数学九年级上册(人教版) 知识点总结

合集下载

(完整word版)人教版数学九年级上册知识点整理

(完整word版)人教版数学九年级上册知识点整理
ADC=180°.
知识点五:与圆有关的位置关系
5.点与圆
的位置关系
设点到圆心的距离为d.
⑴d<r?点在OO内;(2)d=r?点在OO上;(3)d>r?点在OO夕卜.
6.直线和 圆的位
m¥方
宀护¥方位置大糸
相离
相切
相交
图形
l®1
[GDI
公共点个数
0个
1个
2个
数量关系
d>r
d=r
dvr
知识点六:切线的性质与判定
解•
(2 )因式分解法:可化为(ax+m)(bx+ n)=0的方程,用因式分解法求
解•
(3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=
2.一元二次方
b曲4ac(b2-4ac>0).2a
程的解法
(4)配方法:当元二次方程的二次项糸数为1, 次项糸数为偶数时,
也可以考虑用配方法.

先用其他,再用公式
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角
(5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
知识点二:垂径定理及其推论
2.垂径定
理及其推

定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
知识点三:二次函数的平移
4.平移与
解析式
的关系
x/_ov2向左(h<0)或向右(h>0)2向上(k>0)或向下(kv0)2
常”>y=a(x-h)—、y=a(x—h)2+k

人教版九年级上册数学知识点汇总

人教版九年级上册数学知识点汇总

一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般形式为:ax² + bx + c = 0(a ≠ 0)。

2. 解法•配方法:通过配成完全平方形式来解一元二次方程。

步骤包括:移项、除二次项系数、配方、开平方。

•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。

•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。

3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。

二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。

•设:设出未知数。

•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。

•解:解方程,求出未知数的值。

•验:检验方程的解是否保证实际问题有意义,符合题意。

•答:写出答案。

2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。

•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。

•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。

•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。

2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。

人教版数学九年级上册知识点归纳1

人教版数学九年级上册知识点归纳1

九年级上册知识点第一单元 一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。

(完整版)人教版数学九年级上册知识点归纳,推荐文档

(完整版)人教版数学九年级上册知识点归纳,推荐文档

一元二次方程 ax2 bx c 0(a 0) 的求根公式: x b b2 4ac (b2 4ac 0)
2a
有括号的先算括号里的(或先去括号)。
4、因式分解法
我去人也就有人!为UR扼腕入站内信不存在向你偶同意因式调分解剖法沙就是龙利用课因反式分倒解的是手龙段,卷求出风方前程的一解的天方我法,分这种页方符法简Z单N易BX吃噶十 行,是解一元二次方程最常用的方法。
开方数 a 必须是非负数。
ax2 bx c 0(a 0) ,它的特征是:等式左边十一个关于未知数 x 的二次多
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开
项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,
得尽方的因数或因式,这样的二次根式叫做最简二次根式。
弧也相等。
三、垂径定理及其推论
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三
尽方的因数或因式开出来。 3、同类二次根式
直接开平方法适用于解形如 (x a)2 b 的一元二次方程。根据平方根的定义可知,
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫 做同类二次根式。
x a 是 b 的平方根,当 b 0 时, x a b , x a b ,当 b<0 时,方程没有
b 叫做一次项系数;c 叫做常数项。
化二次根式为最简二次根式的方法和步骤:

