空分流程及设备结构原理

合集下载

空分装置基本原理和过程

空分装置基本原理和过程

空分装置基本原理和过程以空分装置基本原理和过程为标题,我们来详细介绍一下。

一、基本原理:空分装置是一种用于将混合气体分离成不同组分的装置。

其基本原理是根据组分在给定条件下的物理性质差异,通过一系列分离步骤将混合气体分离成纯净的组分。

常见的物理性质包括沸点、相对挥发性、溶解度等。

二、过程:空分装置的过程通常包括压缩、冷却、脱水、除尘、分离等多个步骤。

下面将逐一介绍各个步骤的基本原理和操作过程。

1. 压缩:混合气体首先经过压缩,提高气体的密度和压力,以便后续步骤的操作。

压缩过程通常采用压缩机完成。

2. 冷却:经过压缩后的混合气体需要冷却,以降低气体温度并增加气体的相对密度。

冷却过程通常采用冷却器,利用冷却介质(如水或液氨)与混合气体进行热交换,使气体冷却至接近露点温度。

3. 脱水:混合气体中的水分会影响后续分离步骤的效果,因此需要对气体进行脱水处理。

常见的脱水方法包括冷凝法、吸附法和膜分离法。

冷凝法利用温度差使水分在冷凝器中凝结,吸附法利用吸附剂吸附水分,膜分离法则利用特殊的膜材料将水分与气体分离。

4. 除尘:混合气体中可能存在固体颗粒或液滴,需要进行除尘处理,以保护后续设备的正常运行。

除尘方法包括重力沉降、惯性除尘器、过滤器等。

5. 分离:经过前面的处理步骤后,混合气体进入分离装置进行最终的组分分离。

常见的分离方法包括吸收、吸附、膜分离和蒸馏等。

吸收法利用不同组分在吸收剂中的溶解度差异,将目标组分吸收至吸收剂中,然后再通过脱吸收剂的方式将目标组分从吸收剂中提取出来。

吸附法利用不同组分在吸附剂上的相对吸附性差异,将目标组分吸附在吸附剂上,然后通过变换吸附剂的条件(如温度、压力等)将目标组分从吸附剂上解吸出来。

膜分离法利用薄膜的选择性透过性,将目标组分通过膜材料的选择性通透性而分离出来。

蒸馏法利用组分的沸点差异,在适当的压力下将混合物加热至沸腾,然后通过冷凝和回收收集不同沸点的组分。

以上就是空分装置的基本原理和过程。

空分部件资料带图片

空分部件资料带图片

空分设备的工艺流程及各部件工作原理空分设备部分部机及单元设备1.空冷塔作用:把出空压机的高温气体(≤100℃)冷却到~18℃,以改善分子筛的工作情况结构:立式圆筒型塔,分上下部分,上下段均为填料塔,塔顶设有分配器,不锈钢丝捕雾器使用:出空压机的空气从下部进入空冷塔,水通过布水器均匀地分布到填料上,顺填料空隙流下,空气则逆水而上与水进行热质交换,经不锈钢丝网捕雾器出塔,进入分子筛吸附系统。

2.水冷却塔作用:用空分塔来的污氮气和纯氮气冷却外界供水,后由水泵送入空冷塔的上段结构:填料塔,顶设捕雾器和布水器,填料分两层装入塔内,在两填料中间设再分配器,保证让水始终均匀分布,提高水冷塔的效率使用:被冷却的水自上而下流经填料,与空分出来的~33.6℃的污氮气和纯氮气进行热质交换,使水冷却下来,在塔底被水泵抽走,污氮气从塔顶排除3.分子筛吸附器作用:吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。

4.主热交换器作用:进行多股流之间的热交换结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:对经分子筛吸附除去水和CO2的压缩空气进行冷却,各返流气(液)在此被加热至常温5.液空液氮过冷器作用:对低温液体进行过冷结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:液空、液氮和污氮气在经过过冷器时被氮气和污氮气进一步冷却,使之低于饱和温度,这样,液体在节流后可以减少气化,改善上塔的精馏工况。

6.冷凝蒸发器作用:是氮气冷凝和液氧蒸发用,以维持精馏过程的进行结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:其一般置于上下塔之间,下塔上升的氮气在其间被冷凝,而上塔回流的液氧在其间被蒸发。

