大学全册高等数学知识点(全)
大一高数知识点总结全
大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
大一高数详细知识点
大一高数详细知识点高等数学是大一学生必修的一门课程,它是对初等数学的拓展和深化,涵盖了微积分、线性代数、概率论等不同领域的知识。
下面将详细介绍大一高数课程中的主要知识点。
1. 极限与函数- 极限的定义与性质:极限的正式定义、极限存在的条件、无穷大与无穷小、极限运算法则等。
- 函数的基本性质:函数的定义域和值域、奇偶性、周期性、单调性等。
- 常见函数的极限:常数函数、幂函数、指数函数、对数函数、三角函数等的极限计算方法。
2. 导数与微分- 导数的定义与性质:导数的几何意义、导数存在的条件、导数的运算法则等。
- 基本函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算方法。
- 高阶导数:二阶导数、高阶导数的概念及计算方法。
- 微分的定义与应用:微分的概念、微分的几何意义、微分的近似计算及应用。
3. 不定积分与定积分- 不定积分的概念与性质:不定积分的定义、基本积分法则、换元积分法等。
- 基本函数的不定积分:常数函数、幂函数、指数函数、对数函数、三角函数等的不定积分计算方法。
- 定积分的概念与性质:定积分的定义、定积分的几何意义、定积分的性质等。
- 定积分的计算方法:分部积分法、换元积分法、定积分的应用等。
4. 一元函数的应用- 函数的极值与最值:函数的最大值、最小值的定义、求解方法及其应用。
- 凹凸性与拐点:函数的凹凸性定义、寻找拐点的条件及其应用。
- 曲线的图形与方程:利用函数的性质绘制曲线图形、求解函数的方程。
5. 多元函数与偏导数- 多元函数的定义与性质:多元函数的定义、定义域、值域等。
- 偏导数的概念与计算方法:一阶偏导数、高阶偏导数的定义及其计算方法。
- 多元函数的极值与最值:多元函数的最大值、最小值的定义、求解方法及其应用。
6. 无穷级数与幂级数- 数列极限与无穷级数:数列极限的定义、极限存在的条件、常见无穷级数的收敛性判断方法。
- 幂级数的概念与收敛域:幂级数的定义、收敛域的判定方法及应用。
大学全册高等数学知识点总结(全)
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时, sin ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x eu x -; ln(1())()u x u x +; (1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈ as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+ (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆ (3)22,lim()()x y f df f x f ydf x y ∆-++ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y fx y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n ∑, (2)ln k n n α∑, (3)1ln k n n∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)n na-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω= 35111(),23!5!x x e e x x x R --=+++Ω= 3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+ 2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G :(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换:A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰(x y Q P =但D 内有奇点)*LL =⎰⎰(变形)3. 推广(路径无关性):P Q y y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰(Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =-- [()()]xyPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ= (cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用: (1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分: A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xa y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
大一高数全部知识点汇总
大一高数全部知识点汇总高等数学作为大一学生必修的一门课程,是建立在中学数学基础之上的一门学科,主要涉及微积分、数列、级数、概率论等内容。
下面是大一高数的全部知识点汇总。
1. 函数与极限1.1 函数函数的概念、性质及表示法常见函数及其性质(线性函数、幂函数、指数函数、对数函数、三角函数等)复合函数与反函数1.2 极限数列收敛的概念与性质函数极限的定义与性质极限的四则运算法则与基本极限公式无穷小量与无穷大量常见极限计算方法2. 导数与微分2.1 导数导数的定义与性质常见函数的导数(幂函数、指数函数、对数函数、三角函数等)导数的四则运算法则及高阶导数2.2 微分微分的定义与性质微分中值定理函数的单调性与极值曲线的凹凸性与拐点导数在几何应用中的意义(切线、法线、极值、拐点等)3. 积分与不定积分3.1 积分定积分的定义与性质牛顿-莱布尼茨公式与积分区间可加性常见函数的积分(幂函数、指数函数、对数函数、三角函数等)定积分的计算方法(换元法、分部积分法、分段函数等)3.2 不定积分不定积分的定义与性质常见函数的不定积分基本初等函数与初等函数的积分表达式4. 微分方程4.1 微分方程的基本概念微分方程的定义、分类及基本术语4.2 一阶常微分方程可分离变量的一阶方程一阶线性方程齐次方程与非齐次方程4.3 二阶常系数齐次线性微分方程特征根与特征方程解的结构与通解形式已知边值问题与未知边值问题4.4 变量分离的方程4.5 有关高阶微分方程的基本概念5. 数列与级数5.1 数列的定义与常见性质等差数列与等比数列数列的极限与单调性5.2 级数的定义与常见性质等比级数与调和级数级数的收敛与发散判定绝对收敛与条件收敛级数收敛的收敛准则6. 概率统计6.1 随机事件与概率概率的定义与性质事件关系与运算条件概率与独立性6.2 随机变量与概率分布随机变量的概念与性质离散型随机变量与连续型随机变量常见概率分布(均匀分布、二项分布、正态分布等)6.3 统计与抽样总体与样本的概念随机抽样与抽样分布参数估计与假设检验以上就是大一高数的全部知识点汇总,希望对你的学习有所帮助!。
高数大一最全知识点
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数笔记全部知识点
大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。
通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。
每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。
希望同学们能够认真学习,并在课后进行适当的巩固和扩展。
加油!。
(完整版)高等数学基础知识点归纳
(完整版)高等数学基础知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A??。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
大学高数知识点总结
大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。
2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。
3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。
4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。
5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。
6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。
7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。
二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。
2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。
3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。
4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。
5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。
三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。
2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。
3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。
4、立体视角:立体视角的概念、立体视角的定义及其应用。
四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。
