比例练习题
比例练习题及答案
比例练习题及答案在数学学科中,比例是一个重要的概念,经常用于解决实际问题。
本文将带您进行一些比例练习题,并附上详细的答案解析。
练习题一:某比例尺为1:2000的地图上,两个城市的实际距离为35公里。
请问在该地图上,这两个城市之间的距离是多少毫米?解析:比例尺表示地图上的1单位对应于实际距离的多少单位。
根据比例尺1:2000,1毫米对应2000米。
通过单位转换,35公里可以转换为35000米,所以在地图上的距离为35000 ÷ 2000 = 17.5毫米。
练习题二:甲队和乙队比赛,比分为3:4。
已知甲队得到了27分,求乙队得到的分数是多少?解析:根据比例关系,甲队的得分与乙队的得分之间的比例为3:4。
设乙队得分为x,则甲队得分为27,所以有3:4 = 27:x。
通过求解比例关系,可以得到x = 36,因此乙队得到的分数为36分。
练习题三:一根长为2.4米的绳子需要切成8段,每段的长度都相等。
请问每段绳子的长度是多少厘米?解析:根据题目条件,将绳子切成8段,每段长度相等,设每段长度为x,则有2.4米 = 240厘米 = 8x。
通过求解方程可以得到x = 30,因此每段绳子的长度为30厘米。
练习题四:某工厂中,甲班和乙班的男女比例分别是5:4和7:5。
如果甲班男生有45人,求乙班的男生人数。
解析:根据题目条件,甲班的男女比例为5:4,乙班的男女比例为7:5。
已知甲班男生有45人,设乙班男生为x人,则有5:4 = 45:x。
通过求解比例关系,可以得到x = 36,因此乙班的男生人数为36人。
练习题五:某材料由甲、乙、丙三种成分组成,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
如果总质量为400克,求甲、乙、丙三种成分各自的质量。
解析:根据题目条件,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
已知总质量为400克,设甲、乙、丙的质量分别为x、y、z克,所以有30:45:25 = x:y:z。
六年级下册数学比例练习题优秀5篇
六年级下册数学比例练习题优秀5篇六年级下册数学比例练习题篇一一、填空题。
(每空1分,共26分)1、比例6:3=48:24写成分数的形式是(),根据比例的基本性质,写成乘法等式是()。
2、把0.5某80=4某10改写成比例式,可能是( )。
3、在比例35:10=21:6中,如果将第一个比的后项增加30,第二个比的后项应该加上()才能使比例成立。
4、一个数与它的倒数成()比例。
5、大圆直径是4厘米,小圆直径是2厘米,大圆和小圆面积最简单的整数比是()。
6、白兔与灰兔只数的比是7∶6,白兔56只,灰兔()只。
7、三角形的面积一定,它的底和高成()比例。
8、每台电视机的价格一定,购买电视机的台数和钱数成()比例。
9、一幢楼的模型高度是7厘米,模型高度与实际高度的比是1∶400,楼房的实际高度是()米。
10、甲数的相当于乙数的,甲数与乙数的比是()。
11、Y=8X, X与Y成()比例。
12、在括号里填上“每小时生产服装件数”“生产时间”或“生产服装总数”。
()一定,()和()成反比例;()一定,()和()成正比例。
13、地图上的线段比例尺是,那么图上的1厘米表示实际距离()千米;如果实际距离是450千米,那么在图上要画()厘米;把这个线段比例尺改写成数值比例尺是()。
14、在括号里填上适当的数。
0.5:()=():1215、在比例尺为1:2023的地图上,8厘米的线段代表实际距离()千米。
16、在4:9中,如果比的前项减少2,要使比值不变,比的后项应该减少()。
二、判断题。
(每题1分,共10分)1、比例尺只有数值比例尺。
()2、圆的半径和它的面积成正比例。
()3、两个比可以组成一个比例。
()4、在比例里,两个内项和外项的积的比值一定是1。
()5、分数值一定,分子和分母成正比例关系。
()6、比的前项和后项同时乘上同一个数,比值不变。
( )7、平行四边形的面积一定,它的底和高成正比例。
( )8、零件总数一定,已生产的零件和还要生产的零件个数成反比例。
小学六年级简单比例运算练习题
小学六年级简单比例运算练习题一、简答题:1. 将3∶5与9∶15两个比例进行等比例的扩展。
2. 将4∶7与36∶63两个比例进行等比例的缩写。
3. 一条跑道有2000米长,如果按照比例1∶5降低长度,最后的跑道长度是多少?4. 营养饼干中蛋白质和脂肪的比例是3∶2,如果一块饼干中含有30克脂肪,那么这块饼干中蛋白质的含量是多少克?5. 一杯果汁中,橙汁和苹果汁的比例是2∶5,如果有8杯果汁,其中橙汁的杯数是多少?二、计算题:1. 小明用了50元钱买了2本书,如果每本书的价格都相同,那么一本书的价格是多少元?2. 小华用了30分钟走了7公里,如果小华以相同的速度继续行走,那么他用多少时间可以走完14公里?3. 在某学校的六年级班级中,有48个男生,比例是3∶5,那么这个班级中的女生人数是多少?4. 小明和小红一起做一个作业,小明用了1小时完成了四分之一的作业,小红用了50分钟完成了剩下的部分,请问小红用了多少时间完成了整个作业?5. 一块土地上80%是农田,剩下的部分是果园和花园,果园占土地的比例是5∶6,那么花园占土地的比例是多少?三、应用题:1. 小刚用18元钱买了2个苹果和3个梨,小华用24元钱买了4个苹果和若干个梨,请问小华买了多少个梨?2. 一栋高楼上有40层,电梯升一层需要4秒钟,小张从1楼坐电梯到了顶楼,耗时多长?3. 小明每天早上以相同的速度骑自行车上学,平均每分钟骑行3公里。
