【配套K12】2018年高考数学二轮复习第1部分重点强化专题专题3概率与统计突破点6古典概型与几何概

合集下载

(完整版)2018年高考数学总复习概率及其计算

(完整版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图第一节概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式.3.掌握古典概型及其概率计算公式。

4。

了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义。

命题趋势探究1。

本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。

二、概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。

对于必然事件A ,;对于不可能事件A ,=0。

三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间.四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ。

()P A =AμμΩ. 五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。

事件A 与事件B 互斥,则()()()P A B P A P B =+ 。

2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。

()()1P A p A =- .3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。

18题高考数学概率与统计知识点(K12教育文档)

18题高考数学概率与统计知识点(K12教育文档)

(完整版)18题高考数学概率与统计知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)18题高考数学概率与统计知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)18题高考数学概率与统计知识点(word版可编辑修改)的全部内容。

高考数学第18题(概率与统计)1、求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A )=)()(I card A card =n m;等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B )=P(A )+P (B ); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1。

(3)相互独立事件同时发生的概率:P(A ·B )=P (A )·P(B ); 特例:独立重复试验的概率:Pn(k )=kn k kn p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P ]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种。

第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复。

2018届高考数学二轮复习第二讲大题考法——概率与统计课件(全国通用)

2018届高考数学二轮复习第二讲大题考法——概率与统计课件(全国通用)
第二讲 大题考法——概率与统计
主要考查随机事件的概率、 古典概型、频率分布直方 图、茎叶图等的应用.
[典例感悟]
[典例1] (2016· 全国卷Ⅰ)某公司计划购买1台机器,该种机 器使用三年后即被淘汰.机器有一易损零件,在购进机器时, 可以额外购买这种零件作为备件,每个200元.在机器使用期 间,如果备件不足再购买,则每个500元.现需决策在购买机器 时应同时购买几个易损零件,为此搜集并整理了100台这种机器 在三年使用期内更换的易损零件数,得下面柱状图:
主要考查线性回归方程的求解 与应用.
[典例感悟]
[典例2]
(2016· 全国卷Ⅲ)下图是我国2008年至2014年生
活垃圾无害化处理量(单位:亿吨)的折线图.
(1)由折线图看出,可用线性回归模型拟合y与t的关系, 请用相关系数加以说明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016 年我国生活垃圾无害化处理量.
i= 1
ti- t yi- y
i= 1
n
^ b t中斜率和截距的最小二乘估计公式分别为^ b=

ti- t 2
i= 1
n
^ a = y -^ b t.
[解]
7 2
(1)由折线图中的数据和附注中的参考数据得 t =4,
i=1
(ti- t ) =28,
7 7
i=1
yi- y =0.55, (ti- t )(yi- y )=
参考数据: yi=9.32, tiyi=40.17,
i= 1 i= 1 7 7
yi- y 2=0.55,
i= 1
7
7≈2.646.
参考公式:相关系数r=
ti- t yi- y

专题03 统计与概率-高考数学备考关键问题指导高端精品(2018版)(原卷版)

专题03 统计与概率-高考数学备考关键问题指导高端精品(2018版)(原卷版)

专题三统计与概率【高考考场实情】统计与概率在高考考查中一般有一道选择题或填空题、一道解答题,共2道题,分值为17分.高考对这一部分的考查难度相对稳定,选择、填空题为容易题, 解答题为中等难度题.选择题在前六题的位置,填空题在前二题的位置,解答题在前三题的位置.选择、填空题常考古典概型、几何概型(理科时而考查对立事件、相互独立事件概率及独立重复试验的概率)。

【考查重点难点】解答题以频率分布表、频率分布直方图、柱形图、折线图、茎叶图等五个样本频率分布图表为载体,理科侧重考查随机变量的分布列及期望,文科侧重考查样本数字特征的应用,突出了对应用意识、数据处理能力及创新能力的考查.下面对学生存在的主要问题进行剖析,并提出相应的教学对策.【存在问题分析】1.概念理解不透【指点迷津】本专题中,概念理解不到位的有事件、模型的判断等;容易混淆的概念有互斥事件与对立事件、超几何分布与二项分布、二项展开式的通项公式与次独立重复试验中事件发生次的概率等.【例1】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性,则在另外2只中任取l只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)表示依方案乙所需化验次数,求的期望.2.审题析题不到位【指点迷津】审题析题不清是本专题解答错误的主要原因,主要包括题意不清,茫然作答;阅读肤浅,丢失信息;条件欠缺,鲁莽下笔;图形不准,缺乏严密;方向不明,目标模糊等情况.审题不清的最主要原因在于学生的阅读理解能力欠缺.【例2】(2017年全国卷Ⅰ理19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(Ⅰ)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;(Ⅱ)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.12 9.96 9.9610.019.92 9.9810.0410.26 9.9110.1310.029.2210.0410.059.95经计算得,,其中为抽取的第个零件的尺寸,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则,,.3.读图识图能力弱【指点迷津】学生面对一堆数据无从下手,主要原因是对数据、图表的直观印象和积累储备的知识经验不够;没有形成“用数据说话”的统计观念;对抽象数据的数字特征理解不到位.【例3】(2016年全国卷Ⅲ理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为,点表示四月的平均最低气温约为.下面叙述不正确的是()(A)各月的平均最低气温都在以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于的月份有5个4.解题规X性较差【指点迷津】涉及本专题内容的考查,学生失误和失分最多的是会而不对、对而不全和全而不准,如不能用字母表示事件,导致在利用简单事件表示复杂事件书写混乱;解答过程缺失关键步骤,丢三落四,导致丢分等.【例4】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设表示取到的豆沙粽个数,求X的分布列与数学期望.5. 运算能力弱【指点迷津】运算求解能力主要是指会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.