初三数学知识点总结
初三数学知识点归纳整理
初三数学知识点归纳整理最全初三数学知识点归纳篇一一、二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式。
(2)是一个重要的非负数,即;≥0。
2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3、二次根式比较大小的方法:(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
初三数学知识点归纳总结
初三数学知识点归纳总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初三数学知识点归纳总结数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。
初三数学知识点归纳总结
初三数学知识点归纳总结一、数线与有理数1. 数线的绘制及利用2. 正数、负数、零的相对位置3. 绝对值的概念和性质4. 有理数的概念和进一步运算二、整式与分式1. 代数式与整式的关系和分类2. 整式的加、减、乘、除运算3. 因式分解与最大公因式4. 分式的概念及运算三、图形的初步认识1. 平面,直线,角的认识2. 平行线与相交线的性质3. 三角形及其分类4. 圆的概念与性质四、数的运算1. 空间中的平面图形:点、线、角、多边形等的性质和计算2. 数的概念、关系和性质的认识3. 基本运算(加、减、乘、除)的运用4. 计算与应用题实际问题中的数的运算五、比例与百分数1. 比的概念及比例的基本性质2. 比例式的解答和应用3. 百分数的概念和运用4. 实际应用中的比例和百分数计算六、方程与方程式1. 用字母表示未知量,用方程表示实际问题的关系2. 列方程、解方程及应用3. 二元一次方程式4. 代入法解方程与应用七、图形的认识和运用1. 平面图形(三角形、直角三角形、平行四边形、菱形、梯形等)的特点和性质2. 坐标平面及其应用3. 平行线,垂直线,垂线的性质和判断4. 与线段、角度有关的直线、角度和轴对称的认识和判断八、统计与概率1. 统计调查的基本方法与技巧2. 可视化的统计图形和统计图表的制作与分析3. 概率的概念、计算和应用4. 实际问题中的统计和概率计算以上是初三数学的主要知识点归纳总结,每个知识点都包含了若干个具体的概念、性质、解题方法和应用。
初三数学知识点的掌握对于学生打好数学基础和提高数学能力都有重要的作用。
在学习过程中,需要注意理论知识的掌握和应用能力的培养,通过练习、思考和解决问题来加深对数学的理解和运用能力的提高。
初三数学知识点总结梳理
初三数学知识点总结梳理第一章:有理数与实数1. 整数的概念与性质- 整数的定义及其表示方法- 整数的比较、运算规则和性质- 整数的绝对值及其性质- 整数的约数与倍数- 整数的倒数的概念与性质2. 有理数的概念与性质- 有理数的定义及其表示方法- 有理数的比较、运算规则和性质- 有理数的绝对值及其性质- 有理数的相反数和倒数的概念与性质- 有理数的大小关系3. 实数的概念与性质- 实数的定义与分类- 实数的基本性质- 实数的大小关系- 实数的逼近性质第二章:代数式与方程式1. 代数式的概念与性质- 代数式的定义与表示方法- 同类项与同类项合并- 代数式的化简与展开2. 方程式的概念与性质- 方程式的定义与性质- 一元一次方程的解的存在与唯一性- 一元一次方程的变形与解法- 一元一次方程组的概念与解法- 一元二次方程的求解与判别式3. 不等式的概念与性质- 不等式的定义与性质- 不等式的解集的表示- 一元一次不等式与一元一次方程的联系与比较- 一元一次不等式组的概念与解法第三章:平面图形与空间图形1. 平面图形的概念与性质- 点、线、面的定义与性质- 角的定义、性质及其分类- 平行线与垂直线的判定条件- 三角形的定义及其分类- 三角形的内角和及其应用- 三角形的相似与全等的概念与判定条件2. 空间图形的概念与性质- 四面体、正四面体、正六面体的定义与性质- 柱、锥棱的定义与性质- 平面与空间图形的相交关系3. 图形的投影与观察- 立体图形的投影与观察方法- 投影的性质与应用- 平行线与投影的关系第四章:初等几何与解析几何1. 初等几何的基本概念与定理- 点、线、面、角的定义与性质- 垂线、平分线、中位线的概念与性质- 垂直、平行、全等三角形的判定条件- 三角形内角和的计算方法- 直角三角形、等腰三角形、等边三角形的定理2. 解析几何的基本概念与方法- 点、坐标系的定义与性质- 坐标的运算法则与性质- 直线、圆的方程与性质- 直线的稳定与相关性质- 圆的位置关系与性质3. 二次函数的概念与性质- 二次函数的定义与表示方法- 二次函数的图像与性质- 二次函数的最值与零点的求解方法- 二次函数与方程、不等式、直线的关系与应用第五章:数与变量1. 整式的概念与性质- 整式的定义与运算规则- 整式的因式分解与乘法公式- 整式的化简- 整式的值与单位问题2. 分式的概念与性质- 分式的定义与基本运算规则- 分式的化简与恒等式- 分式的值与解3. 幂与根的概念与性质- 幂的定义与运算规则- 根的定义与运算规则- 幂与根的化简- 幂与根的近似计算与应用。
初三数学知识点归纳
初三数学知识点归纳
初三数学知识点归纳(上)
1. 实数与实数运算:实数的分类、实数运算的基本性质、实数的逆元、实数的绝对值、实数之间的大小比较、实数的平方与平方根、两个实数的算术平均数与几何平均数
