体光催化氧化在环境处理污染中展开应用的道路。而最近几年,有关光催化氧化的研究也取得了相对来说较大的进展,TiO2的光催化效率和催化剂的选择等之类的问题成为了其研究的重心。 一、半导体光催化氧化技术特点 1.催化所用光的选择性 我们知道,最初的光催化氧化反应所采用的光是紫外光,而随着科学技术的不断进步,目前阶段的光催化氧化不但可以利用紫外光,太阳光等可见光都可以成为其反应的条件。而通过半导体催化后,可以把吸收的光能转化为电能或者化学能进一步使反应进行。从能源利用的角度上来说,使用太阳能这一新兴能源,恰恰为光催化的开发动力和应用潜能打了一个长长的省略号。 2.对污染物有很高的矿化作用 光催化技术对有机污染物的矿化程度非常高。其原理如下所述:当所用的光催化剂的能量不低于禁带宽度的光照射时,价带电子就会在紫外光或其他光的催化作用下自禁带向导带移动,然后于导带上产生e-、价带上留下h+;有着超强氧化性的正电空穴可把附着在半导体表面的OH-氧化成羟基自由基· OH、·O-2、HOO· 以及H2O2等具有活性的氧化物。其中,·OH属于一种强氧化剂,强到对反应物无选择性,几乎能使任何具备还原性的有机污染物发生氧化反应,并进一步对其矿化将其最

光催化氧化反应的研究进展

杨 尧(浙江大学材料与化学工程学院,浙江杭州310027) 摘要:概述了光催化氧化技术降解废水废气的原理,影响因素,提高光催化剂活性的途 径,以及光催化技术在有机合成中的应用。制备高效的催化剂,解决太阳光的利用问题,开发光催化反应器将是今后研究的重点。 关键词:光催化氧化;光催化反应器 以太阳能化学转化和储存为主要背景的半导体光催化特性的研究始于1917年,1972年Fujishima和Honda在Nature杂志发表关于TiO2电极分解水的论文标志着光催化新时代的开始。1977年Bard提出利用半导体光催化反应处理工业废水中的有害物质以后,在半导体微粒悬浮体系中进行光催化消除污染物的研究日趋活跃起来。光催化过程采用半导体材料作为光催化剂,在常温常压下进行,如果利用太阳光作光源,则可大大降低污水处理费用。更主要的是,光催化技术可将污染物降解为无毒的无机小分子物质如CO2、H2O及各种相应的无机离子而实现无害化,为治理水污染提供了一条新的、有潜力的途径。 科学技术的进步和对光催化技术广泛而深入的研究,使光催化技术得到迅速发展。除了利用半导体材料来进行光催化氧化降解废水、废气以外,也有不少研究机构利用该技术为有机合成提供了一条新途径。 1光催化氧化处理废水、废气的研究现状 1.1TiO2光催化氧化处理废水、 废气的原理1976年Garey等首先应用二氧化钛光催化降解水中的氯代联苯并取得成功。三十多年来,TiO2光催化氧化技术迅速发展,研究者已利用TiO2催化降解了水和空气中几千种不同的有毒化合物,其中包括许多难解有机化合物,如有机氯化物、农药、氯酚类、染料类以及近年来倍受人们关注的环境荷尔蒙 类物质。因此,可以说TiO2光催化技术是国内外的研究前沿和开发热点。 TiO2是一种多晶形的化合物,目前研究最多的 是锐钛矿型TiO2。它是一种N型半导体材料,它的光催化活性高,反应速率快,对有机物的降解无选择性且能使之完全矿化。它的能带结构一般由填满电子的低能价带和空的高能导带构成,它们之间由禁带分开,其禁带宽度为3.2eV,根据λg(nm)=l240/Eg(eV)可知,其激发波长为387.5nm。当吸收了波长小于或等于387.5nm的光子后,价带电子被激发,越过禁带进入导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+。在电场的作用下,电子与空穴发生分离,迁移到粒子表现的不同位置。热力学理论表明,电子具有还原性,空穴具有氧化性。吸附在 TiO2表面的氧俘获电子形成O2-,分布在表面的h+可 以将吸附在TiO2表面OH-和H2O分子氧化成?OH自由基,而?OH自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化大多数的有机污染物及部分无机污染物,并将其最终降解为CO2、H2O等无害物质。由于?OH自由基对反应物几乎无选择性,因而在光催化氧化中起着决定性的作用。 1.2影响光催化氧化的因素 以TiO2为例,TiO2的粒径小,光生电子和空穴 从TiO2体内扩散到表面的时间短,它们在TiO2体内的复合几率减小,到达表面的电子和空穴数量多,因此光催化活性高。 此外,粒径小,比表面积大,有助于氧气及被降解有机物在TiO2表面的预先吸附,则反应速率快,光催化效率必然增大。当颗粒大小为1~10nm时,出 收稿日期:2007-01-18 作者简介:杨尧(1983 ̄),男,浙江大学材料与化学工程学院化工所研究生,应用化学专业。主要从事精细有机化工产品的合成与研究。 光催化氧化反应的研究进展 文章编号:1006-4184(2007)05-0017-05

相关文档
最新文档