本专题中,学生运算能力弱主要体现在不能根据问题的条件寻找与设计合理、简捷的运算途径,不能根据要求对数据进行估计和近似计算.【例5】(2017年全国卷Ⅰ文19)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16零件尺寸9.95 10.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,,,,其中为抽取的第个零件的尺寸,.(Ⅰ)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(Ⅱ)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本的相关系数..【解决问题对策】1.关注统计图表的教学【指点迷津】高考试卷的解答题往往以频率分布表、频率分布直方图、柱形图、折线图、茎叶图五个样本频率分布图表为载体,理科侧重考查随机变量的分布列及期望,文科侧重考查样本数字特征的应用,突出了对应用意识、数据处理能力及创新能力的考查.复习过程中,应充分利用五个样本频率分布图表,让学生会从图表中读取有用数据,或根据问题需要选择合适图表,依据统计学中的方法对数据进行分析,作出合理的决策.【例6】【2015年全国卷Ⅱ文、理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关2.关注样本数字特征的含义【指点迷津】在复习中,应关注众数、中位数、平均数(期望)、方差与标准差有的含义,并能根据解决问题的需要选择合理的数字特征说明问题.【例7】【2014年课标卷Ⅱ文19】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.3. 厘清事件及其概率【指点迷津】复习过程中,应厘清事件间的关系,准确计算相关事件的概率.特别要求学生能将复杂事件进行分解,先分解为互斥事件,每个互斥事件又分解为两个相互独立事件的积事件.【例8】(2013年全国卷Ⅰ理19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为.如果,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.4.关注概率模型的识别与应用【指点迷津】复习过程中,应关注概率模型的识别与应用,一定要注意弄清题意,找出题中的关键字词,厘清各种概率模型及适用X围.如超几何分布和二项分布是教材中两个重要概率分布,二项分布与超几何分布的区别为,二项分布是有放回的抽样,每做一次事件,事件A发生的概率是相同的;超几何分布是不放回的抽样,每做一次事件,事件A发生的概率是不相同的.【例9】某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:,,,,,得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设为合格产品的数量,求的分布列和数学期望;(Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率.5.关注用样本估计总体的思想分析解决问题【指点迷津】复习过程中,应让学生掌握,为了考察一个总体的情况,在统计中通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况.这种估计大体分为两类:用样本的频率分布估计总体的分布、用样本的数字特征估计总体的数字特征.其次,“预测与决策”与人们的生活休戚相关.随着社会的不断进步,人们对许多实际问题会有多种解决方案,但哪种方案最有利于解决问题,需要进行科学的决策.而通过期望、方差等的计算,并进行大小比较,就是其中的一种科学预测与决策的手段.【例10】【2016年课标Ⅰ理19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(Ⅰ)求的分布列;(Ⅱ)若要求,确定的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?6.关注“冷门”知识的复习【指点迷津】高考是对高中阶段学习结果的大检阅,统计与概率的考查,在突出核心知识考查的同时,也关注知识点的覆盖面.因此,在复习教学中,要全面检索高中阶段的所有知识,特别是不能忽视对所谓的“冷门知识”的复习,如正态分布、条件概率、相关系数、残差图、拟合效果等.【例11】【2015年课标Ⅰ理18】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量()数据作了初步处理,得到下面的散点图及一些统计量的值.46.6 56.3 6.8 289.8 1.6 1469 108.8表中,(Ⅰ)根据散点图判断,y与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;(Ⅲ)以知这种产品的年利率与、的关系为.根据(Ⅱ)的结果回答下列问题:(i)年宣传费时,年销售量及年利润的预报值是多少?(ii)年宣传费为何值时,年利率的预报值最大?附:对于一组数据,,其回归直线的斜率和截距的最小二乘估计分别为,.7.加强阅读理解能力培养与训练【指点迷津】统计与概率进一步强化应用意识的考查,已成高考命题改革的必然趋势,试卷试题文字阅读量的逐年增加,或成高考试卷的发展趋势.复习中,应规X教学的阅读指导.应该呈现读题提取关键信息、析题形成解题思路、解题示X规X表达、反思积淀解题经验的“四步曲”完整过程,才能充分发挥解题教学的效益.其次,加强平时的阅读训练.需要适当增加平时作业习题的阅读量,尤其是应用性试题的读题训练,提高学生的阅读理解能力及应试心态.【例12】【2014年课标Ⅰ理18】从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求.附:≈12.2.若~,则=0.6826,=0.9544.8.规X答题表达形式【指点迷津】规X答题,一方面,思考问题要规X.也就是从知识的源头出发,弄清知识的来龙去脉.知识是怎么要求的,就怎么想、怎么用、怎么写,不能模棱两可,要会运用知识进行思考;另一方面,书写要规X.书写规X是一个重要的高考增分点,这一点应引起足够重视.如解题中应注意用字母表示事件,注意作答等.【例13】(2015年全国卷Ⅱ理18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【新题好题训练】1.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为,两个红绿灯路口都遇到红灯的概率为,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为()A. B. C. D.2.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:根据表中数据得,断定秃发与患有心脏病有关,那么这种判断出错的可能性为A. 0.1B. 0.05C. 0.01D. 0.0013.从某工厂的一个车间抽取某种产品件,产品尺寸(单位:)落在各个小组的频数分布如下表:数据分组频数(1)根据频数分布表,求该产品尺寸落在的概率;(2)求这件产品尺寸的样本平均数;(同一组中的数据用该组区间的中点值作代表)(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值,近似为样本方差,经过计算得,利用该正态分布,求.附:①若随机变量服从正态分布,则,;②.4.为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()(指数越小,空气质量越好)统计表.根据表中数据回答下列问题:(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;(2)从(1)中抽出的6个样本数据中随机抽取2个,求这2个数据之差的绝对值小于30的概率;(3)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为(含50)时,空气质量级别为一级,求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?5.近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:愿意接受外派人数不愿意接受外派人数合计80后20 20 4090后40 20 60合计60 40 100(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组①求这12 人中,80后组90后组愿意接受外派的人数各有多少?②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为,在90 后组中选到愿意接受外派的人数为,求的概率.参考数据:参考公式:,其中6.某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。