2. 代数式与等式:代数式与字母的运用、等式的性质、解方程的基本方法、根的概念、一元二次方程的解法
3. 函数初步:函数的基本概念、函数的图象、函数的性质、函数的运算、复合函数、反函数
4. 平面图形初步:平面直角坐标系、平面内的点、线、角、多边形、圆的性质、相似与全等
5. 实际问题与数学模型:解决实际问题的基本方法、数学模型及其应用
初三数学知识点归纳(下)
1. 空间图形初步:空间直角坐标系、空间内的点、直线、平面、角、多面体、圆锥、圆柱、球的性质、相似与全等
2. 三角形初步:勾股定理与勾股性质、三角形的面积公式、三角形的中线、高线、角平分线、垂线和中垂线
3. 三角函数初步:正弦函数、余弦函数、正切函数、余切函数的性质及图象、辅助角公式、三角函数的应用
4. 统计初步:统计调查、频数分布表、频率分布图、样本均值及总体均值、误差、抽样、调查结果的分析和处理
5. 概率初步:随机事件、概率的概念、概率的计算方法、样本空间、排列组合、锁链法、概率的应用
以上是初三数学全部知识点的归纳总结,希望对大家有所帮助。
希望同学们认真学习,多做练习,提高数学成绩。
初三数学知识点总结
中考数学应试技巧
第三节:答题规范与注意事项
答题时,要按照规定的格式和要求进行,注 意书写的规范和清晰。同时,要注意一些容 易出错的地方,如单位换算、符号表示等。 避免因细节问题导致失分
中考数学应试技巧第四节:心调整与应对压力中考是人生中的重要考试,但不要过分紧张和焦虑。要调整好自己的心态,保持积极 乐观的心态和良好的作息习惯。遇到困难时,要冷静分析,寻找解决问题的办法
第一节:平面几何图形
✓ 平面几何图形包括点、线、面、角等基本元素构 成的图形。我们需要掌握各种图形的性质和计算 方法,如三角形、四边形等
第三章:几何图形与变换
第二节:空间几何图形
空间几何图形涉及到三维空间中的图形和变换,如立体图形等。 我们需要掌握立体图形的性质和计算方法
第三章:几何图形与变换
第三节:图形变换与对称性
的学习和工作都至关重要
数与式
引言
第一节:实数
实数包括有理数和无理数,其中有 理数包括整数和分数。实数的性质 和运算法则是初中数学的基础。我 们需要注意实数的四则运算及平方
根等性质
第一章:数与式
第二节:代数式
代数式是数与字母通过 加、减、乘、除等运算 组成的式子。我们需要 掌握代数式的化简、合 并同类项、解方程等基 本技能
第三节:未来数学学习规划
根据自己的学习情况和兴趣爱好,制定未来 数学学习的规划。可以选择参加数学竞赛、 自学高等数学等,以提高自己的数学素养和 能力
中考数学备考策略
第四节:对数学学习的展望
对未来数学学习的发展趋势进行展望,了解 数学在科技、生活等领域的应用。激发同学 们对数学学习的兴趣和热情,培养数学思维 能力和创新精神
想来解决实际问题
数学思想与方法
初三数学知识点归纳总结3篇
初三数学知识点归纳总结(一)数与式一、整数的进位和退位:1. 等于或大于5的数进1,小于5的数舍去;2. 计算过程中数字右侧的0不用写出来,加减乘除都适用;3. 当加上(或减去)一个数后,得到的和(或差)比被加数(或被减数)大10的整数倍时,通常采用进位(退位)的方法,即在个位数上加1(或减1),十位、百位、千位等数依次同样采用这样的方法。
二、分数的约分与通分:1. 分数的约分:将分子和分母同时除以一个最大公约数,约分后得到的新分数与原分数相等。
2. 分数的通分:将两个及以上的分数分别乘以它们对应的分母的相乘积,得到的新分数就是它们的公分母。
三、代数式与方程:1. 代数式:由数、字母及它们的各种符号所组成的式子。
2. 方程式:已知数和未知数间相等的关系,用等号隔开,这种包含未知数的公式称为方程式。
(二)几何一、图形的认识:常见的基本图形有:点、线段、直线、射线、角、三角形、四边形、圆、梯形、正方形、长方形等。
了解几何图形的定义及性质。
二、相似:相似的两个图形,可以用一个比值(称为相似比)来表示。
这个比值可以是边长、面积或者其他几何量之间的比值。
在相似中,对应的角相等,对应的边成比例。
三、全等:全等的两个图形,必须每一条边的对应边和每一个角的对应角都相等。
四、平移、旋转、翻折:我们可以通过平移(移动)、旋转和翻折来改变一个图形的位置或方向。
平移、旋转、翻折后得到的图形与原来的图形对应部分一一匹配,则它们是全等的。
(三)数据分析一、数据的搜集:在收集数据的时候要清晰明了,数据的总数、表格和图表的标题,要简明扼要、通俗易懂。
二、中心趋势度量:1. 平均数:一组数据的平均数是所有数据之和与数据总个数的商。
2. 中位数:将一组数据按照从小到大(或从大到小)排序后,位于中间的一个数,即为中位数。
3. 众数:在一组数据中出现次数最多的数,即为众数。
三、数据的描绘:我们可以使用表格、图表和描述等方式来描绘数据。
初三数学知识点考点归纳总结
初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。
1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。
1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。
1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。
二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。
