人教版九年级数学知识点总结

合集下载

九年级人教版数学全册知识点

九年级人教版数学全册知识点

九年级人教版数学全册知识点一、代数1. 代数式的定义和基本性质2. 一元一次方程及其应用3. 一元一次不等式及其应用4. 线性函数及其应用5. 平方根与二次方程6. 平方根与二次函数7. 分式与分式方程8. 速度与比例二、几何1. 线段比例及其性质2. 相似三角形及其性质3. 直角三角形中的三角函数4. 平面直角坐标系5. 二次函数的图像与性质6. 平面向量三、数据统计与概率1. 统计与统计图2. 等可能事件与概率3. 条件概率与事件独立性4. 排列与组合5. 正态分布与抽样调查四、实数1. 整式的加减运算2. 整式的乘法和因式分解3. 分式的加减运算4. 分式的乘法和除法5. 二次根式的性质和计算五、函数与方程1. 一元二次方程2. 一元二次函数3. 二次函数与二次方程4. 一元二次不等式5. 一元一次不等式六、立体几何与图形1. 空间几何图形2. 直线与点的位置关系3. 平面与空间直线的位置关系4. 空间图形的投影5. 立体图形的计算七、三角函数1. 任意角与弧度制2. 三角函数及其图像性质3. 三角函数的诱导公式4. 三角函数的图像变换5. 三角恒等变换八、二次函数1. 二次函数的定义与性质2. 二次函数的函数图像3. 二次函数的最值与判别式4. 直线与二次函数的交点5. 二次函数的应用九、统计1. 统计调查与参数估计2. 统计图的应用与分析3. 数据的分类与分组4. 数据的比较与分析5. 综合统计应用题以上就是九年级人教版数学全册的知识点概述。

在这些知识点中,我们将学习代数、几何、数据统计与概率、实数、函数与方程、立体几何与图形、三角函数二次函数和统计等内容。

通过系统的学习和练习,我们将能够掌握九年级数学的核心知识,提高数学解题和分析问题的能力。

希望同学们能够认真学习,并在实践中不断提高自己的数学水平!。

人教版初三数学知识点总结

人教版初三数学知识点总结

人教版初三数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如公文写作、报告体会、演讲致辞、党团资料、合同协议、条据文书、诗词歌赋、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as official document writing, report experience, speeches, party and group materials, contracts and agreements, articles and documents, poems and songs, teaching materials, essay collections, other sample essays, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!人教版初三数学知识点总结人教版初三数学知识点总结(通用15篇)人教版初三数学知识点总结篇1等腰三角形的判定方法1.有两条边相等的三角形是等腰三角形。

最新人教版九年级数学上册知识点总结全套

最新人教版九年级数学上册知识点总结全套

最新人教版九年级数学上册知识点总结全套数学上册知识点总结21.1 一元二次方程知识点一:一元二次方程的定义一元二次方程是指等号两边都是只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。

注意以下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二:一元二次方程的一般形式一元二次方程的一般形式为ax2+ bx + c = 0(a≠0)。

其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

知识点三:一元二次方程的根一元二次方程的根是指使方程左右两边相等的未知数的值。

方程的解的定义是解方程过程中验根的依据。

21.2 降次——解一元二次方程21.2.1 配方法知识点一:直接开平方法解一元二次方程1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a。

2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二:配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:①把常数项移到等号的右边;②方程两边都除以二次项系数;③方程两边都加上一次项系数一半的平方,把左边配成完全平方式;④若等号右边为非负数,直接开平方求出方程的解。

21.2.2 公式法知识点一:公式法解一元二次方程一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=b±b2-4ac2a,这个公式叫做一元二次方程的求根公式。

九年级数学课本知识点人教版

九年级数学课本知识点人教版

九年级数学课本知识点人教版初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角的外心就是斜边的中点。

)8、直线与圆的位置关系。

d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

9、中,A(x1,y1)、B(x2,y2)。

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

九年级下册数学知识点汇总(人教版)

九年级下册数学知识点汇总(人教版)