高考数学第二轮专题复习----概论统计专题

高考数学第二轮专题复习----概论统计专题

《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2003年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2003年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2003年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2004重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。

[配套K12]2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第十四章

[配套K12]2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第十四章

第十四章 概率考点1 随机事件及其概率1.(2015·广东,4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.1 B.1121 C.1021 D.5211.C [从袋中任取2个球共有C 215=105种取法,其中恰好1个白球1个红球共有C 110C 15=50种取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.]2.(2014·新课标全国Ⅰ,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18 B.58 C.38 D.782.D [由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P =24-1-124=1416=78,故选D.] 考点2 古典概型与几何概型1.(2016·全国Ⅰ,4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.341.B [如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040 =12,故选B.]2.(2016·全国Ⅱ,10)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2mn2.C [由题意得:(x i ,y i )(i =1,2,…,n )在如图所示正方形中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=m n ,∴π=4mn,故选C.]3.(2015·陕西,11)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π3.B [由|z |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为:P =14π×12-12×12π×12=π4-12π=14-12π.]4.(2014·陕西,6)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15 B.25 C.35 D.454.C [从这5个点中任取2个,有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有C 24=6种,因此所求概率P =610 =35.故选C.]5.(2014·湖北,7)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.785.D [由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×22×22=74,则所求的概率P =742=78.选D.]6.(2016·江苏,7)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.6.56 [基本事件共有36个.如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中满足点数之和小于10的有30个.故所求概率为P =3036=56.] 7.(2016·山东,14)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.7.34 [由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.]8.(2015·江苏,5)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 8.56 [这两只球颜色相同的概率为16,故两只球颜色不同的概率为1-16=56.]9.(2015·福建,13) 如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.9.512 [由几何概型的概率公式:P =1-∫21x 2d x 4=512.] 10.(2014·福建,14)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为______.10.2e 2 [因为函数y =e x与函数y =ln x 互为反函数,其图象关于直线y =x 对称,又因为函数y =e x与直线y =e 的交点坐标为(1,e),所以阴影部分的面积为2(e×1-∫10e xd x )=2e-2e x⎪⎪⎪1=2e -(2e -2)=2,由几何概型的概率计算公式,得所求的概率P =S 阴影S 正方形=2e 2.]11.(2014·江苏,4)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.11.13 [从1,2,3,6中随机取2个数,共有6种不同的取法,其中所取2个数的乘积是6的有1,6和2,3,共2种,故所求概率是26=13.]12.(2014·广东,11)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.12.16 [十个数中任取七个不同的数共有C 710种情况,七个数的中位数为6,那么6只有处在中间位置,有C 36种情况,于是所求概率P =C 36C 710=16.]13.(2014·江西,12)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.13.12 [从10件产品中任取4件共有C 410=210种不同的取法,因为10件产品中有7件正品、3件次品,所以从中任取4件恰好取到1件次品共有C 13C 37=105种不同的取法,故所求的概率为P =105210=12.]14.(2015·北京,16)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1) 求甲的康复时间不少于14天的概率;(2) 如果a =25,求甲的康复时间比乙的康复时间长的概率;(3) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)14. 设事件A i 为“甲是A 组的第i 个人”,事件B i 为“乙是B 组的第i 个人”,i =1,2,…,7.由题意可知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6.因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049.(3)a =11或a =18.考点3 离散型随机变量的分布列、均值与方差1.(2014·浙江,9)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(b )放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2).则( ) A.p 1>p 2,E (ξ1)<E (ξ2) B.p 1<p 2,E (ξ1)>E (ξ2)C.p 1>p 2,E (ξ1)>E (ξ2) D.p 1<p 2,E (ξ1)<E (ξ2)1.A [法一 (特值法) 取m =n =3进行计算、比较即可.法二 (标准解法)从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P (ξ=0)=nm +n=P (ξ1=1),P (ξ=1)=mm +n=P (ξ1=2),所以E (ξ1)=1·P (ξ1=1)+2·P(ξ1=2)=mm+n+1,所以p1=E(ξ1)2=2m+n2(m+n);从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P(η=0)=C2nC2m+n=P(ξ2=1),P(η=1)=C1n C1mC2m+n=P(ξ2=2),P(η=2)=C2mC2m+n=P(ξ2=3),所以E(ξ2)=1·P(ξ2=1)+2P(ξ2=2)+3P(ξ2=3)=2mm+n +1,所以p2=E(ξ2)3=3m+n3(m+n),所以p1>p2,E(ξ1)<E(ξ2),故选A.]2.(2016·全国Ⅰ,19)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?2.(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04;所以X的分布列为(2)由(1)知P(3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当n =19时,EY =19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n =20时,EY =20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.3.(2016·全国Ⅱ,18)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(1)(2)若续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.3.解 (1)设A 表示事件:“续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件:“续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ), 故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为E (X )=0.85a 2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2016·山东,19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).4.(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +AB -CD +ABC -D +ABCD -. 由事件的独立性与互斥性,P (E )=P (ABCD )+P (A -BCD )+P (A B -CD )+P (AB C -D )+P (ABC D -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -)=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512.P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望EX =0×144+1×72+2×144+3×12+4×12+6×4=6.5.(2015·安徽,17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望). 5.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A . P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400.P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为E (X )=200×110+300×310+400×10=350.6.(2015·福建,16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 6.解 (1)设“当天小王的该银行卡被锁定”的事件为A ,则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为所以E (X )=1×16+2×16+3×3=2.7.(2015·重庆,17)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.7.解 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35(个).8.(2015·天津,16)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 8.解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635.所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.9.(2015·山东,19)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分. (1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ).9.解 (1)个位数是5的“三位递增数”有125,135,145,235,245,345; (2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142,所以X 的分布列为则E (X )=0×23+(-1)×114+1×42=21.10.(2015·湖南,18)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.10.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 12A 与1A A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 12A +1A A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 12A +1A A 2)=P (A 12A )+P (1A A 2)=P (A 1)P (2A )+P (1A )P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125,P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×5=5.11.(2014·天津,16)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 11.解 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则 P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以,随机变量X 的分布列是随机变量X 的数学期望E (X )=0×6+1×2+2×10+3×30=5.12.(2014·四川,17)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 12.解 (1)X 可能的取值为:10,20,100,-200.根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38,P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-121=38,P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-120=18,P (X =-200)=C 03×⎝ ⎛⎭⎪⎫120×⎝ ⎛⎭⎪⎫1-123=18.所以X 的分布列为(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)X 的数学期望为E (X )=10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负,因此,多次游戏之后分数减少的可能性更大.13.(2014·山东,18)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.13.解 (1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有一次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3)=P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15=310, 所以小明两次回球的落点中恰有一次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ的分布列为:所以数学期望E (ξ)=0×30+1×6+2×5+3×15+4×30+6×10=30.14.(2014·重庆,18)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.) 14.解 (1)由古典概型中的概率计算公式知所求概率为p =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384,P (X =3)=C 22C 17C 39=112, 故X 的分布列为从而E (X )=1×1742+2×4384+3×12=28.15.(2014·江西,21)随机将1,2,…,2n (n ∈N *,n ≥2)这2n 个连续正整数分成A ,B 两组,每组n 个数.A 组最小数为a 1,最大数为a 2;B 组最小数为b 1,最大数为b 2,记ξ=a 2-a 1,η=b 2-b 1.(1)当n =3时,求ξ的分布列和数学期望;(2)令C 表示事件“ξ与η的取值恰好相等”,求事件C 发生的概率P (C );(3)对(2)中的事件C ,C 表示C 的对立事件,判断P (C )和P (C )的大小关系,并说明理由. 15.解 (1)当n =3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有C 36=20种,所以ξ的分布列为E (ξ)=2×15+3×310+4×10+5×5=2.(2)ξ和η恰好相等的所有可能取值为:n -1,n ,n +1,…,2n -2. 又ξ和η恰好相等且等于n -1时,不同的分组方法有2种; ξ和η恰好相等且等于n 时,不同的分组方法有2种;ξ和η恰好相等且等于n +k (k =1,2,…,n -2)(n ≥3)时,不同的分组方法有2C k2k 种; 所以当n =2时,P (C )=46=23,当n ≥3时,P (C )=22122(2C )Cn k k k n n-=+∑.(3)由(2)知当n =2时,P (C )=13,因此P (C )>P (C ).而当n ≥3时,P (C )<P (C ),理由如下:P (C )<P (C )等价于2214(2C )n k k k -=+∑<2C nn .①用数学归纳法来证明:1°当n =3时,①式左边=4(2+12C )=4(2+2)=16, ①右边=36C =20,所以①式成立.2°假设n =m (m ≥3)时①式成立,22214(2C)C m k m k m k -=+<∑即成立,那么,当n=m +1时, 左边=12214(2C)m kkk +-=+∑21122(1)22(1)14(2C )4C <C +4C m k m m m k m m m k -----==++∑ =(2m )!m !m !+4·(2m -2)!(m -1)!(m -1)! =(m +1)2(2m )(2m -2)!(4m -1)(m +1)!(m +1)!<(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +12(m +1)·2(m +1)m (2m +1)(2m -1)<C m +12(m +1)=右边.即当n =m +1时①式也成立.综合1°,2°得:对于n ≥3的所有正整数,都有P (C )<P (C )成立.16.(2014·安徽,17)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).16.解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)·P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为E (X )=2×59+3×29+4×81+5×81=81.17.(2014·福建,18)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (ⅰ)顾客所获的奖励额为60元的概率; (ⅱ)顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.17.解 (1)设顾客所获的奖励额为X .(ⅰ)依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.(ⅱ)依题意,得X 的所有可能取值为20,60.P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×2+60×2=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×3+100×6=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×3+80×6=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.18.(2014·辽宁,18)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).18.解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216.分布列为因为X~B(3,0.6)0.6)=0.72.考点4 二项分布与正态分布1.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.3121.A [该同学通过测试的概率为p=0.6×0.6+C12×0.4×0.62=0.648.]2.(2015·湖南,7)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4.A.2 386B.2 718C.3 413D.4 7722.C [由X ~N (0,1)知,P (-1<X ≤1)=0.682 6, ∴P (0≤X ≤1)=12×0.682 6=0.341 3,故S ≈0.341 3.∴落在阴影部分中点的个数x 估计值为x 10 000=S1(古典概型),∴x =10 000×0.341 3=3 413,故选C.]3.(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74% 3.B [由题意,知P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=95.44%-68.26%2=13.59%.]4.(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.454.A [由条件概率可得所求概率为0.60.75=0.8,故选A.]5.(2016·四川,12)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.5.32 [由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为P =1-12×12=34,∵2次独立试验成功次数X 满足二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,则E (X )=2×34=32.]6.(2014·陕西,19)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 6.解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6元/kg ”,由题设知P (A )=0.5,P (B )=0.4,因为利润=产量×市场价格-成本, 所以X 所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000, 300×10-1 000=2 000,300×6-1 000=800.P (X =4 000)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,P (X =2 000)=P (A )P (B )+P (A )P (B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2,所以X 的分布列为(2)设C i 表示事件“第i , 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4 000)+P (X =2 000)=0.3+0.5=0.8(i =1,2,3),3季的利润均不少于2 000元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季的利润不少于2000元的概率为P (C 1C 2C 3)+P (C 1C 2C 3)+P (C 1C 2C 3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.7.(2014·新课标全国Ⅰ,18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.(ⅰ)利用该正态分布,求P(187.8<Z<212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.7.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x-=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(ⅰ)由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.。