2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。
2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。
2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。
三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。
3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。
四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。
4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。
以上是初三数学知识点考点的归纳总结。
需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。
同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。
初三数学知识点总结归纳(4篇)
初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
初三数学知识点总结大全(热门6篇)
初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。
镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。
13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。
初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
初三数学的一些知识点总结
初三数学的一些知识点总结一、数的基本性质1. 自然数、整数、有理数、实数的概念和性质2. 加减乘除的性质3. 乘方和开方的性质4. 绝对值的性质5. 有理数的比较大小二、代数方程与不等式1. 一元一次方程及解法2. 一元二次方程及解法3. 一元一次不等式及解法4. 一元二次不等式及解法5. 代数式的求值和化简三、函数1. 函数的概念2. 一次函数及其图像3. 二次函数及其图像4. 反比例函数及其图像5. 绝对值函数及其图像四、集合与逻辑1. 集合的概念和表示2. 集合间的关系3. 命题的概念4. 命题的连接词与逻辑运算5. 命题的等价与推理五、平面几何1. 角的概念与性质2. 直线、线段、射线、平行线、垂直线3. 三角形、四边形的性质4. 圆的性质5. 三角形、四边形间的关系六、空间几何1. 点、线、面的概念2. 立体图形的概念3. 体积、表面积的计算4. 直角坐标系5. 空间几何问题的应用七、统计与概率1. 统计的概念和方法2. 概率的基本概念3. 抽样与样本调查4. 事件的概率计算5. 概率问题的应用八、数学实践1. 数学建模2. 数学游戏3. 数学思维训练4. 数学问题解决策略5. 数学思想的应用以上是初中数学课程中的一些重要知识点,每个知识点都有其特定的概念和性质,掌握这些知识点对于学生提高数学能力和解题能力具有重要的意义。
希望同学们在学习数学的过程中,能够认真对待这些知识点,注重数学思维的培养,不断提升自己的数学水平和解题能力。
初三数学知识点全总结
初三数学知识点全总结初三数学是整个初中数学学习的重要阶段,知识点繁多且综合性强。
以下是对初三数学主要知识点的全面总结。
一、一元二次方程1、定义:只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。
一般形式为:ax²+ bx + c = 0(a ≠ 0)。
2、解法:(1)直接开平方法:适用于形如(x + m)²= n(n ≥ 0)的方程。
(2)配方法:将方程通过配方转化为完全平方式来求解。
(3)公式法:对于一元二次方程 ax²+ bx + c = 0,其解为 x = b ± √(b² 4ac) /(2a)。
(4)因式分解法:将方程左边因式分解,化为两个一次因式乘积等于 0 的形式来求解。
3、根的判别式:△= b² 4ac当△> 0 时,方程有两个不相等的实数根;当△= 0 时,方程有两个相等的实数根;当△< 0 时,方程没有实数根。
4、根与系数的关系(韦达定理):若方程 ax²+ bx + c = 0 的两根为 x₁、x₂,则 x₁+ x₂= b/a,x₁x₂= c/a。
二、二次函数1、定义:形如 y = ax²+ bx + c(a ≠ 0)的函数叫做二次函数。
2、图像性质:(1)抛物线的开口方向由a 的正负决定,当a >0 时,开口向上;当 a < 0 时,开口向下。
(2)对称轴为直线 x = b/(2a)。
(3)顶点坐标为(b/(2a),(4ac b²)/(4a))。
3、二次函数的表达式:(1)一般式:y = ax²+ bx + c(2)顶点式:y = a(x h)²+ k(其中(h,k)为顶点坐标)(3)交点式:y = a(x x₁)(x x₂)(其中 x₁、x₂为抛物线与 x 轴交点的横坐标)4、二次函数的应用:(1)求最值问题:当 x = b/(2a)时,y 有最值(4ac b²)/(4a)。
怎么总结初三数学的知识点
怎么总结初三数学的知识点
一、代数
1. 一元一次方程
一元一次方程是初中代数中一个非常基础的知识点,最简单的形式为ax+b=0。
