初二数学等腰三角形知识点总结及练习题详解(20200710172333)

合集下载

人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。

【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。

初二等腰三角形性质及判定练习题

初二等腰三角形性质及判定练习题

初二等腰三角形性质及判定练习题
等腰三角形是初中阶段的重要概念之一。

以下是等腰三角形的
性质及判定方法:
等腰三角形性质
- 定义:有两个角的角度相等的三角形被称为等腰三角形;
- 两边相等的角也是相等的;
- 等腰三角形的两条等边所对应的角被称为基角,另一个角被
称为顶角;
- 基角的角平分线也是等边三角形的高线;
- 等腰三角形的顶角的角平分线与底边垂直,并且将底边平分。

等腰三角形判定方法
- 角角边(AAS):已知等腰三角形两个角相等,且一个角的
对边(边长相等)与已知的一条边相等;
- 边边角(SAS):已知等腰三角形两边相等,且对应的角相等;
- 等边角(SSS):三角形三边相等。

判定题
练题如下:
1. 已知三角形ABC,其中AB = AC,角B = 40度,角A = 100度,求角C的度数;
2. 三角形DEF中,DE = EF,角F = 120度,角D = 30度,求角E的度数;
3. 三角形UVW中,UV = VW,VW = WU,求角U、角V、角W的度数;
4. 已知三角形XYZ,其中XZ = YZ,角X = 角Y = 70度,求角Z的度数。

以上是初二等腰三角形性质及判定练习题,希望对大家有所帮助!。

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)知识点总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。

其中相等的两边叫做腰,另一边叫做底。

两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角。

2.等腰三角形的性质:①等腰三角形的两腰相等。

②等腰三角形的两底角相等。

(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。

(简称底边上三线合一)3.等腰三角形的判定:①有两条边相等的三角形是等腰三角形。

②有两个底角相等的三角形是等腰三角形。

(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。

练习题1、(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5 B.2 C.3.5 D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.2、(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°,故选:B.3、(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=∠ACB=39°.故选:A.4、(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.5、(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.6、(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDC,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.7、(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.8、(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB ⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.9、(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.10、(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.11、(2022•广安)若(a﹣3)2+5−b=0,则以a、b为边长的等腰三角形的周长为.【分析】先求a,b.再求第三边c即可.【解答】解:∵(a﹣3)2+=0,(a﹣3)2≥0,≥0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,设三角形的第三边为c,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.12、.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解答】解:∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.13、(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.14、(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.15、(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.11。

等腰三角形知识点+经典例题

等腰三角形知识点+经典例题

等腰三角形知识点+经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲等腰三角形【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠ .(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。

八年级数学等腰三角形应用知识点归纳及专项练习

八年级数学等腰三角形应用知识点归纳及专项练习

八年级数学等腰三角形应用知识点归纳及专项练习➢课前预习1.直角三角形全等的判定定理:_________________________.2.线段垂直平分线上的点到_____________________________.3.角平分线上的点到___________________________________.4.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.➢知识点睛1.垂直平分线相关定理:①________________________________________________;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.已知:如图,P A=PB.求证:点P在线段AB的垂直平分线上.证明:2.角平分线相关定理:①________________________________________________;PBA②在一个角的内部,到角的两边距离相等的点在这个角的平分线上.已知:如图,点P 在∠AOB 内部,PC ⊥OA 于点C ,PD ⊥OB 于点D ,且PC =PD . 求证:点P 在∠AOB 的平分线上. 证明:3. 在等腰三角形中,_________________,________________,______________重合(也称“__________”),这是等腰三角形的重要性质.若在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,则尝试构造___________. ➢ 精讲精练1. 已知:如图,在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC .求证:直线AO 垂直平分线段BC .2. 如图,已知PA ⊥OM 于A ,PB ⊥ON 于B ,且PA =PB .∠MON =50°,∠OPC =30°,求∠PCA 的大小.CBO AMNPCBOA3. 如图,已知BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠F AC .4. 已知:如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高.求证:AD 垂直平分EF .OF EDCB AF EDC B A5. 如图,在△ABC 中,点E 在AB 上,AE =AC ,连接CE ,点G 为EC 的中点,连接AG并延长交BC 于D ,连接ED ,过点E 作EF ∥BC 交AC 于F .求证:EC 平分∠DEF .6. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE交于点O . 求证:AB =AC .7. 已知:如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5 cm ,求BD 的长.8. 如图,在△ABC 中,延长BC 到D ,使CD =AC ,连接AD ,CE 平分∠ACB ,交AB 于E ,且AE =BE .GF ECAOEDCBAE DCBA求证:BC=CD.9.在Rt△ABC中,∠C=90°,∠A=30°,若要在直线BC或AC上取一点P,使△ABP是等腰三角形,符合条件的点P有________个.10.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有________个.BA【参考答案】➢课前预习1.SAS,SSS,ASA,AAS,HL2.这条线段的两个端点的距离相等3.这个角的两边的距离相等4.这样的点有4个➢知识点睛1.线段垂直平分线上的点到这条线段的两个端点的距离相等2.角平分线上的点到这个角的两边距离相等3.顶角的平分线底边上的中线底边上的高三线合一等腰三角形➢精讲精练1.证明略(提示:利用等腰三角形“三线合一”)2.55°,证明略3.证明略(提示:过点E作EM⊥BF于M,EN⊥BD于N,EP⊥AC于P,证EP=EM)4.证明略(提示:利用等腰△DEF“三线合一”,证明AD垂直平分EF)5.证明略6.证明略(提示:连接BC,证△ABC是等边三角形)7.BD=10 cm(提示:延长BA交CE的延长线于F,先证△BCF是等腰三角形,再证△ADB≌△AFC)8.证明略(提示:过点E作EF⊥AC于F,EG⊥BC于G,证明△ABC是等腰三角形)9.6个,作图略(两圆一线)10.8个,作图略(两圆一线)等腰三角形应用(复习二例习题)➢ 例题示范例1:已知:如图,在△ABC 中,AD 平分∠BAC ,BD =CD ,E ,F 分别为AB ,AC 边上的点,BE =CF .求证:DE =DF . 【思路分析】 ①读题标注:②梳理思路:要证DE =DF ,考虑把这两条线段放在两个三角形中证全等.观察图形,可以放在△BDE 和△CDF 中,发现有两边对应相等,考虑找夹角.结合题中条件,AD 既是角平分线又是中线,三线中有两线重合,考虑证明△ABC 是等腰三角形,需利用倍长中线进行证明(见中线,要倍长),进而得到∠B =∠C ,再证明△BDE ≌△CDF 即可. 【过程书写】证明:如图,延长AD 到点G ,使DG =AD ,连接CG . ∵BD =CD ,∠ADB =∠GDC ∴△ADB ≌△GDC (SAS ) ∴AB =GC ,∠1=∠G ∵AD 平分∠BAC ∴∠1=∠2 ∴∠2=∠GE AB CD F∴AC =GC ∴AB =AC ∴∠B =∠ACD ∵BE =CF∴△BDE ≌△CDF (SAS ) ∴DE =DF➢ 巩固练习1. 已知:如图,P 是∠AOB 平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为C ,D ,连接CD .求证:OP 是CD 的垂直平分线.2. 已知:如图,△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F .求证:点F 在∠DAE 的平分线上.3. 已知,如图,在△ABC 中,AB >AC ,AD 平分∠BAC ,CD ⊥AD 于点D . 求证:∠2=∠1+∠B .P ODCBAFEDC BA21DCA4. 已知:如图,在等边三角形ABC 中,D 是AC 的中点,E 是BC 延长线上一点,CE =CD ,DM ⊥BC ,垂足为M .求证:BM =EM .5. 已知:如图,在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,E 是BC 上一点,连接AD ,AE ,DE .求证:∠EAD =∠EDA .6. 在已知直线l 上找一点C ,和直线外的A ,B 两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l 上找出所有符合条件的点C .l➢ 思考小结1. 要证两条线段相等,如果放在一个三角形中考虑证________;如果放在两个三角形中考虑证全等. 2. 常见的条件组合搭配:MED CBA4321ECBA等腰三角形应用(复习三随堂测试)1. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD .若AC =5,BC =3,则BD 的长为___________.A BCD2. 如图,在△ABC 中,点D ,E 分别是边BC ,AC 上的点,AE =DE , DF ⊥AB 于点F ,DG ⊥AC 于点G ,且DF =DG .求证:DE ∥AB .G FE ABDC复习二【参考答案】1.证明略(提示:利用等腰△CDP三线合一)2.证明略(提示:作射线AF,过F作FH⊥AD于H,作FM⊥BC于M,作FG⊥AE于G,利用角平分线定理②证明AF平分∠DAE)3.证明略(提示:利用两线重合构造等腰三角形,然后利用外角定理倒角)4.证明略(提示:连接BD,证明△BDE是等腰三角形)5.证明略(提示:证明△ABC≌△DBC,说明直线BC是线段AD的垂直平分线,进而得到EA=ED,∠EAD=∠EDA)6.5个,作图略(两圆一线)思考小结1. 等腰2. 这条线段两个端点的距离相等这个角的两边的距离相等三线合一等腰三角形斜边的一半等于斜边的一半复习三【参考答案】1.12.证明略(提示:连接AD,证明AD是∠BAC的角平分线,再根据等腰对等角倒角相等,最后根据内错角相等,得到两直线平行)。

专题19 等腰三角形(归纳与讲解)(解析版)

专题19 等腰三角形(归纳与讲解)(解析版)