高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验

高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验

专题限时集训(七) 回归分析、独立性检验(对应学生用书第91页)(限时:40分钟)1.(2017·某某一模)下列说法错误的是( )【导学号:07804050】A .回归直线过样本点的中心(x ,y )B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小D .在回归直线方程y ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^就增加0.2个单位C [根据相关定义知选项A ,B ,D 均正确;选项C 中,对分类变量X 与Y ,随机变量K 2的观测值k 越大,对判断“X 与Y 有关系”的把握程度越大,故C 错误.选C.]2.(2017·某某名校联考)利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 和Y 有关系”的可信度.如果k >3.841,那么有把握认为“X 和Y 有关系”的百分比为C .99.5%D .95%D [由图表中数据可得,当k >3.841时,有0.05的几率说明这两个变量之间的关系是不可信的,即有1-0.05=0.95的几率,也就是有95%的把握认为变量之间有关系,故选D.]3.(2017·某某七市联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x 和销售额y 进行统计,得到统计数据如下表(单位:万元):广告费x 2 3 4 5 6 销售额y2941505971由上表可得回归方程为y ^=10.2x +a ^,据此模型,预测广告费为10万元时销售额约为( )【导学号:07804051】A .101.2万元B .108.8万元C .111.2万元D .118.2万元C [根据统计数据表,可得x =15×(2+3+4+5+6)=4,y =15×(29+41+50+59+71)=50,而回归直线y ^=10.2x +a ^经过样本点的中心(4,50),∴50=10.2×4+a ^,解得a ^=9.2,∴回归方程为y ^=10.2x +9.2,∴当x =10时,y ^=10.2×10+9.2=111.2,故选C.]4.(2017·某某二模)现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如图7­7所示的两个等高堆积条形图.图7­7根据这两幅图中的信息,下列哪个统计结论是不正确的( ) A .样本中的女生数量多于男生数量B .样本中有理科意愿的学生数量多于有文科意愿的学生数量C .样本中的男生偏爱理科D .样本中的女生偏爱文科D [由图2知,样本中的女生数量多于男生数量,样本中的男生、女生均偏爱理科;由图1知,样本中有理科意愿的学生数量多于有文科意愿的学生数量,故选D.] 5.(2016·某某模拟)对四组不同数据进行统计,分别获得以下散点图,如果对它们的相关系数进行比较,下列结论中正确的是( )图7­8(1)图7­8(2)图7­8(3)图7­8(4)A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3A [由给出的四组数据的散点图可以看出,图(1)和图(3)是正相关,相关系数大于0,图(2)和图(4)是负相关,相关系数小于0,图(1)和图(2)的点相对更加集中,所以相关性要强,所有r 1接近于1,r 2接近于-1,由此可得r 2<r 4<r 3<r 1.故选A.] 6.(2017·某某一模)设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kgD [因为回归直线方程y ^=0.85x -85.71中x 的系数为0.85>0,因此y 与x 具有正线性相关关系,所以选项A 正确;由最小二乘法及回归直线方程的求解可知回归直线过样本点的中心(x ,y ),所以选项B 正确;由于用最小二乘法得到的回归直线方程是估计值,而不是具体值,若该中学某高中女生身高增加 1 cm ,则其体重约增加0.85 kg ,所以选项C 正确,选项D 不正确.]7.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是( )ABCDC[当残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明拟合精度越好,拟合效果越好,对比4个残差图,易知选项C的图对应的带状区域的宽度越窄.故选C.]8.(2017·某某南城一中、高安中学第九校3月联考)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线合计愿生452065不愿生132235合计5842100由K2=n ad-bc2a+b c+d a+c b+d,得K2=100×45×22-20×13265×35×58×42≈9.616.参照下表,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”C[K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,故选C.]二、填空题9.(2017·某某二模)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.【导学号:07804052】6 [x =5=5,y =5=5,代入回归直线方程,得14+c5=0.85×5-0.25,解得c =6.]10.(2017·某某百校联盟二模)已知x 、y 的取值为:从散点图可知y 与x 呈线性相关关系,且回归直线方程为y =1.2x +a ,则当x =20时,y 的取值为________.27.6 [由表格可知x =3,y =7.2,所以这组数据的样本点的中心是(3,7.2),根据样本点的中心在回归直线上,得7.2=a ^+1.2×3,得a ^=3.6,所以这组数据对应的回归直线方程是y ^=1.2x +3.6,将x =20代入,得y =1.2×20+3.6=27.6.]11.(2017·某某某某五中一模)某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:已知x ,y 的关系符合回归方程y =b x +a ,其中b =-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为________元. 3.75 [x =3.5,y =40,∴a ^=40-(-20)×3.5=110, ∴回归直线方程为:y ^=-20x +110,利润L =(x -2)(-20x +110)=-20x 2+150x -220, ∴x =15040=3.75元时,利润最大,故答案为3.75.]12.(2017·某某三中二模)以模型y =c e kx(e 为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z =ln y ,其变换后得到线性回归方程为z =0.4x +2,则c =________. e 2[∵y =c e kx,∴两边取对数,可得ln y =ln(c e kx )=ln c +ln e kx=ln c +kx , 令z =ln y ,可得z =ln c +kx , ∵z =0.4x +2, ∴ln c =2, ∴c =e 2.] 三、解答题13.(2017·某某一模)为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各20人组成一个样本,对他们的这项血液指标进行了检测,得到了如图7­9所示的茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.图7­9(1)依据上述样本数据研究此项血液指标与性别的关系,列出2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系? (2)以样本估计总体,视样本频率为概率,现从本地区随机抽取成年男性、女性各2人,求此项血液指标为正常的人数X 的分布列及数学期望. 附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.025 0.010 0.005 k 05.0246.6357.879正常 偏高 合计 男性 16 4 20 女性 12 8 20 合计281240K 2=n ad -bc 2a +bc +d a +cb +d =40×16×8-4×12220×20×28×12≈1.905<6.635,所以不能在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系. (2)由样本数据可知,男性正常的概率为45,女性正常的概率为35.此项血液指标为正常的人数X 的可能取值为0,1,2,3,4,P (X =0)=⎝⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫1-352=4625, P (X =1)=C 1245⎝⎛⎭⎪⎫1-45⎝⎛⎭⎪⎫1-352+⎝ ⎛⎭⎪⎫1-452C 1235·⎝ ⎛⎭⎪⎫1-35=44625, P (X =2)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-352+C 1245⎝ ⎛⎭⎪⎫1-45·C 1235·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫352=169625, P (X =3)=C 1245⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452C 1235·⎝⎛⎭⎪⎫1-35=264625, P (X =4)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫352=144625,所以X 的分布列为X 0 1 2 3 4 P462544625169625264625144625所以E (X )=0×625+1×625+2×625+3×625+4×625=2.8.14.(2017·某某三湘名校联盟三模)为了研究一种昆虫的产卵数y 和温度x 是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:y =C 1x 2+C 2与模型②:y =e C 3x +C 4作为产卵数y 和温度x 的回归方程来建立两个变量之间的关系.温度x /℃ 20 22 24 26 28 30 32 产卵数y /个6 10 21 24 64 113 322 t =x 2 400 484 576 676 784 900 1024 z =ln y1.792.303.043.184.164.735.77xtyz26692803.57错误! 错误! 错误! 错误!1157.540.430.32 0.00012其中t i =x 2i ,t =∑ni =1t i ,z i =ln y i ,z =∑ni =1z i ,附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=β^u +α^的斜率和截距的最小二乘估计分别为:β^=∑ni =1u i -uv i -v∑ni =1u i -u2,α^=v -β^u .图7­10(1)在答题卡中分别画出y 关于t 的散点图、z 关于x 的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).图7­11(2)根据表中数据,分别建立两个模型下y 关于x 的回归方程;并在两个模型下分别估计温度为30℃时的产卵数.(C 1,C 2,C 3,C 4与估计值均精确到小数点后两位)(参考数据:e 4.65≈104.58,e4.85≈127.74,e5.05≈156.02)(3)若模型①、②的相关指数计算得分分别为R 21=0.82,R 22=0.96,请根据相关指数判断哪个模型的拟合效果更好.【导学号:07804053】[解] (1)画出y 关于t 的散点图,如图1;z 关于x 的散点图,如图2.图1 图2根据散点图可判断模型②更适宜作为回归方程类型. (2)对于模型①:设t =x 2,则y =C 1x 2+C 2=C 1t +C 2,其中C ^1=∑7i =1t i -ty i -y∑7i =1t i -t2=0.43,C ^2=y -C ^1t =80-0.43×692=-217.56,所以y =0.43x 2-217.56,当x =30时,估计温度为y 1=0.43×302-217.56=169.44. 对于模型②:y =e C 3x +C 4⇒z =ln y =C 3x +C 4,word 其中C ^3=∑7i =1 z i -z x i -x∑7i =1x i -x2=0.32,C ^4=z -C ^3x =3.57-0.32×26=-4.75.所以y =e 0.32x -4.75,当x =30时,估计温度为y 2=e0.32×30-4.75=e 4.85≈127.74. (3)因为R 21<R 22,所以模型②的拟合效果更好.。

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))D23456=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和507元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为X 20 60 P1212所以顾客所获的奖励额的数学期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1 20 60 100 P162316X 1的数学期望为E (X 1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.89解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511.②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E (X )=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)10=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷总计男15女45总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:非读书迷读书迷总计男401555女202545总计60 40 100K 2=100×(40×2560×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3). X 的分布列为X 0 1 2 3 P2712554125361258125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825.。

2018版高考数学二轮复习第1部分重点强化专题专题3概率与统计第5讲用样本估计总体课件理20180306344

2018版高考数学二轮复习第1部分重点强化专题专题3概率与统计第5讲用样本估计总体课件理20180306344
0.8x-39 ,100≤x<130, 所以T= 65,130≤x≤150.
(3)由题意及(2)可得: 当x∈[100,110)时,T=0.8×105-39=45,P(T=45)=0.010×10=0.1; 当x∈[110,120)时,T=0.8×115-39=53,P(T=53)=0.020×10=0.2; 当x∈[120,130)时,T=0.8×125-39=61,P(T=61)=0.030×10=0.3; 当x∈[130,150)时,T=65,P(T=65)=(0.025+0.015)×10=0.4. 所以T的分布列为 T P 45 0.1 53 0.2 61 0.3 65 0.4
从甲水产养殖场中抽取的40只小龙虾的重量的频数分布表 重量/克 频数 [5,15) 2 [15,25) 8 [25,35) 16 [35,45) 10 [45,55] 4
从乙水产养殖场中抽取的40只小龙虾的重量的频数分布表 重量/克 频数 [5,15) 2 [15,25) 6 [25,35) 18 [35,45) 10 [45,55] 4
3.利用频率分布直方图求众数、中位数与平均数,在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方 形的面积乘以小长方形底边中点的横坐标之和.
■典题试解寻法………………………………………………………………………· 【典题】 (2017· 南昌十校二模)为了解收购的每只小龙虾的重量(单位:克), 某批发商在刚从甲、乙两个水产养殖场收购的小龙虾中分别随机抽取了40 只,得到小龙虾的重量的频数分布表如下:
所以,E(T)=45×0.1+53×0.2+61×0.3+65×0.4=59.4(万元).