空分设备工作原理

空分设备工作原理

空分设备工作原理
空分设备(也称为空气分离装置或空气分离设备)是一种利用物质组分间的差异性质将空气中的不同成分(主要是氧气、氮气和稀有气体)分离出来的装置。

空分设备的工作原理基于物质的分馏原理,即每种物质在特定条件下的沸点、凝固点或相对溶解度不同。

利用这些差异,通过适当的操作和设备,可以将混合物中的不同成分分离,并获得所需的纯净气体。

空分设备通常由多级组合的分离塔、换热器、压缩机和储气罐等组成。

在空分设备中,空气首先被压缩,然后进入分离塔,经过一系列步骤进行分离。

在分离塔中,利用不同组分之间的沸点差异,通过适当的温度和压力控制,在每个级别上将氧气、氮气和稀有气体分离出来。

具体来说,空气在低温下进入分离塔,经过一级冷却,并在此阶段得到液态氧气。

接着,剩余气体回流到下一级,经过整流操作,使氮气在高温条件下再次液化。

通过逐级操作,最终分离出纯净的氧气和氮气。

为了提高工艺效率和能量利用率,空分设备通常还采用了热交换技术。

在换热器中,从分离塔中产生的冷却液体或气体与压缩机进一步处理的空气进行热量交换,从而降低能耗,并使系统更加高效。

通过空分设备,可以获得高纯度的氧气和氮气。

这些纯净气体
在各种工业过程中广泛应用,如冶金、化工、医药等领域。

此外,空分设备还可以生产和分离稀有气体,如氩气、氦气、氖气等,具有广泛的应用前景。

空分车间机组结构设备及工作原理

空分车间机组结构设备及工作原理

♥ 汽轮机: (1)汽轮机作用: 利用高压蒸汽拖动叶轮转动,从而带动空压机和增压机转 动。 (2)汽轮机组成: ▲轴: ▲叶轮: ▲汽缸:采用上猫爪支撑形式。 ▲径向轴承:二油楔轴承
▲推力轴承:保持转子的正确位置(每只轴承 有二组 推力瓦,每组有八块扇形推力瓦 块。) ▲支撑轴瓦: ▲止推轴瓦:
♦专用喷嘴:经过隔膜阀后,气体进入喷嘴。 ♣压缩空气管路 (2)控制系统:脉冲控制仪、差压变送器、控制电 )控制系统:脉冲控制仪、差压变送器、控制电 路。
3:自洁式过滤器工作原理; (1)过滤原理: (2)反吹原理: 4:自洁式过滤器的优点: (1)过滤效率高,寿命长,能抗水雾。
(2)自动反吹清扫灰尘达到自洁。
◆射汽抽气器: (1)原理:文丘里原理
(2)分类: Ⅰ启动抽气器:开车前对凝汽器抽真空。 Ⅱ开工抽气器:两级抽气器。
☀大气安全阀:
☻顶轴油泵: • 作用:防止轴和轴瓦摩擦,使轴受损。
●定子:机壳、扩压器、弯道、回流器、隔 板、轴承。
(3)空压机工作原理:
(4)冲洗水箱: a.作用:消除空压机叶轮的积碳现象。 b.冲洗部位:对空压机转子和叶轮进行冲洗。 (5)喘振:在流量减少到一定程时所发生的非 正常工况下的振动。 a.喘振现象: b.防止发生喘振措施:
♠增压机:三段七级压缩,三个外置冷却器 (1)增压机作用:为后系统提供压力空气。 (2)增压机组成:转子 定子 (3)增压机工作原理: (4)增压机冷却器:一二段为直列管式、三段为 釜头式。 釜头式可以减少由于高温引起的膨胀,保证安 全运行。 一二段水走管程,三段气走管程。 a.冷却介质:循环水。 a.冷却介质:循环水。 b.热源:增压空气 b.热源:增压空气
(3)工作原理: 高压蒸汽在汽轮机内进行二次能量转化。

空分设备结构及工作原理

空分设备结构及工作原理

空分设备结构及工作原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]空分装置系统划分所谓空分,就是将空气深度冷却至液态,由于液空其组分沸点各不相同,逐步分离出氧、氮、氩等等。

空分装置大体可分以下几个系统:1、空气过滤系统过滤空气中的机械杂质,主要设备有自洁式空气过滤器。

2、空气压缩系统将空气进行预压缩,主要设备有汽轮机、增压机、空压机等。

3、空气预冷及纯化系统将压缩空气进行初步冷却,并去除压缩空气中的水分和二氧化碳等杂质,主要设备有空冷塔、水冷塔、分子筛纯化器、冷却水泵、冷冻水泵等。

4、分馏塔系统将净化的压缩空气深度冷却,再逐级分馏出氧气、氮气、氩气等,主要设备有透平膨胀机、冷箱(内含主塔、主冷、主还、过冷器、粗氩塔、液氧泵、液体泵等)5、贮存汽化系统将分馏出的液氧、液氮、液氩进行贮存、汽化、灌充,主要设备有低温液体贮槽、汽化器、充瓶泵、灌充台等。

空气冷却塔结构工作原理空冷塔(Φ4300×26895×16),主要外部有塔体材质碳钢,内部有2层填料聚丙烯鲍尔环,并对应2层布水器。

其作用是对从空压机出来的空气进行预冷。

空气由塔底进入,塔顶出去,冷冻水从塔顶进入,塔顶出去,在这样一个工程中,冷冻水和空气在塔内,经布水器填料的作用充分的接触进行换热,把空气的温度降低。

水冷却塔的结构及工作原理水冷却塔(规格Φ4200×16600×12),主要外部有塔体材质碳钢,内部有一层聚丙烯鲍尔环填料,对应一根布水管;一层不锈钢规整填料。

其作用式把从冷却水进行降温,生成冷冻水供给空冷塔。

基本原理和空冷塔一样,从冷箱出来的温度较低的污氮气,进入水冷塔下部,在水冷塔内部经填料与从上部来的冷却水充分接触换热后排出,在此过程中冷却水生成冷冻水。

分子筛结构以及原理,其再生过程原理吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。

空分设备结构及工作原理

空分设备结构及工作原理

空分装置系统区分所谓空分,就是将空气深度冷却至液态,因为液空其组分沸点各不同样,逐渐分别出氧、氮、氩等等。

空分装置大概可分以下几个系统:1、空气过滤系统过滤空气中的机械杂质,主要设施有自洁式空气过滤器。

2、空气压缩系统将空气进行预压缩,主要设施有汽轮机、增压机、空压机等。

3、空气预冷及纯化系统将压缩空气进行初步冷却,并去除压缩空气中的水分和二氧化碳等杂质,主要设施有空冷塔、水冷塔、份子筛纯化器、冷却水泵、冷冻水泵等。

4、分馏塔系统将净化的压缩空气深度冷却,再逐级分馏出氧气、氮气、氩气等,主要设施有透平膨胀机、冷箱( 内含主塔、主冷、主还、过冷器、粗氩塔、液氧泵、液体泵等)5、储存汽化系统将分馏出的液氧、液氮、液氩进行储存、汽化、灌充,主要设施有低温液体贮槽、汽化器、充瓶泵、灌充台等。

空气冷却塔构造工作原理2 层填料聚丙烯鲍尔空冷塔(Φ 4300 × 26895 ×16 ),主要外面有塔体材质碳钢,内部有环,并对应2 层布水器。

其作用是对从空压机出来的空气进行预冷。

空气由塔底进入,塔顶出去,冷冻水从塔顶进入,塔顶出去,在这样一个工程中,冷冻水和空气在塔内,经布水器填料的作用充分的接触进行换热,把空气的温度降低。

水冷却塔的构造及工作原理水冷却塔(规格Φ 4200 × 16600 ×12 ),主要外面有塔体材质碳钢,内部有一层聚丙烯鲍尔环填料,对应一根布水管;一层不锈钢规整填料。

其作用式把从冷却水进行降温,生成冷冻水供应空冷塔。

基来源理和空冷塔同样,从冷箱出来的温度较低的污氮气,进入水冷塔下部,在水冷塔内部经填料与从上部来的冷却水充分接触换热后排出,在此过程中冷却水生成冷冻水。

份子筛构造以及原理,其重生过程原理吸附空气中的水分、CO2 、乙炔等碳氢化合物,使进入空气纯净构造:卧式圆筒体、内设支承栅架、以承托份子筛吸附剂使用:空气经过份子筛床层时,将水分、CO2 、乙炔等碳氢化合物吸附,净化后的空气CO2 含量<1ppm ;在重生周期中,先被高温干燥气体反向重生后,再被常温干燥气体冷却到常温,两份子筛成队交替使用。