高等数学知识点
高等数学知识点
高等数学是大学理工科专业中的一门基础课程,它在数学分析、线性代数和概率论等方面提供了深入的理论知识和方法。
以下是高等数学的主要知识点总结:
1. 数学分析
- 极限的概念和性质
- 连续函数的定义和性质
- 导数和微分的定义、计算和应用
- 泰勒公式和麦克劳林公式
- 函数的极值和最值问题
- 曲线的凹凸性和拐点
- 不定积分和定积分的定义、计算和应用
- 广义积分和傅里叶级数
- 多元函数的偏导数和全微分
- 多元函数的极值和条件极值
- 重积分和曲线积分、曲面积分
2. 线性代数
- 矩阵的定义和基本运算
- 行列式的定义和性质
- 向量空间和子空间的概念
- 线性方程组的解法和理论
- 特征值和特征向量
- 二次型和正定矩阵
- 线性变换和矩阵对角化
- 欧几里得空间和内积
- 正交矩阵和酉矩阵
3. 概率论与数理统计
- 随机事件和概率的定义
- 条件概率和全概率公式
- 随机变量及其分布
- 期望值、方差和协方差
- 大数定律和中心极限定理
- 统计量和抽样分布
- 假设检验和置信区间
- 回归分析和方差分析
这些知识点构成了高等数学的核心内容,是理解和应用高等数学的基础。
通过学习这些内容,学生能够掌握数学分析的严密逻辑、线性代数的抽象思维以及概率论与数理统计的统计推断,为进一步的专业学习和科研工作打下坚实的基础。
大学高等数学知识点框架
大学高等数学知识点框架
一、微积分
1.导数与微分
2.积分与不定积分
3.定积分与曲线下面积
4.微分方程
二、级数
1.数列与级数的概念
2.收敛与发散
3.数项级数
4.幂级数
三、微分方程
1.一阶微分方程
2.二阶线性齐次微分方程
3.二阶线性非齐次微分方程
4.变量分离法与齐次微分方程
四、空间解析几何
1.三维空间直角坐标系
2.平面与直线的方程
3.空间曲面与二次曲线
4.空间直线与平面的位置关系
五、多元函数微分学
1.多元函数的极限
2.偏导数与全微分
3.多元复合函数的求导法则
4.隐函数与参数方程的求导
六、重积分与曲线曲面积分
1.重积分的概念与性质
2.二重积分的计算
3.三重积分的计算
4.曲线曲面积分的计算
七、常微分方程
1.一阶常微分方程
2.二阶常微分方程
3.高阶常微分方程
4.常微分方程的解析解与数值解
八、线性代数
1.线性方程组与矩阵
2.矩阵的运算与性质
3.矩阵的秩与逆
4.特征值与特征向量
九、概率论与数理统计
1.基本概念与概率空间
2.随机变量及其分布律
3.多维随机变量与联合分布
4.参数估计与假设检验
以上是大学高等数学的主要知识点框架,涵盖了微积分、级数、微分方程、空间解析几何、多元函数微分学、重积分与曲线曲面积分、常微分方程、线性代数以及概率论与数理统计等内容。
通过深入学习这些知识点,可以建立起扎实的数学基础,为进一步学习相关学科打下坚实的基础。
高数笔记大一全部知识点总结
高数笔记大一全部知识点总结高等数学是大一学生必修的一门课程,它是应用数学的重要基础,也是后续专业课程的前置知识。
以下是对大一高等数学课程的全部知识点进行的总结。
1. 数列与数学归纳法1.1 等差数列与等差数列的通项公式1.2 等比数列与等比数列的通项公式1.3 数列的求和公式与极限2. 函数与极限2.1 函数的定义与性质2.2 极限的定义与性质2.3 无穷大与无穷小2.4 函数的连续性与间断点3. 导数与微分3.1 导数的定义与几何意义3.2 常见函数的导数公式3.3 高阶导数与隐式函数求导 3.4 微分的定义与应用4. 微分中值定理与导数应用4.1 极值与最值4.2 高阶导数与凹凸性4.3 中值定理与罗尔定理4.4 泰勒公式与应用5. 积分与不定积分5.1 积分的定义与性质5.2 基本积分公式与换元积分法 5.3 分部积分与定积分5.4 数列和函数积分与应用6. 定积分与曲线长度6.1 定积分的定义与计算6.2 曲线长度的计算6.3 平面图形的面积与旋转体的体积 6.4 广义积分与收敛性7. 常微分方程7.1 微分方程的基本概念与分类7.2 可分离变量方程与齐次方程7.3 一阶线性微分方程与常数变易法 7.4 高阶线性微分方程与特征根法8. 多元函数微分学8.1 二元函数的偏导数与全微分8.2 隐函数与隐函数求导8.3 多元函数的极值与条件极值8.4 二重积分与累次积分以上是大一高等数学课程的全部知识点总结。
通过对这些知识点的学习,可以建立起扎实的数学基础,为后续专业课程的学习打下坚实的基础。
同时,高等数学也培养了我们的逻辑思维能力和问题解决能力,为我们的学习生涯做好了铺垫。
掌握这些知识点后,我们可以通过大量的习题和实例来巩固和应用所学知识,提高自己的数学思维和解题能力。
除了课堂学习外,可以参加数学竞赛、加入学术团队等方式,进一步拓宽数学知识的应用领域。
高等数学是一门重要的学科,不仅在理工科领域中有广泛的应用,也在其他学科中扮演着重要角色。
大一高等数学全部知识点汇总
大一高等数学全部知识点汇总高等数学是大一学生所学的一门重要课程,它涵盖了许多重要的数学知识点。
本文将对大一高等数学的全部知识点进行汇总,以帮助学生更好地理解和掌握这门学科。
1. 极限与连续1.1 极限的定义与性质1.2 无穷大与无穷小1.3 极限存在准则1.4 函数的连续性与间断点1.5 已知极限求函数值2. 导数与微分2.1 导数的定义与性质2.2 基本导数公式2.3 高阶导数2.4 隐函数求导2.5 微分的定义与应用3. 微分中值定理与导数应用3.1 罗尔定理3.2 拉格朗日中值定理3.3 柯西中值定理3.4 泰勒公式与泰勒展开3.5 极值点与凹凸性4. 积分与不定积分4.1 函数的原函数与不定积分 4.2 定积分的概念与性质4.3 牛顿—莱布尼茨公式4.4 定积分的计算4.5 反常积分5. 定积分应用5.1 曲线长度与曲面面积5.2 物理应用:质量、质心、转动惯量5.3 统计学应用:均值、方差、概率密度函数6. 多元函数微分学6.1 多元函数的极限与连续性6.2 偏导数与全微分6.3 方向导数与梯度6.4 高阶偏导数与多元函数的泰勒公式7. 重积分7.1 二重积分的概念与性质7.2 二重积分的计算7.3 三重积分的概念与性质7.4 三重积分的计算7.5 曲线曲面积分8. 无穷级数8.1 数列极限与数列的性质8.2 常数项级数的收敛性与发散性8.3 正项级数的审敛法8.4 幂级数与泰勒级数9. 常微分方程9.1 常微分方程的基本概念9.2 一阶线性微分方程9.3 二阶线性常系数齐次微分方程9.4 二阶线性常系数非齐次微分方程9.5 常微分方程的应用以上是大一高等数学的全部知识点汇总。
学生们可以根据这个知识点汇总来制定学习计划,有针对性地进行复习和提高。
同时,理解这些知识点的定义、性质和应用是非常重要的,因为它们在后续学习和职业发展中都会起到关键作用。
希望本文对大一学生的数学学习有所帮助,使他们能够更好地掌握高等数学这门学科。
大学高等数学知识点
微分的应用:微分 在近似计算、误差 估计、求极值等方 面有广泛应用。
导数与微分的关系: 导数是函数在某一点 的切线的斜率,而微 分是在这一点附近对 函数进行线性近似。
04
积分学
定积分的概念与性质
概念:定积分是积分的一种,是函数在区间上积分和的极限 几何意义:定积分的值是曲线下方和x轴之间的面积
性质:定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对每个函数进行积分后再求和或求差
类型:一阶、二阶和高阶差分 方程
解法:递推法、迭代法和数学 归纳法等
应用:在经济学、生物学、物 理学等领域有广泛应用
07
无穷级数
无穷级数的概念与性质
概念:无穷级数是无穷多个数相加的结果,可以用来表示函数、数列等数学对象。
性质:无穷级数具有收敛性、可加性、可乘性和可微性等性质,这些性质在数学分析中有着广泛 的应用。
计算方法:将三重积分拆分为三 个方向的二重积分,再逐个计算
几何意义:表示三维空间中某种 量的分布情况
应用领域:物理学、工程学、经 济学等
06
微分方程与差分方程
常微分方程的基本概念
定义:常微分方程是描述 一个或多个未知函数及其
导数之间关系的方程。
类型:根据未知函数的个 数,常微分方程可以分为 一阶、二阶和高阶方程。
函数的极限:函数在某点 的极限表示当自变量趋近 于该点时,函数值的趋近
值。
函数的连续性:函数在某 点的连续性表示函数在该
点附近的变化趋势。
极限的概念与性质
极限的定义:描述函数在某一点处的变化趋势 极限的性质:包括唯一性、有界性、局部保号性等 极限的运算:包括四则运算法则、等价无穷小替换等 极限的应用:在导数、积分等领域有广泛应用
大一数学各章知识点
大一数学各章知识点一、微积分1. 极限和连续极限定义、极限的性质、无穷小量与无穷大量、函数连续的定义与性质。
2. 导数与微分导数的定义、导数的几何意义和物理意义、导数运算法则、高阶导数、隐函数及参数方程的导数、微分与线性近似、导数的应用。
二、数学分析与线性代数1. 函数与极限有界性与有界变函数的极限、函数极限的性质、无界函数极限、级数的敛散性。
2. 高等代数向量空间的基本概念与性质、线性相关性与线性无关性、向量的线性组合、基和坐标、线性子空间与商空间。
三、离散数学与概率论1. 逻辑与集合命题逻辑的基本概念、命题逻辑的基本运算、真值表、集合的基本概念与运算。
2. 概率论古典概型的概率、条件概率、独立性、离散型随机变量与分布列、连续型随机变量与密度函数。
四、数学建模与运筹学1. 数学建模建模的基本思路与方法、模型的评价与选择、模型的求解与分析、模型的应用。
2. 运筹学线性规划、整数规划、非线性规划、动态规划、图论。
五、常微分方程与偏微分方程1. 常微分方程基本概念与初值问题、解的存在唯一性、一阶常微分方程的解法、高阶线性常微分方程的解法,齐次线性方程、非齐次线性方程。
2. 偏微分方程偏导数与偏微分方程、二阶线性偏微分方程、波动方程、热传导方程、拉普拉斯方程。
六、数理统计与应用统计1. 数理统计随机变量、概率分布、数理期望和方差、分布函数、正态分布、大数定理与中心极限定理。
2. 应用统计抽样调查与抽样分布、参数估计与假设检验、方差分析、相关分析、回归分析。
七、离散数学与组合数学1. 图论图的基本概念与性质、图的遍历与连通性、最小生成树、最短路径、网络流、图的着色问题。
2. 组合数学排列组合、二项式定理、容斥原理、多重集合与划分、递归与递推关系、离散数学在计算机科学中的应用。
以上是大一数学各章知识点的简要概括,涵盖了微积分、数学分析与线性代数、离散数学与概率论、数学建模与运筹学、常微分方程与偏微分方程、数理统计与应用统计、离散数学与组合数学等主要内容。