2018届高考数学二轮复习专题三概率与统计课件(14张)(全国通用)

2018届高考数学二轮复习专题三概率与统计课件(14张)(全国通用)

身高在第三组[165,170)的频率为0.04×5=0.2,
身高在第四组[170,175)的频率为0.04×5=0.2, 由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5 估计这所学校的800名男生的身高的中位数为m,则170<m<175
由0.04+0.08+0.2+(m-170)×0.04=0.5得m=174.5
解:(1)由茎叶图知:分数=0.08,所以全班人数为 =25.
(2)分数在[80,90)之间的频数为25-2-7-10-2=4;即分数在[80,90)之间的人数
为4人. 频率分布直方图中[80,90)间的矩形的高为 ÷10=0.016.
(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析. 统计量K
2
=
0.15 2.072 0.10 2.706 0.05 3.841 0.025 5.024 0.010 6.635
P (K 2 ≥ k 0 ) k0
【解析】 (1)该学生30名亲属中,50岁以下人中 的以肉类为主, 的以蔬菜为主;50 岁以上人中,只有 (2) 主食蔬菜 主食肉类 合计 的人以肉类为主, 的人以蔬菜为主.
【近4年新课标卷考点统计】
年份 试卷类型
2014 12 12
2015 12 12
2016 12 12 12
2017 12 12 12
新课标Ⅰ卷 新课标Ⅱ卷 新课标Ⅲ卷
典例解析
【例1】 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之
间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图 是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4 人. (1)求第七组的频率; (2)估计该校的800名男生的身高的众数与中位数以及身高在180cm以上(含180cm)的人数; (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽出的两名男生是在同一组

【配套K12】2018年高考数学复习解决方案真题与模拟单元重组卷重组十五概率与统计试题文

【配套K12】2018年高考数学复习解决方案真题与模拟单元重组卷重组十五概率与统计试题文

重组十五 概率与统计测试时间:120分钟满分:150分第Ⅰ卷 (选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.[2016·济南教学调研]某校高一、高二、高三年级学生人数分别是400,320,280.采用分层抽样的方法抽取50人,参加学校举行的社会主义核心价值观知识竞赛,则样本中高三年级的人数是( )A .20B .16C .15D .14答案 D解析 高三年级的人数是280400+320+280×50=14(人).故答案为D.2.[2017·吉林长春质检]我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约( )A .164石B .178石C .189石D .196石 答案 C解析 由已知,抽得样本中含谷27粒,占样本的比例为27216=18,则由此估计总体中谷的含量约为1512×18=189(石).故选C.3.[2016·河北重点中学联考]以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8答案 C解析 ∵甲组数据的中位数为15, ∴x =5,乙组数据的平均数为16.8,∴9+15+10+y +18+245=16.8,∴y =8,选C.4.[2017·吉林师大附中月考]观察下面频率等高条形图,其中两个分类变量x ,y 之间关系最强的是( )答案 D解析 在频率等高条形图中,aa +b 与cc +d相差很大时,我们认为两个分类变量有关系,在四个选项中(等高的条形图)中,若x 1,x 2所占比例相差越大,则分类变量x ,y 关系越强,故选D.5.[2016·山东中学模拟]下列叙述错误的是( ) A .若事件A 发生的概率为P (A ),则0≤P (A )≤1B .系统抽样是不放回抽样,每个个体被抽到的可能性相等C .线性回归直线y ^=b ^x +a ^必过点(x -,y -)D .对于任意两个事件A 和B ,都有P (A ∪B )=P (A )+P (B ) 答案 D解析 对于A ,根据概率的定义可得,若事件A 发生的概率为P (A ),则0≤P (A )≤1,故A 正确;对于B ,根据系统抽样的定义得,系统抽样是不放回抽样,每个个体被抽到的可能性相等,故B 正确;对于C ,线性回归直线y ^=b ^x +a ^必过点(x -,y -),故C 正确;对于D ,对于任意两个事件A 和B ,P (A ∪B )=P (A )+P (B )-P (A ∩B ),只有当事件A 和B 是互斥事件时,才有P (A ∪B )=P (A )+P (B ),故D 不正确.故选D.6.[2016·全国卷Ⅰ]某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34答案 B解析 由题意得图:由图得等车时间不超过10分钟的概率为12.7.[2017·湖南师大附中月考]为了考察某种病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,可得出A .有95%以上的把握认为“小动物是否被感染与有没有服用疫苗有关” B .有95%以上的把握认为“小动物是否被感染与有没有服用疫苗无关” C .有99.5%以上的把握认为“小动物是否被感染与有没有服用疫苗有关” D .有99.5%以上的把握认为“小动物是否被感染与有没有服用疫苗无关” 答案 A 解析 K 2=-230×70×50×50≈4.762>3.841,所以有95%以上的把握认为“小动物是否被感染与有没有服用疫苗有关”.8.[2016·全国卷Ⅲ]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130答案 C解析 开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115,故选C.9.[2017·湖南六校联考]欧拉是科学史上一位多产的、杰出的数学家!他1707年出生在瑞士的巴塞尔城,渊博的知识,无穷无尽的创作精力和空前丰富的著作,都令人惊叹不已.特别是,他那顽强的毅力和孜孜不倦的治学精神,即使在他双目失明以后,也没有停止对数学的研究。