空分设备运行工作流程

空分设备运行工作流程

空分设备运行工作流程空分设备是一种广泛应用于化工、石油、医药等行业的设备,其主要功能是将混合气体或液体组分进行分离。

空分设备的运行工作流程包括以下几个主要步骤:1. 原料气体准备在空分设备开始运行之前,需要对原料气体进行准备。

通常,原料气体会通过管道输送至空分设备的进料口,然后经过一系列的处理,如压缩、过滤、除湿等,确保原料气体的质量符合要求。

2. 进料与预处理一旦原料气体准备就绪,就可以开始进料并进行预处理。

在进入空分设备之前,原料气体需要经过一系列的预处理步骤,以确保其不含杂质、水汽等有害成分,从而保证后续的分离效果。

3. 分离过程空分设备的核心部分是分离装置,其主要作用是将原料气体中的不同组分根据其物理或化学性质进行分离。

通常,空分设备采用冷凝、蒸馏、吸附、膜分离等技术来实现组分的分离。

4. 产品收集与回收分离后的产品会根据其性质进行收集和回收。

通常,空分设备会设有相应的收集装置和回收系统,将产品气体或液体进行分流、储存和输送,以满足后续加工或使用的需要。

5. 废气处理在空分设备运行过程中,会产生一定量的废气排放。

为了保护环境和减少污染,废气需要进行处理。

常见的废气处理方法包括焚烧、吸附、净化等,确保排放的废气符合环保标准。

6. 系统监测与维护为确保空分设备的正常运行和安全性,需要对其进行系统的监测和维护。

包括设备运行参数的监控、设备内部的清洁与维护、运行状态的检测等,以确保设备长期稳定运行。

通过以上几个主要步骤,空分设备可以有效地进行原料气体的分离工作,为各行业提供优质的产品和服务。

同时,科学合理的运行工作流程也是确保设备高效运行和提高生产效率的关键。

空分的主要设备及原理

空分的主要设备及原理

空分的主要设备及原理以空分的主要设备及原理为标题,我们来探讨一下空分技术中的核心设备和其工作原理。

空分技术是一种利用气体混合物中成分的不同物理性质进行分离的方法。

它广泛应用于工业领域,包括空气分离、石油化工、化学制药等。

而空分的主要设备包括蓄热器、分离塔和冷却器。

我们来介绍一下蓄热器。

蓄热器是空分装置中的重要组成部分,它的主要作用是通过吸收和释放热量来提高分离塔的效率。

当混合气体进入蓄热器时,其温度会显著下降。

在蓄热器内部,有一种叫做吸附剂的物质,它能够吸附和释放气体分子。

当混合气体通过蓄热器时,其中的一部分气体分子会被吸附在吸附剂上,从而使其他成分的浓度得以提高。

然后,在蓄热器中加热吸附剂,使其释放吸附的气体分子。

通过这种方式,蓄热器能够实现气体的分离和浓缩。

接下来,我们来介绍一下分离塔。

分离塔是空分技术中最关键的设备之一,它主要用于将混合气体分离成不同成分。

分离塔通常是一个垂直圆筒形的容器,内部有多个层,每个层之间通过板式堵塞物分隔开来。

混合气体从分离塔的底部进入,然后通过各个层之间的孔洞向上流动。

不同成分的气体在分离塔中会发生物理或化学反应,从而实现分离。

例如,在空气分离中,通过调整分离塔中的压力和温度,可以将空气分离成液态氮、液态氧和其他稀有气体。

分离塔中的板式堵塞物能够增加气体与液体之间的接触面积,从而提高分离效率。

我们来介绍一下冷却器。

冷却器是空分技术中的另一个重要设备,它用于将分离塔中的气体冷却成液态。

冷却器通常是一个管道或换热器,通过将分离塔中的气体与冷却介质进行热交换,使气体温度降低,从而使其变成液态。

冷却器的工作原理是基于热量传递的原理,即将热量从高温物体传递到低温物体。

在空分中,冷却器能够将分离塔中的气体冷却成液态,方便后续的收集和利用。

空分技术中的主要设备包括蓄热器、分离塔和冷却器。

蓄热器通过吸附和释放热量来提高分离效率,分离塔通过物理或化学反应将混合气体分离成不同成分,冷却器则用于将气体冷却成液态。

空分的工艺流程和原理

空分的工艺流程和原理

空分的工艺流程和原理
空分,即空气分离,是指将空气中的氧氮混合气体通过分离工艺分离出纯氮、纯氧或其他常见气体的过程。

空分工艺主要包括压力摩擦吸附法(PSA)和低温常压分馏法(Linde法)。

1. 压力摩擦吸附法(PSA):
- 原理:根据不同气体在固体吸附剂上的吸附性能的差异,利用压力变化来实现气体的分离。

PSA主要利用碳分子筛(CMS)吸附剂,通过交替的压缩和减压步骤,将氮气和氧气分离出来。

- 工艺流程:
a. 压缩:将空气通过压缩机增压至较高的压力。

b. 预冷:利用冷却器将压缩后的空气冷却至较低温度。

c. 吸附:将冷却后的空气通入吸附器中,吸附剂上的氮气被吸附,氧气通过。

d. 减压:关闭进气口,将吸附剂从高压状态减压至大气压,氮气被释放出来。

e. 冲洗:用一部分净化后的气体(再生气体)进行冲洗,去除吸附剂上的杂质。

f. 再生:将再生气体排出,吸附剂恢复正常吸附性能,准备下一次吸附分离。

2. 低温常压分馏法(Linde法):
- 原理:根据气体的沸点差异,在低温下将空气分馏成液氧和液氮。

Linde法主要利用精馏塔进行分离。

- 工艺流程:
a. 压缩:将空气通过压缩机增压至较高的压力。

b. 预冷:利用冷凝器将压缩后的空气冷却至较低温度。

c. 分馏:将冷却后的空气进入精馏塔,精馏塔内设置的塔板使得氮气和氧气按沸点差进行分离。

d. 出口:分离后的纯氮和纯氧按需求从相应的出口取出。

e. 再压缩:将余下的气体再次经过压缩机增压,以提高分离效率。

空分工艺流程和原理的具体细节可能会有所差异,但以上是常见的空分工艺流程和原理。

空分的主要设备及原理

空分的主要设备及原理

空分的主要设备及原理
空分的主要设备是分离塔,其原理是利用混合物中组分的不同物理或化学性质,在适当的条件下将其分离。

分离塔可以根据具体的分离原理和要分离的物质进行不同的设计和操作。

常见的空分设备有以下几种:
1. 蒸馏塔:利用不同组分之间的沸点差异进行分离。

将混合物加热至其中一个组分的沸点,该组分蒸发并升入塔顶,然后通过冷凝器进行冷却,变为液体收集,从而分离出所需组分。