高等数学知识点(全)
2、 不定积分:在区间 I 上,函数 f (x) 的带有任意常数的原函数
称为 f (x) 在区间 I 上的不定积分。
3、 基本积分表(P188,13 个公式);
4、 性质(线性性)。
(二) 换元积分法 1、 第 一 类 换 元 法 ( 凑 微 分 ) :
f [(x)](x)dx f (u)du u(x)
(五) 不等式证明
1、 利用微分中值定理;
2、 利用函数单调性;
3、 利用极值(最值)。
(六) 方程根的讨论
第 10 页 共 44 页
阿樊教育 1、 连续函数的介值定理;
永不改变年轻时的梦想
2、 Rolle 定理;
3、 函数的单调性;
4、 极值、最值;
5、 凹凸性。
(七) 渐近线
1、 铅直渐近线: lim f (x) ,则 x a 为一条铅直渐近线; xa
(二) 微分
1) 定义:y f (x0 x) f (x0 ) Ax o(x) ,其中 A 与 x 无关。
2) 可 微 与 可 导 的 关 系 : 可 微 可 导 , 且
dy f (x0 )x f (x0 )dx
第三章 微分中值定理与导数的应用 (一) 中值定理
1、 Rolle 定理:若函数 f (x) 满足: 1 ) f (x) C[a,b] ; 2 ) f (x) D(a,b) ; 3 )
f ( x1 x2 ) 2
f (x1) f (x2 ) , 2
则 称 f (x) 在 区 间 I 上 的 图 形 是 凹 的 ; 若
x1, x2 I ,
f ( x1 x2 ) 2
f (x1) f (x2 ) ,则称 f (x) 在区间 2
I
大一第一学期高数知识点
大一第一学期高数知识点在大一的第一学期,高等数学(又称高数)是必修课程之一,对于理工科的学生来说,掌握高数知识点是十分重要的。
本文将介绍大一第一学期高数的主要知识点,包括函数与极限、导数与微分、高阶导数与泰勒展开、不定积分和定积分五个部分。
一、函数与极限1. 函数的概念:函数是两个集合之间的一种映射关系,常用符号表示为y=f(x)。
2. 极限的概念:极限是数列或函数逐渐趋近于某个值的过程,包括左极限、右极限和无穷极限。
3. 极限的性质:包括四则运算法则、绝对值法则、比较法则等。
4. 常见函数的极限:如幂函数、指数函数、对数函数等。
二、导数与微分1. 导数的概念:导数描述了函数在某一点的变化率,也可以理解为函数曲线在该点的切线斜率。
2. 导数的计算方法:使用极限定义、基本导数法则、求导公式等方法计算导数。
3. 常见函数的导数:如幂函数、指数函数、对数函数、三角函数等。
4. 微分的概念:微分是导数的一种近似表示,表示函数在某一点附近的增量。
5. 微分的计算方法:使用微分公式和微分运算法则等方法计算微分。
三、高阶导数与泰勒展开1. 高阶导数的概念:高阶导数表示导数的导数,如二阶导数、三阶导数等。
2. 高阶导数的计算方法:通过对原函数多次求导来计算高阶导数。
3. 泰勒展开的概念:泰勒展开是一种使用多项式逼近函数的方法,可将函数在某点附近展开成幂级数。
4. 泰勒展开的计算方法:使用公式对函数进行泰勒展开。
四、不定积分1. 不定积分的概念:不定积分是求解函数的原函数的过程,表示为∫f(x)dx。
2. 基本积分公式:包括幂函数积分、三角函数积分、指数函数积分等基本公式。
3. 换元积分法:使用换元法将原函数转化为容易求解的形式。
4. 分部积分法:使用分部积分公式对复杂函数进行求积分。
五、定积分1. 定积分的概念:定积分是计算曲线下面的面积的方法,表示为∫[a,b]f(x)dx。
2. 定积分的性质:包括线性性质、区间可加性、积分中值定理等性质。
大学数学知识点总结
大学数学知识点总结一、微积分1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 连续函数的性质与分类2. 微分学- 导数的定义与计算- 高阶导数- 隐函数与参数方程的微分3. 积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分的应用(面积、体积、弧长等)4. 微分方程- 常微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程二、线性代数1. 向量与空间- 向量的运算与性质- 向量空间与子空间- 线性相关与线性无关2. 矩阵与变换- 矩阵的运算- 矩阵的逆与行列式- 线性变换与特征值问题3. 线性方程组- 线性方程组的解的结构- 高斯消元法- 克拉默法则三、概率论与数理统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立性- 随机变量与分布函数2. 描述性统计- 数据的集中趋势(均值、中位数、众数) - 数据的离散程度(方差、标准差、极差) - 数据的分布形状(偏度、峰度)3. 推断性统计- 抽样与抽样分布- 置信区间- 假设检验四、离散数学1. 集合论- 集合的基本概念与运算- 基数与序数- 有限集合与无限集合2. 图论- 图的基本概念(顶点、边、路径)- 图的遍历(深度优先搜索、广度优先搜索) - 欧拉图与哈密顿图3. 逻辑与布尔代数- 命题逻辑与谓词逻辑- 布尔代数的基本运算- 逻辑电路的设计五、数值分析1. 数值线性代数- 矩阵的数值分解(LU分解、QR分解等)- 线性方程组的数值解法- 特征值问题的数值方法2. 插值与逼近- 多项式插值- 样条插值- 最小二乘法3. 常微分方程的数值解- 欧拉方法与改进的欧拉方法- 龙格-库塔方法- 边界值问题的数值解法以上是大学数学课程中常见的几个主要领域的知识点概要。
每个领域都有其详细的理论基础和应用场景,需要通过系统的学习和大量的练习来掌握。
如果需要进一步的详细解释或示例,可以针对每个部分进行扩展。
(完整版)大学全册高等数学知识点(全)
(完整版)大学全册高等数学知识点(全)高等数学是一门非常重要的学科,它是数学中最具有挑战性和深度的一门课程。
它的内容包括微积分、线性代数、微分方程和复变函数等专题,这些都是现代科学和技术的核心。
在本文中,我们将会详细介绍高等数学的知识点,以供学习和参考。
微积分微积分被称为数学的两个支柱之一,它是数学的一门核心课程。
微积分最早是由牛顿和莱布尼茨创立的,作为数学中求导和积分的基本工具,微积分与其他领域如物理、工程学和经济学等紧密相关。
微分学和积分学是微积分中最重要的两个分支。
微分学涉及单变量函数的导数和导数的应用,具体包括切线和曲线的斜率、极值和曲线的凹凸性等概念。
积分学则涉及单变量函数的定积分和不定积分,并且与微分学有紧密的联系,例如牛顿-莱布尼茨公式。
多元微积分也是微积分中的一个重要分支。
它包括了多元函数的求导和偏导数,以及多重积分的概念和应用。
多元积分常用于描述物理量在空间中的分布和相互作用关系,如在物理力学、统计学、流体力学和电磁学等领域中。
线性代数线性代数是一种数学分支,涉及线性方程组的解法,向量、矩阵和线性变换的概念及其应用。
线性代数在现代科学和技术中十分普遍,如应用在数学、物理、计算机科学、统计学、工程学等领域。
线性方程组求解是线性代数中的基础概念之一。
矩阵和行列式则是线性方程组求解的核心工具,它们用于表达系数、求解和判断方程组的解。
向量和矩阵在应用中常被用于表示和处理各种数据,如图像、音频、文本等。
除了矩阵和行列式,还有很重要的概念是对称矩阵、特征值和特征向量。
它们与线性变换及其特征相关联,在应用中常被用于描述各种对象的特征或性质。
微分方程微分方程是数学的一个重要分支,它涉及多元函数的微分和积分,具体解释为量的变化随时间或空间的变化规律。
微分方程在物理、生物、经济、工程学等领域中有广泛的应用。
微分方程可分为常微分方程和偏微分方程。
常微分方程只涉及单一自变量的函数和导数,可以分为一阶和二阶微分方程等不同的类型。
大学全册高等数学知识点(全套)
第 1 1 页页共 30 30 页页大学全册高等数学知识点(全套)极限与连续一. 数列函数: 1. 类型类型: (1)数列: *()n a f n =; *1()n na f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x £ì=í>î; *00()(),x x f x F x x x a ¹ì=í=î;* (4)复合(含f )函数: (),()y f u u x j == (5)隐式(方程): (,)0F x y = (6)参式(数一,二): ()()x x t y y t =ìí=î (7)变限积分函数: ()(,)xaF x f x t dt=ò (8)级数和函数(数一,三): (),n n n S x a x x ¥==ÎW å 2. 特征特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x Þ"--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数反函数与直接函数: 11()()()y f x x f y y f x --=Û=Þ=二. 极限性质: 1. 类型类型: *lim n n a ®¥; *lim ()x f x ®¥(含x ®±¥); *0lim ()x x x xf x ®(含0x x ±®) 2. 无穷小与无穷大无穷小与无穷大(注: 无穷量): 3. 未定型未定型: 000,,1,,0,0,0¥¥¥-¥×¥¥¥ 4. 性质性质: *有界性有界性, *保号性保号性, *归并性归并性第 2 2 页页 共 30 30 页页三. 常用结论: 四. 必备公式: 1. 等价无穷小等价无穷小: 当()0u x ®时, 2. 泰勒公式泰勒公式: (1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+; (3)341sin ()3!x x x o x =-+; (4)24511cos 1()2!4!x x x o x =-++; (5)22(1)(1)1()2!x x x o x a a a a -+=+++. 五. 常规方法: 前提前提: (1)准确判断准确判断0,,1,0M a ¥¥¥(其它如:00,0,0,¥-¥×¥¥); (2)变量代换(如:1t x=) 1. 抓大弃小抓大弃小()¥¥, 2. 无穷小与有界量乘积无穷小与有界量乘积 (M a ×) (注:1sin 1,x x£®¥) 3. 1¥处理(其它如:000,¥) 4. 左右极限左右极限(包括x ®±¥): (1)1(0)x x ®; (2)()xe x ®¥; 1(0)xe x ®; (3)分段函数: x , []x , max ()f x 5. 