[配套K12]2018年高考数学 专题09 概率与统计分项试题(含解析)理

[配套K12]2018年高考数学 专题09 概率与统计分项试题(含解析)理

专题 概率与统计一、选择题1.【2018衡水金卷大联考】2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A. B.C.D.【答案】B2.【2018吉林百校联盟九月联考】太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )【答案】B【解析】设大圆的半径为R ,则:则大圆面积为: 2136S R ππ==,小圆面积为: 22122S ππ=⨯⨯=,则满足题意的概率值为:本题选择B 选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.3.【2018辽宁大连八中模拟】若从区间()0,(e e 为自然对数的底数, 2.71828...e =)内随机选取两个数,则这两个数之积小于e 的概率为 ( )【答案】A4.【2018海南省八校联考】某高校调查了400名大学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组[)17.5,20, [)20,22.5, [)22.5,25, [)25,27.5, []27.5,30.则这400名大学生中每周的自习时间不少于20小时的人数是( ) A. 380 B. 360 C. 340 D. 320 【答案】A 【解析】解:由频率分布直方图得这400名大学生中每周的自习时间不少于20小时的频率为: (0.08+0.04+0.16+0.1)×2.5=0.95,∴这400名大学生中每周的自习时间不少于25小时的人数为: 400×0.95=380.点睛:由频率分布直方图求出这400名大学生中每周的自习时间不少于20小时的频率,由此能求出这400名大学生中每周的自习时间不少于20小时的人数.5.【2018广东珠海市九月模拟】在线段 AB 上任取一点 P ,点 P 恰好满足AB | 的概率是【答案】D6.【2018湖北武汉高三调研】将一枚质地均匀的骰子投两次,得到的点数依次记为a 和b ,则方程210ax bx ++=有实数解的概率是( )【答案】C【解析】若方程210ax bx ++=有实根,则必有240b a ∆=-≥,若1a =,则2,3,4,5,6b =;若2a =,则3,4,5,6b =;若3a =,则4,5,6b =;若4a =,则4,5,6b =若5a =,则5,6b =;若6a =,则5,6b =, ∴事件“方程210ax bx ++=有实根”包含基本事件共54332219+++++=, ∴事件的概率为C. 7.【2018陕西西工大附中七模】已知平面区域(){,|0,01}x y x y πΩ=≤≤≤≤,现向该区域内任意掷点,则该点落在曲线2sin y x =下方的概率是( )【答案】A选A.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.8.【2018陕西西工大附中七模】在某次联考数学测试中,学生成绩ξ服从正态分布()2100,(0)σσ>,若ξ在()80,120内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( )A. 0.05B. 0.1C. 0.15D. 0.2 【答案】B选B.9.【2018陕西西工大附中八模】已知高峰期间某地铁始发站的发车频率为5分钟1班,由于是始发站,每次停靠1分钟后发车,则小明在高峰期间到该站后1分钟之内能上车的概率为()【答案】D二、解答题10.【2018衡水金卷高三联考】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)①,②见解析.试题解析:(1)由列联表可知的观测值,.所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关. (2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的3人中至少有2人经常使用网络外卖的概率为. ②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人, 恰好抽到经常使用网络外卖的市民的概率为.由题意得,所以;.11.【2018广西三校联考】某校50名学生参加2015年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组[)90,100,第二组[)100,110,…,第五组[]130,140.按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;(2)若从第一、五组中共随机取出两个成绩,记x 为取得第一组成绩的个数,求x 的分布列与数学期望.【答案】(1)27人;(2)分布列见解析,试题解析:(1)由频率分布直方图知,成绩在[)100,120内的人数为:500.16500.3827⨯+⨯=(人) 所以该班成绩良好的人数为27人.(2)解:由题意0,1,2x =x ∴的分布列为x 的期望为12.【2018河南中原名校质检二】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到如下的列联表:(1)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3位进行其他方面的排查,其中患胃病的人数为,求的分布列、数学期望.参考公式:,其中【答案】(1)有99.5%的把握认为是否患心肺疾病是与性别有关系的; (2);∴,又,∴我们有99.5%的把握认为是否患心肺疾病是与性别有关系的(2)现在从患心肺疾病的10位女性中选出3位,其中患胃病的人数,∴,,,.所以的分布列为所以的数学期望13.【2018吉林百校联盟九月联考】已知某产品的历史收益率的频率分布直方图如图所示.(1)试估计该产品收益率的中位数;(2)若该产品的售价x (元)与销量y (万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组x 与y 的对应数据:根据表中数据算出y 关于x 的线性回归方程为10.ˆ0ˆybx =-,求ˆb 的值; (3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为X ,求X 的分布列及期望.【答案】(1)0.28;(2)0.1;(3)答案见解析.试题解析:(1)依题意,设中位数为x , ()0.3 2.50.20.5x +⨯-=,解得0.28x =.(3)X 的可能取值为0,1,2,故()0P X =故X 的分布列为14.【2018湖南两市九月联考】某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的个人单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.若一个运动员出线记1分,未出线记0分.. (1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.【答案】(1(2)见解析.试题解析:(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D.(2)ξ的所有可能取值为0,1,2,3.所以ξ的分布列为点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合,枚举法,概率公式(常见的有古典概型公式、几何概率公式、互斥事件的概率和公式、独立事件的概率积,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布()~,B n p ,则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.15.【2018辽宁省辽南协作校一模】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队伍只比赛一场),有高一、高二、高三共三个队参赛,高一胜高二的概率为,高二胜高三的概率为p ,每场胜负相互独立,胜者记1分,负者记0分,规定:积分相同时,高年级获胜. (1,求p ; (2)记高三的得分为X ,求X 的分布列和期望.【答案】见解析.(2)高三的得分X 的所有可能取值为0,1,2,所以X 的分布列为:故X 的期望为16.【2018广东省海珠区一模】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()y g 与尺寸()x mm 之间近似满足关系式by ax =(,a b 为大于0的常数),现随机抽取6件合格产品,测得数据如下:对数据作了初步处理,相关统计量的值如下表:(1)根据所给数据,求y 关于x 的回归方程;(2)按照某项指标测定,现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.附:对于一组数据()()()1122,,,,...,n n v v v μμμ,其回归直线v μαβ=+的斜率和截距的最【答案】(1(2试题解析:(1)对(,0)by a x a b =>,两边取自然对数得l n l n l n y b x a=+,令l n ,l n i i i iv x u y ==,得ln u bv a=+,,,得ˆa e =,故所求回归方程为(2,解得4981,58,68,78x x <<=,即优等品有3件. 所以ξ的可能取值是0,1,2,3.,其分布列为:17.【2018湖南永州市一模】2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评60,80内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意分,[)率不低于60%即可进行验收;④用样本的频率代替概率.(1)求被调查者满意或非常满意该项目的频率;(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;(3)已知在评分低于6060分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望Eξ.【答案】(1)0.78;(2(3试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,60,100的频率为:评分在[]()+++⨯=;0.0280.030.0160.004100.78(2)根据频率分布直方图,被调查者非常满意的频率是用样本的频率代替概率,从该市的全体市民中随机抽取1人,现从中抽取3人恰有2人非常满意该项目的概率为:(3)∵评分低于60又从被调查者中按年龄分层抽取9人, ∴这9人中,老年人有3人,非老年人6人, 随机变量ξ的所有可能取值为0,1,2,ξ的分布列为:18.【2018广东省珠海六校联考】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:(参考公式和计算结果:4221194iix-==∑,421211945i iix y--==∑)(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为 6.5y x a=+,求a的值,并估计y的预报值.(2)现准备勘探新井()71,25,若通过1,3,5,7号并计算出的ˆb,ˆa的值(ˆb,ˆa精确到0.01)相比于(1)中的b,a,值之差不超过10%,则使用位置最接近的已有旧井()61,y,否则在新位置打开,请判断可否使用旧井?(3)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.【答案】(1)17.5a=,y的预报值为24;(2)使用位置最接近的已有旧井()61,24;(3).解:(1故回归直线方程为 6.517.5y x=+,当1x=时, 6.517.524y=+=,即y的预报值为24. (24221194iix-==∑,421211945i iix y--==∑,,即ˆ 6.83b =, ˆ18.93a =, 6.5b =, 17.5a =.10%,因此使用位置最接近的已有旧井()61,24. (3)由题意,1,3,5,6这4口井是优质井,2,4这两口井是非优质井, 所以勘察优质井数X 的可能取值为2,3,4,19.【2018广东省珠海九月模拟】某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如下表: 以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数. (1)求ξ的分布列;(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望. 【答案】(1) ξ的分布列为(2) 这两台打印机正常使用五年所需购买墨盒的费用的期望为6614元.若在购买两台新机时,每台机随机购买23盒墨,则需付款Ey=,则6614试题解析:ξ,,,,,,(1) =44454647484950由题设可知,一台打印机在5年内消耗墨盒数为22,23,24,25且每台机消耗墨盒数发生的事件是相互独立事件.故故ξ的分布列为(2)记y表示在题设条件下,购买2台新机使用五年在消耗墨盒上所需的费用(单位:元)若在购买两台新机时,每台机随机购买23盒墨,则需付款答:这两台打印机正常使用五年所需购买墨盒的费用的期望为6614元.20.【2018吉林省长春市一模】长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间内,则需要花费40分钟进行剪辑,若点击量在区间内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间的分布列与数学期望.【答案】(Ⅰ);(Ⅱ).试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000.(Ⅱ)的可能取值为0,20,40,60则的分布列为即.21.【2018陕西西工大附中一模】超市某种绿色食品,过去20个月该食品的月市场需求量x (单位: kg , 100150x ≤≤)即每月销售的数据记录如下:137 108 114 121 115 135 122 140 128 139 125 140 130 125 105 115 133 124 149 115对这20个数据按组距10进行分组,并统计整理,绘制了如下尚不完整的统计图表:(Ⅰ)写出m , n 的值.若视x 分布在各区间内的频率为相应的概率,试计算()130P x ≥; (Ⅱ)记B 组月市场需求量数据的平均数与方差分别为1v , 21s , E 组月市场需求量数据的平均数与方差分别为2v , 22s ,试分别比较1v 与2v , 21s 与22s 的大小;(只需写出结论) (Ⅲ)为保证该绿色产品的质量,超市规定该产品仅在每月一日上架销售,每月最后一日对所有未售出的产品进行下架处理.若超市每售出1kg 该绿色食品可获利润5元,未售出的食品每kg 亏损3元,并且超市为下一个月采购了130kg 该绿色食品,求超市下一个月销售该绿色食品的利润Q 的分布列及数学期望()E Q .(以分组的区间中点值代表该组的各个值,并以月市场需求量落入该区间的频率作为月市场需求量取该组区间中点值的概率)【答案】(1) 4m =, 3n = ()130P x ≥=;(2) 12v v <, 2212s s <;(3)Q 的分布列为()E Q = 594(元).试题解析:(Ⅰ) 4m =, 3n =()()130130140P x P x ≥=≤<+ (Ⅱ)12v v <, 2212s s <; (Ⅲ)由题意可知:利润()53130100130{ 650130150x x x Q x --≤<=≤≤当105x =时, ()51053130105450Q =⨯-⨯-=;当115x =时, ()51153130115530Q =⨯-⨯-=;当125x =时, ()51253130125610Q =⨯-⨯-=;当135x ≥时, 5130650Q =⨯=.所以Q 的可能取值为450,530,610,650,所以Q 的分布列为。