专题19 等腰三角形【专题目录】技巧1:等腰三角形中四种常用作辅助线的方法技巧2:巧用特殊角构造含30°角的直角三角形技巧3:分类讨论思想在等腰三角形中的应用【题型】一、等腰三角形的定义【题型】二、根据等边对等角求角度【题型】三、根据三线合一求解【题型】四、根据等角对等边证明等腰三角形【题型】五、根据等角对等边求边长【题型】六、等腰三角形性质与判定的综合【题型】七、等边三角形的性质【题型】八、含30°角的直角三角形【考纲要求】1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段中垂线的性质及判定.【考点总结】一、等腰三角形【考点总结】二、等边三角形【考点总结】三、直角三角形【技巧归纳】技巧1:等腰三角形中四种常用作辅助线的方法【类型】一、作“三线”中的“一线”1.如图,在△ABC中,AB=AC,D是BC的中点,过点A作EF∥BC,且AE=AF.求证:DE=DF.【类型】二、作平行线法2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求证:PD=QD.(2)如图②,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,ED,CD中是否存在长度保持不变的线段?请说明理由.【类型】三、截长补短法3.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°.求证:BD+DC=AB.【类型】四、加倍折半法4.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.5.如图,CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD=2CE.参考答案1.证明:如图,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.∵EF∥BC,∴AD⊥EF.∵AE=AF,∴AD垂直平分EF.∴DE=DF.2.(1)证明:如图①,过点P作PF∥AC交BC于F.①点P和点Q同时出发,且速度相同,①BP=CQ.①PF①AQ,①①PFB=①ACB,①DPF=①DQC.又①AB=AC,①①B=①ACB,①①B=①PFB,①BP=FP,①FP=CQ.在①PFD和①QCD中,①DPF=①DQC,①PDF=①QDC,FP=CQ,①①PFD①①QCD(AAS),①PD=QD.(2)解:线段ED的长度保持不变.理由如下:如图②,过点P作PF∥AC交BC于F.由(1)知PB=PF.∵PE⊥BF,∴BE=E F.由(1)知△PFD≌△QCD,∴FD=CD,∴ED=EF+FD=BE+CD=12BC,∴线段ED的长度保持不变.3.证明:如图,延长BD至E,使BE=AB,连接CE,AE.∵∠A BE=60°,BE=AB,∴△ABE为等边三角形.∴∠AEB=60°,AB=AE.又∵∠ACD=60°,∴∠ACD=∠AEB.∵AB=AC,AB=AE,∴AC=AE.∴∠ACE=∠AEC.∴∠DCE=∠DEC.∴DC=DE.∴AB=BE=BD+DE=BD+DC,即BD+DC=AB.4.解:在DC上截取DE=BD,连接AE,∵AD⊥BC,BD=DE,∴AD是线段BE的垂直平分线,∴AB=AE,∴∠B=∠AEB.∵AB+BD=DC,DE=BD,∴AB+DE=CD.而CD=DE+EC,∴AB=EC,∴AE=EC.∴∠EAC=∠C,可设∠EAC=∠C=x,∵∠AEB 为△AEC 的外角,∴∠AEB =∠EAC +∠C =2x ,∴∠B =2x ,∴∠BAE =180°-2x -2x =180°-4x.∵∠BAC =120°,∴∠BAE +∠EAC =120°,即180°-4x +x =120°,解得x =20°,则∠C =20°.5.证明:如图,延长CE 到点F ,使EF =CE ,连接FB ,则CF =2CE.∵CE 是△ABC 的中线,∴AE =BE.在△BEF 和△AEC 中,⎩⎨⎧BE =AE ,∠BEF =∠AEC ,EF =EC ,∴△BEF ≌△AEC(SAS). ∴∠EBF =∠A ,BF =AC.又∵AB =AC ,∴∠ABC =∠ACB.∴∠CBD =∠A +∠ACB =∠EBF +∠ABC =∠CBF.∵CB 是△ADC 的中线,∴AB =BD.又∵AB =AC ,AC =BF ,∴BF =BD.在△CBF 与△CBD 中,⎩⎨⎧CB =CB ,∠CBF =∠CBD ,BF =BD ,∴△CBF ≌△CBD(SAS).∴CF =CD.∴CD =2CE.技巧2:巧用特殊角构造含30°角的直角三角形【类型】一、直接运用含30°角的直角三角形的性质1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE =1,则BC =( )A . 3B .2C .3D .3+22.如图,已知△ABC 中,AB =AC ,∠C =30°,AB ⊥AD ,AD =4 cm .求BC 的长.【类型】二、连线段构造含30°角的直角三角形3.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE =8,求CE的长.4.如图,已知在△ABC中,AB=AC,∠A=120°,DE垂直平分AB于点D,交BC 于点E.求证:CE=2BE.【类型】三、延长两边构造含30°角的直角三角形5.如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.【类型】四、作垂线构造含30°角的直角三角形6.如图,四边形ABCD中,∠B=90°,DC∥AB,AC平分∠DAB,∠DAB=30°.求证:AD=2BC.参考答案1.C2.解:∵AB=AC,∠C=30°,∴∠B=∠C=30°.又∵AB⊥AD,∴∠ADB=60°.又∵∠ADB=∠C+∠CAD,∴∠CAD=30°=∠C.∴CD=AD=4 cm.∵AB⊥AD,∠B=30°,∴BD=2AD=8 cm.∴BC=BD+CD=12 cm.3.解:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°.在Rt△ADE中,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=16.在△ABC中,AB =AC,∠BAC=120°.∴∠B=∠C=30°,∴AC=2AD=2×16=32.∴CE=AC-AE=32-8=24.4.证明:如图,连接AE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵DE垂直平分AB,∴BE=AE.∴∠BAE=∠B=30°.∴∠EAC=120°-30°=90°.又∵∠C=30°,∴CE=2AE.又∵BE=AE,∴CE=2BE.5.解:延长AD,BC交于点E.∵∠A=30°,∠B=90°,∴∠E=60°.又∵∠ADC=120°,∴∠EDC=180°-120°=60°.∴△DCE是等边三角形.设CD=CE=DE=a,则有2(1+a)=4+a,解得a=2.∴CD的长为2.6.证明:过点C作CE⊥AD交AD的延长线于E.∵DC∥AB,∠DAB=30°,∴∠CDE=30°.在Rt△CDE中,∠CDE=30°,∴CD=2CE.又∵AC平分∠DAB,∴∠DAC=∠BAC,又∵DC∥AB,∴∠BAC=∠DCA,∴∠DAC=∠DCA,∴AD=CD.又∵CE⊥AE,CB⊥AB,AC平分∠DAB,∴BC=CE,∴AD=2BC.7.证明:过点B作BE⊥AD交AD的延长线于点E,则∠DEB=90 °.∵∠BAD=30°,∴BE=12AB.∵AD⊥AC,∴∠DAC=90°,∴∠DEB=∠DAC.又∵BD=CD,∠BDE=∠CDA,∴△BED≌△CAD,∴BE=AC,∴AC=12AB.点拨:由结论AC=12AB和条件∠BAD=30°,就想到能否找到或构造直角三角形,而显然图中没有含30°角的直角三角形,所以过点B作BE⊥AD交AD的延长线于点E,这样就得到了直角三角形ABE,这是解决本题的关键.技巧3:分类讨论思想在等腰三角形中的应用【类型】一、当顶角或底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°2.已知等腰三角形ABC中,AD⊥BC于D,且AD=12BC,则等腰三角形ABC的底角的度数为()A.45°B.75°C.45°或75°D.65°3.若等腰三角形的一个外角为64°,则底角的度数为________.【类型】二、当底和腰不确定时,分类讨论4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为() A.8或10B.8C.10D.6或125.等腰三角形的两边长分别为7和9,则其周长为________.6.若实数x,y满足|x-4|+(y-8)2=0,则以x,y的值为边长的等腰三角形的周长为________.【类型】三、当高的位置关系不确定时,分类讨论7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.【类型】四、由腰的垂直平分线引起的分类讨论8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角∠B的度数.【类型】五、由腰上的中线引起的分类讨论9.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分.求腰长.【类型】六、点的位置不确定引起的分类讨论10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.7个B.6个C.5个D.4个11.如图,在△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.参考答案1.D 2.C 3.32° 4.C 5.23或25 6.207.解:设AB=AC,BD⊥AC;(1)高与底边的夹角为25°时,高一定在△ABC的内部,如图①,∵∠DBC=25°,∴∠C=90°-∠DBC=90°-25°=65°,∴∠ABC=∠C=65°,∠A=180°-2×65°=50°.(2)当高与另一腰的夹角为25°时,如图②,高在△ABC的内部时,∵∠ABD=25°,∴∠A=90°-∠ABD=65°,∴∠C=∠ABC=(180°-∠A)÷2=57.5°;如图③,高在△ABC的外部时,∵∠ABD=25°,∴∠BAD=90°-∠ABD=90°-25°=65°,∴∠BAC=180°-65°=115°,∴∠ABC=∠C=(180°-115°)÷2=32.5°,故三角形各个内角的度数为:65°,65°,50°或65°,57.5°,57.5°或115°,32.5°,32.5°.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.8.解:此题分两种情况:(1)如图①,AB边的垂直平分线与AC边交于点D,∠ADE=40°,则∠A=50°,∵AB=AC,∴∠B=(180°-50°)÷2=65°.(2)如图②,AB边的垂直平分线与CA的延长线交于点D,∠ADE=40°,则∠DAE=50°,∴∠BAC =130°.∵AB=AC,∴∠B=(180°-130°)÷2=25°.故∠B的大小为65°或25°.9.分析:由于题目中没有指明是“(AB+AD)-(BC+CD)”为3 cm,还是“(BC+CD)-(AB+AD)”为3 cm,因此必须分两种情况讨论.解:∵BD为AC边上的中线,∴AD=CD,(1)当(AB+AD)-(BC+CD)=3 cm时,有AB-BC =3 cm,∵BC=5 cm,∴AB=5+3=8(cm);(2)当(BC+CD)-(AB+AD)=3 cm时,有BC-AB=3 cm,∵BC=5 cm,∴AB=5-3=2(cm),但是当AB=2 cm时,三边长分别为2 cm,2 cm,5 cm.而2+2<5,不能构成三角形,舍去.故腰长为8 cm.[来源:学*科*网Z*X*X*K]10.B11.解:(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图①,∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,∵∠DCE=∠BEC-∠ADC,∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2=∠ACB÷2=40°÷2=20°.(2)当点D、E在点A的同侧,且点D在D′的位置,E在E′的位置时,如图②,与(1)类似地也可以求得∠D′CE′=∠ACB÷2=20°.(3)当点D、E在点A的两侧,且E点在E′的位置时,如图③,∵BE′=BC,∴∠BE′C=(180°-∠CBE′)÷2=∠ABC÷2,∵AD=AC,∴∠ADC =(180°-∠DAC)÷2=∠BAC÷2, 又∵∠DCE′=180°-(∠BE′C +∠ADC),∴∠DCE′=180°-(∠ABC +∠BAC)÷2=180°-(180°-∠ACB)÷2=90°+∠ACB÷2=90°+40°÷2=110°.