可以通过
移项、去括号、去分母等各种方法求解,是非常基础的代数运算。
2. 二元一次方程
二元一次方程是由两个未知数的一次方程组成的方程。
解法包括代入法、消元法等,是初
中代数中比较难一点的知识点。
3. 因式分解
因式分解是将一个多项式按照公式进行分解,是初中代数中比较基础的知识点,也是很重
要的一点。
二、几何
1. 直角三角形
直角三角形的知识点包括勾股定理,正弦余弦定理等,是初中数学中的重要知识点,也是
数学在实际生活中的常用知识。
2. 圆的性质
包括圆的周长、面积等,是初中数学中的重要知识点,也是数学在几何中的一个基础知识。
三、统计
1. 图表分析
包括直方图、折线图、饼图等的分析和应用,是初中数学中的基础统计知识点,也是数学
在实际生活中的常用知识。
2. 概率
包括频率概率、古典概率等的应用,是初中数学中的重要知识点,也是数学在实际生活中
的常用知识。
以上就是初三数学知识点的总结,这些知识点是学生在初中学习数学中的重要知识点,在
今后的学习中能够起到非常重要的作用。
希望同学们能够认真对待这些知识点,加强练习,打好初中数学知识的基础,为高中数学学习和今后的数学学习打下坚实的基础。
初三数学知识点全总结(4篇)
初三数学知识点全总结数学知识点总结数学作为一门学科,是以数和空间为对象的科学,以研究数量、结构、变化和空间为目标的一种科学研究方法和理论体系。
以下是初三数学知识点的全面总结。
一、代数与方程式1. 整数与有理数的运算- 整数的加减乘除运算- 有理数的加减乘除运算- 有理数的整除性质和约分2. 代数式的表示与运算- 代数式的基本概念:字母与数字的组合、系数、次数等- 代数式的加减乘除运算- 代数式的化简与计算:合并同类项、分配律等3. 方程与不等式的解- 一元一次方程的基本概念与解法- 一元一次不等式的基本概念与解法- 一元一次方程与不等式的实际问题应用4. 二元一次方程组- 二元一次方程组的基本概念与解法- 二元一次方程组应用问题的解决5. 平方根与实数- 平方根的概念和运算- 实数的有理数与无理数之间的关系- 实数的应用问题:根据实际问题确定平方根的范围和符号6. 指数与根式- 指数与幂的基本概念和运算- 根式的基本概念和运算- 根式与分式的关系- 指数与根式运算的应用问题7. 一元二次方程- 一元二次方程的基本概念与解法- 一元二次方程的根与系数的关系- 一元二次方程应用问题的解决8. 四则运算与问题解决- 分数与整数的混合运算- 分数四则运算的应用问题解决二、函数与图像1. 函数的概念与表示- 函数的基本概念与符号表示- 函数的自变量和因变量- 函数的定义域、值域和象- 函数的表格、图像和方程式表示2. 函数的性质与运算- 函数的奇偶性、单调性与周期性- 函数的复合与反函数- 函数的加减乘除与函数的等式3. 直线与二次曲线- 直线的基本概念和方程- 二次曲线的基本概念和方程:抛物线、双曲线和椭圆4. 幂函数与对数函数- 幂函数的基本概念和性质- 对数函数的基本概念和性质- 幂函数与对数函数的关系与互化5. 三角函数- 三角函数的基本概念和性质- 三角函数的图像与变换- 三角函数的应用问题解决三、几何与图形1. 角与三角形- 角的基本概念和分类- 三角形的基本概念和分类- 三角形的内角和三角形的外角性质2. 四边形与多边形- 四边形的基本概念和分类:矩形、平行四边形、菱形、梯形等- 多边形的基本概念和分类:正多边形和一般多边形3. 三角形的相似与全等- 三角形的相似判定和相似性质- 三角形的全等判定和全等性质- 三角形的相似性质与全等性质的应用4. 圆的基本性质- 圆的基本概念与关系:圆心、半径、直径等- 圆的周长和面积的计算- 圆的切线与弦的性质5. 空间图形与立体几何- 空间图形的基本概念和分类:正方体、长方体、正四面体、正六面体等- 空间图形的表面积和体积的计算- 空间图形的投影和展开图的应用四、数据与统计1. 数据的搜集与处理- 数据的搜集方法:调查、实验等- 数据的整理和展示:表格、图表等- 数据的分析和解读:平均数、中位数、众数等2. 概率与统计- 概率的基本概念和运算- 概率实验的基本过程和计算- 统计的基本概念和数据处理方法以上是初三数学知识点的大致总结,包括代数与方程式、函数与图像、几何与图形、数据与统计等方面的内容。
初三数学知识点归纳总结(通用5篇)
初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质。
(2)矩形的四个角都是直角。
(3)矩形的对角线相等。
(4)矩形是轴对称图形。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。
(2)定理1:有三个角是直角的四边形是矩形。
(3)定理2:对角线相等的平行四边形是矩形。
4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。
初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
数学初三知识点归纳总结
数学初三知识点归纳总结在初三数学学习中,我们接触到了各种各样的数学知识点,这些知识点涉及到了代数、几何、概率等多个领域。
下面将对初三数学的知识点进行归纳总结,帮助大家更好地复习和回顾。
