人教版九年级上册数学课本知识点归纳1
(完整word版)人教版数学九年级上册知识点整理
知识点五:与圆有关的位置关系
5.点与圆
的位置关系
设点到圆心的距离为d.
⑴d<r?点在OO内;(2)d=r?点在OO上;(3)d>r?点在OO夕卜.
6.直线和 圆的位
m¥方
宀护¥方位置大糸
相离
相切
相交
图形
l®1
[GDI
公共点个数
0个
1个
2个
数量关系
d>r
d=r
dvr
知识点六:切线的性质与判定
解•
(2 )因式分解法:可化为(ax+m)(bx+ n)=0的方程,用因式分解法求
解•
(3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=
2.一元二次方
b曲4ac(b2-4ac>0).2a
程的解法
(4)配方法:当元二次方程的二次项糸数为1, 次项糸数为偶数时,
也可以考虑用配方法.
先
先用其他,再用公式
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角
(5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
知识点二:垂径定理及其推论
2.垂径定
理及其推
论
定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
知识点三:二次函数的平移
4.平移与
解析式
的关系
x/_ov2向左(h<0)或向右(h>0)2向上(k>0)或向下(kv0)2
常”>y=a(x-h)—、y=a(x—h)2+k
人教版九年级上册数学知识点汇总
一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。
(完整版)人教版数学九年级上册知识点归纳,推荐文档
一元二次方程 ax2 bx c 0(a 0) 的求根公式: x b b2 4ac (b2 4ac 0)
2a
有括号的先算括号里的(或先去括号)。
4、因式分解法
我去人也就有人!为UR扼腕入站内信不存在向你偶同意因式调分解剖法沙就是龙利用课因反式分倒解的是手龙段,卷求出风方前程的一解的天方我法,分这种页方符法简Z单N易BX吃噶十 行,是解一元二次方程最常用的方法。
开方数 a 必须是非负数。
ax2 bx c 0(a 0) ,它的特征是:等式左边十一个关于未知数 x 的二次多
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开
项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,
得尽方的因数或因式,这样的二次根式叫做最简二次根式。
弧也相等。
三、垂径定理及其推论
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三
尽方的因数或因式开出来。 3、同类二次根式
直接开平方法适用于解形如 (x a)2 b 的一元二次方程。根据平方根的定义可知,
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫 做同类二次根式。
x a 是 b 的平方根,当 b 0 时, x a b , x a b ,当 b<0 时,方程没有
b 叫做一次项系数;c 叫做常数项。
化二次根式为最简二次根式的方法和步骤:
新人教版九年级数学上册知识点归纳
新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。
人教版初三数学知识点
人教版初三数学知识点初三数学上册知识点归纳二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方形式(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
人教版数学九年级上册知识点整理
位置关系
相离
相切
相交
图形
公共点个数
0个
1个
2个
数量关系
d>r
d=r
d<r
知识点六:切线的性质与判定
7.切线
的判定
(1)与圆只有一个公共点的直线是圆的切线(定义法).
(2)到圆心的距离等于半径的直线是圆的切线.
(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.
8.切线
的性质
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
延伸
根据圆的对称性,如图所示,在以下五条结论中:
1弧AC=弧BC;
②弧AD=弧BD;
③AE=BE;
④AB⊥CD;⑤CD是直径.
只要满足其中两个,另外三个结论一定成立,即推二知三
.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
(1)切线与圆只有一个公共点.
(2)切线到圆心的距离等于圆的半径.
(3)切线垂直于经过切点的半径.
*9.切线长
(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.