(4)当点D 、E 在点A 的两侧,且点D 在D′的位置时,如图④, ∵AD′=AC ,∴∠AD′C =(180°-∠BAC)÷2, ∵BE =BC ,∴∠BEC =(180°-∠ABC)÷2,∴∠D′CE =180°-(∠D′EC +∠ED′C)=180°-(∠BEC +∠AD′C) =180°-[(180°-∠ABC)÷2+(180°-∠BAC)÷2] =(∠BAC +∠ABC)÷2=(180°-∠ACB)÷2=(180°-40°)÷2=70°.综上所述,∠DCE 的度数为20°或110°或70°.【题型讲解】【题型】一、等腰三角形的定义例1、已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( ) A .9 B .17或22C .17D .22【答案】D【提示】分类讨论腰为4和腰为9,再应用三角形的三边关系进行取舍即可. 【详解】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994,994+>-<,所以能构成三角形,周长是:99422++=. 故选:D .【题型】二、根据等边对等角求角度例2、如图,在①ABC 中,①A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作□BCDE ,则①E 的度数为( )A .40°B .50°C .60°D .70°【答案】D【提示】先根据等腰三角形的性质和三角形的内角和定理求出①C的度数,再根据平行四边形的性质解答即可.【详解】解:①①A=40°,AB=AC,①①ABC=①C=70°,①四边形ABCD是平行四边形,①①E=①C=70°.故选:D.【题型】三、根据三线合一求解例3、如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5【答案】B【提示】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD为①BAC的角平分线,而AB=AC,由等腰三角形的三线合一知D为BC重点,BD=3,故选B【题型】四、根据等角对等边证明等腰三角形例4、下列能断定①ABC为等腰三角形的是()A.①A=40°,①B=50°B.①A=2①B=70°C.①A=40°,①B=70°D.AB=3,BC=6,周长为14【答案】C【提示】根据三角形内角和计算角的度数,判断三角形中是否有相等的角;根据三角形的周长计算是否有相等的边即可判断.【详解】A.①C=180°−40°−50°=90°,没有相等的角,则不是等腰三角形,本选项错误;B、①①A=2①B=70°,①①B=35°,①①C=75°,没有相等的角,则不是等腰三角形,本选项错误;C 、①C=180°−40°−70°=70°,有相等的角,则是等腰三角形,本选项正确;D 、①AB=3,BC=6,周长为14,①AC=14−6−3=5,没有相等的边,则不是等腰三角形,本选项错误; 故选C .【题型】五、根据等角对等边求边长例5、如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为( )A B C .D .【答案】C【提示】先证明,AE AF =再求解,,AB AC 利用轴对称可得答案. 【详解】解:由对折可得:,,AFO CFO AF CF ∠=∠= 矩形ABCD ,//,90,AD BC B ∴∠=︒ ,CFO AEO ∴∠=∠ ,AFO AEO ∴∠=∠ 5,AE AF CF ∴=== 3,BF =4,AB ∴==BC=8AC ∴===由对折得:12OA OC AC === 故选C .【题型】六、等腰三角形性质与判定的综合例6、如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离. 1.4≈ 1.7≈,结果精确到1千米).【答案】A 、B 两点间的距离约为11千米. 【提示】如图(见解析),先根据直角三角形的性质、勾股定理可求出CD 、AD 的长,再根据等腰直角三角形的判定与性质可得BD 的长,然后根据线段的和差即可得. 【详解】如图,过点C 作CD AB ⊥于点D在Rt ACD △中,30CAD ∠=︒,8AC =千米118422CD AC ∴==⨯=(千米),AD == 在Rt BCD 中,45DBC ∠=︒Rt BCD ∴是等腰直角三角形4BD CD ∴==千米44 1.7410.811AB AD BD ∴=+=≈⨯+=≈(千米)答:A 、B 两点间的距离约为11千米.【题型】七、等边三角形的性质例7、如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是( )A .1B .12C .13D .14【答案】D【提示】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14. 【详解】①,,D E F 分别是AB ,BC ,CA 的中点,且①ABC 是等边三角形, ①①ADF①①DBE①①FEC①①DFE, ①①DEF 的面积是14. 故选D .【题型】八、含30°角的直角三角形例8、如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .【答案】B【提示】由旋转的性质可知,'=60∠∠=CAB BAB ,进而得出'∆BAB 为等边三角形,进而求出'==2BB AB .【详解】解:① 90,30,1,C ABC AC cm ∠=︒∠=︒= 由直角三角形中,30°角所对的直角边等于斜边的一半可知, ①=2=2AB AC cm ,又①CAB =90°-①ABC =90°-30°=60°,由旋转的性质可知:'=60∠∠=CAB BAB ,且'=AB AB , ①'∆BAB 为等边三角形, ①'==2BB AB . 故选:B .等腰三角形(达标训练)一、单选题1.如图,在①ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,连接AE ,若AE =4,EC =2,则BC 的长是( )A .2B .4C .6D .8【答案】C【分析】根据线段的垂直平分线的性质得到EB =EA =4,结合图形计算,得到答案. 【详解】解:①DE 是AB 的垂直平分线,AE =4, ①EB =EA =4,①BC =EB +EC =4+2=6, 故选:C .【点睛】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.2.如图,在ABC 中,5AC =,7BC =,9AB =,用图示尺规作图的方法在边AB 上确定一点D .则ACD 的周长为( ).A .12B .14C .16D .21【答案】B【分析】根据题意得:尺规作图的方法所作的直线是BC 的垂直平分线,可得CD BD = ,从而得到ACD 的周长为AC CD AD ++ ,即可求解.【详解】解:根据题意得:尺规作图的方法所作的直线是BC 的垂直平分线, ①CD BD = , ①9AB =,①9CD AD AD BD AB +=+== , ①5AC =,①ACD 的周长为5914AC CD AD AC AB ++=+=+= . 故选:B .【点睛】本题主要考查了尺规作图——作已知线段的垂直平分线,线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键. 3.下列命题,错误的是( )A .有一个锐角和斜边对应相等的两个直角三角形全等B .如果①A 和①B 是对顶角,那么①A =①BC .等腰三角形两腰上的高相等D .三角形三边垂直平分线的交点到三角形三边的距离相等 【答案】D【分析】利用全等三角形的判定、对顶角的性质、等腰三角形的性质及垂直平分线的性质分别判断后即可确定正确的选项.【详解】解:A 、有一个锐角和斜边对应相等的两个直角三角形全等,正确,不符合题意; B 、如果①A 和①B 是对顶角,那么①A =①B ,正确,不符合题意; C 、等腰三角形两腰上的高相等,正确,不符合题意;D 、三角形三边垂直平分线的交点到三角形三顶点的距离相等,故原命题错误,符合题意. 故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解全等三角形的判定、对顶角的性质、等腰三角形的性质及垂直平分线的性质,属于基础性知识,比较简单.4.如图,点F ,E 在AC 上,AD CB =,D B ∠=∠.添加一个条件,不一定能证明ADE CBF ≌的是( )A .AD BC ∥B .DE FB ∥C .DE BF =D .AE CF =【答案】D【分析】根据全等三角形的判定定理判断即可. 【详解】A :①AD BC ∥, ①A C ∠=∠,①在ADE 和CBF 中, A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①()ADE CBF ASA ≌,正确,故本选项错误; B :①DE FB ∥, ①AED CFB ∠=∠, ①在ADE 和CBF 中,AED CFB D BAD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①()ADE CBF AAS ≌,正确,故本选项错误; C :①在ADE 和CBF 中, DE BF D B AD CB =⎧⎪∠=∠⎨⎪=⎩, ①()ADE CBF SAS ≌,正确,故本选项错误;D :根据AD CB =,D B ∠=∠,AE CF =不能推出ADE CBF ≌,错误,故本选项正确. 故选D .【点睛】本题考查全等三角形的判定的应用,平行线的性质.熟练掌握全等三角形的判定定理是解本题的关键.5.如图,矩形ABCD 的对角线AC 的垂直平分线分别交AD 、AC 、BC 于点E 、O 、F ,若1216AB BC ==,,则EF 的长为( )A .8B .15C .16D .24【答案】B【分析】根据矩形的性质得到AO =CO ,①AOE =①COF ,根据平行线的性质得出①EAO =①FCO ,根据ASA 推出①AEO ①①CFO ,由全等得到OE =OF ,推出四边形是平行四边形,再根据EF ①AC 即可推出四边形是菱形,根据垂直平分线的性质得出AF =CF ,根据勾股定理即可得出结论. 【详解】连接AF ,CE ,①EF 是AC 的垂直平分线, ①AO =CO ,①AOE =①COF =90°, ①四边形ABCD 是矩形, ①AD ①BC , ①①EAO =①FCO , 在①AEO 和①CFO 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=⎩, ①①AEO ①①CFO (ASA ), ①OE =OF , 又①OA =OC ,①四边形AECF 是平行四边形, ①EF ①AC ,①平行四边形AECF 是菱形, ①AE =CE , 设AE =CE =x ,①EF 是AC 的垂直平分线, ①AE =CE =x ,DE =16-x ,在Rt ①CDE 中,222CD DE AE +=,()2221216x x +-=,解得252x =, ①AE =252,①20AC =, ①12AO AC ==10,①152OE =, ①EF =2OE =15, 故选:B .【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,全等三角形的判定和性质,证得四边形AECF 是菱形是解题的关键.二、填空题6.如图,在ABC 中,90C ∠=︒,AD 平分CAB ∠,2BD CD =,点D 到AB 的距离为5.6,则BC =___cm .【答案】16.8【分析】过D 作DE ①AB 于E ,根据角平分线性质得出CD =DE ,再求出BD 长,即可得出BC 的长. 【详解】解:如图,过D 作DE ①AB 于E ,①①C =90°, ①CD ①AC , ①AD 平分①BAC , ①CD =DE ,①D 到AB 的距离等于5.6cm , ①CD =DE =5.6cm , 又①BD =2CD , ①BD =11.2cm ,①BC =5.6+11.2=16.8cm , 故答案为:16.8.【点睛】本题主要考查了角平分线性质的应用,解题时注意:角平分线上的点到角两边的距离相等. 7.如图,在ABC 中,90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,请你添加一个条件__________,使BEC CDA ≌(填一个即可).【答案】AC BC =(答案不唯一)【分析】两个三角形全等已具备的条件是:90ADC CEB ∠=∠=︒,ACD CBE ∠=∠,根据三角形全等的判定方法即可确定添加的条件. 