九年级数学上册 22.1 二次函数的图象和性质(第3课时)同步练习 (新版)新人教版
人教版九年级数学上册二次函数的图象和性质复习同步练习题
22.1 二次函数的图象和性质1.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .2.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y = . 3.当m= 时,y=(m -1)xmm +2-3m 是关于x 的二次函数.4.当m= 时,抛物线y=(m +1)x mm +2+9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 5.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 28.抛物线,y=4 x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )错误!未找到引用源。
11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一 象限内的交点相同,则a 的值为( )A .4 B .2 C .21D .4112.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2); (2)y=ax 2与y=21x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=21x +3交于点(2,m ).13已知错误!未找到引用源。
是二次函数,且当错误!未找到引用源。
人教版九年级数学上册22.1.1二次函数同步测试及答案(2021新)
二次函数 22.1__二次函数的图象和性质__22.1.1 二次函数 [见B 本P12]1.下列函数是二次函数的是( C )A .y =2x +1B .y =-2x +1C .y =x 2+2D .y =x -22.二次函数y =3x 2-2x -4的二次项系数与常数项的和是( B )A .1B .-1C .7D .-63.自由落体公式h =12gt 2(g 为常量)中,h 与t 之间的关系是( C ) A .正比例函数 B .一次函数C .二次函数D .以上答案都不对4.已知二次函数y =3(x -2)2+1,当x =3时,y 的值为( A )A .4B .-4C .3D .-35.如图22-1-1所示,在直径为20 cm 的圆形铁片中,挖去了四个半径都为x cm 的圆,剩余部分的面积为y cm 2,则y 与x 间的函数关系式为( C )图22-1-1A .y =400π-4πx 2B .y =100π-2πx 2C .y =100π-4πx 2D .y =200π-2πx 2【解析】 S 剩余=S 大圆-4S 小圆=π·⎝⎛⎭⎫2022-4πx 2=100π-4πx 2,故选C.6.二次函数y =2x (x -3)的二次项系数与一次项系数的和为( D )A .2B .-2C .-1D .-4【解析】 y =2x (x -3)=2x 2-6x ,所以二次项系数与一次项系数的和=2+(-6)=-4,故选D.7.下列函数关系式,可以看作二次函数y =ax 2+bx +c (a ≠0)模型的是( D )A .圆的周长与圆的半径之间的关系B .我国人口年自然增长率为1%,我国人口总数随年份的变化关系C .在一定距离内,汽车行驶速度与行驶时间的关系D .正方体的表面积与棱长的关系【解析】 A 中,圆的周长C 与圆的半径r 是一次函数C =2πr ;B 中,若我国原有人口为a ,x 年后人口数为y =a (1+1%)x 也不属于二次函数;C 中距离一定,速度与时间为反比例函数;只有D 中表面积S 与棱长a 的关系为S =6a 2,符合二次函数关系式.8.二次函数y =ax 2中,当x =-1时,y =8,则a =__8__.【解析】 将x =-1,y =8代入y =ax 2中,解得a =8. 29.如图22-1-2所示,长方体的底面是边长为x cm 的正方形,高为6 cm ,请你用含x 的代数式表示这个长方体的侧面展开图的面积S =__24x __,长方体的体积为V =__6x 2__,各边长的和L =__8x +24__,在上面的三个函数中,__V =6x 2__是关于x 的二次函数.【解析】 长方体的侧面展开图的面积S =4x ×6=24x ;长方体的体积为V =x 2×6=6x 2;各边长的和L =4x ×2+6×4=8x +24,其中,V =6x 2是关于x 的二次函数. 10.若y =x m 是关于x 的二次函数,则(m +2 011)2=__2__013__.【解析】 由y =x m 是关于x 的二次函数,得m =2,所以(m +2 011)2=( 2 013)2=2 013.11.已知函数y =(a +2)x 2+x -3是关于x __a ≠-2__.【解析】 ∵二次函数中,二次项系数不能为0,∴a +2≠0,即a ≠-2.12.已知函数y =(k 2-4)x 2+(k +2)x +3,(1)当k __≠±2__时,它是二次函数;(2)当k __=2__时,它是一次函数.【解析】 根据一次函数、二次函数定义求解.(1)k 2-4≠0,即k ≠±2时,它是二次函数.(2)∵⎩⎪⎨⎪⎧k 2-4=0,k +2≠0, ∴⎩⎪⎨⎪⎧k =±2,k ≠-2. ∴k =2. 13.把8米长的钢筋,焊成一个如图22-1-3所示的框架,使其下部为矩形,上部为半圆形.请你写出钢筋所焊成框架的面积y (平方米)与半圆的半径x (米)之间的函数关系式.图22-1-3 解:半圆面积:12πx 2, 矩形面积:2x ×12×(8-2x -πx ) =8x -(2+π)x 2,∴y =12πx 2+8x -(2+π)x 2, 即y =-⎝⎛⎭⎫12π+2x 2+8x . 14.若y =(m -1)xm 2+1+mx +3是二次函数,则m 的值是( B )A .1B .-1C .±1D .2【解析】 根据题意得⎩⎪⎨⎪⎧m 2+1=2,m -1≠0,解得⎩⎪⎨⎪⎧m =±1,m ≠1,∴m =-1,故选B. 15.如果函数y =(m -3)xm 2-3m +2+mx +1是二次函数,求m .解:依题意得⎩⎪⎨⎪⎧m 2-3m +2=2,m -3≠0,解得m =0. 16.如图22-1-4,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为20 cm ,AC 与MN 在同一条直线上,开始时点A 与点N 重合,让△ABC 以2 cm/s 的速度向左运动,最终点A 与点M 重合,求(1)重叠部分的面积y (cm 2)与时间t (s)之间的函数关系式和自变量的取值范围.(2)当t =1,t =2时,重叠部分的面积.图22-1-4解:(1)∵△ABC 是等腰直角三角形,∴重叠部分也是等腰直角三角形,又∵AN =2t ,∴AM =MN -AN =20-2t ,∴MH =AM =20-2t ,∴重叠部分的面积为y =12(20-2t )2=2t 2-40t +200. 所以自变量的取值范围为0≤t ≤10.(2)当t =1时,y =162(cm 2)当t =2时,y =128(cm 2).17.如图22-1-5,小亮家去年建了一个周长为80 m 的矩形养鱼池. (1)如果设矩形的一边长为x m ,那么另一边的长为________m ;(2)如果设矩形的面积为y m 2,那么用x 表示y 的表达式为y =________,化简后为y =________;(3)根据上面得到的表达式填写下表:x 5 10 15 20 25 30 35y(4)请指出上表中边长x 为何值时,矩形的面积y 最大.图22-1-5 【解析】 S 矩形=长×宽,(1)另一边长为12(80-2x )=(40-x )m. 解:(1)40-x .(2)x (40-x ),-x 2+40x .(3)175,300,375,400,375,300,175.(4)当x =20时,y 最大为400 m 2.18.如图22-1-6,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,求y 与x 之间的函数关系式.解:如图,把△ABC 绕A 逆时针旋转90°到△ADE ,则BC =DE ,AC =AE .设BC =k ,则AC =AE =4k ,DE =k ,过D 作DF ⊥AC 于F ,则AF =DE =k ,CF =3k ,DF =4k ,由勾股定理得CF 2+DF 2=CD 2,∴(3k )2+(4k )2=x 2,∴x 2=25k 2,∴k 2=x 225. y =S 四边形ABCD =S 梯形ACDE=12(DE +AC )·AE =12(k +4k )·4k =10k 2=10×x 225=25x 2,故y 与x 之间的函数关系式为y =25x 2.。
人教版九年级数学上学期(第一学期)《二次函数的图象和性质》(三)课堂同步练习及答案.docx
O yxxy O OyxOyxxO yOyx二次函数的图象和性质(三)课后作业一、选择题1.二次函数221y kx x =++(0k <)的图象可能是( )A .B .C .D .2. 在同一直角坐标系中,函数y=mx+m 和函数y=-mx 2+2x+2(m 是常数,且m ≠0)的图象可能..是( )Oy xyO xA .B .C .D .3. 抛物线2y x bx c =++的图象向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为223y x x =-+,则b ,c 的值为( )A .b=2,c=3B .b=2,c=6C .b=-2,c=-1D .b=-3,c=24. 如图,将抛物线2(1)7y x =+-沿x 轴平移,若平移后的抛物线经过点P(2,2),则平移后的抛物线解析式为( )Oyxy =(x +1)2-7A .2(5)7y x =+-B .2(5)7y x =+-或2(1)1y x =++ C .2(1)1y x =++D.2(5)7y x =+-或2(1)7y x =--5. 下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是( )A .2(2)1y x =-+B .2(2)1y x =++ C . 2(2)3y x =--D .2(2)3y x =+-6. 抛物线222y x x =+-的图象最低点的坐标是( )A .(2,-2)B .(1,-2)C .(1,-3)D .(-1,-3)二、填空题7. 将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位得到的抛物线是__________________. 8. 抛物线y=2(x+m)2+n (m ,n 是常数)的顶点坐标是_______;c bx ax y ++=2的顶点坐标是_____________(用含a ,b ,c 的代数式表示);2241y x x =-++的顶点坐标是__________,有最______值,是________.9. 已知抛物线2115322y x x =---,将它配成顶点式为________,对称轴是直线______,顶点坐标为__________,当_______时,y 随x 的增大而减小,当x=_________时,y 有最____值,是_________.10. 抛物线22y x bx c =-++的顶点坐标是(-1,4),则b=_____,c=_______.三、解答题 11. 已知抛物线与的一个交点为,与的交点为B,顶点为C,对称轴为.(1)求抛物线的解析式;(2)已知点M为一个动点,当为等腰三角形时,求点M 的坐标。
人教版 九年级数学上册 22.1 --22.3同步测试题(含答案)
人教版九年级数学上册22.1 --22.3同步测试题(含答案)22.1 二次函数的图象和性质一、选择题1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3) B.(1,-3)C.(-1,3) D.(-1,-3)2. 将抛物线y=-5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=-5(x+1)2-1 B.y=-5(x-1)2-1C.y=-5(x+1)2+3 D.y=-5(x-1)2+33. 二次函数y=x2-2x-3的图象如所示,当y<0时,自变量x的取值范围是()A.-1<x<3 B.x<-1C.x>3 D.x<-1或x>34. 已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的图象大致是()5. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为()A. y=(x-2)2+3B. y=(x-2)2+5C. y=x2-1D. y=x2+46. 若二次函数y=ax2+bx+c的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<07. 如图是二次函数y=ax2+bx+c的图象,有下列说法:①ac>0;②2a+b>0;③4ac<b2;④a+b+c<0;⑤当x>0时,y随x的增大而减小.其中正确的是()A.①②③B.①②④C.②③④D.③④⑤8. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④9. 二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的有()①abc<0;②b2-4ac<0;③2a>b;④(a+c)2<b2.A.1个B.2个C.3个D.4个10. 如图,在Rt △PMN 中,∠P =90°,PM =PN ,MN =6 cm ,在矩形ABCD 中,AB =2 cm ,BC =10 cm ,点C 和点M 重合,点B ,C(M),N 在同一直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线以每秒1 cm 的速度向右移动,至点C 与点N 重合为止.设移动x s 后,矩形ABCD 与△PMN 重叠部分的面积为y cm 2,则y 关于x 的大致图象是( )二、填空题11. (2019•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是__________.12. 二次函数y =-2x 2-4x +5的最大值是________.13. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.14. 将抛物线y =2x 2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为________________.15. 如图,已知抛物线过A ,B ,C 三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),且3AB =4OC ,则此抛物线的解析式为__________________.16. 已知抛物线y =ax 2+bx +c(a >0)经过A(-1,1),B(2,4)两点,顶点坐标为(m ,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是________.17. 如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.三、解答题18. 2018·南京已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?19. 已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP∶PD=2∶3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.20. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y =x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.人教版九年级数学上册23.1 二次函数的图象和性质课时训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] 已知原抛物线的顶点坐标为(0,1),平移后的顶点坐标是(-1,-1),因此平移后的抛物线的解析式为y=-5(x+1)2-1.故选A.3. 【答案】A[解析] 在抛物线y=x2-2x-3上,y<0的所有点在x轴的下方,这些点对应的x值为-1<x<3,所以自变量x的取值范围为-1<x<3.4. 【答案】B[解析] 根据二次函数的图象开口向上,得a>0,根据c是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选B.5. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.6. 【答案】D7. 【答案】C[解析] ①由图象可知:a>0,c<0,∴ac<0,故①错误;②由对称轴可知:-b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴Δ=b2-4ac>0,即4ac<b2,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>-b2a时,y随着x的增大而增大,故⑤错误.故选C.8. 【答案】C【解析】把(m,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确;当–(x–m)2–m+1=0时,x1=1m m--,x2=1m m+-,若顶点与x轴的两个交点构成等腰直角三角形,则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;故②正确;当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y随x的增大而减小,即y1>y2,故③错误;∵–1<0,∴在对称轴左侧y随x的增大而增大,∴m≥2,故④正确,故选C.9. 【答案】A[解析] ①由抛物线的开口方向向下知a<0,由对称轴在y轴的左侧得a,b 同号,∴b<0.由抛物线与y轴交于正半轴得c>0,∴abc>0,故结论①错误.②由抛物线与x轴有两个交点得b2-4ac>0,故结论②错误.③由图象知对称轴x=-b2a>-1得b2a<1;由a<0,结合不等式的性质三可得b>2a,即2a<b,故结论③错误.④由图象知:当x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,∴(a+c)2<b2.故结论④正确.故选A.10. 【答案】A[解析] (1)当点D位于PM上时,x=2.当0≤x<2时,重叠部分是等腰直角三角形,y=12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D位于PN上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.二、填空题11. 【答案】12x =-,25x =【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b ac a =-⎧⎨=-⎩,所以,关于x 的一元二次方程a(x-1)2+c=b-bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+, 化为:23100x x --=, 解得:12x =-,25x =, 故答案为:12x =-,25x =.12. 【答案】713. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.14. 【答案】y =2(x +1)2-215. 【答案】 y =-x2+2x +316. 