如果上学的路程是12公里,那么小明骑自行车上学需要多少时间?4. 甲、乙两个人按照比例1∶3分配了一堆零食,甲分到了12个,那么乙分到了多少个?5. 李明学习了40分钟,休息了20分钟,学习了30分钟,然后休息了10分钟。
李明一天中学习的时间和休息的时间各是多少?四、挑战题:1. 在一辆自行车上有4个轮子,如果一扇车门有5个轮子,那么需要多少扇车门才能和这辆车轮的数量比例相同?2. 一桶水中蓝色颜料和白色颜料的比例是3∶4,如果用相同的比例往桶中加入蓝色颜料和白色颜料,一共需要加多少次才可以使蓝色颜料和白色颜料达到相同的比例?3. 一块地上有80%是草地,剩下的部分是麦地和花园。
比例尺专项练习题
比例尺专项练习题【基础练习】1、 在一幅地图上,用3厘米长的线段表示实际距离51千米,这幅图的比例尺是( )。
2、 一个零件长5毫米,画在图纸上长25厘米,这张图纸的比例尺是( )。
3、 一种精密画在图纸上长10厘米,实际长零件长5毫米,这张图纸的比例尺是( )。
4、 线段比例尺 ,改成数值比例尺是( )。
5、 在一幅比例尺是25000001的地图上,量得天津到北京的距离是4.8厘米。
天津到北京的实际距离大约是( )千米。
6、 把一个零件画在比例尺是50:1的图纸上长15厘米,这个零件实际长( )厘米。
【例题讲解】1、在一幅比例尺是1:5000的平面图上,量得一段公路长16.8厘米。
把修筑这段公路任务按3:5分配给甲、乙两个修路队,这两个队各要修多少米?2、一个圆画在1:100的图纸上,直径是2厘米,求这个圆实际面积是多少?3、在10001的平面图上,量得一块长方形操场的长是24厘米,宽是18厘米,这块长方形操场的实际周长是多少千米?面积呢?练习:1、在一幅比例尺是1:1000的设计图上,量得一个正方形花园的边长是4厘米,这个花园的实际面积和周长分别是多少?2、一个长方形,长4cm,宽6cm ,现把这个长方形按3:1放大,放大后长方形的面积是多少平方米?0 30 60 90km用比例解决问题1、甲地到乙地的公路长392千米。
一辆汽车3小时行了168千米。
照这样计算,行完全共需要几小时?2、甲地到乙地的公路长392千米。
一辆汽车3小时行了168千米。
照这样计算,行完全还需要几小时?3、4、某工程队修一条路,12天共修780米,还剩下325米没有修。
照这样速度,修完这条公路,共需要多少天?【易错辨析】1、用面积是36平方分米的方砖铺地,138块正好铺完,如果改用边长是3分米的方砖铺,需要多少块?2、用面积是900cm2 的方砖铺地需要2000块,如果改用边长是40厘米的方砖铺地,需要多少块?3、一间教室,用边长是0.4米的方砖铺地,需要275块,如果用边长是0.5米的方砖铺地,需要方砖多少块?【作业】1、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?2、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,每天要多做多少个?。
比例的练习题
比例的练习题比例的练习题在数学中,比例是一种非常重要的概念。
它可以帮助我们理解和解决许多实际问题,例如商业交易、比较大小和计算比率等。
在本文中,我们将通过一些练习题来巩固对比例的理解和运用。
练习题一:购物比例小明去商店购买水果,他买了3个苹果和5个橙子,共花费18元。
如果苹果和橙子的价格相同,那么一个苹果和一个橙子各自的价格是多少?解答:设苹果和橙子的价格分别为x元。
根据题意,我们可以列出比例关系式:3/x = 5/x = 18/8。
通过求解这个比例关系式,我们可以得到x = 2。
因此,一个苹果和一个橙子各自的价格都是2元。
练习题二:速度比例甲乙两辆车同时从同一地点出发,甲车以每小时60公里的速度向东行驶,乙车以每小时50公里的速度向南行驶。
如果两辆车行驶了4小时后,它们之间的距离是多少?解答:设两辆车之间的距离为d公里。
根据题意,我们可以列出比例关系式:60/50 = d/4。
通过求解这个比例关系式,我们可以得到d = 4.8。
因此,两辆车行驶了4小时后,它们之间的距离是4.8公里。
练习题三:缩小比例一张长方形画纸的长是30厘米,宽是20厘米。
如果将这张画纸的长和宽都缩小为原来的1/3,那么缩小后的长和宽分别是多少?解答:设缩小后的长为x厘米,宽为y厘米。
根据题意,我们可以列出比例关系式:x/30 = y/20 = 1/3。
通过求解这个比例关系式,我们可以得到x = 10,y= 6.67。
因此,缩小后的长是10厘米,宽是6.67厘米。
练习题四:扩大比例一幅矩形画作的长是60厘米,宽是40厘米。
如果将这幅画作的长和宽都扩大为原来的1.5倍,那么扩大后的长和宽分别是多少?解答:设扩大后的长为x厘米,宽为y厘米。
根据题意,我们可以列出比例关系式:x/60 = y/40 = 1.5。
通过求解这个比例关系式,我们可以得到x = 90,y= 60。
因此,扩大后的长是90厘米,宽是60厘米。
通过以上的练习题,我们可以看到比例在解决实际问题中的重要性。
比例练习题及答案