【详解】解:添加的条件是AC BC =, BE CE ⊥,AD CE ⊥,90BEC ADC ∴∠=∠=︒,90BCE CBE ∴∠+∠=︒ ,90ACB ACD ECB ∠=∠+∠=︒,ACD CBE ∴∠=∠,在BEC ∆和CDA ∆中, 90BEC ADC ACD CBEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC CDA AAS ∴∆≅∆.故答案为:AC BC =(答案不唯一).【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解决问题的关键.三、解答题8.如图,E 、F 分别是矩形ABCD 对角线上的两点,且BE DF =.求证:AE CF =.【答案】见解析;【分析】根据矩形ABCD 的性质得出AB CD =,ABE CDF ∠=∠ ,再根据BE DF = ,用SAS 可直接证明出ABE CDF ≅,即可证明出AE CF = . 【详解】证明:ABCD 是矩形, ∴ AB CD = ,ABE CDF ∠=∠,在ABE △和CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩ ∴ABE CDF ≅()SAS ,AE CF ∴= .【点睛】本题主要考查了矩形的性质,全等三角形性质和判定,熟练掌握矩形的性质和全等三角形的判定是解决问题的关键.等腰三角形(提升测评)一、单选题1.如图,点D 、E 分别为①ABC 的边AB 、AC 的中点,点F 在DE 的延长线上,CF ∥BA ,若①ADE 的面积为2,则四边形BCFD 的面积为( )A .10B .8C .6D .4【答案】B【分析】根据三角形中位线定理得到DE ∥BC ,DE =12BC ,证明ADEABC ;根据相似三角形的性质计算(相似三角形的面积比等于相似比的平方),可求得S ABC 的面积;根据三角形全等的判定和性质定理,证明ADE ≌CFE ,可得S ADE =S CFE ,从而可得S 四边形BCFD = S ABC 即可. 【详解】解:①D ,E 分别是ABC 的边AB ,AC 的中点 ①DE 是ABC 的中位线 ①AE =CE ,DE ∥BC ,DE =12BC ①ADEABC①S ADE =21()2ABCS①S ADE =2 ①S ABC =8 又①CF ∥BA ①∠A=∠FCE在ADE 和CFE 中,A FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩①ADE ≌CFE (ASA ) ①S ADE =S CFE①S ADE + S 四边形BCED =S CFE +S 四边形BCED ①S 四边形BCFD = S ABC =8故选:B.【点睛】本题考查的是三角形中位线定理、相以三角形的判定和性质,全等三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.2.如图,Rt①ABC中,①C=90°,BD平分①ABC交AC于点D,点E为AB的中点,若AB=12,CD =3,则①DBE的面积为()A.10B.12C.9D.6【答案】C【分析】如图:过D作DF①AB于F,然后根据角平分线的性质可得DF=CD=3,然后再根据中点的定义求得BE的长,最后根据三角形的面积公式求解即可.【详解】解:如图:过D作DF①AB于F,①①C=90°,BD平分①ABC交AC于点D,①DF=CD=3①点E为AB的中点,AB=12①BE=12AB=6①①DBE的面积为1163922BE DF=⨯⨯=.故选:C.【点睛】本题主要考查了角平分线定理、中点的定义、三角形的高等知识点,作出①DBE的高并运用角平分线定理求出成为解答本题的关键.3.如图,Rt①ABC中,①C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=5,P为AB上一动点,则PD的最小值为()A .2B .3C .4D .5【答案】D【分析】当DP ①AB 时,根据垂线段最短可知,此时DP 的值最小.再根据角平分线的性质定理可得DP =CD 解决问题;【详解】解:当DP ①AB 时,根据垂线段最短可知,此时DP 的值最小. 由作图可知:AE 平分①BAC , ①①C =90°, ①DC ①AC , ①DP ①AB , ①DP =CD =5, ①PD 的最小值为5, 故选:D .【点睛】本题考查角平分线的性质定理,垂线段最短,基本作图等知识,解题的关键是学会利用垂线段最短解决最短问题.4.如图,在正方形ABCD 中,E ,F 分别为BC ,CD 的中点,点G 在CD 边上,GAE BAE ∠=∠,AG交BF 于点H ,连接,,EH EG CH .下列结论:①AHE BCF △≌△;①GE BF ∥;①sin ABF ∠=①14GCH ABH S S =△△,其中正确的结论有( )A .4个B .3个C .2个D .1个.【答案】B【分析】先证明①AHE ①①BCF (AAS ),即可判断①,由三角形的中位线定理可证GE BF ,即可判断①,由勾股定理可求BF 的长,即可求sin①ABF =sin①BFC ,即可判断①,由相似三角形的性质可求FH ,CH ,AO 的长,即可求出16GCHABHSS,即可判断①.【详解】解:如图,设BF 与AE 的交点为O ,设AB =4a ,①四边形ABCD 是正方形,①AB =BC =CD =AD =4a ,①ABC =①BCD =90°, ①E ,F 分别为BC ,CD 的中点, ①CF =DF =2a =CE =BE , ①①ABE ①①BCF (SAS ),①①BAE =①CBF ,BF =AE ,①AEB =①BFC , ①①ABF +①CBF =90°=①ABF +①BAE , ①①AOB =90°=①AOH , 又①①BAE =①GAE ,AO =AO , ①①AOH ①①AOB (ASA ), ①AH =AB ,①AOB =①AOH =90°, ①AE 垂直平分BH ,①BE =EH ,①ABE =①AHE =90°,①①AHE =①BCF =90°,AH =AB =BC ,①GAE =①BAE =①BCF , ①①AHE ①①BCF (AAS ),故①正确; ①AH =AB , ①①AHB =①ABH , ①AB CD , ①①ABF =①CFB ,①①CFB =①AHB =①CHF , ①FG =GH , ①HE =BE =CE ,①①CHE =①ECH ,①EHB =①EBH ,①①CHE +①ECH +①EHB +①EBH =2①CHE +2①EHB =180°, ①①BHC =①CHE +①EHB = 90°, ①①GHC =①GCH , ①CG =GH , ①FG =GC =GH =a , 又①CE =BE , ①GE BF ,故①正确;①BF ==,①sin①ABF =sin ①BFC =BC BF ==, 故①正确;①①CHF =①BCF =90°,①CFH =①CFB , ①①CFH ①①BFC , ①CF CH FHBF BC CF == ,42CH FHa a ==,①CH =,FH =,①BH =,①sin ①ABF =AO AB ,①AO =, ①FG =GC ,①211122225GCHFCHS S a ==⨯=,①21132225ABHSAO BH a =⨯⨯==, ①16GCHABHSS=,故①错误,故选:B .【点睛】本题是四边形综合题,考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,锐角三角函数,勾股定理,三角形中位线定理等知识,灵活运用这些性质解决问题是解题的关键.二、填空题5.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点.且BE CF =,连接BF 、DE ,则BF DE +的最小值为______.【答案】【分析】连接AE ,利用ABE BCF △△≌转化线段BF 得到BF DE AE DE +=+,则通过作点A 关于BC 的对称点H ,连接DH 交BC 于点E ,利用勾股定理求出DH 的长即可. 【详解】解:连接AE ,如图1, 四边形ABCD 是正方形,AB BC ∴=,90ABE BCF ∠∠==︒,又BE CF =,ABE ∴①(BCF SAS ). AE BF ∴=.所以BF DE +最小值等于AE DE +最小值. 作点A 关于BC 的对称点H 点,如图2, 连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点. 根据对称性可知AE HE =, 所以AE DE DH +=.在Rt ADH中,DH=∴+最小值为BF DE故答案为:.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、最短距离问题,一般求两条线段最短距离问题,都转化为一条线段.6.正方形ABCD的边长为4,E为AD的中点,连接CE,过点B作BF CE⊥交CD于点F,垂足为G,则EG=______.【分析】先证明①BFC①①CED,得到DE=CF=2,CE=BF,利用勾股定理可求BF的长,由面积法可求EG.【详解】解:正方形ABCD的边长为4,E为AD的中点,∠=∠=︒,DE=2,BCD ADC∴==,90AD CD BC∴∠+∠=︒,90DCE DEC⊥,BF CE①①CGF=90°,DCE CFB∴∠+∠=︒,90∴∠=∠,BFC DEC∴△①CEDBFC△(AAS),2DE CF ∴==,CE BF =,BF ∴=CE ∴=1122BFCSBC CF BF CG =⨯⨯=⨯⨯,42∴⨯=,CG ∴,①EG =CE -CG【点睛】此题考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.三、解答题7.如图,在矩形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,点G 为EF 的中点,连接BD 、DG .(1)试判断ECF △的形状,并说明理由; (2)求BDG ∠的度数.【答案】(1)ECF △是等腰直角三角形,理由见解析 (2)45°【分析】(1)根据矩形的性质和角平分线的定义及平行线的性质证得45CEF F ∠=∠=︒,90ECF BCD ∠=∠=︒,再根据等角对等边得到EC FC =即可得到结论;(2)根据矩形性质和等腰直角三角形的性质证得BE CD =,DCG BEG ∠=∠,CG EG ,再根据全等三角形的判定与性质证明DCG BEG ≌△△得到DG BG =,DGC BGE ∠=∠,则有90BGD EGC ∠=∠=︒,进而求解即可.(1)解:ECF △是等腰直角三角形;理由如下:①四边形ABCD 是矩形,①AD BC ∥,AB CD ∥,90DAB ABC BCD ∠=∠=∠=︒,①DAE CEF ∠=∠,BAE F ∠=∠.①AE 平分BAD ∠,①45DAE BAE ∠=∠=︒,①45CEF F ∠=∠=︒,①EC FC =.又①90ECF BCD ∠=∠=︒,①ECF △是等腰直角三角形;(2)解:①四边形ABCD 是矩形,①AB CD =,AD BC ∥,①45BEA BAE ∠=∠=︒①AB BE =,即BE CD =.①EC FC =,90ECF ∠=︒,点G 为EF 的中点, ①12CG EF EG ==,1452ECG ECF ∠=∠=︒,90EGC ∠=︒, ①9045135DCG ∠=︒+︒=︒.①18045135BEG ∠=︒-︒=︒,①DCG BEG ∠=∠.在DCG △和BEG 中,DC BE DCG BEG CG EG =⎧⎪∠=∠⎨⎪=⎩,①()DCG BEG SAS △≌△,①DG BG =,DGC BGE ∠=∠,①90BGD EGC ∠=∠=︒.又①DG BG =,①BGD △是等腰直角三角形①45BDG ∠=︒.【点睛】本题考查矩形的性质、等腰直角三角形的判定与性质、直角三角形的斜边中线性质、全等三角形的判定与性质、平行线的性质、角平分线的定义等知识,熟练掌握矩形的性质和等腰直角三角形的判定与性质,证明DCG BEG ≌△△是解答的关键. 8.如图,在四边形ABCD 中,点E 在边AB 上,=AD DE ,CE AD DE BC ∥,∥,作BF CD ∥交线段DE 于点F ,连接AF ,求证:ΔΔDAF EDC ≅.【答案】证明见解析【分析】根据题意得到四边形BCDF 是平行四边形,根据平行四边形的性质得到DF BC =,根据平行线的性质及等腰三角形的性质推出=DF CE ,即可利用SAS 证明ΔΔDAF EDC ≅.【详解】∥DE BC ,BF CD ∥,∴四边形BCDF 是平行四边形,=DF BC ∴,①CE AD ∥,=DAE CEB ∴∠∠,ADF DEC ∠=∠,①∥DE BC ,=DEA CBE ∴∠∠,AD DE =,=DAE DEA ∴∠∠,=CEB CBE ∴∠∠,=CE BC ∴,=DF CE ∴,在ΔDAF 和EDC ∆中,===AD DE ADF DECDF CE ∠∠⎧⎪⎨⎪⎩,ΔΔ()DAF EDC SAS ∴≅.【点睛】此题考查了平行四边形的判定与性质、全等三角形的判定,熟记平行四边形的判定与性质是解题的关键.。