九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。

人教版九年级数学上册知识点整理完整版

人教版九年级数学上册知识点整理完整版

人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。

②变量:数量可能改变的量。

③代数式:由数、字母、加减乘除号、括号等符号组成的式子。

④同类项:指含有相同字母并且指数相同的项。

⑤合并同类项:指将同类项合并成一个项。

⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。

⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。

2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。

②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。

⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。

3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。

②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。

④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。

⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。

4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。

②函数的零点:函数 f(x) = 0 的解叫做函数的零点。

即 f(x) = 0 时 x 的解。

③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。

二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。

②射线:在一个端点处向一个方向上延伸的线段,叫做射线。

③直线:没有端点,在一个方向上延伸的线段,称为直线。

④平行线:永远不会相交的两条直线叫做平行线。

⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。

人教版九年级上册数学知识点总结

人教版九年级上册数学知识点总结

人教版九年级上册数学知识点总结九年级上册知识点二次根式知识点考点1、无理数无限不循环的小数,叫做无理数。

常见的无理数:1、π以及π的有理数倍数。

2、、、;3、2.…………考点2、二次根式的概念形如(a≥)的式子叫做二次根式。

1、被开放数a是一个非负数;2、二次根式是一个非负数,即≥;3、有限个二次根式的和等于,则每个二次根式的被开方数必须是0.考点3、移因式于根号内、外的方法移因式于根号外1、当根号外的数是一个负数时,把负号留在根号外,然后把这个数平方后移到根号内2、当根号内的数是一个正数时,直接把这个数平方后移到根号内移因式于根号内1、当根号内的数是正数时直接开方移到根号外2、当根号内的数是负数时开方移到根号外后要添上负号考点4、最简二次根式知识回顾:满意下列前提的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

知识特点:1、最简二次根式中一定不含有分母;n2、对于数大概代数式,它们不能在写成a×m的方式。

考点5、二次根式的化简与计算二次根式的化简,实际上就是把二次根式化成最简二次根式,然后,通过合并同类二次根式的方法进行二次根式的加减运算。

二次根式的加减运算:a二次根式的乘法运算:.+b==(a+b),(m≥);,( a≥0, b≥0);二次根式的除法运算:÷=,( a≥0, b>0);二次根式的乘方运算:=a,( a≥0);二次根式的开方运算:=考点6、1、不同点:XXX的平方,而与与的异同点表示的意义是不同的,表示一个正数a的算术平透露表现一个实数a的平方的算术平方根;时,=;时,2、不异点:当被开方数都长短负数,即无意义,而一元二次方程考点1、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:十一个关于未知数x的二次多项式,等式右边是零,其中,它的特征是:等式左边叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

人教版九年级下册数学知识点汇总

人教版九年级下册数学知识点汇总

一、二次函数1.二次函数定义o二次函数(quadratic function)是指未知数的次数为二次的多项式函数,可以表示为f(x)=ax²+bx+c(a不为0)。

2.基本形式o一般式:y=ax²+bx+c (a≠0)o顶点式:y=a(x-h)²+k 或y=a(x+m)²+k(h, k为常数,a≠0)o交点式(与x轴):y=a(x-x1)(x-x2)3.重要概念o顶点坐标:(-b/2a, (4ac-b²)/4a)o开口方向:由a决定,a>0时开口向上,a<0时开口向下。

o开口大小:由|a|决定,|a|越大开口越小,|a|越小开口越大。

4.函数变化o当a>0时,x>0时y随x增大而增大;x<0时y随x增大而减小。

o当a<0时,x>0时y随x增大而减小;x<0时y随x增大而增大。

二、相似三角形1.相似三角形的定义o三条边对应成比例,三个角对应相等的两个三角形叫相似三角形。

2.相似比o相似三角形的对应边的比叫作这两个三角形的相似比。

3.判定定理o如果两个三角形的两个角对应相等,则这两个三角形相似。

o如果两个三角形的两组对应边的比相等,并且相应的夹角相等,则这两个三角形相似。

o如果两个三角形的三组对应边的比相等,则这两个三角形相似。

o平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

4.特殊情况o两个等边三角形一定相似。

o两个等腰直角三角形一定相似。

5.相似三角形的性质o相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

o相似三角形周长的比等于相似比。

o相似三角形面积的比等于相似比的平方。

三、锐角三角函数1.基本概念o在直角三角形中,锐角的正弦(sin)、余弦(cos)和正切(tan)等称为锐角三角函数。

2.定义o正弦(sin):对边/斜边o余弦(cos):邻边/斜边o正切(tan):对边/邻边o余切(cot):邻边/对边3.特殊角的三角函数值o需要记忆如30°、45°、60°等特殊角的三角函数值。

人教版九年级上册数学知识点汇总

人教版九年级上册数学知识点汇总

作为资深教师,整理人教版九年级上册数学知识点汇总如下:一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般形式为:ax² + bx + c = 0(a ≠ 0)。