无穷小等价替换无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比注意对比: 1ln lim 1x x x x ®-与0ln lim 1x x x x ®-) (2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x xx xe e e e -++-=-) 第 3 3 页页 共 30 30 页页 (3)含变限积分; (4)不能用与不便用 7. 泰勒公式泰勒公式(皮亚诺余项): 处理和式中的无穷小处理和式中的无穷小处理和式中的无穷小 8. 极限函数极限函数: ()lim (,)n f x F x n ®¥=(Þ分段函数) 六. 非常手段非常手段 1. 收敛准则收敛准则: (1)()lim ()n x a f n f x ®+¥=Þ (2)双边夹: *n n n b a c ££, *,?n n b c a ® (3)单边挤: 1()n n a f a += *21?a a ³ *?n a M £ *'()0?f x > 2. 导数定义导数定义(洛必达?): 0lim'()x ff x x®= 3. 积分和积分和: 10112lim [()()()]()n nf f f f x dx n n nn ®¥+++=ò, 4. 中值定理中值定理: lim[()()]lim '()x x f x a f x a f x ®+¥®+¥+-= 5. 级数和级数和(数一三): (1)1n n a ¥=å收敛lim 0nn a ®¥Þ=, (如2!lim nnn n n ®¥) (2)121lim()n n n n a a a a ¥®¥=+++=å, (3){}n a 与11()n n n a a ¥-=-å同敛散同敛散七. 常见应用: 1. 无穷小比较无穷小比较(等价,阶): *(),(0)?nf x kx x ® (1)(1)()(0)'(0)(0)0,(0)n n f f ffa -=====Û()()!!n nna a f x x x x n n a =+ (2)0()x xn f t dt kt dtòò 2. 渐近线渐近线(含斜): (1)()lim ,lim[()]x x f x a b f x ax x®¥®¥==-()f x ax b a Þ++第 4 4 页页 共 30 30 页页 (2)()f x ax b a =++,(10x®) 3. 连续性连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质上连续函数性质 1. 连通性连通性: ([,])[,]f a b m M = (注:01l "<<, “平均”值:0()(1)()()f a f b f x l l +-=) 2. 介值定理介值定理: (附: 达布定理) (1)零点存在定理: ()()0f a f b <0()0f x Þ=(根的个数); (2)()0(())'0x a a f x f x dx =Þ=ò. 第二讲:导数及应用(一元)(含中值定理)一. 基本概念: 1. 差商与导数差商与导数: '()f x =0()()lim x f x x f x x®+-; 0'()f x =000()()lim x x f x f x x x ®-- (1)0()(0)'(0)lim x f x f f x ®-= (注:0()lim (x f x A f x ®=连续)(0)0,'(0)f f A Þ==) (2)左右导: ''00(),()f x f x -+; (3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+Þ= (1)可微Û可导; (2)比较,f df D 与"0"的大小比较(图示); 二. 求导准备: 1. 基本初等函数求导公式基本初等函数求导公式; (注: (())'f x ) 2. 法则法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤): 第 5 5 页页 共 30 30 页页 1. 定义导定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()lim h f x h f x h h®+-- (注: 00()(),x x F x f x x x a ¹ì=í=î, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导初等导(公式加法则): (1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xa F x f t dt =òò, 求:'()F x (注: ((,))',((,))',(())'xbba a a f x t dt f x t dt f t dt òòòòòò) (3)0102(),()x x f x y x x f x <ì=í³î,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式隐式((,)0f x y =)导: 22,dy d ydx dx (1)存在定理; (2)微分法(一阶微分的形式不变性). (3)对数求导法. 4. 参式导参式导(数一,二): ()()x x t y y t =ìí=î, 求:22,dy d ydx dx 5. 高阶导高阶导()()n f x 公式: 注: ()(0)n f 与泰勒展式: 2012()nnf x a a x a x a x =+++++()(0)!n nf a n Þ=四. 各类应用: 1. 斜率与切线斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线) 2. 物理物理: (相对相对)变化率-速度; 3. 曲率曲率(数一二): 23"()(1'())f x f x r =+(曲率半径, 曲率中心, 曲率圆) 4. 边际与弹性边际与弹性(数三): (附: 需求, 收益, 成本, 利润)第 6 6 页页 共 30 30 页页五. 单调性与极值(必求导) 1. 判别判别(驻点0'()0f x =): (1) '()0()f x f x ³Þ; '()0()f x f x £Þ; (2)分段函数的单调性分段函数的单调性 (3)'()0f x >Þ零点唯一; "()0f x >Þ驻点唯一(必为极值,最值). 2. 极值点极值点: (1)表格('()f x 变号); (由0002'()'()''()lim 0,lim 0,lim 00xx x x x x f x f x f x x x x x ®®®¹¹¹Þ=的特点) (2)二阶导(0'()0f x =) 注(1)f 与',"f f 的匹配('f 图形中包含的信息); (2)实例: 由'()()()()f x x f x g x l +=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明不等式证明(()0f x ³) (1)区别: *单变量与双变量单变量与双变量? *[,]x a b Î与[,),(,)x a x Î+¥Î-¥+¥? (2)类型: *'0,()0f f a ³³; *'0,()0f f b £³ (3)注意: 单调性Å端点值Å极值Å凹凸性. (如: max ()()f x M f x M £Û=) 4. 函数的零点个数函数的零点个数: 单调Å介值介值 六. 凹凸与拐点(必求导!): 1. "y Þ表格; (0"()0f x =) 2. 应用应用: (1)泰勒估计泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论结论: ()()'()()0F b F a F f x x =Þ==第 7 7 页页 共 30 30 页页 2. 辅助函数构造实例辅助函数构造实例: (1)()f x Þ()()x a a F x f t dt=ò (2)'()()()'()0()()()f g f g F x f x g x x x x x +=Þ= (3)()'()()()'()0()()f x fg f g F x g x x x x x -=Þ= (4)'()()()0f f x l x x +=Þ()()()x dxF x e f x l ò=; 3. ()()0()n ff x x =Û有1n +个零点(1)()n fx -Û有2个零点个零点 4. 特例特例: 证明()()n f a x =的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定) 5. 注: 含12,x x 时,分家!(柯西定理) 6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b "Î,[,]a b x $Î,使:'()f c x = 八. 拉格朗日中值定理拉格朗日中值定理 1. 结论结论: ()()'()()f b f a f b a x -=-; (()(),'()0a b j j x j x <Þ$'>) 2. 估计估计: '()f f x x =九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x x =+-+-+-; 2. 应用应用: 在已知()f a 或()f b 值时进行积分估计值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学 一. 基本概念: 1. 原函数原函数()F x : (1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+ò第 8 8 页页 共 30 30 页页 注(1)()()x aF x f t dt=ò(连续不一定可导); (2)()()()()xx aax t f t dt f t dt f x -ÞÞòò (()f x 连续) 2. 不定积分性质不定积分性质: (1)(())'()f x dx f x =ò; (())()d f x dx f x dx =ò (2)'()()f x dx f x c =+ò; ()()df x f x c=+ò二. 不定积分常规方法 1. 熟悉基本积分公式熟悉基本积分公式熟悉基本积分公式 2. 基本方法基本方法: 拆(线性性) 3. 