中考数学考点20等腰三角形总复习(解析版)

中考数学考点20等腰三角形总复习(解析版)

等腰三角形【命题趋势】在中考中.等腰三角形常以选择题和填空题的形式考查;也经常在解答题中结合二次函数考查;等边三角形常以选择题、填空题和解答题考查.经常与圆综合题作为考查。

【中考考查重点】一、等腰三角形二、等边三角形考点一:等腰三角形的性质与判定1.(2021秋•绥棱县期末)有两边相等的三角形的两边长为4cm.5cm.则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm 【答案】D【解答】解:当相等的两边是4cm时.4+4>5.能够组成三角形.则它的周长是4+4+5=13(cm);当相等的两边是5cm时.4+5>5.能够组成三角形.则它的周长是5+5+4=14(cm).故选:D.2.(2021秋•延边州期末)如图.在△ABC中.AD是角平分线.且AD=AC.若∠BAC=60°.则∠B的度数是()A.45°B.50°C.52°D.58°【答案】A【解答】解:∵AD是△ABC的一条角平分线.∠BAC=60°.性质1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线.底边上的中线.底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形.有2条对称轴判定1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式.其中a是底边常.hs是底边上的高∴∠BAD=∠DAC=∠BAC=×60°=30°.∵AD=AC.∴∠ADC=∠C==75°.∴∠B=∠ADC﹣∠BAD=75°﹣30°=45°.故选:A.3.(2021秋•和平区校级期中)如图.∠ABC、∠ACB的平分线相交于点F.过F作DE ∥BC.交AB于点D.交AC于点E.BD=3cm.EC=2cm.则DE=5cm.【答案】5【解答】解:∵∠ABC和∠ACB的平分线相交于点F.∴∠DBF=∠FBC.∠ECF=∠BCF.∵DE∥BC.交AB于点D.交AC于点E.∴∠DFB=∠DBF.∠CFE=∠ECF.∴BD=DF=3cm.FE=CE=2cm.∴DE=DF+CE=5(cm).故答案为:5.4.(2021秋•龙凤区校级期末)已知等腰三角形一腰上的高线与另一腰的夹角为40°.那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°【答案】A【解答】解:①如图.等腰三角形为锐角三角形.∵BD⊥AC.∠ABD=40°.∴∠A=50°.即顶角的度数为50°.②如图.等腰三角形为钝角三角形.∵BD⊥AC.∠DBA=40°.∴∠BAD=50°.∴∠BAC=130°.故选:A.5.(2021•淄博)如图.在△ABC中.∠ABC的平分线交AC于点D.过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°.∠C=40°.求∠BDE的度数.【答案】(1)BE=DE(2)∠BDE的度数为30°【解答】解:(1)证明:在△ABC中.∠ABC的平分线交AC于点D.∴∠ABD=∠CBD.∵DE∥BC.∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.(2)∵∠A=80°.∠C=40°∴∠ABC=60°.∵∠ABC的平分线交AC于点D.∴∠ABD=∠CBD=∠ABC=30°.由(1)知∠EDB=∠EBD=30°.故∠BDE的度数为30°.6.(2021秋•临江市期末)如图.在△ABC中.AB=AC.点D、E、F分别在AB、BC、AC 边上.且BE=CF.BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时.求∠DEF的度数.【答案】(1)略(2)∠DEF=70°【解答】证明:∵AB=AC.∴∠ABC=∠ACB.在△DBE和△ECF中.∴△DBE≌△ECF.∴DE=EF.∴△DEF是等腰三角形;(2)∵△DBE≌△ECF.∴∠1=∠3.∠2=∠4.∵∠A+∠B+∠C=180°.∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°7.(2020秋•呼和浩特期末)如图.点O是等边△ABC内一点.D是△ABC外的一点.∠AOB=110°.∠BOC=α.△BOC≌△ADC.∠OCD=60°.连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时.试判断△AOD的形状.并说明理由;(3)探究:当α为多少度时.△AOD是等腰三角形.【答案】(1)△OCD是等边三角形(2)△AOD是直角三角形(3)α=110°或125°或140°【解答】证明:(1)∵△BOC≌△ADC.∴OC=DC.∵∠OCD=60°.∴△OCD是等边三角形.解:(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形.∴∠ODC=60°.∵△BOC≌△ADC.α=150°.∴∠ADC=∠BOC=α=150°.∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°.∴△AOD是直角三角形.(3)∵△OCD是等边三角形.∴∠COD=∠ODC=60°.∵∠AOB=110°.∠ADC=∠BOC=α.∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α.∠ADO=∠ADC﹣∠ODC=α﹣60°.∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时.190°﹣α=α﹣60°.∴α=125°.②当∠AOD=∠OAD时.190°﹣α=50°.∴α=140°.③当∠ADO=∠OAD时.α﹣60°=50°.∴α=110°.综上所述:当α=110°或125°或140°时.△AOD 是等腰三角形.考点二: 等边三角形的性质与判定8.(2021秋•浦城县期中)△ABC 是等边三角形.点P 在△ABC 内.P A =4.将△P AB 绕点A 逆时针旋转得到△P 1AC .则P 1P 的长等于( )A .4B .C .2D .【答案】A【解答】解:∵△ABC 是等边三角形.∴AC =AB .∠CAB =60°.∵将△P AB 绕点A 逆时针旋转得到△P 1AC∴△CP 1A ≌△BP A .∴AP 1=AP .∠CAP 1=∠BAP .∴∠CAB =∠CAP +∠BAP =∠CAP +∠CAP 1=60°.即∠P AP 1=60°.∴△APP 1是等边三角形.∴P 1P =P A =4.性质 1. 三条边相等 2. 三个内角相等.且每个内角都等于60°3. 等边三角形是轴对称图形.有3条对称轴判定 1. 三条边都相等的三角形是等边三角形2. 三个角相等的三角形是等边三角形3. 有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长.h 是任意边上的高9.(2020秋•紫阳县期末)如图.在等腰△ABC中.AB=AC.点E为AC的中点.延长BC 到点D.使得CD=CE.延长DE交AB于点F.若∠A=60°.EF=4cm.则DF的长为()A.12cm B.10cm C.8cm D.6cm【答案】A【解答】解:∵AB=AC.∠A=60°.∴△ABC为等边三角形.∴∠ACB=60°.∴∠ACB=∠CED+∠D.∵CD=CE.∴∠CED=∠D=∠ACB=30°.∴∠AEF=∠CED=30°.∴∠AFE=180°﹣∠A﹣∠AEF=90°.∵EF=4cm.∴设AF=x.则AE=2x.∴由勾股定理得:x2+42=4x2.∴x=.∴AF=.AE=.∴BF=AB﹣AF=2AE﹣AF=.∵∠D=30°.∴BD=2BF=.∴DF2=BD2﹣BF2=3BF2.∴DF=BF=×=12.10.(2021春•张店区期末)如图.P是等边三角形ABC内的一点.且P A=3.PB=4.PC=5.以BC为边在△ABC外作△BQC≌△BP A.连接PQ.则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°【答案】D【解答】解:∵△ABC是等边三角形.∴∠ABC=60°.∵△BQC≌△BP A.∴∠BP A=∠BQC.BP=BQ=4.QC=P A=3.∠ABP=∠QBC.∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°.∴△BPQ是等边三角形.∴PQ=BP=4.∵PQ2+QC2=42+32=25.PC2=52=25.∴PQ2+QC2=PC2.∴∠PQC=90°.即△PQC是直角三角形.∵△BPQ是等边三角形.∴∠BOQ=∠BQP=60°.∴∠BP A=∠BQC=60°+90°=150°.∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC.∵∠PQC=90°.PQ≠QC.∴∠QPC≠45°.即∠APC≠135°.∴选项A、B、C正确.选项D错误.故选:D.11.(2020秋•河东区期中)如图.点M.N分别在正三角形ABC的BC.CA边上.且BM=CN.AM.BN交于点Q.求证:∠BQM=60°.【答案】略【解答】证明:∵BM=CN.BC=AC.∴CM=AN.又∵AB=AC.∠BAN=∠ACM.∴△AMC≌△BNA.则∠BNA=∠AMC.∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°.∴∠AQN=∠ACB.∵∠BQM=∠AQN.∴∠BQM=∠AQN=∠ACB=60°1.(2021秋•九龙坡区期中)如图.在△ABC中.AB=AC.点D为边AC上一点.且AD=BD.∠A=40°.则∠DBC的度数是()A.20°B.30°C.40°D.50°【答案】B【解答】解:∵AB=AC.∠A=40°.∴∠ABC=∠C==70°.∵AD=BD.∴∠DBA=∠A=40°.∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°.故选:B.2.如图.为了让电线杆垂直于地面.工程人员的操作方法是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC.当固定点B.C到杆脚E的距离相等.且B.E.C在同一直线上时.电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【答案】D【解答】解:∵AB=AC.BE=CE.∴AE⊥BC.故工程人员这种操作方法的依据是等腰三角形“三线合一”.故选:D.3.(2021秋•九台区期末)如图.已知△ABC的面积为24.AB=AC=8.点D为BC边上一点.过点D分别作DE⊥AB于E.DF⊥AC于F.若DF=2DE.则DF长为()A.4B.5C.6D.8【答案】A【解答】解:连接AD.则:S△ABD+S△ACD=S△ABC.即:×8•DF+8•DE=24.可得:DE+DF=6.∵DF=2DE.∴DF=4.故选:A.5.(2021秋•天河区期末)如图所示的正方形网格中.网格线的交点称为格点.已知A、B是两格点.如果C也是图中的格点.且使得△ABC为等腰三角形.则点C的个数是()A.6个B.7个C.8个D.9个【答案】C【解答】解:如图.分情况讨论:①AB为等腰△ABC的底边时.符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时.符合条件的C点有4个.故选:C.55.(2021秋•南安市期末)如图:D为△ABC内一点.CD平分∠ACB.BD⊥CD.∠A =∠ABD.若BD=1.BC=3.则AC的长为()A.5B.4C.3D.2【答案】A【解答】解:延长BD交AC于E.如图.∵CD平分∠ACB.BD⊥CD.∴△BCE为等腰三角形.∴DE=BD=1.CE=CB=3.∵∠A=∠ABD.∴EA=EB=2.∴AC=AE+CE=2+3=5.故选:A.6.(2021•滨州)如图.在△ABC中.点D是边BC上的一点.若AB=AD=DC.∠BAD=44°.则∠C的大小为.【答案】34°【解答】解:∵AB=AD.∴∠B=∠ADB.∵∠BAD=44°.∴∠ADB==68°.∵AD=DC.∠ADB=∠C+∠DAC.∴∠C=∠DAC=∠ADB=34°.故答案为:34°.7.(2019•重庆)如图.在△ABC中.AB=AC.AD⊥BC于点D.(1)若∠C=42°.求∠BAD的度数;(2)若点E在边AB上.EF∥AC交AD的延长线于点F.求证:AE=FE.【答案】(1)48°(2)AE=FE【解答】解:(1)∵AB=AC.AD⊥BC于点D.∴∠BAD=∠CAD.∠ADC=90°.又∠C=42°.∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC.AD⊥BC于点D.∴∠BAD=∠CAD.∵EF∥AC.∴∠F=∠CAD.∴∠BAD=∠F.∴AE=FE.8.(2021秋•长春期末)如图.在等边△ABC中.点D在边BC上.过点D作DE∥AB交AC于点E.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.【答案】(1)30°(2)CD=CF【解答】(1)解:∵△ABC是等边三角形.∴∠B=60°.∵DE∥AB.∴∠B=∠EDC=60°.∵DE⊥EF.∴∠DEF=90°.∴∠F=∠DEF﹣∠EDF=90°﹣60°=30°;(2)证明:∵△ABC是等边三角形.