【六年级】2016年走美杯试卷

合集下载

走美杯2008-2015年试题及答案

走美杯2008-2015年试题及答案
14. 一种电子表在 8 时 31 分 25 秒时的显示为 8:3125,那么从 7 时到 8 时这段时间里,此表 的 5 个数字都不相同的时刻一共有________个;
15. 同学们,你玩过“扫雷”的游戏吗?在 64 个方格内一共有 10 个地雷,每格中至多有一 个,对于填有数字的方格,其格内无地雷且与其相邻的所有方格中地雷的个数与该数字 相等。你认为图中所标的数字_________是有雷的;
3.三个正方形如图放置,中心都重合,它们的边长一次是1厘米、3厘米、5厘米,图中阴影部分的面积是 ________平方厘米.
4.有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成9段.第一根剪成的每段比第二根剪成的每 段长10米.原来的每根绳子长________米.
5.观察一组式 32 + 42 = 52 ,52 + 122 = 132 , 72 + 242 = 252 ,92 + 402 = 412 , ……根据以上规律,请你写出第7组的 式子:__________________.
13.某校五年级二班共有35个同学,学号依次是1到35.一天他们去春游,除了班长之外,其他34个同学分 成5组,结果发现每个小组的同学学号之和都相等;后来这34个同学又重新分成8组,结果发现每个小 组的同学学号之和还是相等.班长的学号是_________.
14.9个小等边三角形拼成了如图的大等边三角形.每个小等边三角形中都填写了一个六位数,且有公共边 的两个小等边三角形所填写的六位数恰好有一位不同.现已有小等边三角形填好数.另外6个小三角形, 共有________种填法.
方法一:已给出第4组,再写出第7组,可以依次写出来:第5组:112 + 402 = 412 , 第6组:132 + 722 = 732 ,第7组:152 + 1122 = 1132 方法二:找出式子的规律,根据规律写出相应的式子,本题规律是 (2n + 1)2 + [2n(n + 1)=]2 [2n(n + 1) + 1]2 ,则第7个式:即 n = 7 时式子为:152 + 1122 = 1132 , 原式 =2002 ÷ 0.7 ÷1.1 =2 ×1001 ÷ 0.7 ÷1.1 =2 × 7 ×11×13 ÷ 0.7 ÷1.1 =2 ×13×100 =2600 .

第三-六届“走进美妙数学花园”六年级决赛试题及答案-教学内容

第三-六届“走进美妙数学花园”六年级决赛试题及答案-教学内容

第三-六届“走进美妙数学花园”六年级决赛试题及答案-第三届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷一、填空题(共10道题,每题10分)1、印度也像中国一样有着灿烂的文化,古代印度有这样一道有趣的数学题:有一群蜜蜂,其中1/5落在牡丹花上,1/3落在栀子花上,这两者的差的三倍,飞向月季花,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去,共有()只蜜蜂。

2、在甲容器中装有浓度为10.5%的盐水90毫升,乙容器中装有浓度为11.7%的盐水210毫升,如果先从甲、乙容器中倒出同样多的盐水,再将它们分别倒入对方的容器内搅匀,结果得到浓度相同的盐水,各倒出了()毫升盐水。

3、在下图中,A为半径为3的⊙O外一点,弦BC∥AO且BC=3。

连结AC。

阴影面积等于()(∏取3.14)4、用0~9这10个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小是()。

5、从上海开车去南京,原计划中午11:30到达,但出发后车速提高了1/7,11点钟就到了,第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高1/6,到达上海时恰好11:10,上海、南京两市间的路程是()千米。

6、将0~9这10个数字填入下图的方框中,使得等式成立,现在已经填入“3”,请将其他9个数字填入(注:首位不能为0)(□□□+□-□□)×3□÷□□=20057、一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右到左1至6报数,两次都报3的恰有5名,这列士兵最多有()名。

8、两个长方形如图摆放,M为AD的中点,阴影部分的面积=()。

9、把一个大长方体木块表面上涂满红色后,分割成若干个棱长为1的小正方体,其中恰有两个面涂上红色的小正方体恰好是2005块,大长方体体积的最小值是()。

10、如图,6个3×2的小方格表拼成了6×6的大方格表,请在空白处填入1~6中的数,使得每行、每列中的数各不相同,并且原来6个3×2的小方格表中的数也各不相同。

2011年走美决赛试卷(六年级)

2011年走美决赛试卷(六年级)