一、代数篇1.整式的加减乘除- 整式的加减运算- 整式的乘法运算- 整式的除法运算2.一元一次方程与一元一次不等式- 一元一次方程- 一元一次不等式- 一元一次方程与一元一次不等式的应用3.二元一次方程组- 二元一次方程组的解法- 二元一次方程组的应用二、几何篇1.角与三角形- 角的概念与性质- 各种类型三角形的性质- 三角形的面积计算公式- 三角形的相似性质2.平行线与比例- 平行线的基本性质- 平行线上的比例定理- 三角形的中线、角平分线与垂心定理3.圆的性质- 圆的基本概念- 圆周角、弧长和扇形面积的计算- 切线与切点的性质三、概率篇1.随机事件与概率- 随机事件的基本概念- 随机事件的运算- 概率的定义与计算2.排列与组合- 排列的概念与计算公式- 组合的概念与计算公式- 排列组合在实际问题中的应用3.统计与图表- 统计调查与样本容量- 统计图表的制作与分析- 四分位数与中位数的计算以上仅是初三数学知识点的归纳总结,每个知识点都有更加详细的内容和公式。
在复习时,我们应该从基础知识出发,逐步深入,加强对概念和定理的理解,并进行大量的练习。
只有通过反复的巩固和实践,我们才能真正掌握初三数学的知识点。
希望这篇总结对你的复习有所帮助,相信通过努力,你一定能够在初三数学中取得好成绩!加油!。
初三数学知识点大全总结归纳
初三数学知识点大全总结归纳到初三数学的内容越来越难,我们在做题的基础上,首要任务是先要将所有的基本概念、公式、原理都熟记和理解清楚。
下面是小编为大家整理的关于初三数学知识点大全总结,希望对您有所帮助!初三数学基础知识一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、直线圆的与置位关系1.线直与圆有唯公一共时,点做直叫与圆线切2.三角的外形圆接的圆叫做三心形角外心3.弦切角于所等夹弧所对的的圆心角4.三角的内形圆切的圆叫做三心形角内心5.垂于直径半直线必为圆的的切线6.过径半外的点并且垂直端于半的径直线是圆切线7.垂于直径半直线是圆的的切线8.圆切线垂的直过切于点半径3、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的'两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧三、弦、弧等与圆有关的定义1、弦连接圆上任意两点的线段叫做弦。
(如图中的AB)2、直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
3、半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
4、弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)初三数学知识点圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
初三数学的知识点总结
初三数学的知识点总结一、代数与函数1. 代数基本概念- 变量、常数和系数- 代数表达式和算式- 等式和不等式- 代数的运算法则2. 一元一次方程与一元一次不等式- 解一元一次方程和一元一次不等式- 解决应用问题3. 一元二次方程与一元二次不等式- 解一元二次方程和一元二次不等式- 判断一元二次方程有无解- 利用因式分解和配方法解一元二次方程- 解决应用问题4. 函数基本概念- 自变量和函数值- 函数的表示法和性质- 函数的图像与函数的性质- 函数的增减性与最值- 复合函数二、空间与图形1. 空间形象和空间想象- 点、线、面和体的基本概念- 空间中的位置关系和方向关系2. 二维空间中的图形- 点、线段、射线、角的概念- 三角形和四边形的基本概念和性质- 判断图形的相似性和全等性- 直线和平面的方程- 直角坐标系与平面直角坐标系- 坐标变化与图形的平移、旋转、翻折3. 三维空间中的图形- 空间几何体的基本概念和性质- 认识线面关系和线面角- 判断立体图形的相似性和全等性- 空间坐标系与空间直角坐标系- 坐标变化与图形的平移、旋转、翻折- 空间图形的表达和表示三、数与式1. 实数- 有理数和无理数- 实数的运算性质和运算法则- 实数的大小比较和数直线2. 整式与分式- 整式的加减乘除运算- 分式的概念和基本性质- 分式的乘除运算- 分式方程的解法3. 特殊数的性质- 平方根与立方根- 质数与合数- 素因数分解- 公因数与最大公因数- 公倍数与最小公倍数- 分数的约分与通分四、统计与概率1. 统计的基本概念- 数据的分类和整理- 数据的图表表示- 数据的分析和描述- 常见统计量的计算2. 概率的基本概念- 基本事件和复合事件- 概率的概念和性质- 事件的关系和运算- 条件概率- 排列与组合问题的计算方法五、几何推理1. 分析推理和直观推理- 求证方法和证明思路- 分析推理的常见方法2. 三角形的性质- 三角形内外角的性质- 三角形的中线、延长线和高线- 三角形的相似性质- 三角形的垂直、平行关系以上就是初三数学的主要知识点的总结,希望对你有所帮助。
初中数学知识点总结初三
初中数学知识点总结初三初中数学知识点总结(初三)一、代数1. 一元一次方程与不等式- 方程的解法:移项、合并同类项、系数化为1。
- 不等式的解法:理解不等号的性质,进行加减乘除操作时注意变量的移动。
- 应用题:根据问题描述建立方程或不等式,解决实际问题。
2. 二元一次方程组- 代入法:在其中一个方程中解出一个变量,代入另一个方程求解。
- 加减消元法:通过两个方程相加或相减消除一个变量。
- 应用题:解决涉及两个未知数的问题。
3. 一元二次方程- 配方法:将方程转化为完全平方形式求解。