【答案】①②④ [解析] ∵抛物线过点A(-1,1),B(2,4),∴⎩⎪⎨⎪⎧a -b +c =1,4a +2b +c =4, ∴b =-a +1,c =-2a +2. ∵a >0,∴b <1,c <2,∴结论①②正确;∵抛物线的顶点坐标为(m ,n),∴m =-b 2a =--a +12a =12-12a ,∴m <12,∴结论③不正确;∵抛物线y =ax 2+bx +c(a >0)经过A(-1,1),顶点坐标为(m ,n), ∴n≤1,∴结论④正确. 综上所述,正确的结论是①②④. 故答案为①②④.17. 【答案】③④ [解析] ∵抛物线开口向上,∴a >0.又∵对称轴为直线x =-b2a >0,∴b <0,∴结论①不正确;∵当x =-1时,y >0,∴a -b +c >0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac -b 24a =-2,c =-1,∴b 2=4a ,∴结论④正确.综上,正确的结论是③④.三、解答题18. 【答案】解:(1)证明:当y =0时,2(x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根. 综上,不论m 为何值,该函数的图象与x 轴总有公共点. (2)当x =0时,y =2(x -1)(x -m -3)=2m +6, ∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方.19. 【答案】解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).(2分)如图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a), ∴CE =OQ =1. ∵PQ ∥BD ,∴△CEP ∽△CFD , ∴CP CD =CE CF .又∵CP ∶PD =2∶3, ∴CE CF =CP CD =22+3=25,∴CF =2.5,(4分) ∴OB =CF =2.5,∴BQ =OB -OQ =1.5, ∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5, ∴A(-0.5,0),B(2.5,0).(5分)(2)∵tan ∠PDB =54, ∴CF DF =54,∴DF =45CF =45×2.5=2,(6分) ∵△CFD ∽△CEP , ∴PE DF =CE CF ,∴PE =DF·CE CF =2×12.5=0.8. ∵P(1,c -a),C(0,c),∴PE =PQ -OC =c -(c -a)=a , ∴a =0.8,(8分) ∴y =0.8x 2-1.6x +c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c =0, 解得c =-1.(9分)∴这个二次函数的关系式为:y =0.8x 2-1.6x -1.(10分)20. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上, ∴方程x 2-(m +3)x +9=0有两个相等的实数根, ∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9, 又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3, 可得⎩⎨⎧y =x 2-6x +9y =x +3,解得⎩⎨⎧x =1y =4或⎩⎨⎧x =6y =9,∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,解图∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15,S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分) 又∵S △PAB =2S △ABC , ∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上, ∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1, ∴a =7-732, ∴b =15+7-732=37-732.(10分)22.2《二次函数与一元二次方程》1.抛物线与两坐标轴的交点个数为( ) A.个B.个C.个D.个2.如图,以为顶点的二次函数的图象与轴负半轴交于点,则一元二次方程的正数解的范围是()A. B. C. D.3.下列表格是二次函数的自变量与函数值的对应值,判断方程,,,为常数)的一个解的范围是()A. B. C. D.4.关于的方程的两个相异实根均大于且小于,那么的取值范围是()A. B. C.或 D.5.函数的图象如图所示,那么关于的方程的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根6. 二次函数中,自变量与函数的对应值如下表:…………若,则一元二次方程的两个根,的取值范围是()A.,B.,C.,D.,7.利用函数图象求方程的实数根(精确到),要先作函数________的图象,如图所示,它与轴的公共点的横坐标大约是、,所以方程的实数根为________,________.8.二次函数的图象与轴交点的横坐标是________.9.若二次函数的图象与轴有两个交点,则实数的取值范围是________.10.若抛物线与轴有两个交点,则的取值范围是________.11.二次函数的图象与轴的交点坐标是________.12.已知二次函数的图象与轴交于、,顶点到轴的距离为,求函数的解析式.13.某商场计划购进两种新型节能台灯共盏,已知购进型台灯盏,型台灯盏需元;购进型台灯盏,项台灯盏需元.(1)填空.进价/(元/盏) 售价/(元/盏)型型(2)若商场购进型台灯不超过盏,预计进货款不多于元,则一共有多少种购买方案?(3)在的购买方案中,哪种方案能使商场在销售完这批台灯时获利最多?此时利润为多少元?14.求证:方程的一个根大于,另一个小于.15.如图,抛物线交轴于点、,交轴于点,其中点、的坐标分别为、.(1)求抛物线的解析式,并用配方法把其化为的形式,写出顶点坐标;(2)已知点在第二象限的抛物线上,求出的值,并直接写出点关于直线的对称点的坐标.16. 如图,已知的图象与的图象交于、两点且与轴,轴分别交于、两点,为坐标轴原点.(1)求点、的坐标;(2)求的值.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】,,8.【答案】和9.【答案】且10.【答案】且11.【答案】,12.解:由题意知,顶点为或.设抛物线的表达式为.①当顶点为时,∵抛物线过,∴,∴.∴抛物线解析式为,即;②当顶点为时,∵抛物线过,∴,∴.∴抛物线解析式为,即.13.解:(1)填表如下:进价/(元/盏) 售价/(元/盏)型型设项台灯的进价是元/盏,型台灯的进价是元/盏,根据题意列方程组,得解得故型台灯的进价是元/盏,型台灯的进价是元/盏.(2)设商场购进型台灯盏,型台灯的进价是元/盏,根据题意得,解得,故取直范围是.因为是正整数,所以,故共有种购买方案.(3)设商场销售完议批台灯可获利元,则∵∴随的增大而减小,∴当时,取得最大值,为.答:在()的购买方案中,商场购进型台灯盏,型台灯盏时,销售完这批台灯获利最多,此时利润为元.14.证明:的两个根为,,则方程一定有两个根,设方程的两根为,,当时,,当时,,当时,,则方程、的根一定一根大于,一根小于.15.解:(1)抛物线经过、两点,∴,解得.∴此抛物线的解析式为.(2)∵点在抛物线上,∴,解得,.∵点在第二象限,∴.令,解得,.∴.∴.连接,易知,,.∴.∴.过点作于,延长交轴于,∴.∴.∴.∴点即为点关于直线的对称点.∴,∴∴.16.解:(1)∵的图象与的图象交于、两点,∴解方程组,解得,故点的坐标为,点的坐标为.(2)作垂直与轴与点,垂直与轴与点将代入得,∴点的坐标为又∵点的坐标为,点的坐标为∴,,∴故的值为.22.3《实际问题与二次函数》一.选择题1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)2.用一根长60cm的铁丝围成一个矩形,那么矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为()A.y=x2﹣30x(0<x<30)B.y=﹣x2+30x(0≤x<30)C.y=﹣x2+30x(0<x<30)D.y=﹣x2+30x(0<x≤30)3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m5.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.48.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或9.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值610.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF =CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤二.填空题12.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y美元.设2017年到2019年该地区居民年人均收入平均增长率为x,那么y与x的函数关系式是.13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加m.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.15.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M 是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题17.某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x 元,每周从销售这种工艺品中获得的利润为y元.(1)填空:每件工艺品售价提高x元后的利润为元,每周可售出工艺品件,y关于x的函数关系式为;(2)若y=384,则每件工艺品的售价应确定为多少元?18.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m 的Q处时,乙扣球成功,求a的值.19.已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.20.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.2.解:由题意得:矩形的另一边长=60÷2﹣x=30﹣x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30﹣x)=﹣x2+30x (0<x<30).故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.5.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.6.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;②由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点,即速度为0,故③正确;④设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,∴当t=1.5s时,h=﹣(1.5﹣3)2+40=30,∴④正确.综上,正确的有②③④.故选:C.7.解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC﹣S△PBQ=×12×6﹣(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选:C.8.解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.9.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.10.解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选:A.11.解:①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时y的值随的x的增大而增大,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选:B.二.填空题12.解:设2017年到2019年该地区居民年人均收入平均增长率为x,那么根据题意得2019年年人均收入为:300(x+1)2,y与x的函数关系式是为:y=300(x+1)2.故答案为y=300(x+1)2.13.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4,故答案为:(2﹣4).14.解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=±,故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.15.解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,而S△MBP=×BP×ME,∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).16.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.三.解答题17.解:(1)∵该工艺品每件进价12元,售价为20元,∴每件工艺品售价提高x元后的利润为:(20﹣12+x)=(8+x)(元),∵把每件工艺品的售价提高1元,就会少售出2件,∴每周可售出工艺品:(40﹣2x)(件),∴y关于x的函数关系式为:y=(40﹣2x)(8+x))=﹣2x2+24x+320;故答案为:8+x;40﹣2x;y=﹣2x2+24x+320;(2)∵y=384,∴384=﹣2x2+24x+320,整理得出:x2﹣12x+32=0,(x﹣4)(x﹣8)=0,解得:x1=4,x2=8,4+20=24,8+20=28,答:每件工艺品的售价应确定为24元或28元.18.解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.19.解:(1)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(2)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(3)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.20.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),定义抛物线y=﹣x2+2x+3.令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).。
人教版九年级数学上册 22.1.3.1 二次函数y=ax2+k的图象和性质 同步练习题(含答案,教师版)
人教版九年级数学上册第22章22.1.3.1 二次函数y =ax 2+k 的图象和性质 同步练习题一、选择题1.二次函数y =x 2+1的图象大致是(B)2.下列关于抛物线y =-x 2+2的说法正确的是(D) A .开口向上 B .顶点坐标为(-1,2)C .对称轴是直线x =1D .在对称轴的左侧,y 随x 的增大而增大3.与抛物线y =-45x 2-1的顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数解析式是(B)A .y =-45x 2-1B .y =45x 2-1C .y =-45x 2+1D .y =45x 2+14.函数y =13x 2+1与y =13x 2的图象的不同之处是(C)A .对称轴B .开口方向C .顶点D .形状5.一次函数y =ax +b(a ≠0,b ≠0)的图象如图所示,则二次函数y =bx 2+a 的大致图象是(C)6.已知y =ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是(A)A .a>0B .a<0C .a ≥0D .a ≤07.已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等.当x取x1+x2时,函数值为(D)A.a+c B.a-c C.-c D.c二、填空题8.抛物线y=2x2-1在y轴右侧的部分是上升(填“上升”或“下降”)的.9.二次函数y=3x2-3的图象开口向上,顶点坐标为(0,-3),对称轴为y轴,当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.因为a=3>0,所以y有最小值,当x=0时,y的最小值是-3.10.抛物线y=ax2-1(a>0)上有两点A(1,y1),B(3,y2),则y1<y2.(填“>”“<”或“=”)11.如果将抛物线y=-3x2向上平移2个单位长度,那么得到的新抛物线的解析式为y=-3x2+2.12.对于二次函数y=-2x2+4,当-2<x≤1时,y的取值范围是-4<y≤4.13.已知函数y=ax2+k的图象与函数y=-3x2-2的图象关于x轴对称,则a=3,k=2.三、解答题14.在同一平面直角坐标系中画出二次函数y=-2x2,y=-2x2+3的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=-2x2+3可由抛物线y=-2x2向上平移3个单位长度得到.解:如图所示.抛物线y=-2x2开口方向向下,对称轴为y轴,顶点坐标为(0,0).抛物线y=-2x2+3开口方向向下,对称轴为y轴,顶点坐标为(0,3).15.能否通过适当地上下平移二次函数y =13x 2的图象,使得到的新的函数图象过点(3,-3)?若能,请说出平移的方向和距离;若不能,请说明理由.解:能.把函数y =13x 2的图象沿y 轴向下平移6个单位长度,得到新的函数y =13x 2-6的图象过点(3,-3).16.如图是一个半圆和抛物线的一部分围成的“芒果”.已知点A ,B ,C ,D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为y =32x 2-32,求CD 的长.解:令y =32x 2-32=0,解得x =1或-1.∴AB =2. ∴CO =12AB =1.令x =0,解得y =-32.即OD =32.∴CD =CO +OD =1+32=52.17.已知抛物线y =ax 2+k 向下平移2个单位长度后,所得抛物线为y =-3x 2+2. (1)试求a ,k 的值;(2)分别指出两条抛物线的开口方向、对称轴和顶点.解:(1)因为抛物线y =ax 2+k 向下平移2个单位长度后,所得抛物线为y =ax 2+k -2.所以根据题意,得⎩⎪⎨⎪⎧a =-3,k -2=2.解得⎩⎪⎨⎪⎧a =-3,k =4.(2)抛物线y =-3x 2+2的开口方向向下,对称轴为y 轴,顶点坐标为(0,2); 抛物线y =-3x 2+4的开口方向向下,对称轴为y 轴,顶点坐标为(0,4).18.已知抛物线y =14x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等.如图,点M 的坐标为(3,3),P 是抛物线y =14x 2+1上一个动点,求△PMF 周长的最小值.解:过点M 作ME ⊥x 轴于点E ,交抛物线y =14x 2+1于点P ,此时△PMF 的周长最小.∵F(0,2),M(3,3),∴ME =3,FM =(3-0)2+(3-2)2=2. 又由题意可知PF =PE ,∴当ME ⊥x 轴于点P 时,PF +PM 最短为PE +PM =ME. ∴△PMF 周长的最小值为ME +FM =3+2=5.。