第九届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛决赛注意事项:1. 考生要按要求在密封线内填好考生的有关信息.2. 不允许使用计算器. 小学六年级试卷 一、填空题Ⅰ(每题8分,共32分)1. 循环小数••3010102.1,移动前一个循环点,所得最小的数是 .2. 16个正方形拼成如图的大长方形.已知其中最小的正方形面积是1cm 2,那么大长方形的面积是 cm 2.3. 如果物价下降50%,那么原来买1件东西的钱现在就能买2件.1件变2件增加了100%,这就相当于我手中的钱增值了100%.如果物价上涨25%,相当于手中的钱贬值了 %.4. 有三个各不相同的正整数,将它们两两求和能得到三个不同的和,两两求乘积也能得到三个不同的乘积.已知其中的三个和与两个积从小到大排列依次是:6,8,11,13,18.第三个乘积是 .二、填空题Ⅱ(每题10分,共40分)5. 请将1~9填入下式的9个方框中,每个数字恰好用一次,使得算式成立.(□□□□-□□□)×□÷□=20116. 如图,一个正方形的每条边上的半圆直径都相等,每条边在半圆外的两条线段都分别长8厘米、3厘米.中间阴影面积减去四个角上阴影面积的和,差为 平方厘米.总分8 3 8 3 88====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 7. 一个正整数,它的5倍的约数比它的约数多5个.并且它与10!(即1×2×3×…×10)的最大公约数是35.这个正整数是 .8. 如图,将一个正方体分成了大、小两个长方体.大长方体的表面积是小长方体的2.5倍.大长方体的体积是小长方体的 倍.三、填空题Ⅲ(每题12分,共48分)9. 某次方程式赛车决赛中,A 、B 、C 、D 、E 、F 依次出发.比赛完毕后,他们说:A :我超过4次车,被超过5次;B :最后一圈我换胎时被3辆车超过,再也没追回来;C :我发现在这次比赛过程中,从未出现过“套圈”现象;(一辆车比另一辆车多跑1圈,称为“套圈”)D :E 紧随我冲过终点;E :最终我超过了A 一圈;F :我没被人超车过,在最后一圈时还超过别人的车一次.已知其中恰有一人说谎,那么这次决赛的名次从高到低依次是 .10. 右图的3×3表格已经固定.将4枚相同的棋子放入格子中,每个格子最多放一枚.如果要求每行、每列都有棋子.共有 种不同放法.11. 甲、乙两只精灵分别同时从A 、B 出发,在A 、B 两地间往返行走.甲的速度始终不变.每次甲、乙迎面相遇,乙都将速度提高到相遇前的4倍.甲、乙的前2次迎面相遇都在A 、B 间的某地C ,而当乙第一次回到B 时,甲离C 地60米.A 、B 间的路程是 米.12. 请将1~8这8个自然数填在右图的8个方框中,再在相邻两方格上的圆圈中填入一个数,使得这个数等于这两个方格中左边数的2倍与右边数的差(大减小).设7个圆圈所填数的总和为S . S 的最大值为 .当S 取最大值时,方格中的数共有 种不同的填法.。

“走美杯”小学数学竞赛试卷(六年级初赛b卷)

“走美杯”小学数学竞赛试卷(六年级初赛b卷)