人教版数学九年级上册知识点整理

人教版数学九年级上册知识点整理
6.直线和圆的位置关系
位置关系
相离
相切
相交
图形
公共点个数
0个
1个
2个
数量关系
d>r
d=r
d<r
知识点六:切线的性质与判定
7.切线
的判定
(1)与圆只有一个公共点的直线是圆的切线(定义法).
(2)到圆心的距离等于半径的直线是圆的切线.
(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.
8.切线
的性质
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
延伸
根据圆的对称性,如图所示,在以下五条结论中:
1弧AC=弧BC;
②弧AD=弧BD;
③AE=BE;
④AB⊥CD;⑤CD是直径.
只要满足其中两个,另外三个结论一定成立,即推二知三
.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
(1)切线与圆只有一个公共点.
(2)切线到圆心的距离等于圆的半径.
(3)切线垂直于经过切点的半径.
*9.切线长
(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.
(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
知识点七:三角形与圆
第二十一章 一元二次方程
知识点一:一元二次方程及其解法
1.一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)专题一:解一元二次方程1、直接开方解法1)$x-6+\sqrt{3}=2\sqrt{2}$解:移项得$x=6-2\sqrt{2}-\sqrt{3}$2)$(x-3)^2=2$解:两边开方得$x-3=\pm\sqrt{2}$,即$x=3\pm\sqrt{2}$ 2、用配方法解方程1)$x+2x-1=0$解:合并同类项得$3x-1=0$,移项得$x=\frac{1}{3}$2)$x-4x+3=0$解:合并同类项得$-3x+3=0$,移项得$x=1$3、用公式法解方程1)$2x^2-7x+3=0$解:根据一元二次方程的求根公式,$x=\frac{7\pm\sqrt{7^2-4\times2\times3}}{4}$,即$x=\frac{1}{2}$或$x=3$2)$x^2-x-1=0$解:同样根据求根公式,$x=\frac{1\pm\sqrt{5}}{2}$,即$x=\frac{1+\sqrt{5}}{2}$或$x=\frac{1-\sqrt{5}}{2}$4、用因式分解法解方程1)$3x(x-2)=2x-4$解:移项得$3x^2-6x-2x+4=0$,合并同类项得$3x^2-8x+4=0$,将其因式分解为$3(x-2)(x-\frac{2}{3})=0$,即$x=2$或$x=\frac{2}{3}$2)$2x-4=x+5$解:移项得$x=3$5、用十字相乘法解方程1)$x^2-x-90=0$解:将其因式分解为$(x-10)(x+9)=0$,即$x=10$或$x=-9$ 2)$2x^2+x-10=0$解:将其因式分解为$(2x-5)(x+2)=0$,即$x=\frac{5}{2}$或$x=-2$专题二:化简求值1、$\frac{x^2+y^2-2xy}{x-y}$,其中$x=2+1$,$y=2-1$解:将$x$和$y$的值代入得$\frac{(2+1)^2+(2-1)^2-2(2+1)(2-1)}{2+1-(2-1)}=\frac{3}{2}$2、$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}$,任选一个数$x$代入求值解:将$x$代入得$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}=\frac{4x^2-14x+12}{(x-1)^2}$专题三:根与系数的关系1、已知关于$x$的一元二次方程$x-4x-2k+8=0$有两个实数根$x_1$,$x_2$。

(精)最新版人教版九年级数学上册全册知识点

(精)最新版人教版九年级数学上册全册知识点

最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。

一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。

这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。

=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

人教版九年级数学上册知识点整理完整版

人教版九年级数学上册知识点整理完整版

人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。

②变量:数量可能改变的量。

③代数式:由数、字母、加减乘除号、括号等符号组成的式子。

④同类项:指含有相同字母并且指数相同的项。

⑤合并同类项:指将同类项合并成一个项。

⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。

⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。

2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。

②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。

⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。

3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。

②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。

④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。

⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。

4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。

②函数的零点:函数 f(x) = 0 的解叫做函数的零点。

即 f(x) = 0 时 x 的解。

③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。

二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。

②射线:在一个端点处向一个方向上延伸的线段,叫做射线。

③直线:没有端点,在一个方向上延伸的线段,称为直线。

④平行线:永远不会相交的两条直线叫做平行线。

⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。

人教版数学九年级上册知识点归纳

人教版数学九年级上册知识点归纳

人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。

最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。

化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。

同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。

2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。

一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

解一元二次方程的方法有直接开平方法、配方法和公式法。

直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。

配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。

关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。

即点P(x,y)关于y 轴的对称点为P’(-x,y)。

第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。

二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。

2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。

3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)

−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。

(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。

特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。

(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。

2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。

3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。

(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。

(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。

二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。

2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。

(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。

(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。

九年级数学上下册知识点汇集—人教版

九年级数学上下册知识点汇集—人教版

九年级数学知识点九年级数学(上册)知识点第二十一章 一元二次方程一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成02=++c bx ax (a ≠0)后,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。

(1)运用开平方法解形如p a mx =+2)((n ≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。