人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练(含答案)
人教版九年级数学上册22.1 二次函数的图象和性质同步训练一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=74. 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1C.b≥1 D.b≤15. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点6. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度7. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n2二、填空题9. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.10. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.11. 抛物线y=-8x2的开口向________,对称轴是________,顶点坐标是________;当x>0时,y随x的增大而________,当x<0时,y随x的增大而________.12. 已知二次函数的图象经过原点及点(-12,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.13. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.19. 如图,等腰直角三角形ABC的直角边与正方形MNPQ的边长均为10 cm,边CA与边MN在同一直线上,开始时点A与点M重合,△ABC沿MN方向以1 cm/s 的速度匀速运动,当点A与点N重合时,停止运动.设运动的时间为t s,运动过程中△ABC与正方形MNPQ重叠部分的面积为S cm2.(1)试写出S关于t的函数关系式,并指出自变量t的取值范围;(2)当MA=2 cm时,重叠部分的面积是多少?20. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版九年级数学上册22.1 二次函数的图象和性质同步训练-答案一、选择题1. 【答案】B2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.4. 【答案】D [解析] 先根据抛物线的性质得到其对称轴为直线x =b ,且当x >b 时,y 的值随x 值的增大而减小.因为当x >1时,y 的值随x 值的增大而减小,所以b≤1.5. 【答案】D【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.6. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.7. 【答案】D8. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .二、填空题9. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x -h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.10. 【答案】y 1<y 2[解析] ∵抛物线的解析式是y =2(x -1)2,∴其对称轴是直线x =1,抛物线的开口向上, ∴在对称轴右侧,y 随x 的增大而增大.又∵抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,∴y 1<y 2.11. 【答案】下y 轴 (0,0) 减小 增大12. 【答案】y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y=x 2+x 或y =-13x 2+13x .13. 【答案】0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.14. 【答案】y =-3(x -2)215. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题17. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行, 设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.19. 【答案】解:(1)设AB 与MQ 交于点R.∵△ABC 是等腰直角三角形,四边形MNPQ 是正方形, ∴△AMR 是等腰直角三角形. 由题意知,AM =MR =t ,∴S =S △AMR =12t·t =12t 2(0≤t≤10).(2)当MA =2 cm ,即t =2时,重叠部分的面积是12×2×2=2(cm 2).20. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)。
人教版九年级数学上册 22.1.3.2 二次函数y=a(x-h)2的图象和性质 同步练习题(含答案,教师版)
人教版九年级数学上册第22章22.1.3.2 二次函数y =a(x -h)2的图象和性质 同步练习题一、选择题1.下列二次函数中,对称轴为x =-5的是(A)A .y =(x +5)2B .y =3x 2-5C .y =-3x 2-5D .y =3(x -5)22.在平面直角坐标系中,二次函数y =12(x -2)2的图象可能是(D)3.下列对二次函数y =2(x +4)2的增减性描述正确的是(D)A .当x >0时,y 随x 的增大而减小B .当x <0时,y 随x 的增大而增大C .当x >-4时,y 随x 的增大而减小D .当x <-4时,y 随x 的增大而减小4.如果将抛物线y =x 2向右平移1个单位长度,那么所得的抛物线的解析式是(C)A .y =x 2-1B .y =x 2+1C .y =(x -1)2D .y =(x +1)25.在同一平面直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为(B) A.B. C. D.二、填空题 6.抛物线y =-4(x +3)2与x 轴的交点坐标是(-3,0),与y 轴的交点坐标是(0,-36).7.已知函数y =-(x -1)2图象上两点A(2,y 1),B(a ,y 2),其中a >2,则y 1与y 2的大小关系是y 1>y 2(填“<”“>”或“=”).8.将抛物线y =3x 2向左平移2个单位长度,得到抛物线y =3(x +2)2;将抛物线y =3x 2向右平移2个单位长度,得到抛物线y =3(x -2)2.9.已知二次函数y =2(x -h)2,当x >3时,y 随x 的增大而增大,则h 的值满足h ≤3.10.若抛物线y=7(x-m)m2-4m-3的顶点在x轴的正半轴上,则m的值为5.11.若抛物线y=a(x-h)2的顶点是(-3,0),且它是由抛物线y=-2x2通过平移而得到的,则a=-2,h=-3.12.已知A(-4,y1),B(-3,y2),C(3,y3)三点都在二次函数y=-2(x+2)2的图象上,则y1,y2,y3的大小关系为y3<y1<y2.三、解答题13.在同一平面直角坐标系中,画出函数y=x2,y=(x+2)2,y=(x-2)2的图象,并写出对称轴及顶点坐标.解:图象如图:抛物线y=x2的对称轴是直线x=0(y轴),顶点坐标为(0,0).抛物线y=(x+2)2的对称轴是直线x=-2,顶点坐标为(-2,0).抛物线y=(x-2)2的对称轴是直线x=2,顶点坐标为(2,0).14.抛物线y=a(x+h)2的对称轴是直线x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)当x在什么范围内时,y随x的增大而减小?当x取何值时,函数有最大(或最小)值?解:(1)∵抛物线y=a(x+h)2的对称轴是直线x=-2,∴-h=-2,解得h=2.∴抛物线的解析式为y=a(x+2)2.∵抛物线y =a(x +2)2过点(1,-3),∴-3=9a ,解得a =-13. ∴抛物线的解析式为y =-13(x +2)2. (2)抛物线的顶点坐标为(-2,0).(3)∵a =-13,∴抛物线开口向下,在对称轴的右侧,y 随x 的增大而减小. ∴当x >-2时,y 随x 的增大而减小.∵抛物线的顶点坐标为(-2,0),∴当x =-2时,函数有最大值,最大值为0.15.已知某抛物线与抛物线y =-12x 2+3形状相同,开口方向相反,顶点坐标是(-5,0).根据以上特点,试写出该抛物线的解析式.解:∵所求抛物线与y =-12x 2+3形状相同,开口方向相反, ∴所求抛物线解析式的二次项系数是12. 又∵顶点坐标是(-5,0),∴所求抛物线的解析式为y =12(x +5)2. 16.如图是二次函数y =12(x -h)2的图象,其中OA =OC ,试求该抛物线的解析式.解:由题意,得C(h ,0),∵OA =OC ,∴A(0,h).将点A(0,h)代入抛物线的解析式,得12h 2=h. 解得h 1=2,h 2=0(不合题意,舍去).∴该抛物线的解析式为y =12(x -2)2. 17.如图是二次函数y =(x +2)2的图象,顶点为A ,与y 轴的交点为B.(1)求经过A ,B 两点的直线的函数关系式;(2)请在第二象限中的抛物线上找一点C ,使△ABC 的面积与△ABO 的面积相等.解:(1)令x =0,则y =22=4,∴B(0,4).令y =0,则(x +2)2=0,∴x =-2,∴A(-2,0).设过A ,B 两点的直线的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧0=-2k +b ,4=b.解得⎩⎪⎨⎪⎧b =4,k =2. ∴经过A ,B 两点的直线的函数关系式为y =2x +4.(2)由题意,得S △AOB =12AO ·BO =12×2×4=4. 过点C 作CD ⊥x 轴于点D ,设C(m ,(m +2)2),则CD =(m +2)2,DO =-m ,DA =-2-m.∴S △ABC =S 梯形CDOB -S △CDA -S △AOB =-m 2[(m +2)2+4]-12(-2-m)(m +2)2-4=m 2+2m.∵S△ABC=S△AOB=4,∴m2+2m=4.解得m1=-1+5(不合题意,舍去),m2=-1- 5. ∴C(-1-5,6-25).。
九年级数学上册《二次函数的图像与性质》同步练习3 含答案
22.1《二次函数的图像与性质》同步练习3带答案一.选择题1.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y2.抛物线2)3(2--=x y 的顶点坐标和对称轴分别是( )A.3),0,3(-=-x 直线B. 3),0,3(=x 直线C. 3),3,0(-=-x 直线D. 3),3,0(-=x 直线3.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B. 312y y y >>C. 213y y y >>D. 123y y y >>4.把抛物线2)1(6+=x y 的图象平移后得到抛物线26x y =的图象,则平移的方法可以是( )A.沿y 轴向上平移1个单位长度B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度5.若二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是( )A. 2B. 2-C.0D. 2±6.对称轴是直线2-=x 的抛物线是( )A.22+-=x yB.22+=x yC.2)2(21+=x y D.2)2(3-=x y 7.对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小8.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当0>x 时,它们的函数值y 都是随着x 的增大而增大;④它们的开口的大小是一样的. 其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个 二.填空题1.抛物线2)1(3--=x y 的开口向 ,对称轴是 ,顶点坐标是 。
九年级数学: 22.1 二次函数的图象和性质 (同步练习题)( 含答案)
22.1二次函数的图象和性质22.1.1二次函数1.设一个正方形的边长为x,则该正方形的面积y=__x2___,其中变量是__x,y___,__y___是__x___的函数.2.一般地,形如y=ax2+bx+c(__a,b,c为常数且a≠0___)的函数,叫做二次函数,其中x是自变量,a,b,c分别为二次项系数、一次项系数、常数项.知识点1:二次函数的定义1.下列函数是二次函数的是( C)A.y=2x+1B.y=-2x+1C.y=x2+2 D.y=0.5x-22.下列说法中,正确的是( B)A.二次函数中,自变量的取值范围是非零实数B.在圆的面积公式S=πr2中,S是r的二次函数C.y=12(x-1)(x+4)不是二次函数D.在y=1-2x2中,一次项系数为13.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a≠-3___.4.已知二次函数y=1-3x+2x2,则二次项系数a=__2___,一次项系数b=__-3___,常数项c=__1___.5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3.(1)当__a≠2___时,x,y之间是二次函数关系;(2)当__a=2且b≠-2___时,x,y之间是一次函数关系.6.已知两个变量x,y之间的关系为y=(m-2)xm2-2+x-1,若x,y之间是二次函数关系,求m的值.解:根据题意,得m2-2=2,且m-2≠0,解得m=-2知识点2:实际问题中的二次函数的解析式7.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么商品所赚钱数y元与售价x元的函数关系式为( B)A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350x+7350D.y=-10x2+350x-73508.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=120x2(x>0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( C)A.40 m/s B.20 m/sC.10 m/s D.5 m/s9.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=__a(1+x)2___.10.多边形的对角线条数d 与边数n 之间的关系式为__d =12n 2-32n___,自变量n 的取值范围是__n ≥3且为整数___;当d =35时,多边形的边数n =__10___.11.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为10米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成面积为45平方米的花圃,AB 的长为多少米?解:(1)S =x(24-3x),即S =-3x 2+24x(2)当S =45时,-3x 2+24x =45,解得x 1=3,x 2=5,当x =3时,24-3x =15>10,不合题意,舍去;当x =5时,24-3x =9<10,符合题意,故AB 的长为5米12.已知二次函数y=x2-2x-2,当x=2时,y=__-2___;当x=__3或-1___时,函数值为1.13.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩余的四方框的面积为y(m2),则y与x之间的函数关系式为__y=16-x2(0<x<4)___,它是__二次___函数.14.设y=y1-y2,y1与x成正比例,y2与x2成正比例,则y与x的函数关系是( C) A.正比例函数B.一次函数C.二次函数D.以上都不正确15.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为( A)A.6厘米B.12厘米C.24厘米D.36厘米16.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.设底面的宽为x,抽屉的体积为y时,求y与x之间的函数关系式.(材质及其厚度等暂忽略不计)解:根据题意得y=20x(90-x),整理得y=-20x2+1800x17.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时,平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x之间的函数关系式,并注明x的取值范围.解:降低x元后,所销售的件数是(500+100x),则y=(13.5-2.5-x)(500+100x),即y=-100x2+600x+5500(0<x≤11)18.一块矩形的草坪,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2.(1)求y与x的函数关系式;(2)若使草坪的面积增加32 m2,求长和宽都增加多少米?解:(1)y=x2+14x(x≥0)(2)当y=32时,x2+14x=32,x1=2,x2=-16(舍去),即长和宽都增加2 m19.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.(1)求y与x之间函数关系式;(2)求自变量x的取值范围;(3)四边形APQC的面积能否等于172 mm2?若能,求出运动的时间;若不能,说明理由.解:(1)由运动可知,AP=2x,BQ=4x,则y=12BC·AB-12BQ·BP=12×24×12-12×4x(12-2x),即y=4x2-24x+144(2)0<x<6(3)当x=172时,4x2-24x+144=172,解得x1=7,x2=-1.又∵0<x<6,∴四边形APQC的面积不能等于172 mm222.1.2 二次函数y =ax 2的图象和性质1.由解析式画函数图象的步骤是__列表___、__描点___、__连线___. 2.一次函数y =kx +b(k ≠0)的图象是__一条直线___.3.二次函数y =ax 2(a ≠0)的图象是一条__抛物线___,其对称轴为__y___轴,顶点坐标为__(0,0)___.4.抛物线y =ax 2与y =-ax 2关于__x___轴对称.抛物线y =ax 2,当a >0时,开口向__上___,顶点是它的最__低___点;当a <0时,开口向__下___,顶点是它的最__高___点,随着|a|的增大,开口越来越__小___.知识点1:二次函数y =ax 2的图象及表达式的确定1.已知二次函数y =x 2,则其图象经过下列点中的( A ) A .(-2,4) B .(-2,-4) C .(2,-4) D .(4,2)2.某同学在画某二次函数y =ax 2的图象时,列出了如下的表格:__y =4x ___(2)将表格中的空格补全.3.已知二次函数y =ax 2的图象经过点A(-1,-13).