- 公式法:使用求根公式直接计算。
- 因式分解法:将方程左边表示为两个一次因式的乘积。
- 应用题:解决可转化为一元二次方程的问题。
4. 函数- 函数的概念:定义、函数表达式、函数图像。
- 线性函数:y = kx + b,理解斜率和截距的意义。
- 一次函数图像:直线的斜率和位置关系。
- 二次函数:y = ax^2 + bx + c,顶点、对称轴、开口方向。
5. 多项式- 多项式的概念:单项式、多项式的次数、系数。
- 多项式的运算:加法、减法、乘法。
- 因式分解:提取公因式、使用公式法、分组分解法。
- 多项式方程:解一元多项式方程。
6. 比例与相似- 比例的概念:内项外项、基本性质。
- 相似三角形:对应角相等、对应边成比例。
- 相似三角形的性质:面积比等于相似比的平方。
二、几何1. 平面几何- 三角形- 内角和定理、外角定理。
- 等腰三角形、等边三角形的性质和判定。
- 三角形的面积公式。
- 四边形- 平行四边形的性质和判定。
- 矩形、菱形、正方形的性质和判定。
- 梯形的性质和中位线定理。
- 圆- 圆的基本性质:圆心、半径、直径、弦、弧、切线。
- 圆的面积和周长公式。
- 切线的性质和判定。
- 圆与圆、圆与直线的位置关系。
2. 空间几何- 立体图形的认识:立方体、长方体、圆柱、圆锥、球。
- 立体图形的表面积和体积公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三知识整理人教版体系框架(7~9年级)七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据库的收集整理与描述(9)八年级上册(62)第11章全等三角形(11)第12章轴对称(13)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)第25章概率初步(15)全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。
包含以下章节:第21章二次根式第22章一元二次方程第23章旋转第24章圆第25 章概率初步本册书内容分析如下:第21章二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。
“二次根式” 一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:(1)是一个非负数;(2)≥0);(3) (a≥0).注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。
“二次根式的乘除”一节的内容有两条发展的线索。
一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到(a≥0,b≥0), (a≥0,b>0),并运用它们进行二次根式的化简。
“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。
在本节中,注意类比整式运算的有关内容。
例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。
这些处理有助于学生掌握本节内容。
第22章一元二次方程学生已经掌握了用一元一次方程解决实际问题的方法。
在解决某些实际问题时还会遇到一种新方程——一元二次方程。
“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。
然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,“22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。
下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。
然后安排运用公式法解一元二次方程的例题。
在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。
由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。
然后安排运用因式分解法解一元二次方程的例题。
最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章旋转学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。
本书中图形变换又增添了一名新成员――旋转。
“旋转”一章就来认识这种变换,探索它的性质。
在此基础上,认识中心对称和中心对称图形。
“23.1旋转”一节首先通过实例介绍旋转的概念。
然后让学生探究旋转的性质。
在此基础上,通过例题说明作一个图形旋转后的图形的方法。
最后举例说明用旋转可以进行图案设计。
“23.2中心对称”一节首先通过实例介绍中心对称的概念。
然后让学生探究中心对称的性质。
在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。
这些内容之后,通过线段、平行四边形引出中心对称图形的概念。
最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