∴∠B=∠ACB=60°.∵DE∥AB.∴∠B=∠EDC=60°.∴∠EDC=∠ECD=∠DEC=60°.∴△DEC是等边三角形.∴CE=CD.∵∠ECD=∠F+∠CEF.∠F=30°.∴∠CEF=∠F=30°.∴EC=CF.∴CD=CF.9.(2020秋•淮南期末)已知.在等边三角形ABC中.点E在AB上.点D在CB的延长线上.且ED=EC.(1)【特殊情况.探索结论】如图1.当点E为AB的中点时.确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发.解答题目】如图2.当点E为AB边上任意一点时.确定线段AE与DB的大小关系.请你直接写出结论.AE DB(填“>”、“<”或“=”);理由如下.过点E作EF∥BC.交AC 于点F.(请你完成以下解答过程).(3)【拓展结论.设计新题】在等边三角形ABC中.点E在直线AB上.点D在线段CB的延长线上.且ED=EC.若△ABC的边长为1.AE=2.求CD的长(请你画出相应图形.并直接写出结果).【答案】(1)=;(2)=(3)3【解答】解:(1)当E为AB的中点时.AE=DB;(2)AE=DB.理由如下.过点E作EF∥BC.交AC于点F.证明:∵△ABC为等边三角形.∴△AEF为等边三角形.∴AE=EF.BE=CF.∵ED=EC.∵∠DEB=60°﹣∠D.∠ECF=60°﹣∠ECD.∴∠DEB=∠ECF.在△DBE和△EFC中..∴△DBE≌△EFC(SAS).∴DB=EF.则AE=DB;(3)点E在AB延长线上时.如图所示.同理可得△DBE≌△EFC.∴DB=EF=2.BC=1.则CD=BC+DB=3.故答案为:(1)=;(2)=1.(2021•赤峰)如图.AB∥CD.点E在线段BC上.CD=CE.若∠ABC=30°.则∠D的度数为()A.85°B.75°C.65°D.30°【答案】B【解答】解:∵AB∥CD.∴∠C=∠ABC=30°.又∵CD=CE.∵∠C+∠D+∠CED=180°.即30°+2∠D=180°.∴∠D=75°.故选:B.2.(2021•青海)已知a.b是等腰三角形的两边长.且a.b满足+(2a+3b﹣13)2=0.则此等腰三角形的周长为()A.8B.6或8C.7D.7或8【答案】D【解答】解:∵+(2a+3b﹣13)2=0.∴.解得:.当b为底时.三角形的三边长为2.2.3.周长为7;当a为底时.三角形的三边长为2.3.3.则周长为8.∴等腰三角形的周长为7或8.故选:D.3.(2021•广西)如图.⊙O的半径OB为4.OC⊥AB于点D.∠BAC=30°.则OD的长是()A.B.C.2D.3【答案】C【解答】解:连接OA.∵OC⊥AB.∴∠ADC=90°.∴∠DAC+∠ACD=90°.∵∠BAC=30°.∴∠ACO=60°.∵OA=OC.∴△AOC为等边三角形.∵OC⊥AB.∴OD=OC=2.故选:C.4.(2020•铜仁市)已知等边三角形一边上的高为2.则它的边长为()A.2B.3C.4D.4【答案】C【解答】解:根据等边三角形:三线合一.设它的边长为x.可得:.解得:x=4.x=﹣4(舍去).故选:C.5.(2021•康巴什一模)如图所示.已知m∥n.等边△ABC的顶点B在直线n上.∠1=25°.则∠2的度数是()A.25°B.35°C.45°D.55°【答案】B【解答】解:过C点作CD∥m.∴∠ACD=∠1=25°.∵m∥n.∴CD∥n.∴∠2=∠DCB.∵∠ACD+∠DCB=∠ACB.∴∠2=∠ACB﹣25°.∵△ABC为等边三角形.∴∠ACB=60°.∴∠2=60°﹣25°=35°.故选:B.6.(2021•荆门一模)如图.△ABC是等边三角形.△BCD是等腰三角形.且BD=CD.过点D作AB的平行线交AC于点E.若AB=8.DE=6.则BD的长为()A.6B.C.D.【答案】B【解答】解:连接AD交BC于点O.取AC中点N.连接ON.如图.∵△ABC是等边三角形.∴AB=AC=BC=8.∠ABC=60°.∵△BCD是等腰三角形.∴BD=DC.∴AD垂直平分BC.∴BO=CO=4.∵AN=CN.∴ON=AB=4.ON∥AB.∵AB∥DE.∴ON∥DE.∴.∴=2.∴OD=AO.∴tan∠ABO=.即.∴AO=4.∴OD=2.在Rt△BOD中.BD==2.故选:B.7.(2021•丹东模拟)如图.△ABC是等边三角形.AD是BC边上的中线.点E在AD上.且DE=BC.则∠AFE=()A.100°B.105°C.110°D.115°【答案】B【解答】解:∵△ABC是等边三角形.∴∠BAC=60°.∵AD是BC边上的中线.∴∠BAD=BAC=30°.AD⊥BC.BD=CD=BC.∴∠CDE=90°.∵DE=BC.∴DE=DC.∴∠DEC=∠DCE=45°.∴∠AEF=∠DEC=45°.∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°.故选:B.8.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的△DEF的周长是.【答案】6【解答】解:∵等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∴EF=2.∵△ABC是等边三角形.∴∠B=∠C=60°.又∵DE∥AB.DF∥AC.∴∠DEF=∠B=60°.∠DFE=∠C=60°.∴△DEF是等边三角形.∴剪下的△DEF的周长是2×3=6.故答案为:6.9.(2019•哈尔滨)如图.在四边形ABCD中.AB=AD.BC=DC.∠A=60°.点E为AD边上一点.连接BD、CE.CE与BD交于点F.且CE∥AB.若AB=8.CE=6.则BC的长为.【答案】2【解答】解:如图.连接AC交BD于点O∵AB=AD.BC=DC.∠A=60°.∴AC垂直平分BD.△ABD是等边三角形∴∠BAO=∠DAO=30°.AB=AD=BD=8.BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°.∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4.OF=OD﹣DF=2∴OC==2∴BC==210.(2021•朝阳)如图.在平面直角坐标系中.点A的坐标为(5.0).点M的坐标为(0.4).过点M作MN∥x轴.点P在射线MN上.若△MAP为等腰三角形.则点P的坐标为.【答案】(.4)或(.4)或(10.4)【解答】解:设点P的坐标为(x.4).分三种情况:①PM=P A.∵点A的坐标为(5.0).点M的坐标为(0.4).∴PM=x.P A=.∵PM=P A.∴x=.解得:x=.∴点P的坐标为(.4);②MP=MA.∵点A的坐标为(5.0).点M的坐标为(0.4).∴MP=x.MA==.∵MP=MA.∴x=.∴点P的坐标为(.4);③AM=AP.∵点A的坐标为(5.0).点M的坐标为(0.4).∴AP=.MA==.∵AM=AP.∴=.解得:x1=10.x2=0(舍去).∴点P的坐标为(10.4);综上.点P的坐标为(.4)或(.4)或(10.4).故答案为:(.4)或(.4)或(10.4).1.(2021•贵港模拟)如图.在△ABC中.AB=BC.∠A=36°.AB的垂直平分线DE交AB于点D.交AC于点E.若AB=10.则CE的长为()A.5B.8C.10D.10【答案】C【解答】解:∵在△ABC中.AB=BC=10.∠A=36°.∴∠C=∠A=36°.∵AB的垂直平分线是DE.∴AE=BE.∴∠ABE=∠A=36°.∴∠EBC=∠ABC﹣∠ABE=108°﹣36°=72°.∵∠BEC=∠A+∠ABE=72°∴∠BEC=∠EBC.∴CE=BC=10.故选:C.2.(2021•西湖区二模)如图.在△ABC中.点D在边BC上.且满足AB=AD=DC.过点D 作DE⊥AD.交AC于点E.设∠BAD=α.∠CAD=β.∠CDE=γ.则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°【答案】D【解答】解:∵AB=AD=DC.∠BAD=α.∴∠B=∠ADB.∠C=∠CAD=β.∵DE⊥AD.∴∠ADE=90°.∴∠CAD+∠AED=90°.∵∠CDE=γ.∠AED=∠C+∠CDE.∴∠AED=γ+β.∴2β+γ=90°.故选:D.3.(2021•陕西模拟)如图.△ABC中.AB=AC.AD⊥BC于点D.DE⊥AB于点E.BF⊥AC 于点F.DE=2.则BF的长为()A.3B.4C.5D.6【答案】B【解答】解:∵△ABC中.AB=AC.AD⊥BC.∴AD是△ABC的中线.∴S△ABC=2S△ABD=2×AB•DE=AB•DE=2AB.∵S△ABC=AC•BF.∴AC•BF=2AB.∵AC=AB.∴BF=2.∴BF=4.故选:B.4.(2021•西陵区模拟)如图.已知Rt△OAB.∠OAB=50°.∠AOB=90°.O点与坐标系原点重合.若点P在x轴上.且△APB是等腰三角形.则点P的坐标可能有()个.A.1个B.2个C.3个D.4个【答案】D【解答】解:如图.在x轴上共有4个这样的P点(图中实心点).故选:D.5.(2021•成都模拟)如图.把一张长方形纸片沿对角线折叠.若△EDF是等腰三角形.则∠BDC=()A.45°B.60°C.67.5°D.75°【解答】解:由翻折可知:△BED≌△BCD.∴∠EBD=∠CBD.∠E=∠C=90°∵△EDF是等腰三角形.∴∠EFD=∠AFB=∠ABF=45°.∴∠CBF=45°.∴∠CBD=∠CBE=22.5°.∴∠BDC=67.5°.故选:C.6.(2021•中山区一模)如图.直线m∥n.点A在直线m上.点B、C在直线n上.AB=CB.∠1=70°.则∠BAC等于()A.40°B.55°C.70°D.110°【答案】C【解答】解:∵m∥n.∴∠ACB=∠1=70°.∵AB=BC.∴∠BAC=∠ACB=70°.故选:C.7.(2021•饶平县校级模拟)如图.在△ABC中.AB=6.AC=4.∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC分别交AB、AC于M、N.则△AMN的周长为()A.12B.10C.8D.不确定【答案】B【解答】解:∵∠ABC和∠ACB的平分线交于点E.∴∠ABE=∠CBE.∠ACE=∠BCE.∴∠CBE=∠BEM.∠BCE=∠CEN.∴∠ABE=∠BEM.∠ACE=∠CEN.∴BM==NE.∴△AMN的周长=AM+ME+AN+NE=AB+AC.∵AB=AC=4.∴△AMN的周长=6+4=10.故选:B.8.(2021•商河县校级模拟)如图.△ABC的面积为8cm2.AP垂直∠B的平分线BP于P.则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解答】解:延长AP交BC于E.∵AP垂直∠B的平分线BP于P.∴∠ABP=∠EBP.∠APB=∠BPE=90°.在△APB和△EPB中.∴△APB≌△EPB(ASA).∴S△APB=S△EPB.AP=PE.∴△APC和△CPE等底同高.∴S△APC=S△PCE.∴S△PBC=S△PBE+S△PCE=S△ABC=4cm2.故选:C.9.(2021•甘谷县一模)如图.已知:∠MON=30°.点A1.A2.A3……在射线ON上.点B1.B2.B3……在射线OM上.△A1B1A2.△A2B2A3.△A3B3A4……均为等边三角形.若OA1=1.则△A7B7A8的边长为()A.64B.32C.16D.128【答案】A【解答】解:∵△A1B1A2是等边三角形.∴∠B1A1A2=60°.∵∠MON=30°.∴∠OB1A1=30°∴A1B1=OA1=1.∴A2B1=1.∵△A2B2A3、△A3B3A4是等边三角形.∴A1B1∥A2B2∥A3B3.B1A2∥B2A3.∴A2B2=2B1A2.B3A3=2B2A3.∴A3B3=4B1A2=4.A4B4=8B1A2=8.A5B5=16B1A2=16.以此类推:△A7B7A8的边长为26=64.故选:A.10.(2021•蔡甸区二模)如图.△ABC中.点D在BC边上.且∠ADB=90°∠CAD.(1)求证:AD=AC;(2)点E在AB边上.连接CE交AD于点F.且∠CFD=∠CAB.AE=BD.①求∠ABC的度数;②若AB=8.DF=2AF.直接写出EF的长.【答案】(1)略(2)EF=.【解答】解:(1)∵∠ADB=∠ACB+∠CAD.∠ADB=90°∠CAD.∴∠ACB=∠ADB﹣∠CAD=90°∠CAD.∵∠ADB+∠CDA=180°.∴∠CDA=180°﹣∠ADB=180°﹣(90°∠CAD)=90°∠CAD.∴∠ACB=∠ADC.∴AD=AC;(2)①过点D作DG∥CE交AB于点G.∵∠CFD=∠CAB.∠CFD=∠CAD+∠ACE.∠CAB=∠CAD+∠DAB.∴∠ACE=∠DAB.又∵∠ACD=∠ADC.∠ECB=∠ACD﹣∠ACE.∠B=∠ADC﹣∠DAB.∴∠ECB=∠B.∴CE=BE.∵DG∥CE.∴∠ECB=∠BDG.∴∠BDG=∠B.∴DG=BG.∵∠AEC=∠DGA.AC=DA.∠ACE=∠DAG.∴△AEC≌△DGA(AAS).∴DG=AE.又∵AE=BD.∴DG=BD=BG.∴△BDG为等边三角形.∴∠ABC=60°;②EF=.过点D作DH∥AB交CE于点H.由①知△EBC和△HDC均为等边三角形.设AE=BD=x.则BE=BC=8﹣x.∴DH=CD=8﹣2x.∵DH∥AB.∴=.即=.∴x=2.∵∠ACE=∠DAB.∵△F AE∽△ACE.∴=.∵AC=AD=3AF.∴=.EF=AE=.。