(1)求这个二次函数的解析式并画出其图象; (2)请说出这个二次函数的顶点坐标、对称轴.解:(1)y =-13x 2,图象略(2)顶点坐标为(0,0),对称轴是y 轴知识点2:二次函数y =ax 2的图象和性质4.对于函数y =4x 2,下列说法正确的是( B ) A .当x >0时,y 随x 的增大而减小 B .当x <0时,y 随x 的增大而减小 C .y 随x 的增大而减小 D .y 随x 的增大而增大5.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y =x 2的图象上,则( A ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 36.已知二次函数y =(m -2)x 2的图象开口向下,则m 的取值范围是__m <2___.7.二次函数y =-12x 2的图象是一条开口向__下___的抛物线,对称轴是__y 轴___,顶点坐标是__(0,0)___;当x__>0___时,y随x的增大而减小;当x=0时,函数y有__最大___(填“最大”或“最小”)值是__0___.8.如图是一个二次函数的图象,则它的解析式为__y=12x2___,当x=__0___时,函数图象的最低点为__(0,0)___.9.已知二次函数y=mxm2-2.(1)求m的值;(2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x取何值时,y随x 的增大而减小;(3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并指出x取何值时,y 随x的增大而增大.解:(1)m=±2(2)m=2,y最小=0;x<0(3)m=-2,最高点(0,0),x<010.二次函数y=15x2和y=5x2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们开口的大小是一样的.其中正确的说法有( C)A.1个B.2个C.3个D.4个11.已知a≠0,同一坐标系中,函数y=ax与y=ax2的图象有可能是( C)12.如图是下列二次函数的图象:①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接为__a>b>d>c___.,第12题图),第14题图) 13.当a=__4___时,抛物线y=ax2与抛物线y=-4x2关于x轴对称;抛物线y=-7x2关于x轴对称所得抛物线的解析式为__y=7x2___;当a=__±2___时,抛物线y=ax2与抛物线y=-2x2的形状相同.14.已知二次函数y=2x2的图象如图所示,将x轴沿y轴向上平移2个单位长度后与抛物线交于A,B两点,则△AOB的面积为__2___.15.已知正方形的周长为C(cm),面积为S(cm2).(1)求S与C之间的函数关系式;(2)画出所示函数的图象;(3)根据函数图象,求出S=1 cm2时正方形的周长;(4)根据列表或图象的性质,求出C取何值时S≥4 cm2?解:(1)S=116C2(C>0)(2)图象略(3)由图象可知,当S=1 cm2时,正方形周长C是4 cm(4)当C≥8 cm时,S≥4 cm216.二次函数y=ax2与直线y=2x-1的图象交于点P(1,m).(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时,y随x的增大而增大;(3)指出抛物线的顶点坐标和对称轴.解:(1)将(1,m)代入y =2x -1得m =2×1-1=1,所以P 点坐标为(1,1).将P 点坐标(1,1)代入y =ax 2得1=a ×12,∴a =1 (2)y =x 2,当x >0时,y 随x 的增大而增大 (3)顶点坐标为(0,0),对称轴为y 轴17.如图,抛物线y =x 2与直线y =2x 在第一象限内有一个交点A. (1)你能求出A 点坐标吗? (2)在x 轴上是否存在一点P ,使△AOP 为等腰三角形?若存在,请你求出点P 的坐标;若不存在,请说明理由.解:(1)由题意得⎩⎨⎧y =x 2,y =2x ,解得⎩⎨⎧x 1=0,y 1=0,⎩⎨⎧x 2=2,y 2=4,∴A(2,4) (2)存在满足条件的点P.当OA =OP 时,∵OA =22+42=25,∴P 1(-25,0),P 2(25,0);当OA =AP 时,过A 作AQ ⊥x 轴于Q ,∴PQ =OQ =2,∴P 3(4,0);当PA =PO 时,设P 点坐标为(x ,0),则x 2=(x -2)2+42,解得x =5,∴P 4(5,0).综上可知,所求P 点的坐标为P 1(-25,0),P 2(25,0),P 3(4,0),P 4(5,0)22.1.3二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.二次函数y=ax2+k的图象是一条__抛物线___.它与抛物线y=ax2的__形状___相同,只是__顶点位置___不同,它的对称轴为__y___轴,顶点坐标为__(0,k)___.2.二次函数y=ax2+k的图象可由抛物线y=ax2__平移___得到,当k>0时,抛物线y=ax2向上平移__k___个单位得y=ax2+k;当k<0时,抛物线y=ax2向__下___平移|k|个单位得y=ax2+k.知识点1:二次函数y=ax2+k的图象和性质1.抛物线y=2x2+2的对称轴是__y轴___,顶点坐标是__(0,2)___,它与抛物线y=2x2的形状__相同___.2.抛物线y=-3x2-2的开口向__下___,对称轴是__y轴___,顶点坐标是__(0,-2)___.3.若点(x1,y1)和(x2,y2)在二次函数y=-12x2+1的图象上,且x1<x2<0,则y1与y2的大小关系为__y1<y2___.4.对于二次函数y=x2+1,当x=__0___时,y最__小___=__1___;当x__>0___时,y随x的增大而减小;当x__<0___时,y随x的增大而增大.5.已知二次函数y=-x2+4.(1)当x为何值时,y随x的增大而减小?(2)当x为何值时,y随x的增大而增大?(3)当x为何值时,y有最大值?最大值是多少?(4)求图象与x轴、y轴的交点坐标.解:(1)x>0(2)x<0(3)x=0时,y最大=4(4)与x轴交于(-2,0),(2,0),与y轴交于(0,4)知识点2:二次函数y=ax2+k与y=ax2之间的平移6.将二次函数y=x2的图象向上平移1个单位,则平移后的抛物线的解析式是__y=x2+1___.7.抛物线y=ax2+c向下平移2个单位得到抛物线y=-3x2+2,则a=__-3___,c =__4___.8.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?解:(1)图象略,y=12x2开口向上,对称轴为y轴,顶点坐标(0,0);y=12x2-1开口向上,对轴轴为y轴,顶点坐标(0,-1)(2)抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位得到知识点3:抛物线y =ax 2+k 的应用9.如图,小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分.若命中篮圈中心,则她与篮底的距离l 是( B )A .3.5 mB .4 mC .4.5 mD .4.6 m10.如果抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式是( C)A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+311.已知y=ax2+k的图象上有三点A(-3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是( A)A.a>0B.a<0C.a≥0D.a≤012.已知抛物线y=-x2+2与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为.y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=__4___,c=__-3___.14.如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于A,过点A作与x轴平行的直线交抛物线y=13x2于点B,C,则BC的长度为__6___.15.直接写出符合下列条件的抛物线y=ax2-1的函数关系式:(1)经过点(-3,2);(2)与y=12x2的开口大小相同,方向相反;(3)当x的值由0增加到2时,函数值减少4.解:(1)y=13x2-1(2)y=-12x2-1(3)-x2-116.把y=-12x2的图象向上平移2个单位.(1)求新图象的解析式、顶点坐标和对称轴;(2)画出平移后的函数图象;(3)求平移后的函数的最大值或最小值,并求对应的x的值.解:(1)y=-12x2+2,顶点坐标是(0,2),对称轴是y轴(2)图象略(3)x=0时,y有最大值,为217.已知抛物线的对称轴是y轴,顶点坐标是(0,2),且经过(1,3),求此抛物线的解析式.解:设抛物线解析式为y=ax2+k,将(0,2),(1,3)代入y=ax2+k,得k=2,a=1,∴y=x2+218.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( D)A.a+c B.a-c C.-c D.c19.廊桥是我国古老的文化遗产,如图所示是一座抛物线形廊桥的示意图.已知抛物线对应的函数关系式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离.(5≈2.24,结果精确到1米)解:由题意得点E,F的纵坐标为8,把y=8代入y=-140x2+10,解得x=45或x=-45,EF=|45-(-45)|=85≈18(米),即这两盏灯的水平距离约为18米第2课时 二次函数y =a(x -h)2的图象和性质1.二次函数y =a(x -h)2的图象是__抛物线___,它与抛物线y =ax 2的__形状___相同,只是__位置___不同;它的对称轴为直线__x =h___,顶点坐标为__(h ,0)___.2.二次函数y =a(x -h)2的图象可由抛物线y =ax 2__平移___得到,当h >0时,抛物线y =ax 2向__右___平移h 个单位得y =a(x -h)2; 当h <0时,抛物线y =ax 2向__左___平移|h|个单位得y =a(x -h)2.知识点1:二次函数y =a (x -h )2的图象1.将抛物线y =-x 2向左平移2个单位后,得到的抛物线的解析式是( A ) A .y =-(x +2)2 B .y =-x 2+2 C .y =-(x -2)2 D .y =-x 2-22.抛物线y =-3(x +1)2不经过的象限是( A ) A .第一、二象限 B .第二、四象限 C .第三、四象限 D .第二、三象限3.已知二次函数y =a(x -h)2的图象是由抛物线y =-2x 2向左平移3个单位长度得到的,则a =__-2___,h =__-3___.4.在同一平面直角坐标系中,画出函数y =x 2,y =(x +2)2,y =(x -2)2的图象,并写出对称轴及顶点坐标.解:图象略,抛物线y =x 2的对称轴是直线x =0,顶点坐标为(0,0);抛物线y =(x +2)2的对称轴是直线x =-2,顶点坐标为(-2,0);抛物线y =(x -2)2的对称轴是直线x =2,顶点坐标为(2,0)知识点2:二次函数y =a (x -h )2的性质 5.二次函数y =15(x -1)2的最小值是( C ) A .-1 B .1C .0D .没有最小值6.如果二次函数y =a(x +3)2有最大值,那么a__<___0,当x =__-3___时,函数的最大值是__0___.7.对于抛物线y =-13(x -5)2,开口方向__向下___,顶点坐标为__(5,0)___,对称轴为__x =5___.8.二次函数y =-5(x +m)2中,当x <-5时,y 随x 的增大而增大,当x >-5时,y 随x 的增大而减小,则m =__5___,此时,二次函数的图象的顶点坐标为__(-5,0)___,当x =__-5___时,y 取最__大___值,为__0___.9.已知A(-4,y 1),B(-3,y 2),C(3,y 3)三点都在二次函数y =-2(x +2)2的图象上,则y 1,y 2,y 3的大小关系为__y 3<y 1<y 2___.10.已知抛物线y =a(x -h)2,当x =2时,有最大值,此抛物线过点(1,-3),求抛物线的解析式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,∴h =2.又∵此抛物线过(1,-3),∴-3=a(1-2)2,解得a =-3,∴此抛物线的解析式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小11.顶点为(-6,0),开口向下,形状与函数y =12x 2的图象相同的抛物线的解析式是( D )A .y =12(x -6)2B .y =12(x +6)2C .y =-12(x -6)2D .y =-12(x +6)212.平行于x 轴的直线与抛物线y =a(x -2)2的一个交点坐标为(-1,2),则另一个交点坐标为( C )A .(1,2)B .(1,-2)C .(5,2)D .(-1,4)13.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为( B )14.已知二次函数y =3(x -a)2的图象上,当x >2时,y 随x 的增大而增大,则a 的取值范围是__a ≤2___.15.已知一条抛物线与抛物线y =-12x 2+3形状相同,开口方向相反,顶点坐标是(-5,0),则该抛物线的解析式是__y =12(x +5)2___.16.已知抛物线y =a(x -h)2的对称轴为x =-2,且过点(1,-3). (1)求抛物线的解析式; (2)画出函数的图象;(3)从图象上观察,当x 取何值时,y 随x 的增大而增大?当x 取何值时,函数有最大值(或最小值)?解:(1)y =-13(x +2)2 (2)图象略 (3)x <-2时,y 随x 的增大而增大;x =-2时,函数有最大值17.已知一条抛物线的开口方向和形状大小与抛物线y =-8x 2都相同,并且它的顶点在抛物线y =2(x +32)2的顶点上.(1)求这条抛物线的解析式;(2)求将(1)中的抛物线向左平移5个单位后得到的抛物线的解析式; (3)将(2)中所求抛物线关于x 轴对称,求所得抛物线的解析式.解:(1)y =-8(x +32)2 (2)y =-8(x +132)2 (3)y =8(x +132)218.如图,在Rt △OAB 中,∠OAB =90°,O 为坐标原点,边OA 在x 轴上,OA =AB =1个单位长度,把Rt △OAB 沿x 轴正方向平移1个单位长度后得△AA 1B 1.(1)求以A 为顶点,且经过点B 1的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D ,C 的坐标.解:(1)由题意得A(1,0),A 1(2,0),B 1(2,1).设抛物线的解析式为y =a(x -1)2,∵抛物线经过点B 1(2,1),∴1=a(2-1)2,解得a =1,∴抛物线解析式为y =(x -1)2(2)令x =0,y =(0-1)2=1,∴D 点坐标为(0,1).∵直线OB 在第一、三象限的角平分线上,∴直线OB 的解析式为y =x ,根据题意联立方程组,得⎩⎨⎧y =x ,y =(x -1)2,解得⎩⎪⎨⎪⎧x 1=3+52,y 1=3+52,⎩⎪⎨⎪⎧x 2=3-52,y 2=3-52.∵x 1=3+52>1(舍去),∴点C 的坐标为(3-52,3-52)第3课时二次函数y=a(x-h)2+k的图象和性质1.抛物线y=a(x-h)2+k与y=ax2形状__相同___,位置__不同___,把抛物线y=ax2向上(下)和向左(右)平移,可以得到抛物线y=a(x-h)2+k,平移的方向、距离要根据__h___,__k___的值来决定.2.抛物线y=a(x-h)2+k有如下特点:①当a>0时,开口向__上___;当a<0时,开口向__下___;②对称轴是直线__x=h___;③顶点坐标是__(h,k)___.知识点1:二次函数y=a(x-h)2+k的图象1.(2014·兰州)抛物线y=(x-1)2-3的对称轴是( C)A.y轴B.直线x=-1C.直线x=1 D.直线x=-32.抛物线y=(x+2)2+1的顶点坐标是( A)A.(-2,1) B.(-2,-1)C.(2,1) D.(2,-1)3.把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( C)A.y=-2(x+1)2+2 B.y=-2(x+1)2-2C.y=-2(x-1)2+2 D.y=-2(x-1)2-24.写出下列抛物线的开口方向、对称轴及顶点坐标:(1)y=3(x-1)2+2;解:开口向上,对称轴x=1, 顶点(1,2)(2)y=-13(x+1)2-5.解:开口向下,对称轴x=-1,顶点(-1,-5)知识点2:二次函数y=a(x-h)2+k的性质5.在函数y=(x+1)2+3中,y随x的增大而减小,则x的取值范围为( A)A.x>-1 B.x>3C.x<-1 D.x<36.如图,在平面直角坐标系中,抛物线的解析式为y=-2(x-h)2+k,则下列结论正确的是( A)A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<0,第6题图),第9题图)7.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=-5(t -1)2+6,则小球距离地面的最大高度是( C)A.1米B.5米C.6米D.7米8.用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系式y=-(x-12)2+144(0<x<24),则该矩形面积的最大值为__144_m2___.9.如图是二次函数y=a(x+1)2+2图象的一部分,该图象在y轴右侧与x轴交点的坐标是__(1,0)___.10.已知抛物线y=a(x-3)2+2经过点(1,-2).(1)求a的值;(2)若点A(m,y1),B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.解:(1)a=-1(2)由题意得抛物线的对称轴为x=3,∵抛物线开口向下,∴当x<3时,y随x的增大而增大,而m<n<3,∴y1<y211.(2014·哈尔滨)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( D )A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+312.已知二次函数y =3(x -2)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-2;③其图象顶点坐标为(2,-1);④当x <2时,y 随x 的增大而减小.则其中说法正确的有( A )A .1个B .2个C .3个D .4个13.二次函数y =a(x +m)2+n 的图象如图,则一次函数y =mx +n 的图象经过( C )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限14.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =-(x +1)2+a 上三点,则y 1,y 2,y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 215.