这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。

进而举例说明如何解形如的方程。

然后举例说明一元二次方程可以化为形如的方程,引出配方法。

最后安排运用配方法解一元二次方程的例题。

在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。

对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(3)一元二次方程02=++c bx ax (a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式02=++c bx ax ,当ac b 42-≥0时,•将a 、b 、c 代入式子a ac b b x 242-±-=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

九年级数学人教版知识点总结

九年级数学人教版知识点总结

九年级上册数学知识点归纳抛物线顶点坐标公式y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)相关结论过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1.x2=p^2/4,y1.y2=—P^2,要在直线过焦点时才能成立;②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];③(1/|FA|)+(1/|FB|)=2/P;④若OA垂直OB则AB过定点M(2P,0);⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);⑥弦长公式:AB=√(1+k^2).│x2-x1│;⑦△=b^2-4ac;⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。

⑴△=b^2-4ac>0有两个实数根;⑵△=b^2-4ac=0有两个一样的实数根;⑶△=b^2-4ac<0没实数根。

初三数学知识点【三角形中位线的定理】三角形的中位线平行于三角形的第三边,并且等于第三边的一半.【平行四边形的性质】①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分.【矩形的性质】①矩形具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等.正方形的判定与性质1.判定方法:(1)邻边相等的矩形;(2)邻边垂直的菱形;(3)对角线垂直的矩形;(4)对角线相等的菱形;2.性质:(1)边:四边相等,对边平行;(2)角:四个角都相等都是直角,邻角互补;(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。

等腰三角形的判定定理【等腰三角形的判定方法】1.有两条边相等的三角形是等腰三角形。

2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

数学9年级上册人教版课程

数学9年级上册人教版课程

数学9年级上册人教版课程由于您没有具体说明关于九年级上册人教版数学课程哪方面的内容(例如知识点总结、题型归纳、复习资料等),以下为您提供一份较为全面的人教版九年级上册数学知识点总结:一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法。

- 对于方程x^2=p(p≥0),则x = ±√(p)。

- 对于方程(mx + n)^2=p(p≥0),则mx + n=±√(p),进而解得x=(-n±√(p))/(m)。

- 配方法。

- 步骤:- 把方程化为一般形式ax^2+bx + c = 0(a≠0)。

- 移项:把常数项移到方程右边,即ax^2+bx=-c。

- 二次项系数化为1:方程两边同时除以a,得到x^2+(b)/(a)x =-(c)/(a)。

- 配方:在方程两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2,然后化为(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2}。

- 开方求解。

- 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 因式分解法。

- 把方程化为一般形式后,如果方程左边能分解因式,即ax^2+bx + c=(mx + p)(nx+q),那么方程可化为(mx + p)(nx + q)=0,则mx + p = 0或nx+q = 0,进而求解。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。

有理数的数轴上,0的左侧是负有理数,右侧是正有理数。

加、减、乘、除有理数的运算规则。

二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。

三、代数式由数、变量及运算符号组成的式子叫做代数式。

其中数叫做常数项,变量叫做一次项。

四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。

五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。

六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。

七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。

2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。

八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。

九、相反数两个数互为相反数,当且仅当它们的和为0。

十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。

2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。

十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。

2、弧是圆上任意两点之间的弧。

3、圆心角,切线和弦的关系。

十三、比例和类比1、比例含义:比例是两个量之间的等比关系。

2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。

十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。

2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。

十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。

2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。

人教版九年级数学上册重点知识点总结

人教版九年级数学上册重点知识点总结

人教版九年级数学上册重点知识点总结一、实数1.有理数1.1 定义:整数和分数统称为有理数。

1.2 分类:正有理数、负有理数和零。

1.3 性质:有理数加减乘除遵循交换律、结合律和分配律。

1.4 相反数、绝对值:一个数的相反数是与它的数值相等,但符号相反的数;一个数的绝对值是它与零的距离。

2.无理数2.1 定义:不能表示为两个整数比的数称为无理数。

2.2 性质:无理数不能精确表示,只能近似计算。

2.3 常见无理数:π、√2、√3等。

3.实数3.1 定义:有理数和无理数的集合称为实数。

3.2 性质:实数加减乘除遵循交换律、结合律和分配律。

二、代数式1.代数式的概念1.1 代数式是由数字、字母和运算符组成的表达式。

1.2 代数式的分类:单项式、多项式、函数等。

2.单项式2.1 定义:只有一个项的代数式称为单项式。

2.2 项的系数:单项式中字母的系数是该字母前的数字。

3.多项式3.1 定义:有两个或以上项的代数式称为多项式。

3.2 多项式的度:多项式中最高次项的次数称为该多项式的度。

4.函数4.1 定义:对于每个输入值,都有唯一输出值的代数式称为函数。

4.2 函数的表示方法:解析式、表格、图象等。

三、方程(含方程组)1.一元一次方程1.1 定义:只有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。