比例练习题及答案一、选择题1. 某班级有男生30人,女生20人,男生和女生的比例是多少?A. 3:2B. 2:3C. 5:4D. 4:52. 如果一个比例的前项是20,后项是5,这个比例的比值是多少?A. 4B. 3C. 2D. 13. 一个比例的比值是2,后项是10,前项是多少?A. 5B. 20C. 15D. 254. 某工厂生产零件,合格品与次品的比例是9:1,如果生产了100个零件,次品有多少个?A. 10B. 1C. 9D. 115. 如果一个比例的前项增加20%,后项不变,比值会如何变化?A. 增加20%B. 增加25%C. 不变D. 减少20%二、填空题6. 比例3:4可以写成分数形式为________。
7. 如果一个比例的前项是15,比值是1/3,那么后项是________。
8. 如果一个比例的后项是24,比值是1/4,那么前项是________。
9. 某班级有学生50人,男生和女生的比例是2:3,那么女生有________人。
10. 某商品原价100元,打8折后的价格是________元。
三、简答题11. 解释什么是比例,并给出一个生活中的例子。
12. 如果一个比例的前项和后项都乘以同一个数,比值会如何变化?13. 一个班级有40个学生,男生和女生的比例是3:2,求男生和女生各有多少人?14. 某公司员工总数为200人,其中技术人员和非技术人员的比例是2:3,求技术人员有多少人?15. 某商品原价200元,现在打7.5折,求打折后的价格。
四、计算题16. 某工厂生产零件,合格品与次品的比例是8:1,如果生产了150个零件,求次品有多少个?17. 某班级有学生60人,男生和女生的比例是5:3,求男生和女生各有多少人?18. 某商品原价300元,现在打6折,求打折后的价格。
19. 某工厂生产零件,合格品与次品的比例是7:3,如果生产了200个零件,求合格品有多少个?20. 某班级有学生70人,男生和女生的比例是4:3,求男生和女生各有多少人?答案:1. A2. B3. B4. B5. A6. 3/47. 458. 69. 3010. 8011. 比例是两个数之间的一种关系,表示两个数之间的相对大小。
比例经典练习题
比例经典练习题1. 小明工资问题小明的工资为每月5000元,他的房贷每月需要支付工资的1/4,生活费需要支付工资的1/5。
请问小明每月的房贷和生活费加起来是多少钱?解答:房贷占工资的比例为1/4,生活费占工资的比例为1/5。
所以,小明每月的房贷为5000 * 1/4 = 1250元,生活费为5000 * 1/5 = 1000元。
房贷和生活费加起来为1250 + 1000 = 2250元。
2. 理发店的比例问题某理发店推出了一项优惠活动,如果一个家庭一次性理发消费达到120元,可以享受9折优惠。
小明一家四口去理发,总消费为300元,请问小明一家享受了多少折扣?解答:小明一家四口的消费总额为300元,每人平均消费为300 / 4 = 75元。
由于消费满足了120元的要求,小明一家可以享受9折优惠。
小明一家的实际支付金额为300 * 0.9 = 270元。
所以,小明一家享受了300 - 270 = 30元的折扣。
3. 图书馆借书问题小明和小红一起去图书馆借书,小明借了12本书,小红借了8本书,小红借的书占他们两人总借书量的比例是多少?解答:小明和小红总共借书的量为12 + 8 = 20本。
小红借的书占总借书量的比例为8 / 20 = 0.4,即40%。
4. 水果篮子问题某商店有3种水果篮子:A篮子有3个苹果和2个橙子,B篮子有5个苹果和4个橙子,C篮子有4个苹果和3个橙子。
小明从这三种篮子中选择一个篮子,结果选择了A篮子,请问小明选择A篮子的概率是多少?解答:从三种篮子中选择一个篮子的概率是1/3。
因为小明选择了A篮子,所以选择A篮子的概率为1/3。
5. 小明的成绩问题小明的数学成绩占总成绩的3/5,他的语文成绩占总成绩的1/4,其他学科成绩占剩下的比例。
请问小明数学和语文两门课的成绩占总成绩的比例是多少?解答:小明数学成绩占总成绩的比例为3/5,语文成绩占总成绩的比例为1/4。
根据题意可知,其他学科成绩占总成绩的比例为1 - 3/5 - 1/4 = 11/20。
比例关系口算练习题
比例关系口算练习题一、简单比例关系练习1. 小明每天步行上学的时间与骑自行车上学的时间的比是3:1,如果他步行上学花了15分钟,求他骑自行车上学需要多少时间。
解:设小明骑自行车上学的时间为x分钟。
根据比例关系:步行时间/骑自行车时间 = 3/1则 15 / x = 3/1通过交叉相乘法得:15 * 1 = 3 * x即 15 = 3x解方程得:x = 5答:小明骑自行车上学需要5分钟。
2. 一辆货车每天能运送2500千克的货物,如果需要运送7000千克的货物,需要多少天才能运送完。
解:设运送完所需的天数为x天。
根据比例关系:已运送的货物量/所需的天数 = 每天能运送的货物量则 7000 / x = 2500解方程得:x = 7/2答:需要3.5天才能运送完。
二、多种比例关系混合练习1. 苹果酱的配方是2:5,杨梅酱的配方是7:10,现在要制作一个混合酱料,使得苹果酱与杨梅酱的比例为3:4,求混合酱料的配方比例。
设混合酱料的配方为x:y。
根据题意可得以下比例关系:2/x = 3/4,5/y = 4/3通过交叉相乘法得:2 * 4 = 3x,5 * 3 = 4y解方程得:x = 8/3,y = 15/4答:混合酱料的配方比例为8:15。