二次函数y =a(x +k)2+k ,无论k 为何实数,其图象的顶点都在( B ) A .直线y =x 上 B .直线y =-x 上 C .x 轴上 D .y 轴上16.把二次函数y =a(x -h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y =12(x +1)2-1的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a(x -h)2+k 的开口方向、对称轴和顶点坐标.解:(1)a =12,h =1,k =-5 (2)它的开口向上,对称轴为x =1,顶点坐标为(1,-5)17.某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时距喷水管的水平距离为12米,求在如图所示的平面直角坐标系中抛物线水柱的解析式.(不要求写出自变量的取值范围)解:∵点(12,3)是抛物线的顶点,∴可设抛物线的解析式为y =a(x -12)2+3.∵抛物线经过点(0,1),∴1=(0-12)2·a +3,解得a =-8,∴抛物线水柱的解析式为y =-8(x -12)2+318.已知抛物线y =-(x -m)2+1与x 轴的交点为A ,B(B 在A 的右边),与y 轴的交点为C.(1)写出m =1时与抛物线有关的三个正确结论; (2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由.解:(1)正确的结论有:①顶点坐标为(1,1);②图象开口向下;③图象的对称轴为x =1;④函数有最大值1;⑤当x <1时,y 随x 的增大而增大;⑥当x >1时,y 随x 的增大而减小等 (2)由题意,若△BOC 为等腰三角形,则只能OB =OC.由-(x -m)2+1=0,解得x =m +1或x =m -1.∵B 在A 的右边,所以B 点的横坐标为x =m +1>0,OB =m +1.又∵当x =0时,y =1-m 2<0.由m +1=m 2-1,解得m =2或m =-1(舍去),∴存在△BOC 为等腰三角形的情形,此时m =222.1.4 二次函数y =ax 2+bx +c 的图象和性质 第1课时 二次函数y =ax 2+bx +c 的图象和性质1.二次函数y =ax 2+bx +c(a ≠0)通过配方可化为y =a(x +b 2a )2+4ac -b 24a的形式,它的对称轴是__x =-b 2a ___,顶点坐标是__(-b 2a ,4ac -b 24a )___.如果a >0,当x <-b2a时,y 随x 的增大而__减小___,当x >-b 2a 时,y 随x 的增大而__增大___;如果a <0,当x <-b2a时,y 随x 的增大而__增大___,当x >-b2a时,y 随x 的增大而__减小___.2.二次函数y =ax 2+bx +c(a ≠0)的图象与y =ax 2的图象__形状完全相同___,只是__位置___不同;y =ax 2+bx +c(a ≠0)的图象可以看成是y =ax 2的图象平移得到的,对于抛物线的平移,要先化成顶点式,再利用“左加右减,上加下减”的规则来平移.知识点1:二次函数y =ax 2+bx +c (a ≠0)的图象和性质1.已知抛物线y =ax 2+bx +c 的开口向下,顶点坐标为(2,-3),那么该二次函数有( B ) A .最小值-3 B .最大值-3 C .最小值2 D .最大值22.(2014·成都)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( D ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4 D .y =(x -1)2+23.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( C ) A .抛物线开口向上B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点为(-1,0),(3,0)4.抛物线y =x 2+4x +5的顶点坐标是__(-2,1)___.5.已知二次函数y =-2x 2-8x -6,当__x <-2___时,y 随x 的增大而增大;当x =__-2___时,y 有最__大___值是__2___.知识点2:二次函数y =ax 2+bx +c (a ≠0)的图象的变换6.抛物线y =-x 2+2x -2经过平移得到y =-x 2,平移方法是( D ) A .向右平移1个单位,再向下平移1个单位 B .向右平移1个单位,再向上平移1个单位 C .向左平移1个单位,再向下平移1个单位 D .向左平移1个单位,再向上平移1个单位7.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( A )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =218.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C(5,4). (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)由抛物线过C(5,4)得25a -25a +4a =4,解得a =1,∴该二次函数的解析式为y =x 2-5x +4.∵y =x 2-5x +4=(x -52)2-94,∴顶点坐标为P(52,-94) (2)(答案不唯一,合理即正确)如:先向左平移3个单位,再向上平移4个单位,得到的二次函数解析式为y =(x -52+3)2-94+4,即y =(x +12)2+74,也即y =x 2+x +29.(2014·河南)已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为__8___.10.二次函数y =2x 2+mx +8的图象如图所示,则m 的值是( B ) A .-8 B .8 C .±8 D .6,第10题图) ,第12题图) 11.已知二次函数y =-12x 2-7x +152.若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( A )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 112.已知二次函数y =ax 2+bx +c(a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是( B )A .有最小值-5,最大值0B .有最小值-3,最大值6C .有最小值0,最大值6D .有最小值2,最大值613.如图,抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象正确的是( D )14.已知二次函数y =x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?解:(1)∵图象过原点,∴k 2+k -2=0,∴k 1=-2,k 2=1 (2)y =x 2-2kx +k 2+k -2=(x -k)2+k -2,其顶点坐标为(k ,k -2).∵顶点在第四象限内,∴⎩⎨⎧k >0,k -2<0,∴0<k <215.当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.解:①当k =1时,函数为y =-4x +4,是一次函数,无最值;②当k =2时,函数为y =x 2-4x +3,为二次函数,此函数图象的开口向上,函数只有最小值而无最大值;③当k=-1时,函数为y =-2x 2-4x +6,为二次函数,此函数图象的开口向下,函数有最大值,因为y =-2x 2-4x +6=-2(x +1)2+8,所以当x =-1时,函数有最大值,为816.已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C ,D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点坐标;若P 点不存在,请说明理由.解:(1)将(0,0)代入二次函数y =x 2-2mx +m 2-1中,得0=m 2-1,解得m =±1,∴二次函数的解析式为y =x 2+2x 或y =x 2-2x (2)当m =2时,二次函数解析式为y =x 2-4x +3,即y =(x -2)2-1,∴C(0,3),顶点坐标为D(2,-1) (3)存在.连接CD ,根据“两点之间,线段最短”可知,当点P 位于CD 与x 轴的交点时,PC +PD 最短.可求经过C ,D 两点的直线解析式为y =-2x +3,令y =0,可得-2x +3=0,解得x =32,∴当P 点坐标为(32,0)时,PC +PD 最短第2课时 用待定系数法求二次函数的解析式用待定系数法求二次函数的解析式的几种常见的形式: (1)三点式:已知图象上的三个点的坐标,可设二次函数的解析式为__y =ax 2+bx +c___. (2)顶点式:已知抛物线的顶点坐标(h ,k)及图象上的一个点的坐标,可设二次函数的解析式为__y =a(x -h)2+k___.以下有三种特殊情况:①当已知抛物线的顶点在原点时,我们可设抛物线的解析式为__y =ax 2___; ②当已知抛物线的顶点在y 轴上或以y 轴为对称轴,但顶点不一定是原点时,可设抛物线的解析式为__y =ax 2+c___;③当已知抛物线的顶点在x 轴上,可设抛物线的解析式为__y =a(x -h)2___,其中(h ,0)为抛物线与x 轴的交点坐标.(3)交点式:已知抛物线与x 轴的两个交点坐标(x 1,0),(x 2,0)及图象上任意一点的坐标,可设抛物线的解析式为__y =a(x -x 1)(x -x 2)___.知识点1:利用“三点式”求二次函数的解析式1.由表格中信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数关系式正确的是( A )A .y =x 2-4x +3 C .y =x 2-3x +3 D .y =x 2-4x +82.已知二次函数y =ax 2+bx +c 的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为__y =x 2-x -2___.3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.解:由题意,得⎩⎨⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎨⎧a =2,b =-3,c =1,∴二次函数的解析式为y =2x 2-3x +1知识点2:利用“顶点式”求二次函数的解析式4.已知某二次函数的图象如图所示,则这个二次函数的解析式为( D )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-85.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.解:由题意,设二次函数的解析式为y =a(x -4)2-1,把(0,3)代入得3=a(0-4)2-1,解得a =14,∴y =14(x -4)2-1知识点3:利用“交点式”求二次函数的解析式 6.如图,抛物线的函数表达式是( D )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +47.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.解:由题意,设二次函数解析式为y =a(x +1)(x -2),把(0,-2)代入得-2=-2a ,∴a =1,∴y =(x +1)(x -2),即y =x 2-x -28.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( D )A .y =x 2-x -2B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +29.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( D ) A .b =2,c =4 B .b =2,c =-4 C .b =-2,c =4 D .b =-2,c =-410.抛物线y 2从上表可知,__①③④___①抛物线与x 轴的一个交点为(3,0); ②函数y =ax 2+bx +c 的最大值为6; ③抛物线的对称轴是x =0.5;④在对称轴左侧,y 随x 增大而增大. 11.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线的解析式为__y =x 2-2x -3___.12.将二次函数y =(x -1)2+2的图象沿x 轴对折后得到的图象的解析式为__y =-(x -1)2-2___.13.(2014·杭州)设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C在直线x =2上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为__y =18x 2-14x +2或y =-18x 2+34x +2___. 14.已知二次函数的图象的对称轴为x =1,函数的最大值为-6,且图象经过点(2,-8),求此二次函数的表达式.解:由题意设y =a(x -1)2-6,∵图象经过点(2,-8),∴-8=a(2-1)2-6,解得a =-2,∴y =-2(x -1)2-6,即y =-2x 2+4x -815.已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x 轴交于A ,B 两点. (1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解:(1)设二次函数的解析式为y =ax 2+bx +c ,∵二次函数的图象经过点(0,3),(-3,。
2019年秋季人教新版九年级数学上册 22.1 二次函数的图象和性质 同步训练 含详细答案
22.1 二次函数的图象和性质一.选择题(共6小题)1.关于x的二次函数y=(a﹣3)x2+bx+a2﹣9的图象过原点,则a的值为()A.﹣3 B.3 C.±3 D.02.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.4.如图,二次函数y=ax2+bx+c的图象过点(﹣1,0)和点(3,0),则下列说法正确的是()A.bc<0 B.a+b+c>o C.2a+b=0 D.4ac>b25.函数y=﹣(x﹣1)2,当满足()时,y随x的增大而减小.A.x>0 B.x<0 C.x>1 D.x<16.若二次函数y=x2+bx+5配方后为y=(x﹣3)2﹣4,则b的值分别为()A.0 B.5 C.6 D.﹣6二.填空题(共8小题)7.二次函数y=x2+2x+3的最小值是.8.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.9.拋物线的顶点为(2,﹣3),与y轴交于点(0,﹣7),则该抛物线的解析式为.10.已知点A(1,y1),B(m,y2)在二次函数y=x2﹣4x+1的图象上,且y1>y2,则实数m的取值范围是.11.已知点(2,y1),(﹣3,y2)均在抛物线y=x2﹣1上,则y1、y2的大小关系为.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.13.过(﹣1,0)、(3,0)、(1,2)三点的抛物线的解析式是.14.已知函数y=(a+1)x是二次函数,并且其图象开口向下,则a=.三.解答题(共9小题)15.已知二次函数y=x2+4x+3.(1)用配方法将二次函数的表达式化为y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象;(3)根据(2)中的图象,写出一条该二次函数的性质.16.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.17.已知抛物线经过点(4,3),且当x=2时,y有最小值﹣1.(1)求这条抛物线的解析式.(2)写出y随x的增大而减小的自变量x的取值范围.18.二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.19.如图,直线l过A(4,0)和B(0,4)两点,它与抛物线y=ax2的图象在第一象限内相交于P,若S△AOP=4.(1)求一次函数解析式;(2)求P点坐标;(3)抛物线表达式.20.如图,已知抛物线y=ax2+x+c(a≠0)与y轴交于A(0,4),与x轴交于B、C,点C坐标为(8,0),连接AB、AC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由.21.如图,二次函数y=x2﹣x,图象过△ABO三个顶点,其中A(﹣1,m),B(n,n)求:①求A,B坐标;②求△AOB的面积.22.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式.23.已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C的直线与抛物线相交于点E(4,m),请连接CB,BE并求出△CBE的面积S的值.参考答案一.选择题(共6小题)1.解:把(0,0)代入y=(a﹣3)x2+bx+a2﹣9得a2﹣9=0,解得a1=3,a2=﹣3,而a﹣3≠0,所以a的值为﹣3.故选:A.2.解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.3.解:由二次函数y=ax2+bx+c(a≠0)的图象可得,a>0,b<0,c>0,∴一次函数y=ax的图象经过第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限,故选:A.4.解:∵抛物线开口向上,∴a>0,∵对称轴在y轴的右侧,∴a和b异号,∴b<0,∵抛物线与x轴的交点在x轴下方,∴c<0,∴bc>0,所以A选项错误;∵当x=1时,y<0,∴a+b+c<0,所以B选项错误;∵抛物线经过点(﹣1,0)和点(3,0),∴抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,所以C选项正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,即4ac<b2,所以D选项错误.故选:C.5.解:∵y=﹣(x﹣1)2,∴a=﹣1<0,对称轴为直线x=1,则当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小;故选:C.6.解:∵y=(x﹣3)2﹣4=x2﹣6x+9﹣4=x2﹣6x+5,又∵y=x2+bx+5,∴b=﹣6.故选:D.二.填空题(共8小题)7.解:∵二次函数y=x2+2x+3=(x+1)2+2,∴最小值是2;故答案为2.8.解:由题意,得m2﹣2m﹣1=2,且m2+m≠0,解得m=3,故答案为:3.9.解:∵拋物线的顶点为(2,﹣3),∴设这个二次函数的解析式y=a(x﹣2)2﹣3,∵拋物线与y轴交于点(0,﹣7),∴﹣7=4a﹣3,解得:a=﹣1,则这个二次函数的解析式y=﹣(x﹣2)2﹣3.故答案为y=﹣(x﹣2)2﹣310.解:二次函数y=x2﹣4x+1的对称轴为x=2,∴A(1,y1)的对称点为(3,y1),∵A(1,y1),B(m,y2)为其图象上的两点,且y1>y2,∴1<m<3.故答案为:1<m<3.11.解:∵二次函数的解析式为y=x2﹣1,∴抛物线的对称轴为直线x=0,∵(2,y1)、B(﹣3,y2),∴点(﹣3,y2)离直线x=0远,点(2,y1)离直线x=0近,而抛物线开口向上,∴y1<y2.故答案为y1<y2.12.