2. 吸附塔:利用吸附剂具有吸附不同组分的能力,将混合物中的某个组分吸附在固体吸附剂上,然后通过适当的操作将吸附剂上的组分释放出来,从而实现分离。

3. 色谱塔:利用不同组分在固定相上的分配系数差异进行分离。

混合物通过凝聚相,然后逐渐通过固定相,不同组分因分配系数不同而分离。

4. 膜分离器:利用选择渗透性的膜,根据组分在膜上的渗透速率差异进行分离。

混合物通过膜时,渗透速率较高的组分通过膜,而速率较低的组分则不能通过,从而实现分离。

5. 结晶器:利用溶解度的差异将混合物中的某个组分结晶出来,然后通过离心或过滤等方法将结晶物与溶液分离。

这些设备的具体选择与设计将取决于要分离的混合物以及更详细的分离要求。

空分装置基本原理和过程

空分装置基本原理和过程

空分装置基本原理和过程
空分装置是一种常用于化学工业和石油化工领域中的设备,用于将气体混合物中的不同成分分离出来。

其基本原理是利用各组分在固体吸附剂表面上的物理吸附能力差异,使它们在一定条件下的温度、压力和流速的控制下逐步分离。

下面将详细描述空分装置的分离过程。

首先,气体混合物进入空分装置的进料口,然后通过管道进入装置内部。

在空分装置内部,气体混合物首先进入吸附器。

吸附器中装有一种或多种吸附剂,根据不同物质的吸附性能选择合适的吸附剂。

吸附器内的吸附剂具有大量的微孔和大表面积,可以提供充足的吸附位置。

气体混合物进入吸附器后,其中的一部分组分会与吸附剂发生物理吸附作用。

不同成分的吸附性能差异导致它们在吸附剂中停留的时间不同,从而实现了分离。

在一段时间后,吸附器内的吸附剂逐渐饱和,无法再吸附新的气体。

此时需进行脱附操作,以释放吸附剂上的已吸附成分。

为了进行脱附,需要降低吸附剂的温度或增加脱附剂的压力。

吸附剂上的已吸附成分会随着脱附剂的流动而被带走,从而从吸附剂中解吸出来。

脱附操作完成后,吸附剂就恢复了吸附能力,可以再次进行吸附过程。

而已解吸出的成分则被收集或进一步处理。

这样,通过重复吸附-脱附的过程,气体混合物中的不同成分可以逐步分别被吸附和解吸出来。

最终,我们可以得到分离后纯度较高的各个成分。

总结来说,空分装置的基本原理是通过控制吸附剂的吸附和脱附过程,利用不同成分在吸附剂上的吸附能力差异,实现气体混合物的分离。

空分设备流程

空分设备流程

空分设备流程空分设备是一种用于分离空气中不同成分的设备,其工作原理是利用空气中各种气体的沸点不同,通过冷凝和蒸发的方式将气体分离。

空分设备在工业生产中起着非常重要的作用,下面将介绍空分设备的工作流程。

首先,空分设备的工作流程可以分为进料、压缩、预冷、分离、净化和回收等几个步骤。

进料阶段是空分设备工作的第一步,空气通过进气口进入设备内部。

然后,空气被压缩到一定压力,以便后续的分离操作。

在压缩的过程中,空气会产生大量的热量,需要进行冷却,这就需要进行预冷处理,以确保设备正常运行。

接下来是分离阶段,这是空分设备最核心的部分。

在这个阶段,通过控制温度和压力,将空气中的氮气、氧气、氩气等成分分离出来。

分离出来的气体会经过净化处理,去除其中的杂质和水分。

最后,分离出来的纯氧、纯氮等气体会被回收利用,用于工业生产、医疗、科研等领域。

在实际操作中,空分设备的流程需要严格控制各个环节的参数,以确保设备的正常运行和产品的质量。

比如,在压缩阶段,需要控制压缩机的工作状态和冷却水的温度,以防止设备过热或者过冷。

在分离阶段,需要根据不同气体的沸点和吸附特性,调节设备的温度和压力,以实现高效的分离。

此外,空分设备的流程还需要考虑能源消耗和环保等方面的问题。

在设备设计和运行过程中,需要尽量减少能源的消耗,提高设备的能效。

同时,还需要考虑废气的处理和回收利用,以减少对环境的影响。

总的来说,空分设备的流程是一个复杂而又精密的工程,需要工程师们在设计、运行和维护过程中严格控制各个环节,以确保设备的正常运行和产品的质量。

随着科技的不断进步,空分设备的工作流程也在不断优化和改进,以适应工业生产的需求和环保的要求。

希望通过本文的介绍,读者对空分设备的工作流程有了更深入的了解。

空分流程经过及其设备结构基本原理

空分流程经过及其设备结构基本原理

'*检修车间学习材料(一)2008年4月目录第一章空分工艺流程简介一、基本原理二、工艺流程简介第二章单元设备简介一、汽轮机部分1. 凝汽器2.抽气器3.排汽安全阀4.汽轮机主体4.1 汽缸4.2 蒸气室4.3 导叶持环4.4 转子4.5 前支座4.6推力轴承4.7 径向轴承4.8 调节气阀二、离心氮气压缩机1.性能数据2.压缩机型号的意义3. 定子及其组成4. 转子及其组成5. 支撑轴承6. 止推轴承7. 联轴器8. 润滑油系统三、换热器1. 固定管板式换热器2. U型管换热器3. 填料函式换热器4. 浮头式换热器附录图'* 第一章空分工艺流程概述一、基本原理干燥空气的主要成份如下:空气中其它组成成份,如氢、二氧化碳、碳氢化合物的含量在一定范围内变化,而水蒸汽含量则随着温度和湿度而变化。

空气中的主要成份的物理特性如下:空气的精馏就是利用空气的各种组份具有不同的挥发性,即在同一温度下各组份的蒸汽压不同,将液态空气进行多次的部份蒸发与部份冷凝,从而达到分离各组份的目的。

当处于冷凝温度的氧、氮混合气穿过比它温度低的氧、氮混合液体时,气相与液相之间就发生热、质交换,气体中的部份冷凝成液体并放出冷凝潜热,液体则因吸收热量而部份蒸发。

因沸点的差异,氧、氩的蒸发顺序为:氮>氩>氧,冷凝顺序为:氧>氩>氮。

在本系统中,该过程是在塔板上进行的,当气体自下而上地在逐块塔板上通过时,低沸点组份的浓度不断增加,只要塔板足够多,在塔的顶部即可获得高纯度的低沸点组份。

同理,当液体自上而下地在逐块塔板上通过时,高沸点组份的浓度不断增加,通过了一定数量的塔板后,在塔的底部就可获得高纯度的高沸点组份。

由于氧、氩、氮沸点的差别,在上塔的中部一定存在着氩的富集区,制取粗氩所需的氩馏份就是从氩富集区抽取的。

二、工艺流程简介(本厂空分工艺流程详见附图)本空分装置采用分子筛吸附净化、空气增压、空气增压透平膨胀机制冷、膨胀空气进上塔、上塔采用规整填料塔、带粗氩塔、产品氧采用液氧泵内压缩的工艺流程。