2. 解法•配方法:通过配成完全平方形式来解一元二次方程。

步骤包括:移项、除二次项系数、配方、开平方。

•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。

•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。

3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。

二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。

•设:设出未知数。

•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。

•解:解方程,求出未知数的值。

•验:检验方程的解是否保证实际问题有意义,符合题意。

•答:写出答案。

2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。

•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。

•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。

•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。

人教版数学九年级上册知识点归纳

人教版数学九年级上册知识点归纳

人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。

最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。

化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。

同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。

2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。

一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

解一元二次方程的方法有直接开平方法、配方法和公式法。

直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。

配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。

关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。

即点P(x,y)关于y 轴的对称点为P’(-x,y)。

第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。

二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。

2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。

3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)

−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。

(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。

特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。

(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。

2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。

3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。

(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。

(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。

二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。

2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。

(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。

(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。

人教版九年级数学全册各单元知识点总结

人教版九年级数学全册各单元知识点总结

人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。

希望对你的学习有所帮助!。

九年级数学上下册知识点汇集—人教版

九年级数学上下册知识点汇集—人教版

九年级数学知识点九年级数学(上册)知识点第二十一章 一元二次方程一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成02=++c bx ax (a ≠0)后,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。

(1)运用开平方法解形如p a mx =+2)((n ≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。

这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。

进而举例说明如何解形如的方程。

然后举例说明一元二次方程可以化为形如的方程,引出配方法。

最后安排运用配方法解一元二次方程的例题。

在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。

对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(3)一元二次方程02=++c bx ax (a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式02=++c bx ax ,当ac b 42-≥0时,•将a 、b 、c 代入式子a ac b b x 242-±-=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

新人教版九年级数学知识点归纳

新人教版九年级数学知识点归纳

新人教版九年级数学知识点归纳第二十一章一元二次方程21.1 一元二次方程一元二次方程是指一个等式中只含有一个未知数,且未知数的最高次数是2次的整式方程。

它有四个特点:(1)只含有一个未知数;(2)未知数次数最高次数是2;(3)是整式方程;(4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。

21.2 降次——解一元二次方程解一元二次方程的基本思想是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1.直接开平方法:用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=± m。

直接开平方法就是平方的逆运算,通常用根号表示其运算结果。

2.配方法:通过配成完全平方式的方法,得到一元二次方程的根的方法。

这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

具体步骤如下:1) 转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式);2) 系数化1:将二次项系数化为1;3) 移项:将常数项移到等号右侧;4) 配方:等号左右两边同时加上一次项系数一半的平方;5) 变形:将等号左边的代数式写成完全平方形式;6) 开方:左右同时开平方;7) 求解:整理即可得到原方程的根。

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b±√(b^2-4ac))/2a,就可得到方程的根。

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

21.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展。

From the perspective of solving ns。

人教版九年级数学知识点归纳

人教版九年级数学知识点归纳

人教版九年级数学知识点归纳情况是在不断的变化,要使自己的思想适应新的情况,就得学习。

下面给大家带来一些关于人教版九年级数学知识点归纳,希望对大家有所帮助。

人教版九年级数学知识点1二次函数一、二次函数1、一般地,如果是常数,,那么叫做的二次函数。

是自变量。

其中,a是二次项系数;b一次项系数;c是常数项。

2、二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤。

3、二次函数的图象:是常数,,的图像是抛物线。

抛物线与它的对称轴的交点叫抛物线的顶点。

顶点是抛物线的最高点或最低点。

4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。

(2)公式:,∴顶点是,对称轴是直线。

5、二次函数的图象的特点:(1)抛物线的顶点是坐标原点,对称轴是轴;(2)抛物线的顶点是(h,k),对称轴是x=h;(3)抛物线的顶点是(),对称轴是;①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点。

|a|越大,开口越小。

|a|越小,开口越大。

(4)几种特殊的二次函数的图像特征二、二次函数与二元一次方程的关系人教版九年级数学知识点2相似一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。

(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。

2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

3.相似比:相似多边形的对应边的比叫相似比。

相似比为1时,相似的两个图形全等。

二、相似三角形1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

九年级数学知识点总结人教版

九年级数学知识点总结人教版

九年级数学知识点总结人教版学习从来无捷径,循序渐进登高峰。

如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。

学习需要勤奋,做任何事情都需要勤奋。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

1、概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180° ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180° ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点 P(x,y)关于原点 O 的对称点P′(-x,-y).(一)平行四边形的定义、性质及判定.1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4 ·对称性:平行四边形是中心对称图形.(二)矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2 ·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4 ·对称性:矩形是轴对称图形也是中心对称图形.(三)菱形的定义、性质及判定.1 ·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。