“23.3课题学习图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章圆圆是一种常见的图形。
在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。
通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
“24.1圆”一节首先介绍圆及其有关概念。
然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。
接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。
最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。
“24.2与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。
然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。
最后介绍圆和圆的位置关系。
“24.3正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。
“24.4弧长和扇形面积”一节首先介绍弧长公式。
然后介绍扇形及其面积公式。
最后介绍圆锥的侧面积公式。
第25 章概率初步将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。
掌握了概率的初步知识,学生还会解决更多的实际问题。
“25.1概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。
“25.2用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。
然后安排运用这种方法求概率的例题。
在例题中,涉及列表及画树形图。
“25.3利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。
“25.4课题学习键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。
知识点总结第21章二次根式知识框图学习目标对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:(1)是非负数;(2);(3);4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
I.二次根式的定义和概念:1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。
当a>0时,√a表示a的算数平方根,√0=02、概念:式子√ā(a≥0)叫二次根式。
√ā(a≥0)是一个非负数。
II.二次根式√ā的简单性质和几何意义1)a≥0 ; √ā≥0 [ 双重非负性]2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]3) √(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。
III.二次根式的性质和最简二次根式1)二次根式√ā的化简a(a≥0)√ā=|a|={-a(a<0)2)积的平方根与商的平方根√ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最简二次根式条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式。
如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等;含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等IV.二次根式的乘法和除法1 运算法则√a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)二数二次根之积,等于二数之积的二次根。
2 共轭因式如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。
V.二次根式的加法和减法1 同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2 合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并Ⅵ.二次根式的混合运算1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不要盲目有理化VII.分母有理化分母有理化有两种方法I.分母是单项式如:√a/√b=√a×√b/√b×√b=√ab/bII.分母是多项式要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多项式要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知识框图一)第23章旋转知识框图旋转的定义在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
旋转对称中心把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。