“走美杯”小学数学竞赛试卷(六年级初赛B卷)一、填空题I(每题8分,共40分)1.(8分)183×279×361﹣182×278×360的计算结果是()A.217017B.207217C.207216D.2170162.(8分)假设地球是个均匀的球体(半径6378千米),围绕地球赤道正上方上有一圈铁丝,铁丝的周长比地球赤道长1米,在赤道和铁丝之间会有一个缝隙,下列动物中,有种可以安全通过铁丝.①蚂蚁;②蜜蜂;③青蛙;④老鼠;⑤猫;⑥成年奶牛;⑦大象.3.(8分)将0﹣5这六个数字中的4个数字填入图的圆圈中,没条线段两端的数字作差(大或小),可以得到5个差,这5个查恰好为1﹣5.在所有满足条件的填法中,四位数ABCD (首位不能为0)的最小值是.4.(8分)一次考试中,总人数的又3人得了3分,总人数的又4人得了4分,总人数的又5得了5分,其余人都得2分.已知得2分的人数和得5分的人数一样多,则有人得了4分.5.(8分)在一个长20米、宽8米、深1.6米的长方体游泳池的四壁及地面贴磁砖,磁砖是边长为0.2米的正方形,共需磁砖块.二、填空题II(每题10分,共50分)6.(10分)如图,正方形的边长是20厘米,阴影部分面积为平方厘米.(π取3.14)7.(10分)两个相同的玻璃杯,都装满了糖水,糖与水的质量比分别是1:7和1:9,现将这两杯糖水混合,混合后糖水的含糖率是%.8.(10分)一个游戏需要8人参加,分成红、黄两队,每队各4人,一对兄弟来参加这个游戏,他们俩很想被分在同一队,但是谁被编入哪个队是完全随机的,那么这对兄弟被分进同一队的可能性是.9.(10分)将数字1~9填入如图竖式的9个方格中,每个数字只能用一次,那么和的最大值为.10.(10分)军区食堂晚饭需用1000斤大米和200斤小米,军需员到米店后发现米店正在促销,“大米1元1斤,每购10斤送1斤小米(不足10斤部分不送);小米2元一斤,每购5斤送2斤大米(不足5斤部分不送).”军需员至少要付元钱才能买够晚饭需用的米.三、填空题III(每题12分,共60分)11.(12分)定义a□b=(a+2)(b+2)﹣2:算式1×3×5×7×9×11×13﹣(1□3□5□7□9□11)的计算结果是.12.(12分)如图中共能数出个三角形.13.(12分)甲乙两船从一条和的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,水速为乙船静水速度的10%,两船在距离中点10千米处相遇.A、B两个码头间的距离为千米.14.(12分)一个四位数,他最小的8个约数的和是43,那么这个四位回文数是.(回文数例如:1111、4334、3210123)15.(12分)小俊掷骰子游戏,刚开始他站在起点格(如表),如果他掷出1至5点,掷出几点就前进几格,如果他掷出6点或某次前进后超出终点格,则立即返回起点格;若小俊掷了四次恰好到达终点格,掷骰子的顺序有种可能.起123456789终2013年第11届“走美杯”小学数学竞赛试卷(六年级初赛B卷)参考答案与试题解析一、填空题I(每题8分,共40分)1.(8分)183×279×361﹣182×278×360的计算结果是()A.217017B.207217C.207216D.217016【分析】把361看作360+1,原式变为=(182+1)×(278+1)×(360+1)﹣182×278×360,然后把括号展开,通过相互抵消,把剩下的部分作进一步计算,得出结果.【解答】解:183×279×361﹣182×278×360=(182+1)×(278+1)×(360+1)﹣182×278×360=182×(278+1)×(360+1)﹣182×278×360+279×361=(182×278+182)×(360+1)﹣182×278×360+279×361=182×278×360+182×278+182×360+182﹣182×278×360+279×361=182×278+182×360+182+279×361=182×(278+360+1)+279×361=182×278+182×361+279×361=50596+(182+279)×361=50596+461×361=50596+166421=217017.故选:A【点评】通过数字拆分,运用运算技巧或运算定律,进行简算.2.(8分)假设地球是个均匀的球体(半径6378千米),围绕地球赤道正上方上有一圈铁丝,铁丝的周长比地球赤道长1米,在赤道和铁丝之间会有一个缝隙,下列动物中,有5种可以安全通过铁丝.①蚂蚁;②蜜蜂;③青蛙;④老鼠;⑤猫;⑥成年奶牛;⑦大象.【分析】根据题意,因为铁丝的周长大于地球赤道的周长,所以可把铁丝的周长和地球赤道的周长看作一个圆环理解,即外圆周长比内圆周长多1米,所以可用多出的周长长度除以2π即可得到圆环的宽度,然后再根据选项进行分析选择即可.【解答】解:铁丝与赤道的缝隙宽度为:1÷2÷3.14≈0.16(米)=16(厘米),所以宽度为16厘米的缝隙,可以通过的动物有:蚂蚁、蜜蜂、青蛙、老鼠、猫,而成年奶牛和大象则不能通过.故答案为:5.【点评】解答此题的关键是把铁丝和赤道围成的图形想象成圆环的问题进行解答即可.3.(8分)将0﹣5这六个数字中的4个数字填入图的圆圈中,没条线段两端的数字作差(大或小),可以得到5个差,这5个查恰好为1﹣5.在所有满足条件的填法中,四位数ABCD (首位不能为0)的最小值是1052.【分析】要使四位数最小,那么A为1,B为0,又因为必须有一个差为5,故C、D中有一个为5,若C为5,那么D只能为2或3;若D为5,那么C无解,因此,最小值为1052.【解答】解:因为四位数ABCD最小,因此A为1,B为0;又因为必须有一个差为5,故CD中有一个为5,若C为5,那么D只能为2或3;若D为5,那么C无解;因此,最小值为1052.故答案为:1052.【点评】此题解答的关键在于抓住“四位数ABCD的值最小”以及隐含条件“有一个差为5”,进行推理,解决问题.4.(8分)一次考试中,总人数的又3人得了3分,总人数的又4人得了4分,总人数的又5得了5分,其余人都得2分.已知得2分的人数和得5分的人数一样多,则有259人得了4分.【分析】设总人数为60份,那么3分的是20份+3人,4分的是15份加4人,5分的是12份加5人,剩下2分的是13份﹣12人,5分和2分的一样多,即:13份﹣12人=12份+5人,即1份=17人,由此即可求出得4分的人数.【解答】解:设总人数为60份,那么3分的是20份+3人,4分的是15份加4人,5分的是12份加5人,剩下2分的是13份﹣12人,5分和2分的一样多,即:13份﹣12人=12份+5人即1份=17人所以4分:15×17+4=255+4=259(人);答:则有259人得了4分.故答案为:259.【点评】此题较难,可以运用假设法,设出总人数为60份,分别用份数表示出3分、4分、5分、2分的人数,进而根据得2分的人数和得5分的人数一样多,列出等式,求出1份的人数,是解答此题的关键.5.(8分)在一个长20米、宽8米、深1.6米的长方体游泳池的四壁及地面贴磁砖,磁砖是边长为0.2米的正方形,共需磁砖6240块.【分析】由题意可知:需要贴瓷砖的面积就是水池的4个侧面的面积加上底面积,游泳池的长、宽、高已知,代入数据即可求出需要贴瓷砖的面积,再除以每块瓷砖的面积,就是所需要的瓷砖的块数.【解答】解:(20×8+20×1.6×2+8×1.6×2)÷(0.2×0.2)=(160+64+25.6)÷0.04=249.6÷0.04=6240(块);答:共需磁砖6240块.故答案为:6240.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.二、填空题II(每题10分,共50分)6.(10分)如图,正方形的边长是20厘米,阴影部分面积为400平方厘米.(π取3.14)【分析】阴影部分的面积=以20厘米为直径两个圆的面积﹣(一个圆的面积﹣正方形的面积).【解答】解:3.14×(20÷2)2×2﹣(3.14×202×2÷4﹣20×20)=628﹣(628﹣400)=628﹣228=400(平方厘米)故答案为:400.【点评】考查了组合图形的面积,本题解答关键是得到圆的面积.7.(10分)两个相同的玻璃杯,都装满了糖水,糖与水的质量比分别是1:7和1:9,现将这两杯糖水混合,混合后糖水的含糖率是11.25%.【分析】把每瓶糖水的重量看作单位“1”,则2瓶中的糖的重量分别为+,混合后的总重量为2,然后根据×100%=含糖率,解答即可.【解答】解:(+)÷2×100%=××100%=11.25%答:混合后糖水的含糖率是11.25%;故答案为:11.25.