2. 一个长方形花坛的长和宽的比是3:2,现在要增加宽度使得长和宽的比变为4:3,求增加的宽度。
设原来花坛的长为3x,宽为2x。
根据题意可得以下比例关系:(3x + a)/(2x) = 4/3通过交叉相乘法得:3(3x + a) = 4(2x)解方程得:9x + 3a = 8x整理得:a = -x答:增加的宽度为-x,即宽度不需要增加。
三、实际问题应用1. 甲工人一天修3米长的墙需要6小时,乙工人一天修5米长的墙需要多少小时?设乙工人一天修墙的时间为x小时。
根据题意可得以下比例关系:3/6 = 5/x通过交叉相乘法得:3x = 30解方程得:x = 10答:乙工人一天修墙需要10小时。
解比例应用题练习题(精选92道应用题)
解比例应用题1、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?2、甲、乙两地相距240 千米,画在比例尺是1 ∶3000000 的地图上,长度是多少厘米?3、在一幅地图上,用 3 厘米的线段表示实际距离600 千米。
量得甲、乙两地的距离是4.5 厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36 页,可订 40 本,若每本 30 页,可订多少本?5、在一幅比例尺是1: 30000 的地图上,量得东、西两村的距离是12.3 厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120 千米,在一幅比例尺是1:6000000 的地图上,应画多少厘米?7、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?8、在一幅比例尺是1 :4000 的平面图上,量得一块三角形的菜地的底是12 厘米,高是 8 厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2 小时行驶 130 千米。
照这样的速度,从甲地到乙地共行驶5 小时。
甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行 64 千米, 5 小时到达。
如果要 4 小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360 米,30 天可以修完。
如果要提前5 天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120 米,8 天可以修完;如果每天修150 米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12 千米,开工 3 天修了 1.5 千米。
照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120 米,8 天可以修完;如果每天多修30 米,几天可以修完?(用比例方法解)15、小明买4 本同样的练习本用了 4.8 元,138 元可以买多少本这样的练习本 ?(用比例解答)16、工厂有一批煤,计划每天烧2.4 吨,42 天可以烧完。
比例的应用练习题
比例的应用练习题1、一种农药和水按1:200配成药水防治病虫害,现在要配制8040千克,需要药和水各多少千克?2、、一种农药,用药液和水按照1:1500配制而成。
(1)要配制这种农药750.5千克,需要药液和水各多少千克?(2)现在有540千克的水,要配制这种农药,需要多少千克药液?(3)如果现在只有3千克的药液,能配制这种农药多少千克?3、、要配制一种药水,药粉和水的质量比是1:500(1)现在有水2000千克,需要药粉多少千克?(2)要配制这种药水2004千克,需要药粉和水各多少千克?4、一辆汽车3小时行108千米,以同样的速度,5小时行多少千米?5、生产一批零件,每天做72个,15天完成任务。
如果12天完成,每天应多少个零件?6、50千克花生可出油16千克,照这样计算,80吨花生可出油多少千克?7、修一条路,每天修240米,10天完成,如果每天修200米,几天可以完成?8、要运4000吨货物,4天运了400吨。
照这样计算,剩下的还有多少天才运完?9、装订一批书,计划每天装订1800本,40天完成。
实际每天比计划多装订200本,实际几天完成?10、用同样的砖铺地,铺18平方米要用618块砖。
如果铺24平方米,要用多少块砖?11、一间房子要用方砖铺地,用面积9平方分米的方砖,需要96块。
如果改用面积是4平方分米的方砖,需要多少块?12、用边长是15厘米的方砖铺地,需要2000块。
如果改用边长25厘米的方砖来铺,需要多少块?13、一种农药和水按1:200配制成药水,现在要配制8040千克药水,需要农药多少千克?14、在比例尺是1 ∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离是多少千米?15、一个机器零件长3厘米,画在一张比例尺为20:1的图纸上,应画多长?16、一个长方形操场,长240米,宽160米。
把它画在比例尺是1:800的图纸上,长和宽各应画多少厘米?并画出平面图。
六年级比例练习题及答案
六年级比例练习题及答案1. 小明每天骑自行车上学,他每小时骑行12公里。