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.13.解:由于抛物线过(﹣1,0)、(3,0)可知抛物线对称轴是直线x=1,而又因抛物线过(1,2),所以(1,2)是抛物线顶点于是设抛物线解析式为y=a(x﹣1)2+2,将(3,0)代入得0=a(3﹣1)2+2得a=﹣故答案为:y=﹣(x﹣1)2+214.解:∵函数y=(a+1)x是二次函数,并且其图象开口向下,∴a+1<0,a2+a=2,解得:a<﹣1,a1=1,a2=﹣2,则a=﹣2.故答案为:﹣2.三.解答题(共9小题)15.解:(1)y=x2+4x+3=x2+4x+22﹣22+3=(x+2)2﹣1;(2)列表:如图,(3)当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大.16.解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.17.解:(1)设y=a(x﹣2)2﹣1,代入(4,3)得3=a(4﹣2)2﹣1,解得a=1,即y=(x﹣2)2﹣1或y=x2﹣4x+3;(2)y随x的增大而减小的自变量x的取值范围是x<2.18.解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.19.解:(1)设直线AB的解析式为y=kx+b,把A(4,0)和B(0,4)代入得,解得,所以一次函数解析式为y=﹣x+4;(2)设P(t,﹣t+4),∵S△AOP=4.∴×4×(﹣t+4)=4,解得t=2,∴P点坐标为(2,2);(3)把P(2,2)代入y=ax2得4a=2,解得a=,所以抛物线解析式为y=x2.20.解(1)∵抛物线y=ax2+x+c与y轴交于A(0,4)与x轴交于B、C,点C坐标为(8,0),∴,解得:,∴抛物线的解析式为y=﹣x2+x+4;(2)△ABC为直角三角形,理由如下:当y=0时,﹣x2+x+4=0,解得:x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得在Rt△ABO中,AB2=BO2+AO2=22+42=20,在Rt△ACO中,AC2=CO2+AO2=82+42=80,又∵BC=OB+OC=2+8=10,∴在△ABC中,AB2+AC2=20+80=102=BC2,∴△ABC是直角三角形.21.解:(1)把A(﹣1,m)代入y=x2﹣x得m=+=1,则A(﹣1,1),把B(n,n)代入y=x2﹣x得n2﹣n=n,解得n1=0(舍去),n2=2,则B(2,2);(2)设直线AB的解析式为y=kx+b,把A(﹣1,1),B(2,2)分别代入得,解得,所以直线AB的解析式为y=x+,当x=0时,y=x+=,则C点坐标为(0,),所以△AOB的面积=△AOC的面积+△BOC的面积=××(1+2)=2.22.解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴OC=AB=5,∴点C的坐标为(0,5);(2)设二次函数解析式为:y=ax2+bx+5,把A(﹣1,0)、B(4,0)代入原函数解析式得出:a=﹣,b=;所以这个二次函数的解析式为:y=﹣x2+x+5.23.解:(1)∵A(1,0),B(5,0),设抛物线y=ax2+bx+c=a(x﹣1)(x﹣5),把C(0,5)代入得:5=a(0﹣1)(0﹣5),解得:a=1,∴y=(x﹣1)(x﹣5)=x2﹣6x+5,即抛物线的函数关系式是y=x2﹣6x+5.(2)∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线的对称轴为x=3,又∵二次函数y=x2﹣6x+5的二次项系数为1>0,∴抛物线的开口向上,∴当x≥3时y随x的增大而增大;(3)把x=4代入y=x2﹣6x+5得:y=﹣3,∴E(4,﹣3),把C(0,5),E(4,﹣3)代入y=kx+b得:,解得:k=﹣2,b=5,∴y=﹣2x+5,设直线y=﹣2x+5交x轴于D,当y=0时,0=﹣2x+5,∴x =,∴OD =,BD=5﹣=,∴S△CBE=S△CBD+S△EBD =××5+××|﹣3|=10.。
九年级数学上册《第二十二章 二次函数的图像和性质》同步训练题及答案(人教版)
九年级数学上册《第二十二章二次函数的图像和性质》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.抛物线y=2x2−4x+1的对称轴是直线()A.x=−3B.x=−32C.x=1D.x=−12.小明将如图两水平线L1、L2的其中一条当成x轴,且向右为正方向;两条直线L3、L4的其中一条当成y 轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.L1为x轴,L3为y轴B.L2为x轴,L3为y轴C.L1为x轴,L4为y轴D.L2为x轴,L4为y轴3.二次函数y=x2+bx+c的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,得到的图象的函数解析式为y=x2﹣2x+1,则b+c的值为()A.16 B.6 C.0 D.﹣124.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.5.已知二次函数y=ax2−4ax+5(其中x是自变量),当x⩽−2时.y随x的增大而增大,且−6⩽x⩽5时,y的最小值为−7,则a的值为()A.3 B.−15C.−125D.-16.若二次函数y=ax2−2ax−1,当x分别取x1,x2两个不同的值时,函数值相等,则当x取x1+x2时,函数值为( )A.1 B.-1 C.2 D.-27.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别是(x1,0),(x2,0),且x1< x2 . 图象上有一点M(x0,y0)在x轴下方,则下列判断正确是()A.a>0B.b2−4ac≥0C.x1<x0<x2D.a(x0−x1)(x0−x2)<08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下列结论正确的是()①abc>0;②3a>2b;③4a−2b+c<0;④m(am+b)≤a−b (m为任意实数).A.1 B.2 C.3 D.4二、填空题:(本题共5小题,每小题3分,共15分.)9.y=−2x2+5x−1的图象不经过象限;10.写出一个开口向上,顶点坐标是(2,-3)的函数解析式11.若函数y=x2−3x+c的图象与坐标轴有三个交点,则c的取值范围是.12.已知抛物线y=x2−4x+3与x轴交于A、B两点,P为抛物线上一点,且SΔAPB=1,则P 的坐标为.13.如图,抛物线y=x2+4x与直线y=2x+2交于A,B两点,将抛物线沿着射线AB平移2√5个单位,平移后的抛物线顶点坐标为.三、解答题:(本题共5题,共45分)14.已知:m、n是方程x2−6x+5=0的两个实数根,且m<n,抛物线y=−x2+bx+c的图象经过点A(−m,0),B(0,n)求这个抛物线的解析式.15.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.16.如图,抛物线y=−x2+bx+与x轴交于A(2,0),B(−4,0)两点.(1)求该抛物线的解析式;(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由),与x轴交于另一点B,顶点为D.17.已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0, 94(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.18.如图,抛物线C1:y=−x2+mx+n与抛物线C2:y=ax2−4x+5(a≠0)关于y轴对称,C1与x轴交于A,B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式.(2)在抛物线C1上是否存在一点N,在抛物线C2上是否存在一点M,使得以AB为边,且以A、B、M、N四点为顶点的四边形是平行四边形?若存在,求出M、N两点的坐标;若不存在,请说明理由.1.C 2.D 3.C 4.C 5.B 6.B 7.D 8.C9.第二10.y=(x-2)2-311.c <94且c ≠012.(2,-1)或(2- √2 ,1),或(2+ √2 ,1)13.(2,−2)14.解:∵x 2−6x +5=0∴(x −1)(x −5)=0∴x =1或x =5∵m 、n 是方程x 2−6x +5=0的两个实数根,且m <n∴m =1,n =5∴点A 的坐标为(-1,0),点B 的坐标为(0,5)∴{−1−b +c =0c =5∴{b =4c =5∴抛物线解析式为y =−x 2+4x +5.15.解:设二次函数解析式为y=a (x ﹣2)2+k把A (1,0),C (0,6)代入得:{a +k =04a +k =6解得:{a =2k =−2则二次函数解析式为y=2(x ﹣2)2﹣2=2x 2﹣8x+6,二次函数图象的最低点,即顶点坐标为(2,﹣2).16.(1)解: ∵ 抛物线 y =x 2+bx +c 与x 轴交于 A(2,0),B(−4,0) 两点∴{−4+2b +c =0−16−4b +c =0 解得: {b =−2c =8∴ 该抛物线的解析式为 y =−x 2−2x +8(2)解:该抛物线的对称轴上存在点Q ,使得 △QAC 的周长最小.如解图所示,作点C 关于抛物线对称轴的对称点H ,连接 HA交对称轴于点Q ,连接 CO 、AC∵ 点C 关于抛物线对称轴的对称点H ,且 HA ,交对称轴于点Q∴△QAC 的周长为 AC +CQ +AQ =AC +QH +AQ =AC +AH∵Q 为抛物线对称轴上一点∴△QAC 的周长 AC +CQ +AQ ≥AC +AH∴ 当点Q 处在解图位置时, △QAC 的周长最小.∵ 在 y =−x 2−2x +8 中,当 x =0 时 y =8∴C(0,8)∵A(2,0),B(−4,0)∴ 抛物线的对称轴为直线 x =−1∵ 点H 是点C 关于抛物线对称轴直线 x =−1 的对称点,且 C(0.8) .设过点 A(2,0),H(−2,8) 两点的直线 AH 的解析式为: y =k(x −2)∵H(−2,8) 在 AH 直线上∴−4k =8 ,解得: k =−2∴AH 直线的解析式为: y =−2(x −2)=−2x +4∵ 抛物线对称轴为直线 x =−1 ,且 AH 直线与抛物线对称轴交于点Q∴ 在 y =−2x +4 中,当 x =−1 时 y =−2×(−1)+4=6∴Q(−1,6)∴ 在该抛物线的对称轴上存在点Q ,使得 △QAC 的周长最小,当 △QAC 的周长最小时,Q 点的坐标为 (−1,6)17.(1)将点A(-2,0),C(0, 94 )代入 y = a(x - 2)2 + c ,得: {16a +c =04a +c =94,解得: {a =−316c =3 . ∴抛物线的解析式为y= −316 (x -2)2+3 .∴顶点D 的坐标为(2,3).(2)∵A,B 两点为抛物线与x 轴两交点,D 为坐标顶点∴DA=DB ,故∠DAB=∠DBA∵DE=EF∴∠EDF=∠EFD .∵∠EFD=∠FEB+∠EBD ,∠DEF=∠DAB∴∠EDF=∠FEB+∠DEF∴∠BDE=∠BED故BD=BE .∵A(-2,0),D(2,3)∴利用对称性可得B(6,0)经计算BD=5,故BE=5.18.(1)解:∵C 1、C 2关于y 轴对称∴C 1与C 2的交点一定在y 轴上,且C 1与C 2的形状、大小均相同∴a=-1∴C 2:y=ax 2-4x+5,当x=0时,y=5∴C 1:y=-x 2+mx+n ,当x=0时,y=n∴n=5∵a=-1∴C 2的对称轴为x= −−42a =-2故C1的对称轴为x= m=22得m=4,(对称轴关于y轴对称,则C1的对称轴为2)∴C1:y=-x2+4x+5,C2:y=-x2-4x+5(2)解:∵AB的中点为(2,0),且点N在抛物线C1上,点M在抛物线C2上∴AB只能为平行四边形的一边∴MN∥AB且MN=ABC1:y=-x2+4x+5令y=0,得x2-4x-5=0解得x1=5,x2=-1∴A(-1,0),B(5,0)则AB=5-(-1)=6∴MN=6设N(t,-t2+4t+5),则M(t+6,-t2+4t+5)或(t-6,-t2+4t+5)①当M(t+6,-t2+4t+5)时则-(t+6)2-4(t+6)+5=-t2+4t+5,解得t=-3∴-t2+4t+5=-16∴N(-3,-16),M(3,-16);②当M(t-6,-t2+4t+5)时则-(t-6)2-4(t-6)+5=-t2+4t+5,解得t=3∴-t2+4t+5=8∴N(3,8),M(-3,8);综上可知存在满足条件的点M、N,其坐标为M(3,-16),N(-3,-16)或M(-3,8),N(3,8)。
人教版 九年级数学 22.1 二次函数的图象和性质 同步训练(含答案)
人教版 九年级数学 22.1 二次函数的图象和性质 同步训练一、选择题(本大题共10道小题)1. 对抛物线y =-x 2+2x -3而言,下列结论正确的是( )A .与x 轴有两个交点B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1,-2)2. (2019•雅安)在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到3.已知直线y =bx -c 与抛物线y =ax 2+bx +c 在同一直角坐标系中的图象可能是( )4.如果抛物线的顶点坐标是(3,-1),与y 轴的交点坐标是(0,-4),那么这条抛物线的解析式是( ) A .y =-13x 2-2x -4 B .y =-13x 2+2x -4 C .y =-13(x +3)2-1 D .y =-x 2+6x -125.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是( )A.y=(x-4)2-6 B.y=(x-1)2-3C.y=(x-2)2-2 D.y=(x-4)2-26. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(-3,0),其对称轴为直线x=-.结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=-,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)·(x-2)+3=0的两个根,则m<-3,n>2,其中正确的结论有()A.3个B.4个C.5个D.6个7. 二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的有()①abc<0;②b2-4ac<0;③2a>b;④(a+c)2<b2.A.1个B.2个C.3个D.4个8.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y =0(1≤x≤3)有交点,则c的值不可能是( )A. 4B. 6C. 8D. 109.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )10.如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x ,两个三角形重合部分的面积为y,则y关于x的函数图象是( )二、填空题(本大题共7道小题)11. 已知函数y=-x2-2x,当________时,函数值y随x的增大而增大.12. 已知二次函数y=x2+bx+c中,函数值y与自变量x的部分对应值如下表:x …-1 0 1 2 3 4 …y …10 5 2 1 2 5 …则该二次函数的解析式为____________________.13. 抛物线y=ax2+bx+c经过点A(-3,0),对称轴是直线x=-1,则a+b+c =________.14. 如图,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则此抛物线的解析式为__________________.15. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.16.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是________.17. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)三、解答题(本大题共4道小题)18. 已知函数y =(m +3)xm 2+m -4+3.(1)当m 取何值时,y 是x 的二次函数? (2)当m 取何值时,y 是x 的一次函数?19. 如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数的图象上:①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.20. 如图,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.21. 如图所示,抛物线y=ax2-5x+4a与x轴相交于点A,B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)若Q是横轴上方抛物线上的点,且S△QAB=S△P AB,求点Q的坐标.人教版 九年级数学 22.1 二次函数的图象和性质 同步训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】C【解析】二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+, 故选项D 的说法正确,故选C .3.【答案】C 【解析】在A 中,抛物线的对称轴在y 轴右边,∴-b 2a>0,∵a >0,∴b <0;而从一次函数图象知b >0,∴选项A 错误;在B 中,抛物线对称轴-b2a>0,∵a <0,∴b >0;而从一次函数图象知b <0,∴选项B 错误;在C 中,抛物线的对称轴在y 轴左边,∴-b2a<0,∵a >0,∴b >0;抛物线与y 轴负半轴相交,∴c <0;而从一次函数图象知b >0,-c >0,∴c <0,∴选项C 正确;在D 中,抛物线与y 轴的正半轴相交,c>0,由一次函数图象知-c>0,即c<0,∴选项D错误.4. 【答案】B [解析] 设这条抛物线的解析式是y=a(x-3)2-1. ∵抛物线与y轴的交点坐标是(0,-4),∴-4=9a-1,解得a=-1 3,∴y=-13(x-3)2-1,即y=-13x2+2x-4.故选B.5. 【答案】 D [解析] y=x2-6x+5=(x-3)2-4,将其向上平移2个单位长度,再向右平移1个单位长度后,得y=(x-3-1)2-4+2,即y=(x-4)2-2.6. 【答案】C[解析]①由图象可知a<0,b<0,c>0,∴abc>0,故①正确;②由于对称轴是直线x=-,∴a=b.∵图象与x轴的一个交点是(-3,0),∴另一个交点是(2,0),把(2,0)代入解析式可得4a+2b+c=0,∴6a+c=0,∴3a+c=-3a,∵a<0,∴-3a>0,∴3a+c>0,故②正确;③由图象可知当-<x<0时,y随x的增大而减小,∴当x<0时,y随x的增大而增大是错误的;④一元二次方程ax2+bx+c=0的两根为x1=-3,x2=2,∴一元二次方程cx2+bx+a=0的两根分别为x1=-,x2=,正确;⑤由图象顶点的纵坐标大于0可知,>0,∴<0,正确;⑥若m,n(m<n)为方程a(x+3)(x-2)+3=0的两个根,则a(x+3)(x-2)=-3,由图象可知,当y=-3时,m<-3,n>2,⑥正确,综上,正确的结论有5个,故选C.7. 