1.2 解法:移项、合并同类项、化简等。

2.二元一次方程2.1 定义:有两个未知数,且未知数的最高次数为1的方程称为二元一次方程。

2.2 解法:代入法、消元法等。

3.方程组3.1 定义:由两个或以上方程组成的解集称为方程组。

3.2 解法:代入法、消元法、图解法等。

四、不等式(含不等式组)1.不等式1.1 定义:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间大小关系的式子称为不等式。

1.2 解法:同方向不等式可以相加减,异方向不等式需要变号。

2.不等式组2.1 定义:由两个或以上不等式组成的解集称为不等式组。

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)

九年级上册数学专题复习(九个专题)专题一 解一元二次方程1、直接开方解法方程(1)2(6)30x -+= (2) 21(3)22x -=2、用配方法解方程(1)2210x x +-= (2) 2430x x -+=3、用公式法解方程(1)03722=+-x x (2) 210x x --=4、用因式分解法解方程(1)3(2)24x x x -=- (2)22(24)(5)x x -=+5、用十字相乘法解方程(1)2900x x --= (2)22100x x +-=专题二 化简求值1、先化简,再求值:x2+y2-2xy x -y÷(x y -yx ),其中x =2+1,y =2-1.2、先化简:先化简:12164--÷⎪⎭⎫ ⎝⎛---x x x x x ,再任选一个你喜欢的数x 代入求值.专题三 根与系数的关系1、已知关于x 的一元二次方程24280x x k --+=有两个实数根1x ,2x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.2、已知关于x 的一元二次方程26250x x a -++=有两个不相等的实数根1x ,2x . (1)求a 的取值范围;(2)若221212x x x x +-≤30,且a 为整数,求a 的值.3、已知关于x 的方程0)1()12(2=-+--m m x m x ,(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程的两实数根分别为1x ,2x ,且满足11)(21221-⋅=-x x x x ,求实数m 的值.专题四 统计与概率1、现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为_________;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.2、现有A 、B 两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A ,B 两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.3、2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.专题五圆知识点一:证切线,求半径1、如图所示,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为 .2、如图所示,AB 是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是 .3、如图所示,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.4、如图所示,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=12∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.5、如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.知识点二求不规则图形的阴影面积1、如图所示,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.EDBOAC2、如图所示,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为___________.3、如图所示,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A,点C,交OB 于点D,若OA =3,则阴影部分的面积为________.4、如图所示,AB 为⊙O 的直径,AC 平分∠BAE 交⊙O 于点C ,AE ⊥EC 于点E .(1)试判断CE 与⊙O 的位置关系,并说明理由;(2)若D 为AC 的中点,⊙O 的半径为2,求图中阴影部分的面积.专题六 二次函数实际应用1、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据:销售单价x (元/kg ) 120 130 ... 180 每天销量y (kg ) 100 95 (70)设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?2、传统的端午节即将来临,我县某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:⎩⎨⎧≤≤+≤≤=)()(20680206034x x x x y ,请解答以下问题:(1)李明第几天生产的粽子数量为280只?(2)如图所示,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,求p 与x 之间的函数关系式;(3)若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)3、如图所示,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.专题七反比例函数的相关计算1、如图4,一次函数y=-x+3的图像与反比例函数y=kx(k≠0)在第一象限的图像交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为6,求点P的坐标.2、已知反比例函数y=5mx(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.3、如图所示,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数kyx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,则k值为()A.4B.3C.2D.1专题八 三角形全等与旋转的综合应用1、如图1所示,已知△ABC ≌△EBD ,∠ACB =∠EDB =90°,点D 在AB 上,连接CD 并延长交AE 于点F .(1)猜想:线段AF 与EF 的数量关系为______;(2)探究:若将图1所示的△EBD 绕点B 顺时针方向旋转,当∠CBE 小于180°时,得到图2所示,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中所示,过点E 作EG ⊥CB ,垂足为点G .当∠ABC 的大小发生变化,其它条件不变时,若∠EBG =∠BAE ,BC =6,直接写出AB 的长.F EDC BAFDEBC A(图1) (图2)专题九 二次函数的综合应用1、已知抛物线22y ax ax c =-+过点A (-1,0)和C (0,3),与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图1所示,E 为线段BC 上方的抛物线上一点,EF ⊥BC ,垂足为F ,EM ⊥x 轴,垂足为M ,交BC 于点G .当BG=CF 时,求△EFG 的面积;(3)如图2所示,AC 与BD 的延长线交于点H ,在x 轴上方的抛物线上是否存在点P ,使∠OPB =∠AHB ?若存在,求出点P 的坐标;若不存在,请说明理由.xyCH D BA O yx M D CG FBA O E(图1) (图2)2.(满分3+4+5=12分)如图所示,抛物线y=ax 2+bx-3与轴交于A ,B 两点(A 点在B 点左侧),A(-1,0),B(3,0),直线L 与抛物线交于,两点,其中点的横坐标为. (1)求抛物线的函数解析式; (2)是线段AC 上的一个动点,过点作y 轴的平行线交抛物线于点,求线段PE 长度的最大值;(3)点是抛物线上的动点,在x 轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学九年级上册(人教版)知识点总结第二十一章二次根式21.1 二次根式1.二次根式:式子(a≥0)叫做二次根式。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5 ,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2 ,=3 ,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