如果他一共需要骑行2个小时,他总共要骑行多远?答案:小明总共要骑行24公里。
2. 一桶果汁中有3升,小红将桶里的果汁倒进了三个杯子中。
如果每个杯子都装满,每个杯子里有多少升果汁?答案:每个杯子里有1升果汁。
3. 校园里有500名学生,其中男生和女生的比例是3:5。
校园里有多少名男生?答案:校园里有150名男生。
4. 玩具店一套积木由240块积木组成,其中红色积木的数量是黄色积木数量的2倍,绿色积木的数量是红色积木数量的3倍。
红色积木和绿色积木的数量加起来是多少?答案:红色积木有80块,绿色积木有240块,红色积木和绿色积木的数量加起来是320块。
5. 某项工程耗时15天,甲组和乙组合作完成。
如果甲组每天完成工程量的1/3,乙组每天完成工程量的2/3,甲组需要多少天完成该工程?答案:甲组需要45天完成该工程。
6. 一辆车以每小时70公里的速度行驶,需要行驶700公里才能到达目的地。
车辆行驶多久才能到达目的地?答案:车辆需要行驶10小时才能到达目的地。
7. 小明用了120元去超市购买文具。
如果他买了笔和纸张,而纸张的价格是笔的价格的2倍。
他用了多少钱买了笔?答案:小明用了80元买了笔。
8. 一辆火车以每小时80公里的速度行驶,经过5个小时后行驶了多远?答案:火车行驶了400公里。
9. 甲组和乙组共同完成一个工程,两组所用的时间比是3:5。
如果甲组耗时15天,那么乙组耗时多久?答案:乙组耗时25天。
10. 某公司的员工总数是120人,其中男性员工的数量是女性员工数量的3倍,那么公司中女性员工有多少人?答案:公司中女性员工有30人。
总结:通过上述六年级比例练习题,我们可以看到比例概念在日常生活中的应用。
了解和掌握比例的概念对于解决实际问题非常重要。
通过练习题的答案,我们可以巩固对比例的理解,并提高解决问题的能力。
希望同学们通过这些练习题的训练,能够更好地应用比例知识解决实际问题。
小学六年级比例方面练习题
小学六年级比例方面练习题一、简单比例1. 小明和小红一起做数学练习题,小明做了20道题,小红做了30道题。
请写出小明和小红做题的比例。
2. 小华一共骑了5圈自行车,用时20分钟。
请问,小华骑1圈自行车需要花费多少时间?3. 一袋苹果有30个,共重2.1千克。
请问,每个苹果的重量是多少克?二、比例计算1. 相比于5千克的米,7千克的米多了多少?2. 小明一共有20本书,其中3本是数学书。
请问,数学书占据了小明书库的几分之几?3. 一辆卡车每分钟能运输2吨货物,如果3辆卡车一起运输,那么10分钟内能运输多少吨货物?三、比例综合应用1. 一桶油漆可以涂刷45平方米的墙面,小王家要涂刷的墙面共有180平方米,需要准备多少桶油漆?2. 体育课上,小华和小明一起跑步,小华跑2圈,小明跑3圈,他们一共跑了1000米,每圈长200米。
请问,小华和小明各自跑了多少米?3. 小明每天背英语单词,第一天背了5个,以后每天背的单词数比前一天多3个。
已知小明背了30天,那么小明背的英语单词总数是多少?四、实际问题解决某商场正举办“全场五折”活动。
小红想要购买一件原价为300元的衣服,她需要支付多少钱?答案:一、简单比例1. 比例:小明 : 小红 = 20 : 302. 平均每圈用时:20分钟 ÷ 5圈 = 4分钟/圈3. 每个苹果的重量:2.1千克 ÷ 30个 = 70克/个二、比例计算1. 多出的米数:7千克 - 5千克 = 2千克2. 数学书占比:3本 ÷ 20本 × 100% = 15%3. 3辆卡车10分钟内能运输的货物:2 吨/车 × 3车 × 10分钟 = 60吨三、比例综合应用1. 所需桶数:180平方米 ÷ 45平方米/桶 = 4桶2. 小华跑的距离:2圈 × 200米/圈 = 400米;小明跑的距离:3圈 ×200米/圈 = 600米3. 第一天背的单词数是5个,最后一天背的单词数是5 + 3 × (30 - 1) = 92个;总数为:(5 + 92) × 30 ÷ 2 = 1725个四、实际问题解决小红需要支付的钱数:300元 × 50% = 150元通过以上练习题,可以有效提高小学六年级学生在比例方面的应用能力,培养他们解决实际问题的能力。
比例练习题及答案
比例练习题及答案练习题1:如果一个班级有40名学生,其中男生和女生的比例是3:2,求男生和女生各有多少人?答案:首先,将比例的总和计算出来:3 + 2 = 5。
这意味着每5个学生中有3个男生和2个女生。
接下来,将班级总人数40除以5,得到每份的人数:40 ÷ 5 = 8。
因此,男生的人数为3份,即3 × 8 = 24人;女生的人数为2份,即2 × 8 = 16人。
练习题2:如果一个长方形的长是宽的4倍,且周长为40厘米,求长方形的长和宽。
答案:设长方形的宽为x厘米,那么长就是4x厘米。
根据周长公式,2(长 + 宽) = 周长,我们有2(4x + x) = 40。
简化后得到10x = 40,解得x = 4。
所以宽是4厘米,长是4 × 4 = 16厘米。
练习题3:在一个混合比例的溶液中,水和酒精的比例是5:3。
如果溶液总量为450毫升,求水和酒精各有多少毫升?答案:首先,计算比例的总和:5 + 3 = 8。
这意味着每8毫升溶液中有5毫升水和3毫升酒精。
接下来,将总量450毫升除以8,得到每份的毫升数:450 ÷ 8 = 56.25。
因此,水的量为5份,即5 × 56.25 =281.25毫升;酒精的量为3份,即3 × 56.25 = 168.75毫升。