【答案】A[解析] ①由抛物线的开口方向向下知a<0,由对称轴在y轴的左侧得a ,b 同号,∴b<0.由抛物线与y 轴交于正半轴得c>0,∴abc>0,故结论①错误.②由抛物线与x 轴有两个交点得b 2-4ac>0,故结论②错误.③由图象知对称轴x =-b 2a >-1得b2a <1;由a<0,结合不等式的性质三可得b>2a ,即2a<b ,故结论③错误.④由图象知:当x =1时,y<0,即a +b +c<0;当x =-1时,y>0,即a -b +c>0, ∴(a +b +c)(a -b +c)<0,即(a +c)2-b 2<0,∴(a +c)2<b 2.故结论④正确. 故选A.8. 【答案】A【解析】 由题知,对称轴与线段y =0(1≤x ≤3)有交点,则有1≤-b2≤3,可得到:-6≤b ≤-2,由抛物线经过点A (2,6),代入可得4+2b +c =6,∴b =2-c 2,∴-6≤2-c2≤-2, 解得6≤c ≤14,∴c 的值不可能是4. 9. 【答案】B 【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2(0≤x ≤2),其图象是抛物线的一部分;(2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x,∴y =12BD ·PD =12x (4-x )(2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.10. 【答案】B 【解析】由题意知:在△A ′B ′C ′移动的过程中,阴影部分总为等边三角形.当0<x ≤1时,边长为x ,此时y =12x ×32x =34x 2;当1<x ≤2时,重合部分为边长为1的等边三角形,此时y =12×1×32=34;当2<x ≤3时,边长为3-x ,此时y =12(3-x )×32(3-x ).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题(本大题共7道小题)11. 【答案】x ≤-1 【解析】∵函数y =-x 2-2x ,其图象的对称轴为x =-b2a=-1,且a =-1<0,∴在对称轴的左边y 随x 的增大而增大,∴x ≤-1.12. 【答案】y =x2-4x +5[解析] 从表格中的数据可以看出,当x =1和x =3时,函数值y =2,可见,抛物线的顶点坐标为(2,1),故可设二次函数的解析式为y =a(x -2)2+1,再由二次函数图象过点(1,2),得2=a(1-2)2+1,解得a =1,故二次函数的解析式为y =(x -2)2+1,即y =x2-4x +5.13. 【答案】0[解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.14. 【答案】y =-x2+2x +315. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.16.【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).17. 【答案】②④[解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b <a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.三、解答题(本大题共4道小题)18. 【答案】解:(1)由题意,得⎩⎪⎨⎪⎧m 2+m -4=2,m +3≠0,解得m =2.(2)由题意,得⎩⎪⎨⎪⎧m 2+m -4=1,m +3≠0,解得m =-1±212.19. 【答案】解:(1)把点P(-2,3)代入y =x 2+ax +3中, 得a =2,∴y =x 2+2x +3=(x +1)2+2, ∴图象的顶点坐标为(-1,2). (2)①当m =2时,n =11.②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <11.20. 【答案】解:(1)∵抛物线的顶点坐标为(1,4),∴设此抛物线的解析式为y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a =-1,∴y =-(x -1)2+4,即此抛物线的解析式为y =-x2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P ,此时PA +PB 的值最小.设直线AE 的解析式为y =kx +b ,则⎩⎨⎧k +b =4,b =-3,解得⎩⎨⎧k =7,b =-3,∴直线AE 的解析式为y =7x -3.当y =0时,x =37,∴当PA +PB 的值最小时,点P 的坐标为(37,0).21. 【答案】解:(1)把(5,4)代入y =ax 2-5x +4a ,得25a -25+4a =4,解得a =1. ∴该抛物线的解析式为y =x 2-5x +4.∵y =x 2-5x +4=⎝ ⎛⎭⎪⎫x -522-94, ∴顶点P 的坐标为⎝ ⎛⎭⎪⎫52,-94. (2)∵S △QAB =S △PAB ,∴点Q 和点P 到横轴的距离相等,即它们纵坐标的绝对值相等.由(1)可知点P 的纵坐标是-94,∴点Q 的纵坐标是94.令x 2-5x +4=94,解得x =5±3 22.5-3 22,94)或(5+3 22,94).∴点Q的坐标为(。
人教版数学九年级上册第22章 22.1.3二次函数y=ax2+bx+c的图像和性质 同步练习(含答案
人教版数学九年级上册第22章22.1.3二次函数y=ax2+bx+c的图像和性质同步练习一、单选题(共12题;共24分)1.抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.a≠0,函数y= 与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C. D.3.抛物线y=﹣(x+ )2﹣3的顶点坐标是()A. (,﹣3)B. (﹣,﹣3)C. (,3)D. (﹣,3)4.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A. y=x2+8x+14B. y=x2-8x+14C. y=x2+4x+3D. y=x2-4x+35.函数y=﹣21(x﹣2)2+5的顶点坐标为()A. (2,5)B. (﹣2,5)C. (2,﹣5)D. (﹣2,-5)6.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A. 它的图象与x轴有两个交点B. 方程x2﹣2mx=3的两根之积为﹣3C. 它的图象的对称轴在y轴的右侧D. x<m时,y随x的增大而减小7.抛物线y=2(x﹣3)2+4顶点坐标是()A. (3,4)B. (﹣3,4)C. (3,﹣4)D. (2,4)8.对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A. 开口向下B. 对称轴是x=mC. 最大值为0D. 与y轴不相交9.抛物线y=x2﹣2x+3 的对称轴为()A. 直线x=﹣1B. 直线x=﹣2C. 直线x=1D. 直线x=210.二次函数y=x2+2x﹣3的顶点坐标是()A. (﹣1,﹣3)B. (1,﹣4)C. (﹣1,﹣2)D. (﹣1,﹣4)11.抛物线y=3(x﹣5)2的顶点坐标是()A. (5,0)B. (3,5)C. (-3,5)D. (﹣5,0)12.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1 )过点(3,0)(2 )顶点是(1,﹣2)(3 )在x轴上截得的线段的长度是2(4 )c=3a正确的个数()A. 4个B. 3个C. 2个D. 1个二、填空题(共5题;共8分)13.当x=________时,二次函数y=x2﹣2x+6有最小值________.14.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是________.15.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是________.(只需写一个)16.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=________;若min{(x﹣1)2,x2}=1,则x=________.17.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s 的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________ s时,四边形EFGH的面积最小,其最小值是________ cm2.三、解答题(共2题;共10分)18.已知抛物线的顶点为(﹣1,2),且过点(2,1),求该抛物线的函数解析式.19.已知当x=2时,二次函数有最大值8,且图象过点(0,4),求此函数的关系式.四、综合题(共2题;共30分)20.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.21.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】A【解析】【解答】解:∵y=x2-2x+m2+2.∴y=(x-1)2+m2+1.∴顶点坐标(1,m2+1).∴顶点坐标在第一象限.故答案为A.【分析】根据配方法得出顶点坐标,从而判断出象限.2.【答案】D【解析】【解答】解:当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y= 的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.3.【答案】B【解析】【解答】解:y=﹣(x+ )2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.4.【答案】A【解析】【解答】解:如图,A(2,1),则可得C(-2,-1).由A(2,1)到C(-2,-1),需要向左平移4个单位,向下平移2个单位,则抛物线的函数表达式为y=x2,经过平移变为y=(x+4)2-2= x2+8x+14,故选A.【分析】题中的意思就是将抛物线y=x2平移后,点A平移到了点C,由A的坐标不难得出C的坐标,由平移的性质可得点A怎样平移到点C,那么抛物线y=x2,就怎样平移到新的抛物线.5.【答案】A【解析】【解答】解:因为y=﹣21(x﹣2)2+5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,5);故选A.【分析】根据二次函数的顶点式直接求解.6.【答案】C【解析】【解答】解:A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故此选项正确,不合题意;故选:C.【分析】直接利用二次函数与x轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.7.【答案】A【解析】【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.8.【答案】D【解析】【解答】解:对于函数y=﹣2(x﹣m)2的图象,∵a=﹣2<0,∴开口向下,对称轴x=m,顶点坐标为(m,0),函数有最大值0,故A、B、C正确,故选D.【分析】根据二次函数的性质即可一一判断.9.【答案】C【解析】【解答】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选C.【分析】把抛物线化为顶点式可求得答案.10.【答案】D【解析】【解答】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线顶点坐标为(﹣1,﹣4),故选D.【分析】把二次函数化为顶点式可求得答案.11.【答案】A【解析】【解答】解:抛物线y=3(x﹣5)2的顶点坐标是(5,0).故选A.【分析】根据顶点式解析式写出顶点坐标即可.12.【答案】B【解析】【解答】解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选B.【分析】分别利用二次函数的对称性以及二次函数图象上点的坐标性质进而得出答案.二、填空题13.【答案】1;5【解析】【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.14.【答案】y=﹣x2+ x+3【解析】【解答】解:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+ x+3,故答案为y=﹣x2+ x+3.【分析】根据A与B坐标特点设出抛物线解析式为y=a(x﹣2)(x﹣4),把C坐标代入求出a的值,即可确定出解析式.15.【答案】y=2x2﹣1【解析】【解答】解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【分析】根据顶点坐标知其解析式满足y=ax2﹣1,由开口向上知a>0,据此写出一个即可.16.【答案】;2或﹣1【解析】【解答】解:min{﹣,﹣}=﹣,∵min{(x﹣1)2,x2}=1,∴当x>0.5时,(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x≤0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,故答案为:;2或﹣1.【分析】首先理解题意,进而可得min{﹣,﹣}=﹣,min{(x﹣1)2,x2}=1时再分情况讨论,当x>0.5时和x≤0.5时,进而可得答案.17.【答案】3;18【解析】【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4× t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.三、解答题18.【答案】解:∵抛物线的顶点为(﹣1,2),∴设抛物线的解析式为y=a(x+1)2+2,∵经过点(2,1),∴代入得:1=a(2+1)2+2,解得:a=﹣,即y=﹣(x+1)2+2【解析】【分析】设抛物线的解析式为y=a(x+1)2+2,把点(1,4)代入得出1=a(1+2)2+2,求出a即可.19.【答案】解:∵当x=2时,二次函数有最大值8,∴顶点坐标为(2,8);设二次函数的解析式为y=a(x﹣2)2+8;将点(0,4)代入得,a=﹣1,∴二次函数的解析式为:y=﹣(x﹣2)2+8【解析】【分析】根据二次函数的对称轴为x=2,函数的最小值为8,可知其顶点坐标为(2,8);因此本题可用顶点式设所求的二次函数解析式,然后将点(0,4)的坐标代入抛物线中即可求得函数的解析式.四、综合题20.【答案】(1)解:把点A(﹣2,0),B(2,2)代入抛物线y=ax2+bx+2中,,解得:,∴抛物线函数表达式为:y=﹣x2+ x+2(2)解:y=﹣x2+ x+2=﹣(x﹣1)2+ ;∴对称轴是:直线x=1,如图1,过B作BE⊥x轴于E,∵C(0,2),B(2,2),对称轴是:x=1,∴C与B关于x=1对称,∴CD=BD,连接AB交对称轴于点D,此时△ACD的周长最小,∵BE=2,AE=2+2=4,OC=2,OA=2,∴AB= =2 ,AC= =2 ,∴△ACD的周长=AC+CD+AD=AC+BD+AD=AC+AB=2 +2 ;答:△ACD的周长的最小值是2 +2(3)解:存在,分两种情况:①当∠ACP=90°时,△ACP是直角三角形,如图2,过P作PD⊥y轴于D,设P(1,y),则△CGP∽△AOC,∴,∴,∴CG=1,∴OG=2﹣1=1,∴P(1,1);②当∠CAP=90°时,△ACP是直角三角形,如图3,设P(1,y),则△PEA∽△AOC,∴,∴= ,∴PE=3,∴P(1,﹣3);综上所述,△ACP是直角三角形时,点P的坐标为(1,1)或(1,﹣3).【解析】【分析】(1)利用待定系数法求抛物线的函数表达式;(2)由轴对称的最短路径得:因为B与C关于对称轴对称,所以连接AB交对称轴于点D,此时△ACD的周长最小,利用勾股定理求其三边相加即可;(3)存在,当A和C分别为直角顶点时,画出直角三角形,设P(1,y),根据三角形相似列比例式可得P的坐标.21.【答案】(1)解:∵矩形OBDC的边CD=1,∴OB=1,∵AB=4,∴OA=3,∴A(﹣3,0),B(1,0),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2﹣x+2;(2)解:在y=﹣x2﹣x+2中,令y=2可得2=﹣x2﹣x+2,解得x=0或x=﹣2,∴E(﹣2,2),∴直线OE解析式为y=﹣x,由题意可得P(m,﹣m2﹣m+2),∵PG∥y轴,∴G(m,﹣m),∵P在直线OE的上方,∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+ )2+ ,∵直线OE解析式为y=﹣x,∴∠PGH=∠COE=45°,∴l= PG= [﹣(m+ )2+ ]=﹣(m+ )2+ ,∴当m=﹣时,l有最大值,最大值为;(3)解:①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,则∠ALF=∠ACO=∠FNM,在△MFN和△AOC中∴△MFN≌△AOC(AAS),∴MF=AO=3,∴点M到对称轴的距离为3,又y=﹣x2﹣x+2,∴抛物线对称轴为x=﹣1,设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,当x=2时,y=﹣,当x=﹣4时,y= ,∴M点坐标为(2,﹣)或(﹣4,﹣);②当AC为对角线时,设AC的中点为K,∵A(﹣3,0),C(0,2),∴K(﹣,1),∵点N在对称轴上,∴点N的横坐标为﹣1,设M点横坐标为x,∴x+(﹣1)=2×(﹣)=﹣3,解得x=﹣2,此时y=2,∴M(﹣2,2);综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).【解析】【分析】(1)由条件可求得A、B的坐标,利用待定系数法可求得抛物线解析式;(2)可先求得E点坐标,从而可求得直线OE解析式,可知∠PGH=45°,用m可表示出PG的长,从而可表示出l的长,再利用二次函数的性质可求得其最大值;(3)分AC为边和AC为对角线,当AC为边时,过M作对称轴的垂线,垂足为F,则可证得△MFN≌△AOC,可求得M到对称轴的距离,从而可求得M点的横坐标,可求得M点的坐标;当AC为对角线时,设AC的中点为K,可求得K的横坐标,从而可求得M的横坐标,代入抛物线解析式可求得M点坐标.。
人教版九年级数学上册《22-1-1 二次函数》作业同步练习题及参考答案