有理数的数轴上,0的左侧是负有理数,右侧是正有理数。

加、减、乘、除有理数的运算规则。

二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。

三、代数式由数、变量及运算符号组成的式子叫做代数式。

其中数叫做常数项,变量叫做一次项。

四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。

五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。

六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。

七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。

2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。

八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。

九、相反数两个数互为相反数,当且仅当它们的和为0。

十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。

2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。

十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。

2、弧是圆上任意两点之间的弧。

3、圆心角,切线和弦的关系。

十三、比例和类比1、比例含义:比例是两个量之间的等比关系。

2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。

十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。

2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。

十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。

2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。

初三数学知识点归纳人教版

初三数学知识点归纳人教版

初三数学知识点归纳人教版初三数学学问点总结一、直线、相交线、平行线1.线段、射线、直线三者的区分与联系从图形、表示法、界限、端点个数、基本性质等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边)4.两点间的距离(三个距离:点点;点线;线线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示〔方法〕7.角的平分线及其表示8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区分与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。

⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。

⑶角与边:在同一三角形中,3.三角形的主要线段商量:①定义②线的交点三角形的心③性质① 高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特别三角形:直角三角形、等腰三角形、等边三角形4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特别三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要帮助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加帮助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360⑵顺次连结各边中点得平行四边形。

人教版九年级数学上册重点知识点总结

人教版九年级数学上册重点知识点总结

人教版九年级数学上册重点知识点总结一、实数1.有理数1.1 定义:整数和分数统称为有理数。

1.2 分类:正有理数、负有理数和零。

1.3 性质:有理数加减乘除遵循交换律、结合律和分配律。

1.4 相反数、绝对值:一个数的相反数是与它的数值相等,但符号相反的数;一个数的绝对值是它与零的距离。

2.无理数2.1 定义:不能表示为两个整数比的数称为无理数。

2.2 性质:无理数不能精确表示,只能近似计算。

2.3 常见无理数:π、√2、√3等。

3.实数3.1 定义:有理数和无理数的集合称为实数。

3.2 性质:实数加减乘除遵循交换律、结合律和分配律。

二、代数式1.代数式的概念1.1 代数式是由数字、字母和运算符组成的表达式。

1.2 代数式的分类:单项式、多项式、函数等。

2.单项式2.1 定义:只有一个项的代数式称为单项式。

2.2 项的系数:单项式中字母的系数是该字母前的数字。

3.多项式3.1 定义:有两个或以上项的代数式称为多项式。

3.2 多项式的度:多项式中最高次项的次数称为该多项式的度。

4.函数4.1 定义:对于每个输入值,都有唯一输出值的代数式称为函数。

4.2 函数的表示方法:解析式、表格、图象等。

三、方程(含方程组)1.一元一次方程1.1 定义:只有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。

1.2 解法:移项、合并同类项、化简等。

2.二元一次方程2.1 定义:有两个未知数,且未知数的最高次数为1的方程称为二元一次方程。

2.2 解法:代入法、消元法等。

3.方程组3.1 定义:由两个或以上方程组成的解集称为方程组。

3.2 解法:代入法、消元法、图解法等。

四、不等式(含不等式组)1.不等式1.1 定义:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间大小关系的式子称为不等式。

1.2 解法:同方向不等式可以相加减,异方向不等式需要变号。

2.不等式组2.1 定义:由两个或以上不等式组成的解集称为不等式组。

人教版九年级上册数学各单元知识点归纳总结

人教版九年级上册数学各单元知识点归纳总结

人教版九年级上册数学各单元知识点归纳总结数学九年级上册共有十个单元,分别是集合与函数、有理数与运算、整式的加减、整式的乘法、一次函数与方程、比例与百分数、线性方程组、平方根与整式的除法、直角三角形与勾股定理、统计与概率。