凑微法凑微法(基础): 要求巧要求巧,简,活(221sin cos x x =+) 如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2dxd x x = 4. 变量代换变量代换: (1)常用(三角代换,根式代换,倒代换): 1sin ,,,1xx t ax b t t e t x =+==+= (2)作用与引伸(化简): 21x x t ±-= 5. 分部积分分部积分(巧用): (1)含需求导的被积函数(如ln ,arctan ,()xaxxf t dtò); (2)“反对幂三指”: ,ln ,n axnx e dxxxdxòò (3)特别: ()xf x dxò (*已知()f x 的原函数为()F x ; *已知已知'()()f x F x =) 6. 特例特例: (1)11sin cos sin cos a x b x dx a x b x ++ò; (2)(),()sin kx p x e dx p x axdxòò快速法; (3)()()n v x dx u x ò 三. 定积分: 1. 概念性质概念性质: (1)积分和式(可积的必要条件:有界, 充分条件:连续) 第 9 9 页页 共 30 30 页页 (2)几何意义(面积,对称性,周期性,积分中值) (3)附: ()()b a f x dx M b a £-ò, ()()()bba af xg x dx Mg x dx £òò) (4)定积分与变限积分, 反常积分的区别联系与侧重反常积分的区别联系与侧重 2: 变限积分变限积分()()xa x f t dt F =ò的处理(重点) (1)f 可积ÞF 连续, f 连续ÞF 可导可导 (2)(())'xa f t dt ò()f x =; (()())'()xx aax t f t dt f t dt-=òò; ()()()xa f x dt x a f x =-ò (3)由函数()()xaF x f t dt=ò参与的求导, 极限, 极值, 积分(方程)问题问题 3. N L -公式: ()()()ba f x dx Fb F a =-ò(()F x 在[,]a b 上必须连续!) 注: (1)分段积分分段积分, 对称性(奇偶), 周期性周期性 (2)有理式, 三角式, 根式根式 (3)含()ba f t dt ò的方程. 4. 变量代换变量代换: ()(())'()ba f x dxf u t u t dt ba=òò (1)00()()()aaf x dx f a x dx x a t =-=-òòòò, (2)0()()()[()()]a a aa af x dx f x dx x t f x f x dx--=-=-=+-òòò (如:4411sin dx xpp -+ò) (3)2201sin nn n n I xdx I n p--==ò, (4)2200(sin )(cos )f x dxf x dx pp=òò; 200(sin )2(sin )f x dxf x dx pp=òò, (5)00(sin )(sin )2xf x dx f x dx p pp =òò, 5. 分部积分分部积分分部积分 (1)准备时“凑常数” (2)已知'()f x 或()xaf x =ò时, 求()baf x dx ò 6. 附: 三角函数系的正交性: 第 10 10 页页 共 30 30 页页四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +¥+¥-¥-¥òòò (()f x 连续) (2)()ba f x dx ò: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断) 2. 敛散; 3. 计算: 积分法积分法ÅN L -公式Å极限(可换元与分部) 4. 特例: (1)11p dx x +¥ò; (2)101pdx xò 五. 应用: (柱体侧面积除外柱体侧面积除外) 1. 面积面积, (1)[()()];b a S f x g x dx=-ò (2)1()dcS f y dy -=ò; (3)21()2S r d b aq q =ò; (4)侧面积:22()1'()b aS f x f x dx p =+ò 2. 体积体积: (1)22[()()]b x a V f x g x dx p =-ò; (2)12[()]2()dby caV f y dyxf x dx p p-==òò (3)0x x V =与0y y V = 3. 弧长弧长: 22()()ds dx dy =+ (1)(),[,]y f x x a b =Î 21'()bas fx dx =+ò (2)12(),[,]()x x t t t t y y t =ìÎí=î 2122'()'()t t s x t y t dt =+ò (3)(),[,]r r q q a b =Î: 22()'()s r r d baq q q=+ò 4. 物理物理(数一,二)功,引力,水压力,质心, 5. 平均值平均值(中值定理): (1)1[,]()ba f ab f x dx b a =-ò; (2)0()[0)lim xx f t dt f x®+¥+¥=ò, (f 以T 为周期:0()Tf t dt f T=ò) 第 11 11 页页 共 30 30 页页 第四讲: 微分方程一. 基本概念基本概念 1. 常识常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2. 变换方程变换方程: (1)令()'""x x t y Dy =Þ=(如欧拉方程) (2)令(,)(,)'u u x y y y x u y =Þ=Þ(如伯努利方程) 3. 建立方程建立方程(应用题)的能力的能力 二. 一阶方程: 1. 形式形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b = 2. 变量分离型变量分离型: '()()y f x g y = (1)解法: ()()()()dyf x dx G y F x Cg y =Þ=+òò (2)“偏”微分方程: (,)zf x y x ¶=¶; 3. 一阶线性一阶线性(重点): '()()y p x y q x += (1)解法(积分因子法): 0()01()[()()]()xx p x dxxx M x ey M x q x dx y M x ò=Þ=+ò (2)变化: '()()x p y x q y +=; (3)推广: 伯努利(数一) '()()y p x y q x y a+= 4. 齐次方程齐次方程: '()yy x=F (1)解法: '(),()y du dx u u xu ux u u x =Þ+=F =F -òò (2)特例: 111222a xb yc dy dx a x b y c ++=++第 12 12 页页 共 30 30 页页 5. 全微分方程全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y¶¶=¶¶ 6. 一阶差分方程一阶差分方程(数三): 1*0()()xx x x xn x xy ca y ay b p x y x Q x b+=ì-=Þí=î 三. 二阶降阶方程二阶降阶方程 1. "()y f x =: 12()y F x c x c =++ 2. "(,')y f x y =: 令'()"(,)dp y p x y f x p dx=Þ== 3. "(,')y f y y =: 令'()"(,)dp y p y y pf y p dy=Þ==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构通解结构: (1)齐次解: 01122()()()y x c y x c y x =+ (2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c l l ++= (2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程. 3. 欧拉方程欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =Þ=-=五. 应用(注意初始条件): 1. 几何应用几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距切线和法线的截距 2. 积分等式变方程积分等式变方程(含变限积分); 可设可设 ()(),()0xa f x dx F x F a ==ò第 13 13 页页 共 30 30 页页 3. 导数定义立方程导数定义立方程: 含双变量条件()f x y +=的方程的方程 4. 变化率变化率(速度) 5. 22dv d x F ma dt dt=== 6. 路径无关得方程路径无关得方程(数一): Q Px y ¶¶=¶¶ 7. 级数与方程级数与方程: (1)幂级数求和; (2)方程的幂级数解法:21201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题弹性问题(数三) 第五讲: 多元微分与二重积分一. 二元微分学概念二元微分学概念 1. 极限极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y D =++D =+D =+ (2)lim ,lim ,limy x x y f f f f f xyD D D ==D D (3)22,lim()()x y f df f x f y df x y D -++ (判别可微性判别可微性) 注: (0,0)点处的偏导数与全微分的极限定义: 2. 特例特例: (1)22(0,0)(,)0,(0,0)xyx y f x y ì¹ï+=íï=î: (0,0)点处可导不连续; 第 14 14 页页 共 30 30 页页 (2)22(0,0)(,)0,(0,0)xy f x y x y ì¹ï=+íï=î: (0,0)点处连续可导不可微; 二. 偏导数与全微分的计算: 1. 显函数一显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)x x y z ; (3)含变限积分含变限积分 2. 复合函数的一复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y = 熟练掌握记号''"""12111222,,,,f f f f f 的准确使用的准确使用 3. 