2 2 22.1 二次函数的图象和性质 22.1.1 二次函数 1. 自由落体公式为 h=1gt 2(g 为常量),h 与 t 之间的关系是( )A.正比例函数B.一次函数C.二次函数D.以上答案都不对2. 某种商品的原价为 a 元,经过两次降价后为 y 元,假设每次降价的百分率均为 x ,则 y 与 x 的函数解析式为( )A .y=ax 2+aB .y=x 2+aC .y=ax 2-2ax+aD .y=a-2x3. 下列函数解析式中,一定为二次函数的是() A.y=3x-1B.y=ax 2+bx+cC.s=2t 2-2t+1D.y=x 2+1 �4.下列函数:①y=2x-1;②y=-5;③y=x 2+8x-2;④y= 3 ;⑤y= 1 ;⑥y=�.其中 y 是 x 的二次函数的 � �3 2� �是 .(填序号)5.已知函数 y=(m 2-m )x 2+(m-1)x+m+1.(1) 若这个函数是 y 关于 x 的一次函数,则 m= ;(2) 若这个函数是 y 关于 x 的二次函数,则 m,且 m .6.若 y=(a 2+a )��2-2�-1是二次函数,则( )A.a=-1 或 a=3B.a ≠-1,且 a ≠0C.a=-1D.a=37. 下列函数关系中,可以看作是二次函数 y=ax 2+bx+c 模型的是() A.在一定距离内,汽车行驶的速度和行驶时间的关系B.某地区人口自然增长率为1%,这个地区人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度(h)与时间(t)的关系(不计空气阻力,其关系式为h=v0t-4.9t2,其中v0 为发射信号弹的初速度)D.圆的周长与圆的半径的关系8.已知正方形的周长是c cm,面积为S cm2,则S 与c 之间的函数解析式为.9.有一个长方体木块,其长和宽相等,高比长多2 m.(1)若长方体的长和宽用x(单位:m)表示,则长方体的表面积S(单位:m2)如何表示?(2)如果将长方体的表面涂上油漆,每平方米所需要的油漆费用是3 元,这个长方体所需要的油漆费用用y(单位:元)表示,那么y 的解析式是什么?★10.如图,有长为24 m 的篱笆,一面利用墙(墙的最大可用长度a 为10 m)围成中间隔有一道篱笆的长方形花圃.设花圃的一边长AB 为x(单位:m),面积为y(单位:m2).(1)求y 与x 的函数解析式及x 的取值范围.(2)如果要围成面积为45 m2 的花圃,那么AB 的长度是多少?2 g ≠0, h t . C . 2 � 参考答案夯基达标1.C 在公式 h=1gt 2 中,t 的次数是 2, 1且 所以是 的二次函数 故选 2 2.C3.C A .y=3x-1 是一次函数,故 A 错误;B .y=ax 2+bx+c (a ≠0)是二次函数,故 B 错误;C .s=2t 2-2t+1 是二次函数,故 C 正确;D .y=x 2+ 1不是二次函数,故 D 错误. � 4.③5.(1)0 (2)≠0 ≠1培优促能6.D7.C 本题可用排除法,选项 A 中,v=�,不是二次函数;选项 B 中,年份为自变量,所以不是二次函数;选项D 中,C=2πr ,周长是半径的正比例函数.故选 C .8.S=�216 9.解 (1)S=2x 2+4x (x+2)=6x 2+8x.(2)y=3(6x 2+8x )=18x 2+24x.创新应用10.解 (1)∵AB=x m,∴BC=(24-3x )m .∴y=x (24-3x )=-3x 2+24x.又 x>0,且 10≥24-3x>0, 14x<8. ∴ 3 ≤ (2)当 y=45 时,即-3x 2+24x=45,∴x=3(舍去)或 x=5.故当 AB 的长度为 5 m 时,围成花圃的面积为 45 m 2.。
九年级数学上册 22.1 二次函数的图象和性质同步练习 (新版)新人教版
——————————新学期新成绩新目标新方向——————————22.1 二次函数的图象和性质一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)2.(2018•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下 B.对称轴是y轴C.经过原点 D.在对称轴右侧部分是下降的3.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25 4.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=05.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或66.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x 的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.17.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.8.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个9.(2017•泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B 停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm210.(2017•资阳)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.111.(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下 B.对称轴是x=m C.最大值为0 D.与y轴不相交12.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<013.(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣414.(2016•株洲)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m≥C.n≤2 D.b<115.(2016•绵阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b >0;③b>a>c;④b2+2ac<3ab.其中正确结论的个数是()A.1 B.2 C.3 D.416.(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.二.填空题(共10小题)17.(2018•哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为.18.(2018•广州)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).19.(2018•新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).20.(2017•河北)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}= ;若min{(x﹣1)2,x2}=1,则x= .21.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)22.(2017•广州)当x= 时,二次函数y=x2﹣2x+6有最小值.23.(2017•黔西南州)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.24.(2016•营口)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,对称轴是直线x=﹣1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2﹣4ac>0;③ab<0;④a﹣b+c<0,其中正确的结论是(填写序号).25.(2016•大庆)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA ⊥OB时,直线AB恒过一个定点,该定点坐标为.26.(2016•南充)已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a﹣1)x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是(填写序号)三.解答题(共8小题)27.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.28.(2018•宁夏)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.29.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.30.(2017•广州)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.31.(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.32.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.33.(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.34.(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.参考答案一.选择题(共16小题)1.A.2.C.3.B.4.D.5.B.6.D.7.C.8.C.9.C.10.A.11.D.12.C.13.D.14.B.15.C.16.A.二.填空题(共10小题)17.(﹣2,4).18.增大.19.②③.20.;2或﹣1.21.1、5.23.①③④.24.①②④.25.(0,4).26.①③④.三.解答题(共8小题)27.解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.28.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=29.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).30.解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1, =1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.31.解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,m)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.32.解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).33.解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p取得最小值,最小值是﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或或,解得,﹣2≤m≤0或2≤m≤4.34.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。
最新人教版数学九年级上同步练习 22.1.3 第3课时 二次函数y=a(x-h)2+k的图象和性质
第3课时 二次函数y=a (x-h )2+k 得图象和性质◆基础练习1. 抛物线2(8)2y x =--+得顶点坐标是 ( )A 、(2,8)B 、(8,2)C 、(—8,2)D 、(—8,—2)2. 抛物线得顶点坐标为P(1,3),且开口向下,则函数y 随自变量x 得增大而减小,那么x 得取值范围为( )A. x <3B. x <3C.x >1D.x <13.二次函数22(1)3y x =+-得图象向右平移1个单位,再向上平移3个单位,所得到抛物线得解析式为 。
4. 写出一个经过点(1,-1)得函数得表达式 。
5.已知抛物线21(4)33y x =--得部分图象如图所示,则图象再次与x 轴相交时得坐标是 .◆能力拓展6.已知点A(1, a )在抛物线2y x =上.(1)求A 点得坐标;[来源:学§科§网](2)在x 轴上是否存在点P,使得△OAP 是等腰三角形?若存在,求出点P 得坐标;若不存在,说明理由.[来源:学科网ZXXK][来源:学科网ZXXK][来源:学|科|网]7. 某农场种植一种蔬菜,销售员张华根据往年得销售情况,对今年这种蔬菜得销售价格进行了预测,预测情况如图所示,图中得抛物线(部分)表示这种蔬菜销售价与月份得关系。
观察图象,你能得到关于这种蔬菜销售情况得哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数解析式。
◆创新学习8.某工厂生产得某种产品按质量分为10个档次,生产第一档次(即最低档次)得产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.(1)当每件利润为16元时,此产品质量在第几档次?(2)由于生产工序不同,此产品每提高一个档次,一天产量减少4件.若生产第x档次产品一天得总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x得函数关系式;若生产某挡次产品一天得总利润为1080元,该工厂生产得是第几档次得产品?[来源:学,科,网Z,X,X,K]参考答案1.B 2.C 3.22y x = 4.2y x =-等(答案不唯一) 5.(7,0)6.(1)把A(1,a )代入2y x =得1a = ∴A(1,1)(2)存在.这样得点P 有四个,即1234(2,0),(2,0),(2,0),(1,0)P P P P - 7.此题答案不唯一,以下答案仅供参考:(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月得销售价逐月下降;(4)7月到12月得销售价逐月上升;(5)2月与7月得销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;等.8.(1)当每件利润是16元时,此产品得质量档次是在第四档次.(2) 根据题意可得()()10217641y x x =+---⎡⎤⎡⎤⎣⎦⎣⎦整理,得28128640y x x =-++. 当利润是1080元时,即281286401080x x -++=解得125,11x x == 因为11x =>10,不符合题意,舍去.因此取5x =,答: 当生产产品得质量档次是在第5档次时,一天得总利润为1080元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.1.3 二次函数2)(h x a y -=的图象和性质(二)
知识点:抛物线2)(h x a y -=的特点有:
(1)当0>a 时,开口向 ;当0<a 时,开口向 。
(2)对称轴是 ,顶点坐标是 。
(3)当0>a 时,在对称轴的左侧(h x <),y 随x 的 ,在对称轴的右侧(h x >),y 随x 的 ;当0<a 时,在对称轴的左侧(h x <),y 随x 的 ,在对称轴的右侧(h x >),y 随x 的 。
(4)当x 时,函数y 的值最大(或最小),是 。
一.选择题
1.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )
A. 32+=x y
B. 32-=x y
C. 2)3(+=x y
D.
2)3(-=x y
2.抛物线2
)3(2--=x y 的顶点坐标和对称轴分别是( )
A.3),0,3(-=-x 直线
B. 3),0,3(=x 直线
C. 3),3,0(-=-x 直线
D. 3),3,0(-=x 直线
3.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )
A.321y y y >>
B. 312y y y >>
C. 213y y y >>
D. 123y y y >>
4.把抛物线2
)1(6+=x y 的图象平移后得到抛物线26x y =的图象,则平移的方法可以是( )
A.沿y 轴向上平移1个单位长度
B.沿y 轴向下平移1个单位长度
C.沿x 轴向左平移1个单位长度
D.沿x 轴向右平移1个单位长度
5.若二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是( ) A. 2 B. 2- C.0 D. 2±
6.对称轴是直线2-=x 的抛物线是( )
A.22+-=x y
B.22+=x y
C.2)2(2
1+=x y D.2)2(3-=x y
7.对于函数2)2(3-=x y ,下列说法正确的是( )
A. 当0>x 时,y 随x 的增大而减小
B. 当0<x 时,y 随x 的增大而增大
C. 当2>x 时,y 随x 的增大而增大
D. 当2->x 时,y 随x 的增大而减小
8.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;
②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);
③当0>x 时,它们的函数值y 都是随着x 的增大而增大;
④它们的开口的大小是一样的.
其中正确的说法有( )
A.1个
B.2个
C.3个
D.4个
二.填空题
1.抛物线2)1(3--=x y 的开口向 ,对称轴是 ,顶点坐标是 。
2.当x 时,函数2)3(2
1+-
=x y y 随x 的增大而增大,当x 时,随x 的增大而减小。
3.若抛物线2)(h x a y -=的对称轴是直线1-=x ,且它与函数23x y =的形状相同,开口方向相同,则=a ,=h 。
4.抛物线2)5(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看
作是由抛物线2x y =向 平移 个单位长度得到的。
5.抛物线 向右平移3个单位长度即得到抛物线2
)1(2-=x y 。
6.已知),3(),,2(),,1(321y C y B y A --三点都在二次函数2)2(2+-=x y 的图象上,则321,,y y y 的大小关系为 。
7.顶点是)0,2(,且抛物线23x y -=的形状、开口方向都相同的抛物线的解析式
为 。
8.对称轴为2-=x ,顶点在x 轴上,并与y 轴交于点(0,3)的抛物线解析式为
三.解答题
1.抛物线 2)2(-=x a y 经过点)1,1(-.
(1)确定a 的值;
(2)求出该抛物线与坐标轴的交点坐标.
2.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,
求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大?
3.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD 的顶点A、B在抛物线上,C、D在x轴上.
(1)求抛物线的解析式;
(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l 求l与t之间函数关系式.
22.1.3 二次函数2)(h x a y -=的图象和性质(二)
课前思考:(1)上 下(2)直线h x = (h,0) (3)增大而减小 增大而增大 增大而增大 增大而减小 (4)=h 0
选择题
D 2.B 3. B 4.D 5.D 6.C 7.C 8.B
填空题
1.下 1=x (1,0)
2.x<-3 x>-3
3. 3 -1
4.上 5=x (5,0)右 5
5. 2)2(2+=x y
6. 312y y y >>
7.2)2(3--=x y
8.
2)2(43+=
x y
解答题 )4,0(4
0)
0,2(20
)2()2(1
1
)21()2()1,1()1.(1222
-∴-=∴=∴=∴=--=-=∴-=--=-轴交点与令轴交点与令在代入把y y x x x y x y a a x a y
的增大而增大随时,当代入上式
把是函数取最大值当x y x x y a a x a y h x 2)2(33
3
)21()3,1()2(2
2.22
22
<--=∴-=∴-=---=∴=∴=
821)4(41)4(22)
4(22,4,)4(4
1))4(4
1,()2()4(4
14
1)40()4()
4,0(),0,4(4
)1.(322222
2
-=⎥⎦⎤⎢⎣⎡-+-=∴-==-=-=∴--=∴=-=∴==t t t l t DM CD t DM t AD t t A x y a N x a y N M ON OM 设代入上式得,把设抛物线的解析式为。