空分装置空气分馏原理及流程

空分装置空气分馏原理及流程

空分装置空气分镏原理及流程一、空气成份空气成份及其比例二、原理空气中氧气、氮气、氩气含量基本不变。

而水蒸汽和二氧化碳气在0℃和—79℃分别变成冰和干冰,会阻塞换热器,因而在进冷箱前必须除去。

而碳氢化合物特别是乙炔,在精馏过程中如乙炔在液空和液氧中浓缩到一定程度就有发生爆炸的可能,故其在液氧中含量不得超过0.1PPm。

稀有气体如氖氦气,由于其冷凝温度很低,总以气态集聚在冷凝蒸发器中影响换热效果,要经常排放。

氧和氮的沸点不同,氮比氧易蒸发、氧比氮易冷凝,气体自下而上流动时,在塔顶可获得高纯的氮气,在下塔底部可获得富氧液空,在上塔底部可获得高纯氧气。

在下塔中空气被初次分离成富氧液空和氮气,液空由下塔底部送入上塔,一部分液氮由下塔顶部送入上塔顶部。

三、主要流程空气经分子筛吸附器后吸附,分三路:第一路直接进入冷箱内主换热器,经换热温度降到—172.8℃,再进入下塔底部;第二路直接增压机I段膨胀机增压段冷箱内主换热器,温度降到—127℃膨胀机膨胀段汽液分离气下塔底部;第三路直接增压机II段冷箱内主换热器,温度降到—173.5℃下塔中部。

在下塔中,空气被初步分离成氮和富氧液体空气,顶部气氮在主冷凝蒸发器中液化,同时主冷凝蒸发器的低压侧液氧被气化。

液氮作为下塔回流液全部回流到下塔,再从下塔顶部引出一部分液氮,经过液空液氮过冷器被纯气氮和污气氮过冷后送入上塔顶部。

污液氮经过液空液氮过冷器过冷后送入上塔顶部。

液空在液空液氮过冷器中过冷后送入上塔中部作为回流液。

液氧从上塔底部经低温液氧泵加压,经主换热器复热以2.5MPa送出。

污气氮从上塔上部经液空液氮过冷器及主换热器复热,一路作为分子筛的再生气体,一路进入水冷塔中。

纯气氮从上塔顶部经主换热器复热进入氮压机。

空分设备结构及工作原理

空分设备结构及工作原理

空分设备结构及工作原理空分设备是一种用于分离混合物中不同成分的装置,主要用于工业生产过程中的物质分离和纯化,包括化学工业、制药工业、食品工业、石油化工等领域。

空分设备的工作原理基于物质的不同性质,通过差异化的传质方式,实现混合物的组分分离。

目前,常见的空分设备主要包括蒸馏塔、吸附塔、离心机、膜分离设备等。

一、蒸馏塔蒸馏塔是一种将混合物中的组分通过升华、换热和冷凝等过程分离出来的设备。

蒸馏塔通常由塔体、填料、冷凝器、分离器等组成。

其工作原理是将混合物加热至其中一温度,使其中其中一组分蒸发,并通过填料层的传质过程,从而达到组分分离的目的。

二、吸附塔吸附塔是一种利用吸附剂对混合物中特定组分进行附着并分离的设备。

吸附塔通常由塔体、吸附剂床层、进料口、干燥气口等组成。

其工作原理是将混合物通过塔体,使特定组分在吸附剂上进行吸附,而其他组分则通过塔体输出,从而实现混合物的组分分离。

三、离心机离心机是一种利用组分在离心力作用下产生的离心力差异实现分离的设备。

离心机通常由离心转子、离心管、电机等组成。

其工作原理是将混合物置于离心管中,通过高速旋转的离心转子产生差异化的离心力,使混合物中的重组分和轻组分分别沉降和浮向不同位置,从而实现组分分离。

四、膜分离设备膜分离设备是一种利用薄膜的选择性渗透作用实现组分分离的设备。

膜分离设备通常由膜组件、进料口、产物口等组成。

其工作原理是将混合物通过薄膜,利用薄膜孔隙的选择性渗透作用,使其中其中一组分渗透至另一侧,而其他组分则被滞留在原侧,从而实现组分分离。

总之,空分设备在工业生产中起着至关重要的作用,通过差异化的传质方式,实现混合物中各种组分的高效分离和纯化。

以上所述仅为空分设备的几种典型工作原理,实际应用中还有其他形式和方式的空分设备,其原理和结构会根据分离需求的具体情况而有所不同。

空分原理

空分原理

空分原理绪论一、空气分离的几种方法:先将空气→压缩→膨胀→液化然后在精馏塔内利用氧、氮沸点的不同,用精馏方法分离是两个过程:液化和精馏是深冷和精馏的统一上塔主要是分离,下塔是液化和初步分离特点:产量大,纯度高缺点:能耗大,设备投资大2、吸附法:利用固体吸附剂对气体混合物中某些组分吸附能力的差异进行的。

(1)、变压吸附制氧,用PU-8型分子筛(2)、变压吸附制氮,专用分子筛工艺特点:优点:方便,能耗小,投资小,只是再生时有能量损耗缺点:产量小,纯度不够,易损件多02目前能做到8000Nm3/h,纯度95%,N299.9%3、薄膜渗透法:利用有机聚合膜的渗透选择性从流体混合物中使特定组分分离的方法。

主要用来制氮。

特点:同变压吸附法基本相同,不同的是基本没有能耗。

二、学习的基本内容1、热力学第一、第二定律、传热机理、流体力学2、获得低温的方法(1)相变制冷、(2)、等熵膨胀(3)、绝热节流3、溶液热力学基础:拉乌尔定理、康诺瓦罗夫定理4、低温工质的一些物性5、液化循环6、气体分离三、空分的应用领域1、钢铁,1t钢50---60Nm3 022、能源,城市煤气化3、化工领域,化肥、电子、玻璃4、造纸,Ca2ClO35、国防工业火箭研究、太空研究6、机械行业焊接、切割Ar:不锈钢、保护气Ke:发光材料、灯泡绝缘玻璃四、发展趋势(1) 大型、超大型(2)四大启动:煤化工、煤化工联合循环发电、液化天然气接受站、还原法炼铁(1t铁500—600 Nm3 02)煤化工:包括煤代油:甲醇混合燃料85%甲醇、1 5%汽油煤制油:煤直接制油C+H=CnHm 代表shell炉煤间接制油:水煤气C+H20=高温高压→CO+H2O→德士古炉→甲醇液化天然气接受站主要回收冷量。