练习题4:如果一个三角形的底边是高的2倍,且面积为120平方厘米,求三角形的底边和高。
答案:设三角形的高为h厘米,那么底边就是2h厘米。
根据三角形面积公式,面积 = (底× 高) ÷ 2,我们有120 = (2h × h) ÷ 2。
简化后得到120 = h²,解得h = √120 = 10.95厘米(四舍五入到小数点后两位)。
所以底边是2 × 10.95 = 21.9厘米。
练习题5:在一个比例尺为1:10000的地图上,如果一个实际距离是5公里,求地图上的距离。
比例的应用练习题
比例的应用练习题一、买菜比例题小明去市场买菜,他买了500克的土豆,花费了5元。
如果按照同样的价格,他要买1千克土豆,需要花费多少元?解析:设小明要花费的金额为x元。
根据比例关系,500克土豆所需金额与1千克土豆所需金额的比例为500:1000,即5:x。
根据比例的性质,比例两边乘以相同的数得到的比例仍然相等,因此有5/500=x/1000,通过交叉相乘得到x=10。
所以,小明要花费10元才能买到1千克的土豆。
二、图书阅读比例题某图书馆共有5000本图书,其中小说类书籍占总数的40%,科学类书籍占总数的25%,其他类书籍占总数的35%。
求小说类书籍的数量。
解析:设小说类书籍的数量为x本。
根据比例关系,小说类书籍的数量与总图书数量5000的比例为x:5000,即40:100。
同样根据比例的性质,可得到40/100=x/5000,通过交叉相乘得到x=2000。
所以,小说类书籍的数量为2000本。
三、地图比例问题地图上的一个城市与实际大小的比例为1:5000,如果在地图上距离两个城市之间的直线距离是8厘米,那么两个城市之间的实际距离是多少?解析:设实际距离为x千米。
根据比例关系,地图上的距离与实际距离的比例为8:5000,即8/5000=x/1。
通过交叉相乘可得到x=0.016。
所以,两个城市之间的实际距离是0.016千米。
四、工作时间比例问题某公司工人A和B同时从事一项工作,工作时间比例为2:3,A工作8小时后完成任务,那么B需要工作多少小时才能完成同样的任务?解析:设B工作的小时数为x小时。
根据比例关系,A和B两人的工作时间比例为2:3,A工作8小时后完成任务,相应地,B工作x小时才能完成任务。
根据比例的性质,可以得到2/8=3/x,通过交叉相乘可得到x=12。
所以,B需要工作12小时才能完成同样的任务。
五、面积比例问题一个正方形花坛的面积是36平方米,如果将花坛的边长缩小为原来的一半,那么新花坛的面积是多少平方米?解析:设新花坛的面积为x平方米。
比例尺练习题
比例尺练习题一、选择题1. 比例尺是表示地图上距离与实际距离之间的比例关系,以下哪个选项是正确的比例尺表示?A. 1:100000B. 1:100000000C. 1:100D. 1:10002. 地图上某段河流的长度为2厘米,实际长度为4000米,该地图的比例尺是:A. 1:200000B. 1:2000C. 1:20000D. 1:2003. 某地图上,1厘米代表实际地面上的100米,那么这张地图的比例尺是:A. 1:10000B. 1:1000C. 1:100D. 1:10二、填空题1. 比例尺是地图上距离与______之间的比例关系。
2. 地图上某段距离为3厘米,实际距离为1500米,这张地图的比例尺是______。
3. 如果地图上某点到另一点的距离为4厘米,实际距离为2000米,那么这张地图的比例尺是______。
三、计算题1. 某地图上,1厘米代表实际地面上的500米。
如果地图上某段距离为5厘米,求这段距离的实际长度。
2. 地图上某段铁路的长度为3.5厘米,实际长度为350公里。
求这张地图的比例尺。
四、应用题1. 某城市地图上,某条街道的长度为2.5厘米,实际长度为2500米。
如果需要在地图上表示一条实际长度为5000米的新街道,这条新街道在地图上应该画多长?2. 某旅游地图上,某景点与另一景点之间的距离为4厘米,实际距离为2公里。
如果需要在地图上表示一个实际距离为10公里的新景点,这个新景点在地图上的距离应该是多少?五、判断题1. 比例尺越大,表示地图上的细节越丰富,但覆盖的地理范围越小。
(对/错)2. 地图上的距离与实际距离成正比,因此比例尺是不变的。
(对/错)3. 比例尺为1:10000的地图比比例尺为1:50000的地图覆盖的地理范围更大。
(对/错)六、简答题1. 解释比例尺的概念,并说明它在地图制作和使用中的重要性。
2. 描述如何根据地图上的距离和实际距离计算比例尺。
七、综合题1. 假设你是一名城市规划师,需要在一张比例尺为1:50000的地图上规划一条新的道路。
用比例解决实际问题(练习题)
用比例解决实际问题(练习题)比例知识应用题1、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?2、一种铁丝长30米,重量是7千克,现有这种铁丝950千克,长多少米?3、用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?4、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入吨海水,可以晒出多少吨盐?5、一块长方形钢板,长与宽比是5:3,已知长是75厘米,宽是多少厘米?6、一种农药,药液与水重量的比是1:1000。