(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
知识点七:三角形与圆
第二十一章 一元二次方程
知识点一:一元二次方程及其解法
1.一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
九年级数学课本知识点人教版
九年级数学课本知识点人教版初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
最新人教版初中九年级数学上册知识点笔记总结(内部资料打印版)
最新人教版初中九年级数学上册知识点笔记总结(内部资料打印版)21.1 二次根式知识点一二次根式的概念(1)一般地,我们把形如a(a≥0)的式子叫做二次根式。
二次根式a的实质是一个非负数a的算术平方根。
其中“”叫做二次根号。
(2)正确理解二次根式的概念,要把握以下几点:①二次根式是在形式上定义的,必须含有二次根号“”。
如4是二次根式,虽然4=2,但2不是二次根式。
②被开方数a必须是非负数,即a≥0.如3-就不是二次根式,但式子)3(-2是二次根式。
③“”的根指数为2,即“2”,一般省略根指数2,写作“”,注意,不可误认为根指数是“1”或“0”。
提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。
知识点二二次根式的性质(1)a(a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a≥(a≥0),我们把这个性质叫做二次根式的非负性。
(2)(a)2 = a (a≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。
(3)a2 = a (a≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。
知识点三代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。
21.2 二次根式的乘除知识点一 二次根式的乘法法则 一般地,对二次根式的乘法规定:a ·b =ab (a ≥0,b ≥0),即二次根式相乘,把被开方数相乘,根指数不变。
知识点二 积的算术平方根的性质ab =a ·b (a ≥0,b ≥0),积的算术平方根等于积中各个因式的算术平方根的积。
知识点三 二次根式的除法法则 一般地,对二次根式的除法规定:b a =b a (a ≥0,b >0),即两个二次根式相除,把被开方数相除,根指数不变。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
人教版九年级数学上册知识点整理完整版
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
人教版数学九年级上册知识点归纳
人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。
最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。
2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
解一元二次方程的方法有直接开平方法、配方法和公式法。
直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。
配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。
关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。
即点P(x,y)关于y 轴的对称点为P’(-x,y)。
第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。
二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。
2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。
3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
数学九年级人教全书知识点
数学九年级人教全书知识点一、代数与函数1.万能线性方程式1.1 一元一次方程1.2 一元一次方程组1.3 二元一次方程组1.4 一元二次方程1.5 二元二次方程组2.函数与方程2.1 函数的概念2.2 函数的表示与性质2.3 函数的运算2.4 函数的应用2.5 方程与不等式的解集3.图像与函数关系3.1 二次函数与抛物线3.2 幂函数与指数函数3.3 对数函数与指数函数互逆关系 3.4 三角函数与周期性3.5 函数图像的变换与性质二、几何与证明1.三角形与相似1.1 三角形的性质1.2 三角形的分类与判定1.3 相似三角形的判定与性质1.4 黄金分割与相似1.5 三角形与数学建模2.圆与圆的位置关系2.1 圆的概念与性质2.2 弦与弧2.3 切线与切点2.4 圆的位置关系2.5 圆与几何思想3.解析几何3.1 坐标系与平面直角坐标系 3.2 直线的方程与性质3.3 圆的方程与性质3.4 直线与圆的位置关系3.5 综合运用三、概率与统计1.统计调查与数据分析1.1 统计调查的基本步骤1.2 数据的收集与整理1.3 数据的表示与分析1.4 数据的解读与运用1.5 研究生活中的问题2.概率与事件2.1 概率的基本概念2.2 事件与样本空间2.3 事件的运算与性质2.4 概率的计算方法2.5 概率与数学游戏3.统计图与统计量3.1 统计图的绘制与解读 3.2 中心与离散程度的度量 3.3 统计参数的估计3.4 统计推断与假设检验3.5 利用数据分析实际问题四、空间与立体几何1.空间与平面立体图形1.1 空间几何的基本概念1.2 空间图形的展开与投影 1.3 空间图形的相交与相切 1.4 空间图形与视觉艺术1.5 空间几何与生活实际2.尺规作图与解析几何2.1 平行线作图2.2 三等分角作图2.3 特殊角作图2.4 图形的平移、旋转和对称 2.5 解析几何与数学建模3.立体几何与立体图形3.1 空间直线与平面的关系3.2 空间四面体与多面体的性质3.3 空间几何问题的解决方法3.4 空间几何与工程应用3.5 立体几何的拓展与应用以上是数学九年级人教全书的主要知识点,希望对你的学习有所帮助。
人教版九年级数学上册知识点整理(完整版)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