【点评】解答此题的关键是把每瓶糖水的重量看作单位“1”,然后根据含糖率公式进行解答即可.8.(10分)一个游戏需要8人参加,分成红、黄两队,每队各4人,一对兄弟来参加这个游戏,他们俩很想被分在同一队,但是谁被编入哪个队是完全随机的,那么这对兄弟被分进同一队的可能性是.【分析】根据题意,可知参加游戏的人共分成红、黄两队,所以这对兄弟参加这个游戏时,分法如下:哥哥分到红队、弟弟分到黄队,哥哥分到黄队、弟弟分到红队,哥哥和弟弟都分到黄队,哥哥和弟弟都分到红队,共有4种可能,其中他们俩被分在同一队有2种可能,进而求出被分进同一队的可能性是多少.【解答】解:兄弟二人分法如下:哥哥分到红队、弟弟分到黄队,哥哥分到黄队、弟弟分到红队,哥哥和弟弟都分到黄队,哥哥和弟弟都分到红队,共有4种可能;其中他们俩被分在同一队有:哥哥和弟弟都分到黄队,哥哥和弟弟都分到红队,共2种可能,所以2=;故答案为:.【点评】本题考查了简单事件发生的可能性的求解,即用“可能性=所求情况数÷总情况数”去解答.9.(10分)将数字1~9填入如图竖式的9个方格中,每个数字只能用一次,那么和的最大值为3972.【分析】要使和最大,则百位数字是9,那么上面第三个加数的最高位是3,第二个加数的最高位是8或7,若是8,则十位上相加的和不进位,则和的十位上数字最大,是7,那么还剩下1、2、4、5、6,经过计算可得:其中2+4+6=12,向前一位进1,则1+5=6,计算进位的1,是7,则上面十位上的两个方格中的数字分别是1和5,个位上的两个方格中数字分别是4和6,据此即可解答问题.【解答】解:根据题干分析可得:答:和的最大值是3972.故答案为:3972.【点评】解答此题的关键是先明确要使和最大,则百位上数字为9,由此确定千位和百位上的数字分别是3和8,那么十位上数字最大就是7,据此再根据剩下的数字特点进行分配即可解答问题.10.(10分)军区食堂晚饭需用1000斤大米和200斤小米,军需员到米店后发现米店正在促销,“大米1元1斤,每购10斤送1斤小米(不足10斤部分不送);小米2元一斤,每购5斤送2斤大米(不足5斤部分不送).”军需员至少要付1168元钱才能买够晚饭需用的米.【分析】仔细观察两种米的促销方法,会发现其折扣本质是相同的(如果把“10斤大米”和“5斤小米”看做一份促销品的话,那么10元钱能买到的折扣都是份促销品),故不存在多买大米好还是多买小米好的问题,只需凑足所需重量,就一定是最省的方法;设买大米x斤,小米y斤,列方程组:来估算大米与小米应买多少斤,得到大致重量:大米买950斤,小米买105斤,此时花了1160元,已有992斤大米和200斤小米,再用8元买8斤大米即可,最少用1168元.【解答】解:设买大米x斤,小米y斤,列方程组:,得到大致重量:大米买950斤,小米买105斤,此时花了1160元,已有992斤大米和200斤小米,再用8元买8斤大米即可,最少用1168元;答:军需员至少要付1168元钱才能买够晚饭需用的米.故答案为:1168.【点评】通过分析得出把“10斤大米”和“5斤小米”看做一份促销品的话,那么10元钱能买到的折扣都是份促销品,是解答此题的关键.三、填空题III(每题12分,共60分)11.(12分)定义a□b=(a+2)(b+2)﹣2:算式1×3×5×7×9×11×13﹣(1□3□5□7□9□11)的计算结果是2.【分析】根据题意得出a□b等于a与2的和乘b与2的和,再减去2,由此用此方法计算1□3□5□7□9□11的值即可.【解答】解:1□3□5□7□9□=[(1+2)×(3+2)﹣2]□5□7□9=13□5□7□□911=[(13+2)(5+2)﹣2]□7□9□11=103□7□9□11=[(103+2)(7+2)﹣2]□9□11=943□9□11=[(943+2)(9+2)﹣2]□11=10393□11=(10393+2)(11+2)﹣2=135135﹣2=135133;1×3×5×7×9×11×13﹣(1□3□5□7□9□11)=135135﹣135133=2;故答案为:2.【点评】关键是根据给出的式子,找出新的运算方法,再利用新的运算方法解决问题.12.(12分)如图中共能数出72个三角形.【分析】首先由图形可知一个小三角形组成的三角形有24个;再由两个三角形组成的有22个;由三个三角形组成的有12个;由4个三角形组成的有10个,由中间的多边形和3个三角形组成的有2个;由中间的多边形和多个三角形组成的有2个;相加即可得出答案.【解答】解:24+22+12+10+2+2=72(个)故答案为:72.【点评】考查了组合图形中三角形的计数,解答本题的关键是掌握计数原理和不在同一直线上的三点可以构成一个三角形.13.(12分)甲乙两船从一条和的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,水速为乙船静水速度的10%,两船在距离中点10千米处相遇.A、B两个码头间的距离为110千米.【分析】设水速为“1”,则乙船静水速度为10,甲船静水速度为12,若乙顺水、甲逆水,则两船在中点相遇,不符合要求.因此甲船顺水,甲的速度是13,乙的速度是9,若全程为22份,相遇时甲走了13份.因为两船在距离中点10千米处相遇,因此,2份为10千米,进而求出全程.【解答】解:水速为“1”,则乙船静水速度为10,甲船静水速度为12,若乙顺水、甲逆水,则两船在中点相遇,不符合要求.因此甲船顺水,甲的速度是13,乙的速度是9,若全程为22份,相遇时甲走了13份,因此,2份为10千米,全程为:10÷2×22=5×22=110(千米)答:A、B两个码头间的距离为110千米.故答案为:110.【点评】此题属于较难的题目,应认真分析,采用了设数法,结合推理进行解答.14.(12分)一个四位数,他最小的8个约数的和是43,那么这个四位回文数是2772.(回文数例如:1111、4334、3210123)【分析】最小的八个约数的和为43,约数首先为自然数,首先该有1和2(如果没2的话,就不会有偶约数,最小的8个奇数的和大于43),不该有5(有5的话首末位都为0)和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,就只有下面一种情形了:1+2+3+4+6+7+9+11=43,然后求出这8个数的最小公倍数即可;由此解答.【解答】解:由分析可知:约数首先为自然数,首先该有1和2,不该有5和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,则有:1+2+3+4+6+7+9+11=43,以上数的最小公倍数为:4×7×9×11=2772,正好满足要求;答:这个四位回文数是2772;故答案为:2772.【点评】明确回文数的含义:从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”;然后根据题意,进行推导,求出这8个约数,是解答此题的关键.15.(12分)小俊掷骰子游戏,刚开始他站在起点格(如表),如果他掷出1至5点,掷出几点就前进几格,如果他掷出6点或某次前进后超出终点格,则立即返回起点格;若小俊掷了四次恰好到达终点格,掷骰子的顺序有92种可能.起123456789终【分析】从起点到终点是10号格,也就是只要掷出的和是10即可;从起点到终点可以分成三种情况,一种是没有掷出6,那么只要1~5中选择4个数的和是10即可,掷出的顺序不同的算不相同;第二种是第一次就掷出了6,然后从1~5中选择4个数的和是10即可;第三种情况第二次掷出6,第三次和第四次都掷出5;由此找出各种情况的可能,然后相加.【解答】解:情况一,没有掷出6;①1+1+3+5=10,考虑加数的位置,有12种可能;②1+1+4+4=10,考虑加数的位置,有6种可能;③1+2+2+5=10,考虑加数的位置,有12种可能;④1+2+3+4=10,考虑加数的位置,有24种可能;⑤1+3+3+3=10,考虑加数的位置,有4种可能;⑥2+2+3+3=10,考虑加数的位置,有6种可能;⑦2+2+2+4=10,考虑加数的位置,有4种可能;一共有12+6+12+24+4+6+4=68种可能;情况二,第一次就掷出了6,剩下3个数的和是10;①1+5+4=10,考虑加数的位置,有6种可能;②2+5+3=10,考虑加数的位置,有6种可能;③2+4+4=10,考虑加数的位置,有3种可能;④3+4+3=10,考虑加数的位置,有3种可能;一共有6+6+3+3=18种可能;第三种情况第二次掷出6,第三次和第四次都掷出5;那么第一次可以是1~6,就有6种可能;68+18+6=92(种)答:掷骰子的顺序有92种可能.故答案为:92.【点评】本题较复杂,解决本题要细心,正确的分类,然后逐步根据排列的方法和加法原理进行求解.。