隐函数隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =ìí=î (存在定理) (2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别) 2. 条件极值条件极值(拉格朗日乘数法) (注: 应用) (1)目标函数与约束条件: (,)(,)0z f x y x y j =Å=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y l lj =+, 求驻点即可. 3. 有界闭域上最值有界闭域上最值(重点). (1)(,){(,)(,)0}z f x y M D x y x y j =ÅÎ=£ (2)实例: 距离问题距离问题第 15 15 页页 共 30 30 页页四. 二重积分计算: 1. 概念与性质概念与性质(“积”前工作): (1)Dd s òò, (2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称字母轮换对称; *重心重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶奇偶 2. 计算计算(化二次积分): (1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用极坐标使用(转换): 22()f x y + 附: 222:()()D x a y b R -+-£; 2222:1x yD a b+£; 双纽线222222()()x y a x y +=- :1D x y +£ 4. 特例特例: (1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +òò, 且已知D 的面积D S 与重心(,)x y 5. 无界域上的反常二重积分无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L s WÞW W G S ò): 1. “尺寸”: (1)D Dd S s Ûòò; (2)曲面面积(除柱体侧面); 2. 质量质量, 重心(形心), 转动惯量; 3. 为三重积分为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三) 一. 级数概念级数概念第 16 16 页页 共 30 30 页页 1. 定义定义: (1){}n a , (2)12n n S a a a =+++; (3)l im lim n n S ®¥ (如1(1)!n nn ¥=+å) 注: (1)lim nn a ®¥; (2)nq å(或1n a å); (3)“伸缩”级数:1()n n a a +-å收敛{}n a Û收敛. 2. 性质性质: (1)收敛的必要条件: lim 0n n a ®¥=; (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +®®Þ®Þ®; 二. 正项级数正项级数 1. 正项级数正项级数: (1)定义: 0n a ³; (2)特征: n S ; (3)收敛n S M Û£(有界) 2. 标准级数标准级数: (1)1p n å, (2)ln kn n a å, (3)1ln kn n å 3. 审敛方法审敛方法: (注:222ab a b £+,ln ln baa b=) (1)比较法(原理):np ka n(估计), 如1()nf x dx ò; ()()P n Q n å (2)比值与根值: *1lim n n n u u+®¥ *lim nn n u ®¥ (应用: 幂级数收敛半径计算) 三. 交错级数(含一般项): 1(1)n n a +-å(0n a >) 1. “审”前考察: (1)0?n a > (2)0?n a ®; (3)绝对(条件)收敛? 注: 若1lim 1n n n a a r +®¥=>,则nu å发散发散 2. 标准级数标准级数: (1)11(1)n n +-å; (2)11(1)n pn +-å; (3)11(1)ln n pn +-å 3. 莱布尼兹审敛法莱布尼兹审敛法(收敛?) (1)前提: na å发散; (2)条件: ,0nn a a ®; (3)结论: 1(1)n n a +-å条件收敛. 第 17 17 页页 共 30 30 页页 4. 补充方法补充方法: (1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +®®Þ®Þ®. 5. 注意事项注意事项: 对比对比对比 na å; (1)nna -å; na å; 2n a å之间的敛散关系之间的敛散关系四. 幂级数: 1. 常见形式常见形式: (1)nn a x å, (2)0()n n a x x -å, (3)20()nn a x x -å 2. 阿贝尔定理阿贝尔定理: (1)结论: *x x =敛*0R x x Þ³-; *x x =散*0R x x Þ£- (2)注: 当*x x =条件收敛时*R x x Þ=- 3. 收敛半径收敛半径,区间,收敛域(求和前的准备) 注(1),nn n n a na x x n åå与n n a x å同收敛半径同收敛半径 (2)nn a x å与20()nn a x x -å之间的转换之间的转换 4. 幂级数展开法幂级数展开法: (1)前提: 熟记公式(双向,标明敛域) (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx fÞ=+ò (4)考察原函数: 0()()xg xf x dxò()'()f x g x Þ= 5. 幂级数求和法幂级数求和法(注: *先求收敛域, *变量替换变量替换): (1)(),S x =+åå (2)'()S x =,(注意首项变化) (3)()()'S x =å, (4)()"()"S x S x Þ的微分方程的微分方程第 18 18 页页 共 30 30 页页 (5)应用:()(1)n n n n a a x S x a SÞ=Þ=ååå. 6. 方程的幂级数解法方程的幂级数解法方程的幂级数解法 7. 经济应用经济应用(数三): (1)复利: (1)nA p +; (2)现值: (1)nA p -+ 五. 傅里叶级数(数一): (2T p =) 1. 傅氏级数傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ¥==++å 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x Þ(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdxa f x dx nb f x nxdx ppp pp p p pp ---ì=ïï==íï=ïîòòò 4. 题型题型: (注: ()(),?f x S x x =Î) (1)2T p =且(),(,]f x x p p =Î-(分段表示) (2)(,]x p p Î-或[0,2]x p Î (3)[0,]x p Î正弦或余弦正弦或余弦 *(4)[0,]x p Î(T p =) *5. 2T l = 6. 附产品附产品: ()f x Þ01()cos sin 2n n n a S x a nx b nx ¥==++å 第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算向量基本运算第 19 19 页页 共 30 30 页页 1. 12k a kb +; (平行b a l Û=) 2. a ; (单位向量(方向余弦) 1(cos ,cos ,cos )aaaa b g =) 3. a b ×; (投影:()a a b b a ×=; 垂直垂直:0a b a b ^Û×=; 夹角夹角:(,)a b ab a b ×=) 4. a b ´; (法向:,n a b a b=´^; 面积面积:S a b =´) 二. 平面与直线平面与直线 1.平面平面P (1)特征(基本量): 0000(,,)(,,)M x y z n A B C Å= (2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D p -+-+-=Þ+++= (3)其它: *截距式截距式1x y za b c++=; *三点式三点式三点式 2.直线直线L (1)特征(基本量): 0000(,,)(,,)M x y z s m n p Å= (2)方程(点向式): 000:x x y y z z L m n p ---== (3)一般方程(交面式): 1111222200A x B y C z D A x B y C z D +++=ìí+++=î (4)其它: *二点式二点式; *参数式参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-ìï=+-Îíï=+-î) 3. 实用方法实用方法: (1)平面束方程: 11112222:()0A x B y C z D A x B y C z D p l +++++++=第 20 20 页页 共 30 30 页页 (2)距离公式: 如点如点0(,)M x y 到平面的距离000222Ax By Cz Dd A B C+++=++ (3)对称问题; (4)投影问题. 三. 曲面与空间曲线(准备) 1. 曲面曲面曲面 (1)形式S : (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F a b g =Þ (或(,1)x y n z z =--) 2. 曲线曲线曲线 (1)形式():()()x x t y y t z z t =ìïG =íï=î, 或(,,)0(,,)0F x y z G x y z =ìí=î; (2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =´) 3. 应用应用应用 (1)交线, 投影柱面与投影曲线; (2)旋转面计算: 参式曲线绕坐标轴旋转参式曲线绕坐标轴旋转; (3)锥面计算. 四. 常用二次曲面常用二次曲面 1. 圆柱面圆柱面: 222x y R += 2. 球面球面: 2222x y z R ++= 变形: 2222x y R z +=-, 222()z R x y =-+, 3. 锥面锥面: 22z x y =+ 变形: 222x y z +=, 22z a x y =-+ 4. 