①30克药液要加水多少克?②如果用4000克水,要用多少克药液?7、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?8、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?9、XXX用积蓄的钱买铅笔,买9分钱一支的正好买8支,买6分钱一支的可以买多少支?10、工人徒弟制造一批器零件,每一个零件所用的时间由原来的8分钟削减到2.5分钟,曩昔每天生产这类零件60个,现在每天能生产多少个?11、一间房子要用砖铺地,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?12、一艘轮船3小时航行80千米,照这样的速度航行200千米需要多少小时?13、一艘轮船从甲地开往乙地每小时航行20千米,15小时到达,从乙地返回甲地每小时航行25千为,需要多少小时?14、用一批纸装成同样大小的练本,如果每本18而,可装订200本,如果每本16而,可以装订多少本?15、一间房五铺地砖,用面只是9平方分米的方砖需要96块,假如改用面积是4平方分米的方砖,需要多少块?16、农场收小麦,前3天收割了16公顷,照这样计算,8天可以收割多少公顷小麦?17、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米?18、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?。
小学数学练习题求比例
小学数学练习题求比例1. 小明有20个苹果,小华有30个苹果。
求小华苹果数量与小明苹果数量的比例。
解答:小华苹果数量与小明苹果数量的比例为30:20,也可以简化为3:2。
2. 一桶水果中,有8个苹果、4个橘子和2个香蕉。
求苹果、橘子和香蕉的比例。
解答:苹果、橘子和香蕉的比例为8:4:2,也可以简化为2:1:1。
3. 一辆汽车以每小时60公里的速度行驶,行驶2个小时后,行驶的总距离是多少?解答:汽车以每小时60公里的速度行驶,行驶2个小时后,行驶的总距离为60公里/小时 × 2小时 = 120公里。
4. 小明每天骑自行车去学校,上学用时30分钟。
如果他以相同的速度骑自行车回家,回家用时40分钟。
求小明上学和回家的距离比例。
解答:小明上学用时30分钟,回家用时40分钟。
根据时间和速度的关系,可以推断上学和回家的距离比例为30分钟:40分钟,也可以简化为3:4。
5. 一辆汽车以每小时80公里的速度行驶,行驶4个小时后,行驶的总距离是多少?解答:汽车以每小时80公里的速度行驶,行驶4个小时后,行驶的总距离为80公里/小时 × 4小时 = 320公里。
6. 一箱苹果有40个,小明吃了其中的三分之一,小红吃了其中的四分之一,剩下的苹果数量是多少?解答:一箱苹果有40个,小明吃了其中的三分之一(40/3 = 13.33个),小红吃了其中的四分之一(40/4 = 10个)。
剩下的苹果数量为40 - 13.33 - 10 = 16.67个(约等于17个)。
7. 甲、乙、丙三人的年龄比例为2:3:4,甲比丙年龄小6岁,求三人的年龄。
解答:假设甲的年龄为2x岁,则乙的年龄为3x岁,丙的年龄为4x岁。
根据题目条件,2x = 4x - 6。
解方程得到x = 3。
甲的年龄为2x = 2(3) = 6岁,乙的年龄为3x = 3(3) = 9岁,丙的年龄为4x = 4(3) = 12岁。
8. 天气预报说今天白天的降雨概率是50%。
六年级数学比例练习题(打印版)
六年级数学比例练习题(打印版)### 六年级数学比例练习题题目一:简单比例1. 如果 3 个苹果等于 6 个梨的重量,那么 1 个苹果的重量是多少?2. 已知 4 个篮球的重量等于 5 个足球的重量,求 1 个篮球的重量。
3. 某班级有 30 名学生,其中男生和女生的比例是 3:2,求男生和女生各有多少人?题目二:比例计算1. 一个长方形的长是宽的两倍,如果长是 8 厘米,求宽是多少厘米?2. 一个比例尺为 1:2000 的地图上,4 厘米代表实际距离多少米?3. 一个比例为 1:50 的模型飞机,如果模型的翼展是 20 厘米,求实际飞机的翼展。
题目三:比例应用1. 一个班级有 50 名学生,其中 1/3 是女生,求女生有多少人?2. 一个班级有 60 名学生,其中 1/4 是男生,求男生有多少人?3. 一个班级有 40 名学生,其中 1/5 是转学生,求转学生有多少人?题目四:反比例问题1. 一个工厂每小时可以生产 50 个产品,如果需要生产 1000 个产品,需要多少小时?2. 一个班级有 20 名学生,如果每组有 5 名学生,可以分成多少组?3. 一个班级有 30 名学生,如果每组有 6 名学生,可以分成多少组?题目五:综合题1. 一个班级有 40 名学生,男生和女生的比例是 5:3,求男生和女生各有多少人?2. 一个长方形的长是宽的三倍,如果长是 12 厘米,求宽是多少厘米?3. 一个比例为 1:100 的模型车,如果模型的长度是 15 厘米,求实际车的长度。
答案提示:- 题目一:1. 1 个苹果的重量是 2 个梨的重量。
2. 1 个篮球的重量是 4/5 个足球的重量。
3. 男生 18 人,女生 12 人。
- 题目二:1. 宽是 4 厘米。