初二数学等腰三角形的应用知识点总结及练习题详解

初二数学等腰三角形的应用知识点总结及练习题详解

等腰三角形应用(复习一讲义)课前预习1.直角三角形全等的判定定理:_________________________.2.线段垂直平分线上的点到_____________________________.3.角平分线上的点到___________________________________.4.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.知识点睛1.垂直平分线相关定理:①________________________________________________;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.已知:如图,PA=PB.求证:点P在线段AB的垂直平分线上.证明:2.角平分线相关定理:①________________________________________________;②在一个角的内部,到角的两边距离相等的点在这个角的平分线上.已知:如图,点P在∠AOB内部,PC⊥OA于点C,PD⊥OB于点D,且PC=PD.求证:点P在∠AOB的平分线上.证明:3.在等腰三角形中,_________________,________________,______________重合(也称“__________”),这是等腰三角形的重要性质.若在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,则尝试构造___________.精讲精练1.已知:如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.求证:直线AO垂直平分线段BC.2.如图,已知PA⊥OM于A,PB⊥ON于B,且PA=PB.∠MON=50°,∠OPC=30°,求∠PCA的大小.3.如图,已知BE平分∠ABC,CE平分∠ACD,且交BE于E.求证:AE平分∠FAC.4.已知:如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.求证:AD垂直平分EF.5.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于F.求证:EC平分∠DEF.6.已知:如图,D,E分别是AB,AC的中点,CD⊥AB于D,BE⊥AC于E,CD,BE交于点O.求证:AB=AC.7.已知:如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E,若CE=5cm,求BD的长.8.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CE平分∠ACB,交AB于E,且AE=BE.求证:BC=CD.9.在Rt△ABC中,∠C=90°,∠A=30°,若要在直线BC或AC上取一点P,使△ABP是等腰三角形,符合条件的点P有________个.10.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有________个.【参考答案】课前预习1.SAS,SSS,ASA,AAS,HL2.这条线段的两个端点的距离相等3.这个角的两边的距离相等4.这样的点有4个知识点睛1.线段垂直平分线上的点到这条线段的两个端点的距离相等2.角平分线上的点到这个角的两边距离相等3.顶角的平分线底边上的中线底边上的高三线合一等腰三角形精讲精练1.证明略(提示:利用等腰三角形“三线合一”)2.55°,证明略3.证明略(提示:过点E作EM⊥BF于M,EN⊥BD于N,EP⊥AC于P,证EP=EM)4.证明略(提示:利用等腰△DEF“三线合一”,证明AD垂直平分EF)5.证明略6.证明略(提示:连接BC,证△ABC是等边三角形)7.BD=10cm(提示:延长BA交CE的延长线于F,先证△BCF是等腰三角形,再证△ADB≌△AFC)8.证明略(提示:过点E作EF⊥AC于F,EG⊥BC于G,证明△ABC是等腰三角形)9.6个,作图略(两圆一线)10.8个,作图略(两圆一线)等腰三角形应用(复习二例习题)例题示范例1:已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.【思路分析】①读题标注:②梳理思路:要证DE=DF,考虑把这两条线段放在两个三角形中证全等.观察图形,可以放在△BDE和△CDF中,发现有两边对应相等,考虑找夹角.结合题中条件,AD既是角平分线又是中线,三线中有两线重合,考虑证明△ABC是等腰三角形,需利用倍长中线进行证明(见中线,要倍长),进而得到∠B=∠C,再证明△BDE ≌△CDF即可.【过程书写】证明:如图,延长AD到点G,使DG=AD,连接CG.∵BD=CD,∠ADB=∠GDC∴△ADB≌△GDC(SAS)∴AB=GC,∠1=∠G∵AD平分∠BAC∴∠1=∠2∴∠2=∠G∴AC=GC∴AB=AC∴∠B=∠ACD∵BE=CF∴△BDE≌△CDF(SAS)∴DE=DF巩固练习1.已知:如图,P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D,连接CD.求证:OP是CD的垂直平分线.2.已知:如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.3.已知,如图,在△ABC中,AB>AC,AD平分∠BAC,CD⊥AD于点D.求证:∠2=∠1+∠B.4.已知:如图,在等边三角形ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=EM.5.已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,E是BC上一点,连接AD,AE,DE.求证:∠EAD=∠EDA.6.在已知直线l 上找一点C ,和直线外的A ,B 两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l 上找出所有符合条件的点C .思考小结1.要证两条线段相等,如果放在一个三角形中考虑证________;如果放在两个三角形中考虑证全等.2.常见的条件组合搭配:特征图例思考方向垂直+平分线段垂直平分线上的点到________________________________角平分线+距离角平分线上的点到______________________________________等腰+一线__________________三线中两线重合构造______________直角+30°30°角所对的直角边等于________________直角+中点直角三角形斜边上的中线________________________________等腰三角形应用(复习三随堂测试)1.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD.若AC=5,BC=3,则BD的长为___________.2.如图,在△ABC中,点D,E分别是边BC,AC上的点,AE=DE,DF⊥AB于点F,DG⊥AC于点G,且DF=DG.求证:DE∥AB.复习二【参考答案】1.证明略(提示:利用等腰△CDP三线合一)2.证明略(提示:作射线AF,过F作FH⊥AD于H,作FM⊥BC于M,作FG⊥AE于G,利用角平分线定理②证明AF平分∠DAE)3.证明略(提示:利用两线重合构造等腰三角形,然后利用外角定理倒角)4.证明略(提示:连接BD,证明△BDE是等腰三角形)5.证明略(提示:证明△ABC≌△DBC,说明直线BC是线段AD的垂直平分线,进而得到EA=ED,∠EAD=∠EDA)6.5个,作图略(两圆一线)思考小结1.等腰2.这条线段两个端点的距离相等这个角的两边的距离相等三线合一等腰三角形斜边的一半等于斜边的一半复习三【参考答案】1.12.证明略(提示:连接AD,证明AD是∠BAC的角平分线,再根据等腰对等角倒角相等,最后根据内错角相等,得到两直线平行)。

八年级上册数学等腰三角形知识点和典型习题分类汇总附答案

八年级上册数学等腰三角形知识点和典型习题分类汇总附答案

第7讲等腰三角形❖基本知识(熟记,会画图,要提问.)(1)(等边对等角).【证明之】(2)等腰三角形的性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一).【证明之】(3)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).【证明之】❖等腰三角形的性质【方程思想计算角度】1、【易】如图,求下列等腰三角形的所有角的度数。

(1)顶角30° (2)底角30°2、【易】计算:(1)等腰三角形的一个角是110°,求其余内角。

(2)等腰三角形的一个角是80°,求其余内角。

(3)已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数。

3、【易】如图所示,在△ABC中,AB=AD=DC,△BAD=26°,求△B和△C的度数.4、【易】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△A、△ADB和△C的度数.5、【中】如图所示,五角星的五个角都是顶角为36°的等腰三角形,则△AMB的度数为______.6、【中】如图,AB=AC,△A=40°,AB的垂直平分线MN交AC于点D,求△DBC的度数.7、【中】如图,等腰△ABC中,AB=AC,△DBC=15°,AB的垂直平分线MN交AC于点D,则△A的度数是_______.【基础证明题】8、【易】如图,AD△BC,点E在AB的延长线上,CB=CE,试猜想△A与△E的大小关系,并说明理由.9、【中】已知:CD平分AB,且CD=AD=BD,求证:△ABC是直角三角形.【如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

这句话倒过来也是对的,学到矩形时会证明。

】10、【中】如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.【全等法或三线合一法】11、【中】【仿上题】如图,点D 、E 在△ABC 的边BC 上,AB=AC .若BD=CE ,F 为DE 的中点,求证:AF△BC .12、【中】如图,在△ABC 中,AB=AC ,D 为BC 边上一点,△B=30°,△DAB=45°.(1)求△DAC 的度数;(2)求证:DC=AB .13、【难】如图,在△ABC 中,AB=AC ,△ABC 、△ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:△△BCD△△CBE ;△△BAD△△BCD ;△△BDA△△CEA ;△△BOE△△COD ;△△ACE△△BCE ;上述结论一定正确的是________.14、【中】已知:如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE△AB ,DF△AC ,E ,F 分别是垂足,求证:AE=AF .15、【中】如图,已知:AB=AC ,△CAE 是△ABC 的外角,△1=△2.求证:AD △ BC .参考答案1、(1)底角75°;(2)底角30°,顶角120°.2、(1)35°,35°;(2)50°,50°;或80°,20°。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

初中数学专题复习资料-----等腰三角形

初中数学专题复习资料-----等腰三角形

初中数学专题复习资料-----等腰三角形【知识梳理】知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)。

(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)定理的作用:证明同一个三角形中的两个角相等。

知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(简称“三线合一”)。

(2)符号语言:∵AB=AC ∵AB=AC ∵AB=AC∠1=∠ 2 AD⊥BC BD=DC∴AD⊥BC ∴∠1=∠2 ∴∠1=∠2BD=DC BD=DC AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。

【注意】:在等腰三角形中经常添加辅助线,虽然“顶角的平分线,底边上的高、底边上的中线互相重合,如何添加要根据具体情况来定,作时只作一条,再根据性质得出另两条”。

知识点3:等腰三角形是以底边上的高(底边上的中线、或顶角平分线)所在直线为对称轴的轴对称图形。

知识点4:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中∵∠B=∠C∴AB=AC(3)定理的作用:证明同一个三角形中的边相等。

说明:证明一个三角形是等腰三角形的方法有两种:1、利用定义 2、利用定理。

【典型例题分析】基础知识应用题:【例1】. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。

解答此类题的步骤如下:(1)利用等边对等角根据已知角的度数求另一个角的度数。

(2)利用三角形内角和定理,确定等量关系,借助等式或方程求解【例2】. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。