人教版初中数学九年级上册二次函数重点知识归纳
人教版初中数学九年级上册二次函数重点知识归纳知识点1 二次函数的概念和一般形式1.概念:一般地,形如y=ax2+bx+c(a ,b ,c 是常数,a≠0)的函数,叫做二次函数。
其中, x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。
【注意】(1)自变量x的最高次数是2,a≠0,b,c可以为0;(2)含自变量x 的代数式是整式而不是分式或根式。
2.一般式:y=ax2+bx+c(a ,b ,c 是常数,a≠0)知识点2 二次函数的图像和性质1.二次函数的图像:是一条平滑的曲线叫做抛物线。
2.二次函数图像的画法:①列表;②描点;③连线。
3.二次函数的解析式(4种形式)(1)y = ax 2(a≠0)(2)y = ax 2+k(a,k是常数,a≠0)(3)y = a(x-h)2(a,h是常数,a≠0)(4)y = a(x-h)2+k(a,k,h是常数,a≠04.二次函数的图像和性质:分别从五种图像(4种特殊+1个一般式)和7个性质(顶点特点、开口方向、顶点坐标、对称轴、最值、增减性、形状和大小等7个方面研究)。
如下图:二次函数的图像与性质a <05.图像平移后的解析式:y = a(x-h)2+k(a,k,h是常数,a≠0)平移规则:左加右减,上加下减。
知识点3 用待定系数法求二次函数的解析式:一般式、顶点式、交点式。
(1)已知抛物线上普通的3点的坐标,一般选用一般式;(2)顶点在原点,可设y = ax 2(3)顶点在x轴上,若抛物线与x轴有一个交点,可设y = a(x-h)2;若抛物线与x轴有两个交点,可设y=a(x-x1)(x-x2);(4)顶点在y轴上(或对称轴在y轴上),可设y = ax 2+k;(5)已知顶点(h,k),可设顶点式y = a(x-h)2+k知识点4 二次函数与一元二次方程的关系1. 二次函数与一元二次方程的关系二次函数y=ax2+bx+c(a≠0)的图像与x轴(直线y=0)交点的横坐标就是一元二次方程ax2+bx+c=0的解。
初三数学知识点归纳人教版
初三数学知识点归纳人教版一、一元二次方程。
1. 定义。
- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。
例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
二、二次函数。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。
人教版九年级数学上册知识点整理(完整版)
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
人教版九年级数学上册重点知识点总结
人教版九年级数学上册重点知识点总结一、实数1.有理数1.1 定义:整数和分数统称为有理数。
1.2 分类:正有理数、负有理数和零。
1.3 性质:有理数加减乘除遵循交换律、结合律和分配律。
1.4 相反数、绝对值:一个数的相反数是与它的数值相等,但符号相反的数;一个数的绝对值是它与零的距离。
2.无理数2.1 定义:不能表示为两个整数比的数称为无理数。
2.2 性质:无理数不能精确表示,只能近似计算。
2.3 常见无理数:π、√2、√3等。
3.实数3.1 定义:有理数和无理数的集合称为实数。
3.2 性质:实数加减乘除遵循交换律、结合律和分配律。
二、代数式1.代数式的概念1.1 代数式是由数字、字母和运算符组成的表达式。
1.2 代数式的分类:单项式、多项式、函数等。
2.单项式2.1 定义:只有一个项的代数式称为单项式。
2.2 项的系数:单项式中字母的系数是该字母前的数字。
3.多项式3.1 定义:有两个或以上项的代数式称为多项式。
3.2 多项式的度:多项式中最高次项的次数称为该多项式的度。
4.函数4.1 定义:对于每个输入值,都有唯一输出值的代数式称为函数。
4.2 函数的表示方法:解析式、表格、图象等。
三、方程(含方程组)1.一元一次方程1.1 定义:只有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。
1.2 解法:移项、合并同类项、化简等。
2.二元一次方程2.1 定义:有两个未知数,且未知数的最高次数为1的方程称为二元一次方程。
2.2 解法:代入法、消元法等。
3.方程组3.1 定义:由两个或以上方程组成的解集称为方程组。
3.2 解法:代入法、消元法、图解法等。
四、不等式(含不等式组)1.不等式1.1 定义:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间大小关系的式子称为不等式。
1.2 解法:同方向不等式可以相加减,异方向不等式需要变号。
2.不等式组2.1 定义:由两个或以上不等式组成的解集称为不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学课本知识点归纳第二十一章二次根式一、二次根式1.二次根式:把形如 a (a 0) 的式子叫做二次根式,“” 表示二次根号。
2.最简二次根式:若二次根式满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。
这样的二次根式叫做最简二次根式。
3.化简:化二次根式为最简二次根式(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他分解因数或因式,然后把能开得尽方的因数或因式开出来。
4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
5.代数式:运用基本运算符号,把数和表示数的字母连起来的式子,叫代数式。
6.二次根式的性质(1) ( a ) 2a(a 0)a(a 0)(2) a 2aa(a 0)(3)ab a b( a 0,b0) (乘法)(4)a a(a 0, b0)b b( 除法 )二、二次根式混合运算1.二次根式加减时,可以把二次根式化成最简二次根式,再把被开方数相同的最简二次根式进行合并。
2.二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二十二章一元二次方程一、一元二次方程1、一元二次方程含有一个未知数 ( 一元 ) ,并且未知数的最高次数是2( 二次 ) 的整式方程叫做一元二次方程。
2、一元二次方程的一般形式ax2bx c0(a0),其中ax2叫做二次项, a 叫做二次项系数; bx 叫做一次项, b 叫做一次项系数; c 叫做常数项。