(3)、二次采油:产量下降用挤海绵的方法向油井注氮气(4)、托卡马克装置(人造太阳),受控热核聚变空分装置最大的是南非索萨尔的11.388万方/h制氮装置理论上和实际上能做到18万方/h,目前国内最大的是杭氧的6万方/h,在杭州还有一个液空杭州,是独资企业,给加拿大做了一套10万方第一章空分工艺流程的组成一、工艺流程的组织:分馏塔系统分为:制冷、换热、精馏;预冷系统分为氨水冷和冷气机组仪控和电控系统贯穿整个系统。

空分设备的工艺流程和各部件工作原理

空分设备的工艺流程和各部件工作原理

空分设备的工艺流程及各部件工作原理空分设备部分部机及单元设备1.空冷塔作用:把出空压机的高温气体(≤100℃)冷却到~18℃,以改善分子筛的工作情况结构:立式圆筒型塔,分上下部分,上下段均为填料塔,塔顶设有分配器,不锈钢丝捕雾器使用:出空压机的空气从下部进入空冷塔,水通过布水器均匀地分布到填料上,顺填料空隙流下,空气则逆水而上与水进行热质交换,经不锈钢丝网捕雾器出塔,进入分子筛吸附系统。

2。

水冷却塔作用:用空分塔来的污氮气和纯氮气冷却外界供水,后由水泵送入空冷塔的上段结构:填料塔,顶设捕雾器和布水器,填料分两层装入塔内,在两填料中间设再分配器,保证让水始终均匀分布,提高水冷塔的效率使用:被冷却的水自上而下流经填料,与空分出来的~33。

6℃的污氮气和纯氮气进行热质交换,使水冷却下来,在塔底被水泵抽走,污氮气从塔顶排除3.分子筛吸附器作用:吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2 含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。

4.主热交换器作用:进行多股流之间的热交换结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:对经分子筛吸附除去水和CO2的压缩空气进行冷却,各返流气(液)在此被加热至常温5。

液空液氮过冷器作用:对低温液体进行过冷结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:液空、液氮和污氮气在经过过冷器时被氮气和污氮气进一步冷却,使之低于饱和温度,这样,液体在节流后可以减少气化,改善上塔的精馏工况.6。

冷凝蒸发器作用:是氮气冷凝和液氧蒸发用,以维持精馏过程的进行结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:其一般置于上下塔之间,下塔上升的氮气在其间被冷凝,而上塔回流的液氧在其间被蒸发.该过程得以进行是因为氮气压力高,液氧压力低,即可以进行氮气的冷凝和液氧的蒸发。

空分设备工作原理

空分设备工作原理

空分设备工作原理空分设备(Air Separation Unit,简称ASU)是一种用于将空气中的气体分离、纯化和直接制取高纯度气体的装置。

其工作原理是基于空气中氧气、氮气和其他不同成分的物理性质和气体分离过程。

空分设备主要包括空气预处理、空气压缩、制冷和分离等几个关键步骤。

首先,空气预处理是将从大气中吸入的空气进行净化处理,去除尘埃、水分、油脂等杂质。

这一步骤主要通过过滤、冷凝和吸附等方法实现。

接下来,将经过预处理的空气送入空气压缩机。

压缩机将空气进行压缩,提高其压力和温度。

通过压缩,气体分子的平均距离减小,其能量和速度增加,为后续的分离过程提供必要的动能。

压缩后的空气进一步进入制冷循环系统,通过冷却器和凝汽器进行冷却。

凝汽器中的冷却介质会吸收空气中的热量,使空气进一步冷却至低温。

同时,制冷剂在冷却器中进行冷却过程,使其重新呈液体状态,为后续的冷凝过程做准备。

在冷却器之后,空气进一步进入分离塔。

分离塔采用一种叫做精馏的物理分离过程,将空气中的氧气和氮气分离。

这是基于氧氮的沸点差异,实现了两种气体的分离。

当与空气相联系的分离塔中的氧气沸点下降(-183)时,分离塔中的温度达到了沸点水平。

在分离塔内,氧气在较高温度区上升,而氮气则下降,由此实现两种气体的分离。

分离塔通常采用多级精馏,通过多个纯化阶段,氧氮混合物不断被纯化,同时从塔底和塔顶输出纯净的氮气和氧气。

最后,纯净的氮气和氧气被分别收集和冷凝,用于不同的应用领域。

纯净的氮气广泛应用于化工、电子、食品加工、金属加工等行业,而纯净的氧气主要用于冶金、化工和医疗等领域。

总结而言,空分设备通过空气预处理、空气压缩、制冷和分离等步骤,将空气中的氧气、氮气等气体分离、纯化,并得到高纯度的氮气和氧气。

其工作原理是基于气体分子的物理性质,利用压缩、冷却和精馏等过程实现气体的分离和纯化。

空分设备在工业生产和科研领域发挥着重要的作用,满足了各种行业对高纯度气体的需求。

空分设备原理

空分设备原理

空分设备原理以《空分设备原理》为题,本文将探讨空分设备的基本原理。

首先要清楚的是,空分设备用于输送和分配空气或其他气体,以保证机械系统的有效运行。

空分设备的作用是将原有的大流量空气或空气/气体混合物经过精密控制及调节,转换成小流量,再通过管道传递到需要使用的地方。

空分设备的结构一般是圆柱形,由一种空气挡板(或空气活门)和一块木质板组成。

木质板上安装有空气挡板,中间用螺栓固定。

空气挡板有两种类型,一种是完全挡口,另一种是大多数是半挡口。

完全挡口的空气挡板可以完全堵塞空气的流动,而半挡口的空气挡板可以阻挡部分空气流动。

空分设备的控制原理是通过改变空气挡板的开启程度来实现空气流量的控制,木质板上有一个螺母,可以控制空气挡板的开启程度。

当螺丝调节到一定位置时,空气挡板完全打开,空气流通到木质板的另一边,这时空气流速最大。

当螺丝调节到另一定位置时,空气挡板完全关闭,空气流通封闭,这时空气流速最小。

可以通过调节螺丝的位置来控制空气流量。

空分设备的另一个重要特性是能够抗冲击。

空气挡板的设计具有一定的弹性,当空气被冲击力影响时,活门会发生一定的变形,但依然能够起到控制作用。

最后要注意的是,空分设备的安装及使用要求相当严格,一般应该遵循一定的操作步骤。

在安装时,应严格按照设备的使用说明书进行安装操作,正确安装能够避免可能出现的故障,使设备能够长期正常运行。

以上就是本文关于空分设备原理的内容。

空分设备为多种机械系统的运行提供了良好的空气条件,是确保系统正常运行的重要保障。

在安装使用这类设备时,应遵循设备使用说明书的操作步骤,以确保设备的长期正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