求证:△DEF是等腰三角形。

【练习】1、某个等腰三角形的一个角为50,则它的顶角为;等腰三角形的一个角是另一个角的2倍,则这40,则这个等腰三角形的一个底角个等腰三角形的顶角等于;等腰三角形一腰上的高与另一腰的夹角为0的度数为;等腰三角形中有一个角为52°,则它的一条腰上的高与底边的夹角为度。

第十一章等腰三角形知识点归纳

第十一章等腰三角形知识点归纳

第十一章等腰三角形知识点归纳
等腰三角形是指具有两边长度相等的三角形。

本章将对等腰三角形的性质、定理和计算方法进行归纳总结。

1. 等腰三角形的性质
- 等腰三角形的底角(底边两边所夹的角)相等。

- 等腰三角形的两条腰(与底边平行且与底边等长的两边)相等。

- 等腰三角形的两个底角(底边所对的两个角)相等。

- 等腰三角形的高线(从底边中点垂直引到顶点)是底边的中线(把底边平分为两段相等的线段)。

2. 等腰三角形的定理
- 等腰三角形的顶角(顶点所在的角)等于底角。

- 等腰三角形的底角等于直角(底边的两条垂直平分线所交的角)的一半。

- 等腰三角形的高线等于底边的一半。

3. 等腰三角形的计算方法
- 已知底边和顶角,可以通过正弦、余弦或正切函数计算出腰
的长度和底角的大小。

- 已知底边和腰的长度,可以通过余弦函数计算出底角的大小。

- 已知底边和底角,可以通过正弦函数计算出腰的长度。

- 已知底边和高线的长度,可以通过勾股定理计算出腰的长度
和顶角的大小。

以上是关于等腰三角形的知识点归纳,通过理解和掌握这些性质、定理和计算方法,我们可以更好地解决与等腰三角形相关的问题。

初二上册数学等腰三角形知识点复习:期末考试

初二上册数学等腰三角形知识点复习:期末考试

初二上册数学等腰三角形知识点复习:期末
考试
一、等腰三角形知识点回顾
1.等腰三角形的性质
1.等腰三角形的两个底角相等(简写成“等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

二、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)
以上就是为大家整理的初二上册数学等腰三角形知
识点复习:期末考试,大家还满意吗?希望对大家有所帮助!
相关标签搜索:初二期末复习。

等腰三角形知识点及习题

等腰三角形知识点及习题

1、掌握三角形的性质、判定2、考点:三角形的性质 中位线 30度的直角三角形性质 直角三角形的斜边中线 三角形的判定3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

8、 三角形的面积=21×底×高 9、新知: 新知:等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=180A∠-︒2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

那么这个三角形是等腰三角形; 2、有两条高相等的三角形是等腰三角形。

角 等边对等角等角对等边边底的一半<腰长<周长的一半两边相等的三角形是等腰三角形4、三角形中的中位线,要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系知识点一:等腰三角形的性质——等边对等角,等腰三角形的两个底角 .例1:(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30oB .40oC .45oD .36o同步检测一:1.在△ABC 中,AB =AC ,①若∠A =70°,则∠B = °,∠C = °②若∠B =40°, 则∠A = °2.)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( ) A.50° B.80° C.50°或80° D.40°或65° 知识点二:等腰三角形的性质——三线合一等腰三角形的 、 、 互相重合。

《等腰三角形》知识全解

《等腰三角形》知识全解

《等腰三角形》知识全解课标要求理解等腰三角形的有关概念,掌握等腰三角形的性质和判定方法。

知识结构(1)等腰三角形的有关概念等腰三角形是我们比较熟悉的一个概念,即有两条边相等的三角形。

等腰三角形中的其它概念有:①腰:相等的两条边;②底边:另一条边;③顶角:两腰所夹的角;④底角:底边与腰的夹角。

(2)等腰三角形的性质等腰三角形有两个重要性质,分别是:性质1:等腰三角形的两个底角相等(等边对等角)。

性质2:等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

教材是从剪纸得到的两个性质,不但要会用,也要会从理论上证明。

(3)等腰三角形的判定判断一个三角形是否是等腰三角形,除了可以用定义来判断,还有一个判定定理,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写为“等角对等边)。

内容解析等腰三角形是轴对称图形,教材是利用轴对称的知识来探究本节知识的。

学习中我们应注意到以下几个问题:(1)充分重视实践探究活动。

根据教材中的“探究”以及随后提出的“思考”问题,手、眼、脑并用,一面直观地发现结论的正确性,一面锻炼表达能力,与同学进行交流讨论,加深对知识的理解和记忆;(2)“等边对等角”是说明两角相等的依据之一,“等角对等边”是说明三角形是否是等腰三角形的重要方法,“三线合一”是说明两条线段相等、两个角相等及两条直线互相垂直的重要依据。

三个结论都很重要,应牢固掌握。

重点难点本节内容的重点是:1、等腰三角形的两个性质。

2、等腰三角形的判定方法。

难点是:1、等腰三角形的两个性质。

2、等腰三角形的判定方法。

教法引导(1)鼓励学生动手剪纸,在剪纸的过程中得到等腰三角形的性质;(2)给学生充分的时间动手操作和动脑思考。

要让学生通过自己的操作和与同学探讨交流总结出性质等知识点。

学法建议通过阅读教材,动手剪纸,以及动脑思考与同学交流探讨,获得本节知识。

《等腰三角形》知识点

《等腰三角形》知识点

《等腰三角形》知识点在初中数学的几何学习中,等腰三角形是一个非常重要的图形。

它具有独特的性质和特点,这些性质在解决数学问题时经常会被用到。

接下来,让我们一起深入了解一下等腰三角形的相关知识。

一、等腰三角形的定义有两边相等的三角形叫做等腰三角形。

相等的两条边称为这个三角形的腰,另一边称为底边。

两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

二、等腰三角形的性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。

这是等腰三角形最基本的性质之一。

例如,在等腰三角形ABC 中,如果 AB = AC,那么∠B =∠C。

2、等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。

这是一个非常重要的性质,它为我们解决等腰三角形中的相关问题提供了很大的便利。

比如,已知等腰三角形 ABC 中,AB = AC,AD是顶角∠BAC 的平分线,那么 AD 也是底边 BC 上的中线和高。

3、等腰三角形是轴对称图形,其对称轴是顶角平分线所在的直线。

通过对称轴,我们可以将等腰三角形对折,使其两部分完全重合。

三、等腰三角形的判定1、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

这是判定一个三角形是否为等腰三角形的重要方法。

比如,在三角形 ABC 中,如果∠B =∠C,那么 AB = AC,三角形 ABC 就是等腰三角形。

2、有两条边相等的三角形是等腰三角形。

这是根据等腰三角形的定义直接进行判定的方法。

四、等腰三角形中的相关计算1、已知等腰三角形的顶角和底角,可以通过三角形内角和为 180°来计算其他角的度数。

例如,等腰三角形的顶角为80°,因为等腰三角形的两个底角相等,所以底角的度数为(180° 80°)÷ 2 = 50°。

2、已知等腰三角形的腰长和底边长,可以利用勾股定理计算底边的高,进而计算三角形的面积。

假设等腰三角形的腰长为 a,底边长为 b,底边的高为 h。

等腰三角形-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

等腰三角形-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

第三课时——等腰三角形知识点一:等腰三角形:1.等腰三角形的概念:有两条边的三角形叫做等腰三角形。

2.等腰三角形的相关概念:等腰三角形相等的两边叫做等腰三角形的,另一边叫做等腰三角形的。

两腰之间的夹角叫做等腰三角形的,腰与底的夹角叫做等腰三角形的。

3.等腰三角形的性质:①等腰三角形的两腰。

即AB AC。

②等腰三角形的两个底角。

即∠B ∠C。

【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互。

【简称底边上三线合一】即∠ABD ∠CAD,BD CD,AD BC。

特别说明:①等腰;②底边上的高;③底边上的中线;④顶角平分线这四个元素中,其中两个成立,则另两个一定成立。

【类型一:熟悉等腰三角形的性质】1.下列叙述正确的语句是()A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等2.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【类型二:求周长】3.等腰三角形的两边长分别为3和6,那么该三角形的周长为()A.12B.15C.10D.12或154.已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.145.已知等腰三角形中的一边长为5cm,另一边长为9cm,则它的周长为()A.14cm B.23cm C.19cm D.19cm或23cm6.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=12,AC=18,BC=24,则△AMN的周长为()第6题第11题A.30B.36C.39D.42【类型三:求边长和线段长度】7.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cmC.11cm或7.5cm D.以上都不对8.等腰△ABC中,AC=2BC,周长为60,则BC的长为()A.15B.12C.15或12D.以上都不正确9.等腰三角形的周长为16,其一边长为4.那么它的底边长为()A.5B.4C.8D.4或810.等腰三角形的面积为24平方厘米,腰长8厘米.在底边上有一个动点P,则P到两腰的距离之和为()A.4cm B.6cm C.8cm D.10cm11.如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC的长是()A.6B.8C.10D.14【类型四:求角度】12.若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°13.如图,△ABC中,AB=AC,AD⊥BC,∠BAC=80°,AD=AE.则∠CDE=()第13题第14题第15题A.10°B.20°C.30°D.40°14.如图,在△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠B=°.15.△ABC中,AB=AC,CD为AB上的高,且△ADC为等腰三角形,则∠BCD等于()A.67.5°B.22.5°C.45°D.67.5°或22.5°16.如图,已知∠A=15°,AB=BC=CD=DE=EF,则∠FEG的度数为度.知识点一:等腰三角形的判定:1.判定定理一:一个三角形中如有两个角,则这两个角所对的两条边也。

等腰三角形知识点汇总及典型例题

等腰三角形知识点汇总及典型例题

1.主要知识点:1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角平等边)2.主要性质:(1).等腰三角形的两个底角相等(简写成“等边平等角”)。

(2).等腰三角形的顶角的均分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。

(3).等腰三角形的两底角的均分线相等(两条腰上的中线相等,两条腰上的高相等)。

3.判断:(1)两边相等的三角形为等腰三角形(2)两底角相等的三角形为等腰三角形(3)中线和高合一的三角形为等腰三角形(4)角均分线和高合一的三角形为等腰三角形(5)一个三角形,底边上的中垂线是同一条线,能够判断是此三角形是等腰三角形4.特别的等腰三角形 ------ 等边三角形定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形,等边三角形是特别的等腰三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角均分线相互重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的均分线所在直线。

判断:⑴三边相等的三角形是等边三角形(定义)。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是 60度的等腰三角形是等边三角形。

⑷有两个角等于 60度的三角形是等边三角形。

反证法:4.4.1 定义:假定命题的结论不建立,而后推导出定义、基本领实、已有定理或已知条件相矛盾的结果。

4.4.2 一般步骤:应用反证法证明的主要三步是:否认结论→ 推导出矛盾→ 结论建立。

实行的详细步骤是:第一步,反设:作出与求证结论相反的假定;第二步,归谬:将反设作为条件,并由此经过一系列的正确推理导出矛盾;第三步,结论:说明反设不建立,进而一定原命题建立。

5.直角三角形中, 30度锐角的性质:直角三角形中 30度角所对的直角边等于斜边的一半典例剖析例1 . 假如一个等腰三角形的两边长分别是 5cm 和 6cm,求此三角形的周长例2.如图,已知 D 是等边三角形ABC内一点,且DB=DA, BP=AB,DBP DBC,求P的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档