最新-高考数学高考概率与统计2018大考点解析精品

最新-高考数学高考概率与统计2018大考点解析精品

的概率分别是 0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设
该城市时游览的景点数与没有游览的景点数之差的绝对值
.
ξ 表示客人离开
(Ⅰ)求 ξ 的分布及数学期望;
(Ⅱ)记“函数 f(x)=x2-3ξ x+ 1 在区间 [2,+∞ ) 上单调递增”为事件 A ,求事件
A 的概率 .
2、考查随机变量概率分布列与数列结合
高考概率与统计 10 大考点解析
概率与统计试题是高考的必考内容。 它是以实际应用问题为载体, 以排列组合和 概率统计等知识为工具, 以考查对五个概率事件的判断识别及其概率的计算和随机变 量概率分布列性质及其应用为目标的中档师, 预计这也是今后高考概率统计试题的考 查特点和命题趋向。下面对其常见题型和考点进行解析。
(Ⅰ) 在第一次灯泡更换工作中, 求不需要换灯泡的概率和更换 2 只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯 泡的概率;
(Ⅲ)当 p1=0.8, p2=0.3 时,求在第二次灯泡更换工作,至少需要更换 的概率(结果保留两个有效数字) .
4 只灯泡
考点 5 考查随机变量概率分布与期望计算
过的概率依次为 0.6, 0.7, 0.8, 0.9,求在一年内李明参加驾照考试次数
的分布列
和 的期望,并求李明在一年内领到驾照的概率 .
考点 6 考查随机变量概率分布列与其他知识点结合
1 考查随机变量概率分布列与函数结合 例 6.( 2018 湖南卷) 某城市有甲、乙、丙 3 个旅游景点,一位客人游览这三个景点
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为
规则如下:
求 数 列 an 的 通 项 公 式 ; 求

2018届高考数学二轮复习专题十概率与统计课件文

2018届高考数学二轮复习专题十概率与统计课件文

[类题通法] 概率与统计综合问题的两个注意点
(1)明确频率与概率的关系,频率可近似替代概率. (2)此类问题中的概率模型多是古典概型,在求解时,要明 确基本事件的构成.
[即学即用·练通] (2017·新疆第二次适应性检测)从 2009 年淘宝创立“双十一”以 来,到 2016 年,“双十一”已经走过了八个年头,随着消费者 消费水平越来越高,低价已经不再是最核心的要素,消费者对于 品质的追求也越来越高.据美国《福布斯》双周刊网站 2016 年 11 月 15 日报道,“双十一”当天中国的线上交易额比巴西 2016 年全年的预估电子商务交易额都要多.某公司对“双十一”当天 在淘宝购物的男、女各 1 000 名消费者的消费金额(单位:千元) 进行统计,得到了消费金额的频率分布直方图如下:
ABCD 内的图形来自中国古代的太极图.正
方形内切圆中的黑色部分和白色部分关于正
方形的中心成中心对称.在正方形内随机取
一点,则此点取自黑色部分的概率是( )
A.14
B.π8
1
π
C.2
D.4
[解析] 不妨设正方形 ABCD 的边长为 2,则正方形的面 积为 4,正方形的内切圆的半径为 1,面积为 π.
(2)当这种酸奶一天的进货量为 450 瓶时,若最高气温不 低于 25,则 Y=6×450-4×450=900;
若最高气温位于区间[20,25), 则 Y=6×300+2(450-300)-4×450=300;
若最高气温低于 20, 则 Y=6×200+2(450-200)-4×450=-100. 所以 Y 的所有可能值为 900,300,-100. Y 大于零当且仅当最高气温不低于 20,由表格数据知, 最高气温不低于 20 的频率为36+295+ 0 7+4=0.8,因此 Y 大 于零的概率的估计值为 0.8.

2018年高考数学(理)二轮复习讲练测专题2.12概率与统计相结合问题(讲)含解析

2018年高考数学(理)二轮复习讲练测专题2.12概率与统计相结合问题(讲)含解析

2018年高考数学(理)二轮复习讲练测热点12 概率与统计相结合问题概率与统计是高考考查的核心内容之一,在高考中一般有1~2个选择或者填空题,一个解答题.选择或者填空题有针对性地考查概率或统计知识,主要是对基本概念和基本抽样方法的考查,试题的难度一般不大;解答题考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.1 古典概型与统计图表结合概率与与统计图表相结合是高考考查圆锥曲线的一个重要命题点,在历年的高考试题中曾多次出现.需熟练掌握.我们主要要掌握频率分布直方图、茎叶图、频率分布密度曲线的几何意义.例1自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”,“生二孩能休多久产假”等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.【答案】(1),;(2)①;②的分布列为29 30 31 32 33 34 350.1 0.1 0.2 0.2 0.2 0.1 0.1.【解析】(1)由表中信息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为.②由题知随机变量的可能取值为29,30,31,32,33,34,35.,,因而的分布列为29 30 31 32 33 34 350.1 0.1 0.2 0.2 0.2 0.1 0.1所以.2 古典概型与统计的数字特征相结合概率与统计的数字特征相结合进行考查是概率统计考查得一个主要内容.主要要求我们掌握统计的常见的数字特征的算法,比如中位数、平均数、众数、方差和标准差.例2近年来城市“共享单车”的投放在我国各地迅猛发展,“共享单车”为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对“共享单车”投放的认可度,对年龄段的人群随机抽取人进行了一次“你是否赞成投放共享单车”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:组号分组赞成投放的人数赞成投放的人数占本组的频率第一组第二组第三组第四组第五组第六组()求,,的值.()在第四、五、六组“赞成投放共享单车”的人中,用分层抽样的方法抽取人参加“共享单车”骑车体验活动,求第四、五、六组应分别抽取的人数.()在()中抽取的人中随机选派人作为领队,求所选派的人中第五组至少有一人的概率.【答案】(1) ;(2)第四、五、六组分别取的人数为人,人,人;(3) .试题解析:()补全频率分布直方图(见图),由频率表中第五组数据可知,第五组总人数为,再结合频率分布直方图:可知,所以,第二组的频率为,所以.()因为第四、五、六组“喜欢骑车”的人数共有人,由分层抽样原理可知,第四、五、六组分别取的人数为人,人,人.()设第四组人为:,,,,第五组人为:,,第六组人为:.则从人中随机抽取名领队所有可能的结果为:,,,,,,,,,,,,,,,,,,,,共种,其中所选派的人中第五组至少有一人的所有可能结果为:,,,,,,,,,,,共11种所以所选派的人中第五组至少有一人的概率为.3 古典概型与独立性检验、回归方程相结合古典概型与独立性检验、回归方程相结合问题的考查往往主要是考查独立性检验、回归方程的求法和步骤.特别注意回归方程求解过程中公式的灵活应用和独立性检验求解过程中的解题步骤.例3【2018届河北省邢台市高三上学期期末】从2017年1月18日开始,支付宝用户可以通过“扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.参考公式:.附表:【答案】(1)不能(2),8125(3)【解析】试题分析:(1)根据列联表中的数据,得到的观测值为,故得到结果;(2)先得到样本中集齐五福的频率为,再由总人数乘以频率即可;(3)根据古典概型的计算公式得到,总事件个数为10,满足条件的事件为9,求得频率为.解析:(1)根据列联表中的数据,得到的观测值为,故不能在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”.(2)这80位大学生集齐五福的频率为.据此估算该校10000名在读大学生中集齐五福的人数为.例4某农科所对冬季昼夜温差大小与反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下数据:日期12月1日12月2日12月3日12月4日12月5日温度x(℃)10 11 13 12 8发芽数y(颗)23 25 30 26 16设农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻天数据的概率;(2)若选取的是月日与月日的两组数据,请根据月日与月日的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:)【答案】(1);(2);(3)可靠.【解析】(1)设抽到不相邻两组数据为事件,因此从组数据中选取组数据共有种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有种,所以,故选取的组数据恰好是不相邻天数据的概率是.(2)由数据,求得,,由公式求得,所以关于的线性回归方程为.(3)当时,,同样地,当时,,所以该研究所得到的线性回归方程式可靠的.4 古典概型与抽样方法结合古典概型与抽样方法结合问题的考查往往主要是考查统计中的几种抽样方法.特别注意辨别系统抽样、简单随机抽样和分层抽样的适用范围和操作步骤.例 5 【2018届福建省漳州市高三1月调研】2017年是内蒙古自治区成立70周年.某市旅游文化局为了庆祝内蒙古自治区成立70周年,举办了第十三届成吉思汗旅游文化周.为了了解该市关注“旅游文化周”居民的年龄段分布,随机抽取了600名年龄在[10,60]且关注“旅游文化周”的居民进行调查,所得结果统计为如图所示的频率分布直方图.年龄[10,20)[20,50)[50,60]单人促销价格(单位:元)150 240 180(1)根据频率分布直方图,估计该市被抽取市民的年龄的平均数;(2)某旅行社针对“旅游文化周”开展不同年龄段的旅游促销活动,各年龄段的促销价位如表所示.已知该旅行社的运营成本为每人200元,以频率分布直方图中各年龄段的频率分布作为参团旅客的年龄频率分布,试通过计算确定该旅行社的这一活动是否盈利;(3)若按照分层抽样的方法从年龄在[10,20),[50,60]的居民中抽取6人进行旅游知识推广,并在知识推广后再抽取2人进行反馈,求进行反馈的居民中至少有1人的年龄在[50,60]的概率.【答案】(1)32;(2)盈利;(3)【解析】试题分析:(1)频率分布直方图中所有小矩形的面积(频率)之和为1,由此可求得的概率,取各组的中间数作为各组均值乘以相应的频率后相加可得;(2)由频率分布直方图可得三组的频率,分别乘以对应的促销价相加后减去成本为正时是赢利,为负时是不赢利;(3)由题意得被抽取的6人中,有4人年龄在[10,20),分别记为a,b,c,d;有2人年龄在[50,60],分别记为E,F.“抽取2人进行反馈”包含的基本事件为{a,b},{a,c},{a,d},{a,E},{a,F},{b,c},{b,d},{b,E},{b,F},{c,d},{c,E},{c,F},{d,E},{d,F},{E,F},共15种,其中事件“至少有1人的年龄在[50,60]”包含的基本事件为{a,E},{a,F},{b,E},{b,F},{c,E},{c,F},{d,E},{d,F},{E,F},共9种,故该事件发生的概率为P==.5 统计与随机变量的分布列结合例6【2018届山东省菏泽市高三上学期期末】2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:(1)估计该组数据的中位数、众数;(2)由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求;(3)在(2)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:(ⅰ)得分不低于可获赠2次随机话费,得分低于则只有1次;(ⅱ)每次赠送的随机话费和对应概率如下:现有一位市民要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列和数学期望.附:,若,则,.【答案】(1)中位数为,众数为65.(2)(3),分布列见解析【解析】试题分析:(1)由频率分布直方图可估计该组数据的中位数、众数;(2)利用加权平均数公式计算平均值;再根据正态分布的性质求;(3)设得分不低于分的概率为,则,则的取值为10,20,30,40,利用相互独立事件的概率公式计算各个概率,得到的分布列和数学期望..试题解析:(1)由,得,设中位数为,由,解得,由频率分布直方图可知众数为65.(3)设得分不低于分的概率为,则,的取值为10,20,30,40,,,,,所以的分布列为:所以.【反思提升】1. 对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数必须是有限个;②出现的各个不同的试验结果数其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式得出的结果才是正确的.2.对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3. 样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.4.(1)用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.(2)频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.5.随机变量的分布列问题:(1)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(2)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(3)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算.。