2. 实际距离是 80 米。
3. 实际飞机的翼展是 1 米。
- 题目三:1. 女生有 20 人。
2. 男生有 15 人。
3. 转学生有 8 人。
- 题目四:1. 需要 20 小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级比例练习题
重点及难点:
1、平均数的概念。
例: 甲、乙、丙三个数的平均数是20。
甲、乙、丙三个数的比是3︰2︰1。
甲、乙、丙三个数分别是()、()、()。
2、求比值与化简比的区别,比值与比分别用哪些形式表示。
例:求比值 24∶32 56∶1.4 0.15∶
2.5 0.8 ∶1.2
化简比 128︰34 0.54︰
2.7 0.4米︰60厘米
3、找准应用题中的单位一,是求部分还是求整体,是用乘法还是用除法求解。
4、只要是牵扯到求比值的问题,就将其化作最简比(如果题目不做特殊要求的话)
例:把0.85吨∶170千克化成最简单的整数比是()
5、两个带有单位的数相比,比值一定不会带有单位的。
例:判对错50米:5米=10米()
6、分数除法以及分数乘法的意义分别是什么。
(写在下面)
2010年11月22日
比例部分检测题
一、填空题(共12小题,认真书写)
1、甲数是乙数的4/5,甲数与乙数的比是()。
2、2/7÷3/5的意义是( ),
7/11⨯5/6的意义是()。
3、甲数除以乙数的商是0.75,甲乙两数的最简整数比是()。
4、3:9=()÷27=24÷()=()。
5、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是
(),比值是(),比值表示(单位时间所走过的路程),这辆汽车行驶的时间和路程的比是(),比值是(),比值表示()。
6、一个直角三角形的两个锐角度数的比是2︰1,这两个锐角分别是()度,()度。
7、行同一段路,甲用12分钟,乙用18分钟,甲用的时间与乙用的时间的最简比是
( ),甲的速度与乙的速度的比是( ∶ ).
8、一项工程,甲队单独做8天完成,乙队单独做12天完成,甲乙两队单独完成这项工程的时间比是():(),每天完成的工作量的比是():()。
(要化成最简比)
9、甲数是8/5 ,乙数是2.5,甲数与乙数的比值是( ),甲数与乙数的最简整数比是( ∶ );数A是数B的3.5倍,数B与数A的比值是( ),数B与数A的最简比是( )。
10、用72厘米铁丝围成长与宽的比是5∶4的长方形,.长方形的面积是( )平方厘米。
11、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。
如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是()。
12、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为()。
二、求比值(共4小题,不能直接写结果)
48∶32 5∶1.4 0.15∶
2.5 2/3:4/5
三、化简比(共3小题,不能直接写结果)
128︰64 0.54︰2.7 4
米︰60厘米
四、判断(共10小题,有理有据)
1、50米:5米=10米…………………………………………………()
2、一杯盐水,盐占盐水的1/10 ,盐和盐水的比是1∶9…………………()
3、4:3的后项加上6,要想比值不变,前项也要加上8。
…………()
4、2/5既可以看作比值,也可以看作比。
………………………………()
5、一场足球比赛的比分是2:0,因此,比的后项可以是0。
………()
6、0.8:0.4化简比的结果是2:1.…………………………………………()
7、六一班有男生25人,女生24人,女生和全班人数的比是24∶25()
8、苹果和梨的质量比是8:5,苹果的质量是梨的8/5。
……………()
9、六(1)班男生是女生的1.2倍,男生和女生的比是5:6。
()。
10、小强身高1m,爸爸身高170cm,爸爸和小强身高的比是17:10。
()五、解决问题(共10小题,务必写解写答)
1、男工与女工的比是5︰7,女比男多4人,男、女各多少人?
2、一个三角形的内角度数的比是2︰1︰1,按角分这是个什么三角形?
3、一个长方形周长是120cm,长与宽的比是1︰4。
长方形的长、宽各是多少厘米?面积是多少?
4、小明和小华存钱数的比是3:7,如果小明再存入400元,就和小华的存钱一样多。
小明原来存了多少钱?
5、粮店有大米125袋,共重5125千克.求每袋大米的重量及大米的总重量与大米的袋数的比。
6、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。
求大、小瓶里各装油多少千克?
7、一瓶盐水,盐和水的重量比是1 :23,如果再放入60克水,这时盐与水的重量比是1 :27,原来瓶内盐重多少千克?
8、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。
已知三种颜色的球共175个,红、黄、白球分别有多少个?
9、小明读一本书,已读的和末读的页数比是1 :5。
如果再读30页,则已读的和末读的页数之比为3 :5。
这本书共有多少页?
10、运输队要运一批货物,已经运走的和剩下的比是1 :4。
如果再运走4吨,那么运走的和剩下的比为3 :7。
这批货物共多少吨?。