检修车间学习材料(一)2008年4月目录第一章空分工艺流程简介一、基本原理二、工艺流程简介第二章单元设备简介一、汽轮机部分1. 凝汽器2.抽气器3.排汽安全阀4.汽轮机主体4.1 汽缸4.2 蒸气室4.3 导叶持环4.4 转子4.5 前支座4.6推力轴承4.7 径向轴承4.8 调节气阀二、离心氮气压缩机1.性能数据2.压缩机型号的意义3. 定子及其组成4. 转子及其组成5. 支撑轴承6. 止推轴承7. 联轴器8. 润滑油系统三、换热器1. 固定管板式换热器2. U型管换热器3. 填料函式换热器4. 浮头式换热器附录图第一章空分工艺流程概述一、基本原理干燥空气的主要成份如下:空气中其它组成成份,如氢、二氧化碳、碳氢化合物的含量在一定范围内变化,而水蒸汽含量则随着温度和湿度而变化。

空气中的主要成份的物理特性如下:空气的精馏就是利用空气的各种组份具有不同的挥发性,即在同一温度下各组份的蒸汽压不同,将液态空气进行多次的部份蒸发与部份冷凝,从而达到分离各组份的目的。

当处于冷凝温度的氧、氮混合气穿过比它温度低的氧、氮混合液体时,气相与液相之间就发生热、质交换,气体中的部份冷凝成液体并放出冷凝潜热,液体则因吸收热量而部份蒸发。

因沸点的差异,氧、氩的蒸发顺序为:氮>氩>氧,冷凝顺序为:氧>氩>氮。

在本系统中,该过程是在塔板上进行的,当气体自下而上地在逐块塔板上通过时,低沸点组份的浓度不断增加,只要塔板足够多,在塔的顶部即可获得高纯度的低沸点组份。

同理,当液体自上而下地在逐块塔板上通过时,高沸点组份的浓度不断增加,通过了一定数量的塔板后,在塔的底部就可获得高纯度的高沸点组份。

由于氧、氩、氮沸点的差别,在上塔的中部一定存在着氩的富集区,制取粗氩所需的氩馏份就是从氩富集区抽取的。

二、工艺流程简介(本厂空分工艺流程详见附图)本空分装置采用分子筛吸附净化、空气增压、空气增压透平膨胀机制冷、膨胀空气进上塔、上塔采用规整填料塔、带粗氩塔、产品氧采用液氧泵内压缩的工艺流程。

整套装置包括:空气过滤系统、空气压缩系统、空气预冷系统、分子筛纯化系统、分馏塔系统、液氮贮存汽化系统、氮气压缩系统等。

单套技术参数如下:氧气产量: 28000Nm3/h氧气纯度: 99.8%O2氧气压力: 3.7MPa(G)中压氮气产量: 20000 Nm3/h中压氮气纯度: 99.999%N2中压氮气压力: 2.0MPa(G)低压氮气产量: 5000 Nm3/h低压氮气纯度: 99.999%N2低压氮气压力: 0.4MPa(G)空分装置连续运转周期 (两次大加温间隔期) :>二年装置加温解冻时间: 24 小时装置启动时间: 36 小时(从膨胀机启动到氧产品达到纯度指标)1、空气过滤器及空气压缩系统该系统由一台自洁式空气过滤器及一台透平空气压缩机组成。

含尘空气入空气过滤器,过滤掉其中机械颗粒、粉尘等。

经过滤的空气再入空气压缩系统,被空气压缩系统压缩后进入空气预冷系统。

2、空气预冷系统本系统主要由空冷塔、水冷塔及水泵组成。

空气冷却塔为装有两层塔料的填料塔,空气由空气压缩机送入空气冷却塔底部,由下往上穿过填料层,被从上往下的水冷却,并同时洗涤部分NOx,SO2,C1+等有害杂质,最后穿越顶部的丝网分离器,进入分子筛纯化系统,出空冷塔空气的温度约为15℃。

进入空冷塔的水分为两段。

下段为由用户凉水塔来的冷却水,经循环水泵加压入空冷塔中部自上而下出空冷塔回凉水塔。

上段冷冻水来自经水冷却塔与由分馏塔来的多余的污氮气热质交换冷却得到,由冷冻水泵加压后,送入空气冷却塔顶部,与中部的冷却水一起回凉水塔。

3、空气纯化系统该系统主要由两台吸附器、一台蒸汽加热器组成。

分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只吸附器切换工作。

由空气冷却塔来的空气,经吸附器除去其中的水份、CO2及其它一些C n H m后,除一部分进入增压压缩机增压及用作仪表空气、装置空气之外,其余均全部进入分馏塔。

当一台吸附器工作时,另一台吸附器则进行再生、冷吹备用。

由分馏塔来的污氮气,经蒸汽加热器加热至170℃后,入吸附器加热再生,脱附掉其中的水份及CO2,再生结束由分馏塔来的污氮气吹冷,然后排入大气。

4.空气精馏出空气纯化系统的洁净工艺空气分为三部分:第一部分直接进入冷箱内的主换热器,被返流出来的气体冷却,接近露点的空气进入下塔的底部,参与下塔精馏;第二部分进入增压透平膨胀机增压端增压,经增压机后冷却器冷却后进入主换热器,被返流气体冷却到一定温度后,进入膨胀机膨胀制冷后进入上塔,参与上塔精馏;第三部分进入增压压缩机增压到一定压力后进入冷箱内的主换热器,被液氧冷却、液化及节流后进下塔中部参与下塔精馏。