抛物面抛物面: 22z x y =+, 第 21 21 页页 共 30 30 页页 变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面双曲面: 2221x y z +=± 6. 马鞍面马鞍面: 22z x y =-, 或z xy = 五. 偏导几何应用偏导几何应用 1. 曲面曲面曲面 (1)法向: (,,)0(,,)x y z F x y z n F F F =Þ=, 注: (,)(,1)x y z f x y n f f =Þ=- (2)切平面与法线: 2. 曲线曲线曲线 (1)切向: (),(),()(',',')x x t y y t z z t s x y z ===Þ= (2)切线与法平面切线与法平面 3. 综合综合: :G 00F G =ìí=î , 12s n n=´ 六. 方向导与梯度(重点) 1. 方向导方向导(l 方向斜率): (1)定义(条件): (,,)(cos ,cos ,cos )l m n p a b g =Þ (2)计算(充分条件:可微): cos cos cos x y z uu u u la b g ¶=++¶ 附: 0(,),{cos ,sin }z f x y l q q==cos sin x y z f f lq q ¶Þ=+¶ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lq q q q¶=++¶ 2. 梯度梯度(取得最大斜率值的方向) G : (1)计算: (2)结论结论()b 取l G =为最大变化率方向; 第 22 22 页页 共 30 30 页页 ()c 0()G M 为最大方向导数值. 第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Wòòò) 1. W 域的特征(不涉及复杂空间域): (1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心关于重心 (2)投影法: 22212{(,)}(,)(,)xyD x y x y R z x y z z x y =+£Å££ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+£Å££ (4)其它: 长方体长方体, 四面体四面体, 椭球椭球椭球 2. f 的特征: (1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法选择最适合方法: (1)“积”前: *dvWòòò; *利用对称性(重点) (2)截面法(旋转体): ()baD z I dzfdxdy=òòò(细腰或中空, ()f z , 22()f x y +) (3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdyfdz=òòò (4)球坐标(球或锥体): 220sin ()RI ddf d paqj jr r=×××òòò, (5)重心法(f ax by cz d =+++): ()I ax by cz d V W =+++ 4. 应用问题应用问题: (1)同第一类积分: 质量质量, 质心, 转动惯量, 引力引力 (2)Gauss 公式公式 二. 第一类线积分(Lfds ò) 1. “积”前准备: 第 23 23 页页 共 30 30 页页 (1)Lds L =ò; (2)对称性; (3)代入“L ”表达式表达式 2. 计算公式计算公式: 22()[,]((),())'()'()()b a L x x t t a b fds f x t y t x t y t dt y y t =ìÎÞ=+í=îòò 3. 补充说明补充说明: (1)重心法: ()()Lax by c ds ax by c L ++=++ò; (2)与第二类互换: LLA ds A drt ×=×òò 4. 应用范围应用范围应用范围 (1)第一类积分第一类积分 (2)柱体侧面积柱体侧面积 (),Lz x y ds ò三. 第一类面积分(fdS åòò) 1. “积”前工作(重点): (1)dS S=S òò; (代入代入:(,,)0F x y z S =) (2)对称性(如: 字母轮换, 重心) (3)分片分片 2. 计算公式计算公式: (1)22(,),(,)(,,(,))1xyxy x yD z z x y x y D I f x y z x y z z dxdy =ÎÞ=++òò (2)与第二类互换: A ndSA d S S S×=×òòòò四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +ò (其中其中L 有向) 1. 直接计算直接计算: ()()x x t y y t =ìí=î,2112:['()'()]t t t t t I Px t Qy t dt®Þ=+ò 常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: 第 24 24 页页 共 30 30 页页 (1)()LDQ P Pdx Qdy dxdy xy¶¶+=-¶¶òòò; (2)()L A B ®ò: *P Q y y ¶¶=Þ¶¶换路径; *P Q y y ¶¶¹Þ¶¶围路径围路径 (3)Lò(x y Q P =但D 内有奇点) *LL =òò(变形) 3. 推广推广(路径无关性):P Qy y ¶¶=¶¶ (1)Pdx Qdy du +=(微分方程)()BA L AB u ®Û=ò(道路变形原理) (2)(,)(,)LP x y dx Q x y dy +ò与路径无关(f 待定): 微分方程微分方程. 4. 应用应用应用 功(环流量):IF dr G=×ò (G 有向t ,(,,)F P Q R =,(,,)d r ds dx dy dz t ==) 五. 第二类曲面积分: 1. 定义定义: Pdydz Qdzdx RdxdyS ++òò, 或(,,)R x y z dxdySòò (其中其中S 含侧) 2. 计算计算: (1)定向投影(单项): (,,)R x y z dxdySòò, 其中:(,)z z x y S =(特别:水平面); 注: 垂直侧面, 双层分隔双层分隔 (2)合一投影(多项,单层): (,,1)x y n z z =-- (3)化第一类(S 不投影): (cos ,cos ,cos )n a b g = 3. Gauss 公式及其应用: (1)散度计算: P Q R div A x y z¶¶¶=++¶¶¶ (2)Gauss 公式: S 封闭外侧, W 内无奇点内无奇点 (3)注: *补充“盖”平面:0SS +òòòò; *封闭曲面变形Sòò(含奇点) 4. 通量与积分通量与积分: 第 25 25 页页 共 30 30 页页A d S åF =×òò (S 有向n ,(),,A P QR =,(,,)d S ndS dydz dzdx dxdy ==) 六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz G++ò 1. 参数式曲线参数式曲线G : 直接计算(代入) 注(1)当0rot A =时, 可任选路径; (2)功(环流量):IF drG=×ò 2. Stokes 公式: (要求: G 为交面式(有向), 所张曲面所张曲面å含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z¶¶¶=Ñ´=´¶¶¶ (2)交面式(一般含平面)封闭曲线: 00F G =ìÞí=î同侧法向{,,}x y z n F FF =或{,,}x y zG G G ; (3)Stokes 公式(选择): ()A drA ndSG å×=Ñ´×òòò (a )化为Pdydz Qdzdx RdxdyS++òò; (b )化为(,,)R x y z dxdySòò; (c )化为fdS åòò高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xay=),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1.类型:(1) 数列:* a n f(n);(2) 初等函数:⑶分段函数:*F(x)an 1f(a n)f i (x) x X of2(X ),X X o ; *F(X)⑷复合洽f )函数:y f(u), u (x)⑸隐式(方程): F(x, y) 0X ⑺变限积分函数:F(x) f(x,t)dta(8)级数和函数(数一,三):S(x)a n X n , Xn 02.特征(几何):,0 , 00, 1 1n n 1, a n (a 0) 1, (a n b nf(x) x X a 'x x 0(6)参式(数一,二):x x(t) y y(t)(1)单调性与有界性 (判别);(f(x)单调 X 0, (X (2)奇偶性与周期性 (应用).3.反函数与直接函数 y f(x) xf 2 3 4 1(y) 二.极限性质: 1.类型:* lim a n ;lim f (x)(含 xX);x °)( f (x) f (x 。
))定号)y f 1(x)f (x)洽 x X 0 )1 -(x 0) xlim x xx 01,limx0,n..ln x lim 0,x xlim xln n x 0,x 0 1.等价无穷小:当u (x ) sin u(x): u(x); tan u(x): u(x); cosu(x) : 1 u 2(x);e u(x) 1: u(x); ln(1 u(x)):u(x);(1 u(x))1: u(x);arcsin u (x): u(x);arcta n u(x): u(x)2.泰勒公式: x / (1) e 1 x (2) ln(1 x) (3) sinx (4) COSx 1 2x 2! 1 2 x x 2 1 3x3! 1 2 x2! o(x 2); o(x 2); o(x 4); ⑸(1 x ) 1 45x o(x ); 4!(1) 2 (2、x o(x ). 2!五•常规方法: 前提:(1)准确判断 ,M (其它如:,0,00,1); (2)变量代换(如: t )x1.抓大弃小(一),2.无穷小与有界量乘积 (注:sin 1 x1,x3. 1处理(其它如 :00, 0) 4.左右极限(包括 ):x /⑵e (x);1e x (x0);(3)分段函数:x , [x], max f (x)5. 无穷小等价替换6. 洛必达法则 (因式中的无穷小)(注:非零因子)(1)先”处理”后法则(最后方法);(注意对比:lim 与|im 凶竺)0 x 11 x x 0 1 x1 1 1 1 1(2) 幕指型处理:u(x)心 e v(x)lnu(x)(如:e 亍 e x (e^ ' 1))(3) 含变限积分;(4) 不能用与不便用 泰勒公式(皮亚诺余项):处理和式中的无穷小 极限函数:f (x) lim F (x, n)(分段函数)n非常手段 收敛准则: (1) a nf (n) lim f (x)x(2) 双边夹:* b n a n c n ?, *b n ,c na? (3) 单边挤:a n 1 f (a n ) * a 2a/ * a .M ? * f '(x) 0?7.8. 六. 1.2. 3. 4. 5.七. 1.2.3. 八.导数定义(洛必达?): limf '(X 。