2022-2023学年小学六年级奥数典型题测评卷14《等积变形》(解析版)

2022-2023学年小学六年级奥数典型题测评卷14《等积变形》(解析版)

【六年级奥数举一反三—全国通用】测评卷14《等积变形》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共5小题,满分15分,每小题3分)1.(2014•迎春杯)如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240 B.270 C.300 D.360【分析】按题意,显然可以将图进行分割,分割后阴影部分有六个面积相等的小正六边形,而空白部分是3个面积相等的小正六边形,利用面积之比不难求得大正六边形的面积.【解答】解:如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180÷6=30(平方厘米),大正六边形的面积为:30×9=270(平方厘米),故选:B.2.(2014•迎春杯)如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25 B.40 C.49 D.50【分析】按题意,将图①逆时针旋转90°,阴影部分可拼成一等腰直角三角形,不难求得阴影部分的面积.【解答】解:根据分析,如下图所示,图①逆时针旋转90°,阴影部分可拼成一等腰直角三角形,S=142÷4=49故选:C.3.(2006•创新杯)图中,将两个正方形放在一起,大、小正方形的边长分别为10,6,则图中阴影部分面积为()A.42 B.40 C.38 D.36【分析】由图意可知:阴影部分的面积就等于两个正方形的面积和减去两个空白三角形的面积,利用正方形和三角形的面积公式即可求解.【解答】解:10×10+6×6﹣6×(10+6)÷2﹣10×10÷2=100+36﹣48﹣50=38答:阴影部分的面积是38.故选:C。