二、降次 ----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的过程( 不管用什么方法解一元二次方程,都是要一元二次方程降次)2、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做2(x a) b二次方程。
根据平方根的定义可知, x a 是b的平方根,当b0时,x ab , x a b,当 b<0 时,方程没有实数根。
3、配方法:配方法的理论根据是完全平方公式a 22ab b2(a b) 2 x22bx b 2(x b) 2,把公式中的 a 看做未知数 x,并用 x 代替,则有。
配方法解一元二次方程的步骤是:①移项、②配方( 写成平方形式) 、③用直接开方法降次、④解两个一元一次方程、⑤判断 2 个根是不是实数根。
4、公式法:公式法是用求根公式,解一元二次方程的解的方法。
一元二次方程 ax2bx c 0( a0) 的求根公式:2x b b 4 ac( b 2 4 ac0 ) 2a当b24ac>0 时,方程有两个实数根。
当b24ac=0 时,方程有两个相等实数根。
当b24ac<0 时,方程没有实数根。
5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于 0 的形式,再使这两个一次式分别等于0,从而实现降次,这种解叫因式分解法。
这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式:一元二次方程ax 2bx c 0(a 0) 中,b24ac 叫做一元二次方程 ax2bx c 0(a 0)的根的判别式,通常用“”来表示,四、一元二次方程根与系数的关系如果方程 ax2bx c 0(a 0)的两个实数根是x1,x2 ,由求根公式x bb 2 4 ac (b2 4 ac 0 )x1 x2b x1 x2c2a可算出 a , a 。
第二十三章旋转一、旋转1、定义:把一个图形绕某一点 O 转动一个角度的图形变换叫做旋转,其中 O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
⑶ 旋转前后的图形全等。
二、中心对称1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
5、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点 P(x,y)关于原点的对称点为P’(-x ,-y )6、关于x 轴对称的点的特征:两个点关于x 轴对称时,它们的坐标中, x 相等, y 的符号相反,即点 P(x,y)关于 x 轴的对称点为 P’(x,-y )。
7、关于y 轴对称的点的特征:两个点关于y 轴对称时,它们的坐标中, y 相等, x 的符号相反,即点 P(x,y)关于 y 轴的对称点为 P’(-x ,y)。
第二十四章圆一、圆的相关概念1、圆的定义:在一个个平面内,线段OA绕它固定的一个端点 O旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O叫做圆心,线段 OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙ O”,读作“圆 O”二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。
(如图中的 AB)(2)直径:经过圆心的弦叫做直径。
(如途中的 CD)直径等于半径的2 倍。
(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧 AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦 ( 不是直径 ) 的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论 2:圆的两条平行弦所夹的弧相等。
四、圆的对称性1、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角:顶点在圆心的角叫做圆心角。
2、弦心距:从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系设⊙ O的半径是 r ,点 P 到圆心 O的距离为 d,则有:d<r点 P在⊙O内;d=r点 P在⊙O上;d>r 点 P在⊙O外。
八、过三点的圆1、过三点的圆:不在同一直线上的三个点确定一个圆。
2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件):圆内接四边形对角互补。
九、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙ O的半径为 r ,圆心 O到直线 l 的距离为 d, 那么:直线 l 与⊙ O相交 d<r ;8直线 l 与⊙ O相切d=r ;直线 l 与⊙ O相离d>r ;十一、切线的判定和性质1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理:圆的切线垂直于经过切点的半径。
十二、切线长定理1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、三角形的内切圆1、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心:三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十四、圆和圆的位置关系1、圆和圆的位置关系:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距:两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定设两圆的半径分别为R和 r ,圆心距为 d,那么两圆外离d>R+r两圆外切d=R+r两圆相交R-r<d<R+r (R≥r )两圆内切d=R-r (R>r)两圆内含d<R-r (R>r)4、两圆相切、相交的重要性质:如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十六、与正多边形有关的概念1、正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距: 正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。