下面将详细介绍这些单元的知识点。

一、集合与函数:1.集合:元素、属于、不属于、集合的相等、全集、子集、交集、并集、差集、互斥集、余集。

2.函数:自变量、因变量、函数的值、定义域、值域、函数的相等、奇函数、偶函数、函数的和差积商、反函数。

3.函数的图象:平移、伸缩、翻折、求过给定点的直线方程。

二、有理数与运算:1.有理数:整数、分数、有理数的相反数、绝对值、有理数的大小、有理数的加减乘除。

2.小数:有限小数、无限小数、循环小数、无理数、实数。

3.数轴与有理数:数轴上的点、有理数与数轴的对应关系、有理数的大小关系、有理数的加法减法、有理数的乘法除法。

4.分式:分数的性质、带分数、分数的加减乘除。

三、整式的加减:1.代数式:字母、代数式的加减、整式、项、系数、常数项。

2.同类项:同类项的合并与分拆、整式的加法、整式的减法。

四、整式的乘法:1.乘法基本公式:乘法基本公式的应用、平方差公式、差的平方公式、完全平方公式、立方差公式、立方和公式、整式的乘法。

2.因式与倍式:因式分解、互质、最大公因式。

五、一次函数与方程:1.函数与方程:线性函数、一次函数、函数的表示、函数的图象、函数的性质、函数关系、一元一次方程、方程的解。

2.解一次方程:等式的性质、移项变号、等式的逆运算、绝对值不等式。

六、比例与百分数:1.比例:比例的概念、比例的扩大与缩小、比例的性质、四边形的对边比、折线的边长比。

2.百分数:百分数与百分数、百分数与小数、百分数与分数、百分数的运算、平均数、加权平均数。

七、线性方程组:1.二元一次方程组:线性方程组、二元一次方程组、方程组的解、解二元一次方程组。

2.三元一次方程组:解三元一次方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章二次根式1.二次根式:式子(a≥0)叫做二次根式。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5 ,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2 ,=3 ,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

如与,a+ 与a- ,- 与+ ,互为有理化因式。

二次根式的性质:1. (a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。

21.2 二次根式的乘除1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。

(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。

也称“积的算术平方根”。

它与二次根式的乘法结合,可以对一些二次根式进行化简。

2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。

也称“商的算术平方根”。

它与二根式的除法结合,可以对一些二次根式进行化简。

3. 最简二次根式(1)被开方数中不含能开方开得尽的因数或因式;(2)被开方数中不含分母。

21.3 二次根式的加减1. 同类二次根式注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。

(2)合并同类二次根式:合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。

2. 二次根式的加减(1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

(2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。

一般地,二次根式的加减法可分以下三个步骤进行:i)将每一个二次根式都化简成最简二次根式ii)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组iii)合并同类二次根式3. 二次根式的混合运算二次根式的混合运算可以说是二次根式乘法、除法、加、减法则的综合应用,在进行二次根式的混合运算时应注意以下几点:(1)观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。

(2)在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”。

(3)观察式中二次根式的特点,合理使用运算律和运算性质,在实数和整式中的运算律和运算性质,在二次根式的运算中都可以应用。

4. 分母有理化(1)我们在前面的学习中研究了分母形如形式的分式的分母有理化综合起来,常见的有理化因式有:①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为(2)分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

第二十二章一元二次方程22.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。

22.2 降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m.2、配方法1.转化:2.系数化3.移项:4.配方:5.变形:6.开方:3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

22.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.第二十三章旋转23.1 图形的旋转1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。

(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。

(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。

(4)会找对应点,对应线段和对应角。

2. 旋转的基本特征:(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。

(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;(3)图形在旋转时,图形的大小和形状都没有发生改变。

3. 几点说明:旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。

23.2 中心对称中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这个图形关于这个点对称或中心对称。

中心对称的性质:①关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中心所平分。

②关于中心对称的刘遇图形是全等形。

中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

第二十四章圆第三章圆1、定义:圆是平面上到定点距离等于定长的点的集合。

其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。

对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。

2、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则:①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r。

(P56-5,6、P58-16)证明若干个点共圆,就是证明这几个点与一个定点的距离相等。

3、圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆是中心对称图形,对称中心为圆心。

直径所在的直线是它的对称轴,圆有无数条对称轴。

(P58-4、P59-9、P61-3、P63-16、P65-15)4、与圆相关的概念:①弦和直径。

弦:连接圆上任意两点的线段叫做弦。

直径:经过圆心的弦叫做直径。

②圆弧、半圆、优弧、劣弧。

圆弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示,半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。

优弧:大于半圆的弧叫做优弧。

劣弧:小于半圆的弧叫做劣弧。

(为了区别优弧和劣弧,优弧用三个字母表示。

)③弓形:弦及所对的弧组成的图形叫做弓形。

④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角。

⑦弦心距:从圆心到弦的距离叫做弦心距。

5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

6、定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

7、1°的弧的概念:把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧。

圆心角的度数和它所对的弧的度数相等。

8、圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;(P66-5,7、P68-16)9、确定圆的条件:①理解确定一个圆必须的具备两个条件:圆心和半径,圆心决定圆的位置,半径决定圆的大小。

经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上。

②经过三点作圆要分两种情况:(1)经过同一直线上的三点不能作圆。

(2)经过不在同一直线上的三点,能且仅能作一个圆。

相关文档
最新文档