2013走美杯六年级决赛模拟考试试题

2013走美杯六年级决赛模拟考试试题

2013走美杯六年级决赛模拟试题1、计算:2、计算:3、规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数。

若(A○5+B△3)×(B○5+ A△3)=96,且A、B均为大于0的自然数,A×B 的所有取值为多少?4、从1-25这25个自然数中,每次取出两个不同的数,使它们的和是4的倍数,共有多少种不同的取法?5、由20个边长为1的小正方形拼成的一个4×5长方形中有一格有“☆”。

图中含有“☆”的所有长方形(含正方形)共多少个?它们的面积总和是多少?6、一个两位数,数字和是质数,而且这个两位数分别乘以3、5、7之后,得到的数的数字和都仍为质数,满足条件的两位数是?7、若a、b、c 是三个互不相等的大于0的自然数,且a+b+c=1155,则它们的最大公约数的最大值为多少?最小公倍数的最小值为多少?最小公倍数的最大值为多少?8、一个长方形和一个等腰直角三角形如图放置,图中六块的面积分别为1、1、1、1、2、3,则大长方形的面积是多少?9、在甲容器中装有浓度为10.5%的盐水90毫升,乙容器中装有浓度为11.7%的盐水210毫升。

如果先从甲、乙容器中倒出同样多的盐水,再将它们分别倒人对方的容器内搅匀,结果得到浓度相同的盐水。

问各倒出了多少毫升盐水?10、有一个长方体水箱水平放置,侧面有一条与地面平行的裂缝,当水箱中的水漫过裂缝时,裂缝会以每分钟O.4立方分米的速度往外渗水。

现在用一个每分钟注水1立方分米的水龙头往内注水,注到一半时恰好用了40分钟,再过50分钟注满。

如果用两个每分钟注水1立方分米的水龙头往内注水,注满这个水箱需要多少分钟?11、甲从A出发步行向B,同时,乙、丙两人从B驾车出发向A行驶。

甲乙两人相遇在离A地3千米的C地,乙到A地后立即调头,与丙在C 地相遇。

若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A地7.5千米,求AB两地距离。

2016年第14届“走美杯”小学数学竞赛试卷(五年级初赛B卷)

2016年第14届“走美杯”小学数学竞赛试卷(五年级初赛B卷)