如与,a+ 与a- ,- 与+ ,互为有理化因式。

二次根式的性质:1. (a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a ≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b>0)。

21.2 二次根式的乘除1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。

(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。

也称“积的算术平方根”。

它与二次根式的乘法结合,可以对一些二次根式进行化简。

2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。

也称“商的算术平方根”。

它与二根式的除法结合,可以对一些二次根式进行化简。

3. 最简二次根式一个二次根式如果满足下列两个条件:(1)被开方数中不含能开方开得尽的因数或因式;(2)被开方数中不含分母。

这样的二次根式叫做最简二次根式。

说明:(1)这两个条件必须同时满足,才是最简二次根式;(2)被开方数若是多项式,需利用因式分解法把它们化成乘积式,再进行化简;(3)二次根式化简到最后,二次根式不能出现在分母中,即分母中要不含二次根式。

21.3 二次根式的加减1. 同类二次根式(1)定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式。

注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。

(2)合并同类二次根式:合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。

2. 二次根式的加减(1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

(2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。

一般地,二次根式的加减法可分以下三个步骤进行:i)将每一个二次根式都化简成最简二次根式ii)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组iii)合并同类二次根式3. 二次根式的混合运算二次根式的混合运算可以说是二次根式乘法、除法、加、减法则的综合应用,在进行二次根式的混合运算时应注意以下几点:(1)观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。

(2)在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”。

(3)观察式中二次根式的特点,合理使用运算律和运算性质,在实数和整式中的运算律和运算性质,在二次根式的运算中都可以应用。

4. 分母有理化(1)我们在前面的学习中研究了分母形如形式的分式的分母有理化综合起来,常见的有理化因式有:①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为(2)分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

第二十二章一元二次方程22.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。

一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax^+bx+c=0时,应满足(a≠0)22.2 降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。

这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

22.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.第二十三章旋转23.1 图形的旋转1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。

(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。

(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。

(4)会找对应点,对应线段和对应角。

2. 旋转的基本特征:(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。

(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;(3)图形在旋转时,图形的大小和形状都没有发生改变。

3. 几点说明:(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。

(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。

(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。

23.2 中心对称中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这刘遇图形关于这个点对称或中心对称。

中心对称的性质:①关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中心所平分。

②关于中心对称的刘遇图形是全等形。

中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

23.3 课题学习图案设计灵活运用平移、旋转、轴对称等变换进行图案设计.图案设计就是通过图形变换(平移、旋转、轴对称或几种的组合)把基本图形组成具有一定意义的新图形,图案设计时不仅要看是否正确使用了图形变换,还要看图案是否很好的体现了设计意图.第二十四章圆24.1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

相关文档
最新文档