2018大二轮高考总复习理数课件:解答题3 概率、随机变量及其分布列

2018大二轮高考总复习理数课件:解答题3 概率、随机变量及其分布列

用·T19 相关系数、均值与标准差的应用·T19 古典概型、频数、频率的概念及综合应用·T18 互斥事件、条件概率,随机变量的分布列·T18 随机变量的分布列及数学期望·T19
题为必考内容,经 常 出 现 在 18 题 或 19 题位置,难度中 等. 2.统计问题多考查 用最小二乘法求线
两个变量间的线性相关性、线性回归方程的求 性回归方程、样本
由上述计算结果知,所求回归直线方程为 ^y-257=b^(x-2 012)+a^=6.5(x-2 012)+3.2, 即^y=6.5×(x-2 012)+260.2. (2)利用(1)中所求回归直线方程,可预测 2018 年的粮食需求量为 6.5×(2 018-2 012)+260.2=6.5×6+260.2=299.2(万吨).
频率与概率的关系、离散型随机变量的分布 立性检验相交汇来考
列与期望·T19
查.
02 高考考点多维解读
基本考点——相互独立事件与独立重复试验的概率、统计、统计案例
考向01:相互独立事件、独立重复试验的概率
1.相互独立事件同时发生的概率 P(AB)=P(A)P(B). 2.独立重复试验 如果事件 A 在一次试验中发生的概率是 p,那么它在 n 次独立重复试验中恰好发 生 k 次的概率为 Pn(k)=Cknpk(1-p)n-k,k=0,1,2,…,n.
3.互斥事件的概率加法公式 (1)如果事件A与B互斥,那么P(A∪B)=P(A)+P(B); (2)一般地,如果事件A1,A2,…,An彼此互斥,那么P(A1∪A2∪…∪An)=P(A1) +P(A2)+…+P(An). 4.对立事件及其概率公式 若事件B与事件A互为对立事件,则P(A)+P(B)=1,即P(A)=1-P(B).
解:(1)设 A 药观测数据的平均数为 x,B 药观测数据的平均数为-y ,由观测结果 可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点6 古典概型与几何概型[核心知识提炼]提炼1 古典概型问题的求解技巧(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解.(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏.(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决.提炼2 几何度量法求解几何概型准确确定度量方式和度量公式是求解几何概型的关键,常见的几何度量涉及的测度主要包括长度、面积、体积、角度等.提炼3 求概率的两种常用方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.(2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.[高考真题回访]回访1 古典概型1.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110B.15C.310D.25D[从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25.故选D.]2.(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23D.56C [从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.]3.(2014·全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.23[两本不同的数学书用a 1,a 2表示,语文书用b 表示,则Ω={(a 1,a 2,b ),(a 1,b ,a 2),(a 2,a 1,b ),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}.于是两本数学书相邻的情况有4种,故所求概率为46=23.]回访2 几何概型4.(2017·全国卷Ⅰ)如图6­1,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )图6­1A.14B.π8C.12D.π4B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π22×2=π8.故选B.]5.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710B.58C.38D.310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.]热点题型1 古典概型题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小.【例1】 (1)一个袋子中有5个大小相同的球,其中3个白球与2个黑球,先从袋中任意取出一个球,取出后不放回,然后从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( ) A.35 B .310 C.12D.625(2)已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( )A.916B.716C.416D.316(1)B (2)A [(1)设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310.故选B.(2)记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”. 因为f (x )=ax 3+bx 2+x -3,所以f ′(x )=3ax 2+2bx +1. 因为函数f (x )在R 上为增函数,所以f ′(x )≥0在R 上恒成立. 又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23.所以当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数;当b =2时,有a ≥43,故a 可取2,3,4,共3个数;当b =3时,有a ≥3,故a 可取3,4,共2个数; 当b =4时,有a ≥163,故a 无可取值.综上,事件A 包含的基本事件有4+3+2=9(种). 又a ,b ∈{1,2,3,4},所以(a ,b )共有4×4=16(种). 故所求事件A 的概率为P (A )=916.故选A.][方法指津]利用古典概型求事件概率的关键及注意点1.关键:正确列举出基本事件的总数和待求事件包括的基本事件数.2.注意点:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏.(2)当直接求解有困难时,可考虑求其对立事件的概率.[变式训练1] (2017·南京二模)某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一个兴趣小组的概率为________.23[设三个兴趣小组分别为a ,b ,c ,则甲、乙两名学生选择兴趣小组的可能结果有(a ,a ),(a ,b ),(a ,c ),(b ,a ),(b ,b ),(b ,c ),(c ,a ),(c ,b ),(c ,c ),共9种.其中甲、乙不在同一个兴趣小组的结果有6种,故所求概率为P =69=23.]热点题型2 几何概型题型分析:高考试题中几何概型主要考查线段型和面积型.求解几何概型的关键是计算线段的长度、平面图形的面积等,难度较小.【例2】(1)(2017·广州二模)在区间[-1,5]上随机地取一个实数a ,则方程x 2-2ax +4a -3=0有两个正根的概率为( ) A.23 B.12 C.38D.13(2)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为__________.(用数字作答)【导学号:04024068】(1)C (2)932 [(1)因为方程x 2-2ax +4a -3=0有两个正根,所以⎩⎪⎨⎪⎧2a >0,4a -3>0,4a 2-a -,解得34<a ≤1或a ≥3,所以所求概率P =1-34+-5--=38,故选C. (2)设小张和小王到校的时间分别为x 和y , 则⎩⎪⎨⎪⎧30≤x ≤50,30≤y ≤50,y -x ≥5,则满足条件的区域如图中阴影部分所示.故所求概率P =12×15×1520×20=932.][方法指津]判断几何概型中的几何度量形式的方法1.当题干涉及两个变量问题时,一般与面积有关.2.当题干涉及一个变量问题时,要看变量可以等可能到达的区域:若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积). 提醒:数形结合是解决几何概型问题的常用方法,求解时,画图务必准确、直观. [变式训练2] 如图6­2,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )图6­2A .100B .200C .400D .450C [如图,设OA 与圆C 相切于点D ,连接OC ,CD ,∠AOB =π3,则∠COD =π6,设圆C 的半径为1,可得OC =2,所以扇形的半径为3,由几何概型可得点在圆C 内的概率为P =S 圆CS 扇形AOB =π×1216×π×32=23,故向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计为23×600=400.]。

相关文档
最新文档