2016年第14届“走美杯”小学数学竞赛试卷(五年级初赛B卷)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:××××××=(写成小数的形式,精确到小数点后两位)2.(8分)1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为.3.(8分)大于0的自然数,如果满足所有自然数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,4,1+2+3+6=12,6就是最小的完美数.是否有无限个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为.4.(8分)某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案有种.5.(8分)将从1开始到25的连续的自然数相乘,得到1×2×3×…×25,记为25!(读作25的阶乘)用3除25!显然,25!被3整除,得到一个商,再用3除这个商,…,这样一直用3除下去,直到所得的商不能被3整除为止.那么,在这个过程中用3整除了次.二、填空题Ⅱ(每题10分,共50分)6.(10分)如图,已知正方形ABCD中,F是BC边的中点,GC=2DG,E是DF 与BG的交点,四边形ABED的面积与正方形ABCD的比是.7.(10分)如图所示,将一张A4纸沿着长边的2个中点对折,得到2个小长方形,小长方形的长与宽之比与A4纸相同.如果设A4纸的长为29.4厘米,那么,以A4纸的宽为边长的正方形面积为平方厘米(精确到小数点后一位).8.(10分)由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色.称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数.如图的图称为皮特森图,皮特森图的色数为.9.(10分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN,每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,如图中的格点四边形EBGF可以划分为个本原格点三角形.10.(10分)在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为:每人每次可以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜.面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格编号),先手必胜策略,那么,为确保获胜,先手第一步应该移动号木格中的个小球.三、填空题Ⅲ(每题12分,共60分)11.(12分)m,n是两个自然数,满足26019×m﹣649×n=118,那么,m=,n=.12.(12分)以下由1、2构成的无穷数列有个有趣的特征,从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身.这个数列被称为库拉库斯基数列.按照这个特征,继续写出这个数列后8项(从第14项到第21项),如果已知这个数列的前50项的和为75,第50项为2,则可知道第73项、74项、第75项、第76项分别.13.(12分)不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数.如果不全为2个自然数的最大公因数为1,则这两个数称为互素的或互质的,比如.2与3互素.3与8互素;12与15不是互素的.因为它们的最大公因数是3,不超过81的自然数中,有个数与81互素.14.(12分)任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积.这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理.勾般定理有看悠悠4000年的历史,出现了数百个不同的证明.魏晋时期的中国古代数学家刘徽给出了如图1所示的简洁而美妙的证明方法,如图2是以这个方法为基础设计的刘徽模式勾股拼围板刘徽模式勾股拼图板的5个组块,还可以拼成个如图3所示的平行四边形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个平行四边形的周长为厘米15.(12分)在的圆圈中填入1到16的自然数,(每一个只能用一次),连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的和.那么,8阶幻形图的幻和为,并继续完成以下8阶幻星图.2016年第14届“走美杯”小学数学竞赛试卷(五年级初赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:××××××= 1.67(写成小数的形式,精确到小数点后两位)【分析】把分数的分子分母交叉约分,化成最简分数,然后用最简分数的分子除以分母把商保留两位小数即可.【解答】解:××××××===2048÷1225≈1.67故答案为:1.67.【点评】完成本题要注意先约分,再根据分数化小数的方法计算即可.2.(8分)1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为.【分析】每个硬币只有正面与反面两种情况,所以拿三个1角硬币一起投掷一次,可能出现••=8种情况,每种两个正面一个反面的概率为×3=;据此解答即可.【解答】解:••=8(种),×3=;答:得到两个正面一个反面的概率为.故答案为:.【点评】本题考查了概率与排列组合知识的灵活应用,关键是求出拿三个1角硬币一起投掷一次,可能出现的情况数.3.(8分)大于0的自然数,如果满足所有自然数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,4,1+2+3+6=12,6就是最小的完美数.是否有无限个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为16256.【分析】首先对8128进行分解质因数,计算出因数个数,共14个,找出这7对数字相加即可.【解答】解:分解质因数8128=26×127.8128个因数共有(6+1)×(1+1)=14(个).8128=1×8128=2×4064=4×2032=8×1016=16×508=32×254=64×127.8128的因数和为:1+8128+2+4064+4+2032+8+1016+16+508+32+254+64+127=16256.故答案为:16256.【点评】本题的关键是先进行分解质因数同时计算出8128的因数共有多少个,不重复不遗漏的计算和.成对出现都一起计算比较方便.4.(8分)某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案有36种.【分析】首先考虑特殊情况的两个人,分为不选小张、小赵、小李、小罗、小王5种情况.进行讨论.【解答】解:从5个人中选4人中有①不选小张,小赵有2种选择,剩下3人任意选择,共有3×2×1×2=12种;②不选小赵,小张有2种选择,剩下3人任意选择,共有3×2×1×2=12种;③从小赵,小王,小李选出两个参加共有3种情况.翻译2种,导游1种,礼仪2种,司机1种;共3×2×2=12种;共12+12+12=36种;故答案为:36【点评】排列组合是奥数的重要知识点.注意是5选4的排列.把特殊的对象安排好在进行排列.5.(8分)将从1开始到25的连续的自然数相乘,得到1×2×3×…×25,记为25!(读作25的阶乘)用3除25!显然,25!被3整除,得到一个商,再用3除这个商,…,这样一直用3除下去,直到所得的商不能被3整除为止.那么,在这个过程中用3整除了10次.【分析】被整除多少次就是要看因数3的个数,注意的是9中含有2个3.分别用25除以3,9得到的商的和就是因数3的个数.即可求解.【解答】解:被整除次数就是看因数3的个数.25÷3=8…1和25÷9=2…7.3的倍数有8个,9的倍数有2个,共8+2=10(个).