在下塔中,上升气体与下流液体充分接触,传热传质后,在下塔顶部得到纯氮气。

下塔顶部的纯氮气分为两部分:第一部分进入冷箱内的主换热器经复热后作为中压氮产品送出;第二部分在主冷凝蒸发器中被冷凝为液氮。

冷凝液氮一部分作为下塔的回流液,其余液氮经过冷及节流后送入上塔。

在气氮冷凝的同时,主冷凝蒸发器中的液氧得到气化。

在下塔中产生的液空及污液氮也分别经过冷器过冷及节流后进入上塔参与上塔精馏。

在上塔内,经过再次精馏,得到产品液氧、纯氮气和污氮。

液氧从主冷抽出,小部份作为产品送入贮槽,大部分进入液氧泵加压后进入主换热器汽化复热后送用户管网。

纯氮气经复热后抽取20000Nm3/h去氮透加压后作为氮产品送出。

为提供氧的提取率,本空分装置设置粗氩塔。

从分馏塔上塔下部的适当位置引出一股氩馏份气送入粗氩塔进行精馏,在粗氩塔的顶部得到含氧量小于3%的粗氩气。

粗氩塔的顶部装有冷凝蒸发器,以过冷器后引出的液空经节流后送入其中作为冷源,绝大部分的粗氩气经冷凝蒸发器冷凝后作为粗氩塔的回流液。

其余部分由粗氩塔顶部引出经低压主换热器复热到常温后出冷箱入水冷塔。

*气化炉的开工空气约3500Nm3/h自空气冷却塔后抽取。

*装置空气2000Nm3/h自分子筛吸附器后抽取。

*仪表空气4000Nm3/h自增压压缩机中抽节流获取。

5.冷量的制取装置所需的大部分冷量由增压透平膨胀机提供。

6.产品的分配6.1 气态氧气由主冷来的液氧经液氧泵加压后入主换热器复热后以3.7MPa的压力从冷箱送出。

6.2 低压氮气出冷箱压力约16KPa(G),抽取20000Nm3/h去氮透加压后作为氮产品送出;其余去水冷塔冷却水用。

6.3 污氮污氮用于分子筛吸附器的再生和水冷塔冷却水用, 出冷箱压力约16KPa(G)。

6.4 中压氮气中压氮气由下塔顶部抽出以约0.40MPa(G)的压力至用户。

6.5 液态氧液氧由上塔底部留出抽口(去液氧贮槽)。

6.6 液态氮液氮由过冷器后抽出去液氮贮槽。

本厂空分工艺流程详见附图第二章单元设备简介一、汽轮机部分1. 凝汽器1.1任务凝汽器式是凝汽式汽轮装置的重要组成部分,其工作性能直接影响到整个装置的热经济性和运行可靠性.凝汽器在汽轮机装置中执行冷源任务,即将凝汽式汽轮机的排汽凝结成水,并带走蒸汽凝结是放出的热量,建立和维持汽轮机排气口形成真空,使进入汽轮机的蒸汽膨胀到尽可能低的有利压力,增加蒸汽的可用焓降;且将凝结水重新送往锅炉,作为锅炉的给水,循环使用,从而提高整个装置的热经济性。

1.2工作方式其壳体为圆筒形,与前后管板组成进口水室和出口水室,管板上装有冷凝管束。

凝汽器设计成双流道、二流程,为避免凝汽器运行超压,上部设有排汽安全阀。

从汽轮机来的蒸汽自排气接管、凝汽器喉部,进入凝汽器壳体(汽侧),在这里蒸汽与冷凝管束接触开始凝结,从而在汽侧空间形成高度真空。

蒸汽凝结所放出的潜热通过换热管传递给冷取水,入口冷却水经过双流程管束,吸收蒸汽凝结所放出的潜热,出口水温升高。

蒸汽凝结后所形成的凝结水则由凝结水泵从凝结水出口抽除,并加压,作为抽气器冷却器的冷却水。

通过处于负压的汽轮机凝汽器及管道的不严密处漏入凝汽器汽侧空间的空气,由抽气器通过抽气口不断排除,以保持凝汽器的真空和良好的传热。

1.3故障原因凝汽器故障主要表现为真空下降,原因有:(1).冷却水中断;(2).冷却水量不足;(3).凝汽器满水;(4).凝汽器冷却面积垢;(5).真空系统漏气量增多;(6).抽气器工作不正常。

2.抽气器抽气器的任务是将通过处于负压的汽轮机凝汽器及管道的不严密处漏入凝汽器汽侧空间的空气不断地抽出,以保持凝汽器的真空和良好的传热。

凝汽器所用的抽气器采用射汽抽气器(如图2),抽气器有单级的启动抽气器和两级的主抽气器。

启动抽气器是在汽轮机启动之前使凝汽器很快建立足以启动汽轮机的真空而用的,它是一个单级射汽抽气器,不带冷却器,工作时直接将全部蒸汽空气混合物排入大气,由于启动抽气器耗汽量较大,因此不宜作为正常工作时的抽气器使用。

主抽气器是在汽轮机正常工作时,伴同凝汽器的运行而工作的。

空气蒸汽混合物从凝汽器中被Ⅰ级射汽抽气器吸入其混合室,在混合室内与喷嘴射出的高速蒸汽混合进入扩压器,经过压缩后排入中间冷却器。

蒸汽空气混合物在中间冷却器中经过冷却后,空气和部分未凝结蒸汽再被Ⅱ级射汽抽气器吸入,在混合室内与喷嘴射出的高速蒸汽混合进入扩压器,经过压缩后排入后冷却器。

其中蒸汽被冷却成凝结水,空气则排于大气中。

3.排汽安全阀当凝汽器出现故障时,凝汽器压力超过大气压力时,排汽安全阀自动打开,将进入凝汽器的蒸汽排出,以保证汽轮机装置的安全。

4.汽轮机主体汽轮机纵剖面图及横剖面图分别如下4.1 汽缸汽缸是汽轮机通流部分的包容体,汽缸由前缸和后缸(排缸)组成,他们它们之间有垂直接合面,前缸和后缸又都沿水平面剖分为上、下半,垂直、水平中分面法兰均用螺栓连接。

其结构如下图1.调节气阀阀杆装配孔2.导页持环支承撘子3.排缸4.后气封装配凸环5.后轴承座安装面6.横向中心调整件撘子7.后猫抓8.中分面螺栓孔9.导页持环装配凸环 10.前猫爪 11.前汽封装配凸环 12.进汽室13.调节气阀阀座装配孔 14.速关阀阀壳 15.后轴承座导向键4.2 蒸气室蒸气室结构如下图所示4.3 导叶持环导叶持环是汽轮机通流部分的基本部件之一,它是多级静叶的承载体,结构如下图所示4.4 转子转子上动叶片与静体的喷嘴、导叶是汽轮机通流部分的核心,在通流部分蒸汽的热能转化为推动汽轮机转子旋转的机械能,从而驱动其他机械。

4.5 前支座支座用于支承汽缸和转子并由滑销系统保证汽缸、转子的正确位置。

前支座主要由前座架、前轴承座、驱动组件、汽缸热膨胀指示器,以及连接件组成,需要时也可配装接地电刷,下图为不带驱动组件的前支座:1.汽缸2.上缸前猫爪3.前座架4.汽缸调整组件5.前轴承座6.轴承座调整组件7.拉杆8.螺栓4.6推力轴承推力轴承安装在前轴承座中,其作用是承受转子的轴向推力,确定、保证转子正确的轴向位置。

相关文档
最新文档