)Vx 0Vx积分和:limbf —)nnn f(2) L f(n)]n n10 f(x)dx , 中值定理:lim[ f (x xa) f (x)] a lim xf'() 级数和(数一三):(1) a n 收敛 lim a nn 1 n2n n! 0, (如 lim n ) n n (2) lim( a 1 a 2 L a n ) a nn n 1(3){a n }与 (a n a n 1)同敛散n 1常见应用:无穷小比较(等价,阶):* f (x) : kx n ,( x 0)?[a,b]上连续函数性质(1) f(0) f'(0) L(n 1}(0) 0, f (n) (0) a f(x)a n xn!nan(x):n!xx(2) 0 f(t)dt : 渐近线(含斜): 叫x(1) a limx (2) f(x) 连续性:\t n dtax blim[ f (x) ,(-0) x(1)间断点判别(个数);ax] f (x) : ax b ⑵分段函数连续性(附:极限函数,f '(x)连续性)1. 连通性:f ([a,b]) [m,M ](注:02. 介值定理:(附:达布定理)1,平均”值:f(a) (1 )f(b) f(x o)) (1)零点存在定理:f (a) f (b) 0 f (x o) 0(根的个数);x⑵ f(x) 0 ( f(x)dx)' 0.a第二讲:导数及应用(一元)(含中值定理).基本概念:f (x Vx)1.差商与导数:f '(x) lim f (X);f'(X°)lim f(x) f(X0)Vx 0 Vx X x x X0(1) f '(0) lim f(x) f(0)(注:lim f(x) A(f连续)f(0) 0, f '(0) A)x0x x 0 X(2)左右导:f (X°), f (X°);(3)可导与连续;(在x 0处,x连续不可导;X X可导)2.微分与导数:Vf f(x Vx) f(x) f '(x)Vx o(Vx) df f '(x)dx(1)可微可导;⑵比较f,df与"0"的大小比较(图示);二.求导准备:1. 基本初等函数求导公式;(注:(f(x))')dx 12. 法则:(1)四则运算;(2)复合法则;⑶反函数一dy y'三.各类求导(方法步骤):1. 定义导:(1)f'(a)与f'(x)xa; (2)分段函数左右导;(3)lim f(X h) f(x h)h 0hF(x) x x(注:f(x) , ,求:f '(x0), f '(x)及f'(X)的连续性)a x x02. 初等导(公式加法则):(1) u f[g(x)],求:u '(x0 )(图形题);x x b b ⑵ F(x) a f(t)dt,求:F'(x) (注: ( a f(x,t)dt)', ( a f(x,t)dt)', ( a f(t)dt)')f1(x) x x0' '⑶y £ /、,,求f (x°), f帆)及f '(X。
)(待定系数)f2 (x) x xdy d 2y , 2 dx dx(1) 存在定理;(2) 微分法(一阶微分的形式不变性). (3) 对数求导法.(2)二阶导(f '(X Q ) 0)注(1) f 与f ',f"的匹配(f '图形中包含的信息);3. 4.5. 四. 1. 2. 3. 4. 五. 1. 2. 隐式(f (x, y)0)导: x 参式导(数一,二):y2x (t ),求:d y ,d _y y(t) dx dx 高阶导f (n )(x)公式:/ ax 、(n) n ax(e ) a e(斗)(n) a bxb n n! (a bx)n 1(sin ax)(n) a n sin(ax2 n);(cosax)⑴ a n cos(ax(uv)(n) u (n)v c n u (n1)v' C ^u (n 2) v" L注:f (n)(0)与泰勒展式:f (x)a 0 a 1x a 2X 2Ln ia n X La nf (n )(0) n!各类应用:斜率与切线(法线);(区别:yf (x)上点M 。
和过点M 。
的切线)物理:(相对)变化率 速度; 曲率(数一二):f"(x) f'2(x))3(曲率半径,曲率中心,曲率圆)边际与弹性(数三): 单调性与极值(必求导)(附: 需求,收益,成本,利润) 判别(驻点f '(x 。
) 0):(1) f '(x) 0 f (x)Zf'(x)0 f (x)](2)分段函数的单调性 (3) f '(x) 0 零点唯一;f"(x) 0 驻点唯一(必为极值,最值).极值点:(1)表格(f '(x)变号);(由limx x f'(x) x0,lim f '(x)x X Q0,lim¥x 冷 xx 0的特点)⑵实例:由f'(x) (x)f(x) g(x)确定点’X Xo”的特点•(3) 闭域上最值(应用例:与定积分几何应用相结合,求最优)3.不等式证明(f (x) 0)(1)区别:*单变量与双变量?*x [a, b]与x [a, ),x ( , )?(2)类型: * f' 0, f(a) 0; * f ' 0, f (b) 0* f" 0, f (a), f (b) 0; * f "(x) 0, f'(x。
)0, f(x。
)0⑶注意:单调性端点值极值凹凸性•(如:f(X) M f max(x) M )4. 函数的零点个数:单调介值六.凹凸与拐点(必求导!):1. y"表格;(f"(X o) 0)2. 应用:⑴泰勒估计;(2) f '单调;(3)凹凸.七.罗尔定理与辅助函数:(注:最值点必为驻点)1.结论:F(b) F(a) F'( ) f() 02.辅助函数构造实例:(1) f( ) F(x) xa f(t)dt(2) f'( )g( )f( )g'() 0 F(x) f(x)g(x)(3) f'( )g( )f( )g'() 0 F(x)f(x) g(x)⑷f'( ) ()f( )0 F(x) e (x)dx f(x);3. f(n)( ) 0 f (x)有n 1个零点f(n1)(x)有2个零点4. 特例:证明f(n)( ) a的常规方法:令F(x) f(x) P n(x)有n 1个零点(R(x)待定)5. 注:含1, 2时分家!(柯西定理)6.附(达布定理):f (x)在[a,b]可导,c [ f '(a), f '(b)],八.拉格朗日中值定理1.结论:f(b) f(a) f'( )(b a); ( (a) (b)[a,b],使:f'( ) c '()0)2•估计:Vf f '( )Vx九泰勒公式(连接f , f ', f "之间的桥梁)1 211. 结论:f(x) f(X o) f'(x°)(x X o) - f "(X o)(X X o) -f"'( )(x2. 应用:在已知f (a)或f (b)值时进行积分估计十.积分中值定理(附:广义):[注:有定积分(不含变限)条件时使用]第三讲:一元积分学—■.基本概念:1.原函数F(x):(1) F '(x) f (x); (2) f(x)dx dF(x); (3) f (x)dxX注(1) F (x) f (t)dt(连续不一定可导);ax x(2) a (x t)f(t)dt a f(t)dt f (x) ( f (x)连续)2. 不定积分性质:(1) ( f (x)dx)' f (x); d( f (x)dx) f (x)dx(2) f '(x)dx f (x) c; df (x) f (x) c二不定积分常规方法1. 熟悉基本积分公式F(x) c2. 基本方法:拆(线性性)(k1f (x) k2g(x))dx k1f (x)dx k2g(x)dx3. 凑微法(基础):要求巧简活(1・2sin x 2cos x)4.1女口: dx d (ax b), xdx a—x dx d.1 x2,-1 x2变量代换:Sx2,2dx dlnx, dxV x(1 In x)dx d(xln x)(1)常用(三角代换,根式代换,倒代换):x sint, . ax b t,1t, .e xx⑵作用与引伸(化简):x21 x t5.分部积分(巧用):x(1) 含需求导的被积函数(如In x,arctan x, f (t)dt );a(2) 反对幕三指 ”: x n e ax dx, x n ln xdx,(3) 特别: xf (x)dx (*已知f (x)的原函数为F(x);*已知f'(x) F(x))6.特例:(1)a1 sin x_dx ; (2) p(x)e kxdx, p(x)sin axdx 快速法;⑶a sinxb cosx三.定积分: 1•概念性质:(1) 积分和式(可积的必要条件:有界,充分条件:连续) (2) 几何意义(面积,对称性,周期性,积分中值)x(x) f(t)dt 的处理(重点)a⑶附:* ax x0 bf(x)dx a dx(a 0) a 2;8bf (x)g(x)dxM (b a),ba(xa b 、’小 )dx 0 2 a g(x)dx )(4)定积分与变限积分 ,反常积分的区别联系与侧重(1) f 可积连续,f 连续可导x⑵(a f(t)dt)'xf(x); ( a (x t)f(t)dt)'f(t)dt ;xa f(x)dt (x a) f (x)(3)由函数F (x)x f (t)dt 参与的求导,极限,极值,积分(方程)问题 3. N L 公式: b f (x)dx F(b) F(a) (F(x)在[a,b]上必须连续!)a注:(1)分段积分,对称性(奇偶),周期性 (2)有理式,三角式,根式 bf (t )dt 的方程. ⑶含 4.变量代换 f (x)dx f(u(t))u'(t)dt (1) a 0 f(x)dxa 0f(ax) dx(xt),aa f(x)dxa af(x)dx(xt)a1[f(x) f( x)]dx(如::忌加I n0% n n xdxuv^dx2:变限积分⑷。