故答案为:10.【点评】此类题中想要找到所有的因数3的个数,需要分别除以3再除以9,因为9的倍数中含有2个3需要再计算一次.以此类推.问题解决.二、填空题Ⅱ(每题10分,共50分)6.(10分)如图,已知正方形ABCD中,F是BC边的中点,GC=2DG,E是DF 与BG的交点,四边形ABED的面积与正方形ABCD的比是5:8.【分析】按题意,作CG的中点H,连接FH,设正方形ABCD的边长为1份,求得△BCG、△DEG的面积所占的份数,再用正方形的面积减去△BCG、△DEG 的面积和,即可得到四边形ABED的面积,不难求出四边形ABED的面积与正方形ABCD的比.【解答】解:如图,作CG 的中点H ,连接FH ,设正方形ABCD 的边长为1份,则:份;份; 又∵S △DEG :S △DFH =1:4,∴份;四边形ABED 的面积=正方形ABCD 的面积﹣S △BGC ﹣S △DEG =1=,即:四边形ABED 的面积与正方形ABCD 的面积的比为:5:8故答案是:5:8.【点评】本题考查了三角形面积,本题突破点是:利用线段之间的比,算出面积比,再用正方形的面积减去三角形的面积即可求得四边形与正方形的面积比.7.(10分)如图所示,将一张A4纸沿着长边的2个中点对折,得到2个小长方形,小长方形的长与宽之比与A4纸相同.如果设A4纸的长为29.4厘米,那么,以A4纸的宽为边长的正方形面积为 432.2 平方厘米(精确到小数点后一位).【分析】根据题意可知原A4纸的长:原A4纸的宽=原A4的宽:原A4纸长的一半,据此比例式可求出原A4纸宽的平方是多少,即是以A4纸的宽为边长的正方形面积.据此解答.【解答】解:设原A4纸的宽是a29.4:a=a :a 2=29.4×a2≈432.2答:以A4纸的宽为边长的正方形面积为432.2平方厘米.故答案为:432.2.【点评】本题的重点是根据小长方形的长与宽之比与A4纸相同,列出比例式进行解答.8.(10分)由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色.称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数.如图的图称为皮特森图,皮特森图的色数为3.【分析】首先分析五点染色的需求最少是3个颜色,3色可以染外边的五点,枚举即可.【解答】解:依题意可知:因为是5个点循环,数字1和2循环最后还缺一个颜色.染色顺序如图所示:每一个数字代表一个颜色.故答案为:3【点评】本题考查对染色问题的理解和分析,重点是循环的五点至少需要3个颜色.问题解决.9.(10分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN,每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,如图中的格点四边形EBGF可以划分为36个本原格点三角形.【分析】这题根据毕克定理S=2×N+L﹣2即可求出这个图能分成多少个本原格点三角形,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部格点有15个,边界格点有8个15×2+8﹣2=36故此题填36.【点评】此题属于格点问题,遇到这类问题直接运用公式即可,在运用公式时一定要分清是正方形格点问题还是三角形格点问题,以免公式运用错误.10.(10分)在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为:每人每次可以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜.面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格编号),先手必胜策略,那么,为确保获胜,先手第一步应该移动1号木格中的2个小球.【分析】由题意可知,这个游戏的题的策略是奇数性的利用,由图可知,3号格和1号格里的球数不相同,要确保获胜,先手必须先要取成3号格和1号格里的球数相同,所以先手必须将1号格中的2个小球移入0号格,后手无论怎么移,都会导致这两格球数不一样,先手只须保持两格一样即可最后获胜;据此解答即可.【解答】解:由图可知,3号格和1号格里的球数不相同,要确保获胜,先手必须先要取成3号格和1号格里的球数相同,所以先手必须将1号格中的2个小球移入0号格,后手无论怎么移,都会导致这两格球数不一样,先手只须保持两格一样即可最后获胜.所以为确保获胜,先手第一步应该移动1号木格中的2个小球.故答案为:1,2.【点评】解答此题要明确:先手必须先要取成3号格和1号格里的球数相同才能获胜.三、填空题Ⅲ(每题12分,共60分)11.(12分)m,n是两个自然数,满足26019×m﹣649×n=118,那么,m=2+11×t,n=80+441×t.【分析】要想找到m和n的关系需要将原式中的数字化简,首先分解质因数再进行枚举法找规律即可.【解答】解:分解质因数649=11×59,26019=441×59,118=2×59原式=441m﹣11n=2①当m=1时,441m﹣11n最小的数字是1,不满足条件.②当m=2时,n=80是满足条件的.③当m=3时,441m﹣11n最小可以等于3不满足条件.④当m=4时,441m﹣11n最小可以得4.不满足条件.发现倍数增加一倍得数最小增加1.那么需要让得数等于2增加的数字需要是11的倍数.⑤当m=2+11时,n=80+441⑥当n=2+22时,n=80+882…那么当m=2+11t时(t=0,1,2,3,…),n=80+441t(t=0,1,2,3,…)故当m=2+11t时,n=80+441t.【点评】本题的关键是找到m和n的关系,中间利用字母t转换,找到数字变化的规律表示出来.问题解决.12.(12分)以下由1、2构成的无穷数列有个有趣的特征,从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身.这个数列被称为库拉库斯基数列.按照这个特征,继续写出这个数列后8项12112212(从第14项到第21项),如果已知这个数列的前50项的和为75,第50项为2,则可知道第73项、74项、第75项、第76项分别1221.【分析】把两列数列上下写成两排,前一问可以根据规律填出:122112122122112112212…,可得从第14项到第21项;如果前50项全部为1,则和应该是50,现在和为75,说明有25个2,每个2意味着上面一列多一个数,现在有25个,说明第50个数2对应的数字是上排第74,75个,所以第73项、74项、第75项、第76项,形如abba,再确定奇偶性和第一个不同,第一个是1,所以74,75个数字为2,所以第73项、74项、第75项、第76项为1221.【解答】解:把两列数列上下写成两排,前一问可以根据规律填出:122112122122112112212…所以从第14项到第21项是12112212;如果前50项全部为1,则和应该是50,现在和为75,说明有25个2,每个2意味着上面一列多一个数,现在有25个,说明第50个数2对应的数字是上排第74,75个,所以第73项、74项、第75项、第76项,形如abba,因为下排每增加一个数字,意味着上排对应数字改变一次奇偶性,如下排第二个数字为2,对应上排数字从1变成2,下排第二个数字2,对应上排数字改变为1,…,以此类推,下排第50个,意味着对应数字改变了49次奇偶性,所以奇偶性和第一个不同,第一个是1,所以74,75个数字为2,所以第73项、74项、第75项、第76项为1221.故答案为12112212;1221.【点评】本题考查奇偶性问题,考查学生规律的寻找,考查学生分析解决问题的能力,属于中档题.13.(12分)不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数.如果不全为2个自然数的最大公因数为1,则这两个数称为互素的或互质的,比如.2与3互素.3与8互素;12与15不是互素的.因为它们的最大公因数是3,不超过81的自然数中,有54个数与81互素.【分析】在81个数字中,找到不是互质的,其余就是互质的.所有3的倍数都不是与81互质,不超过81的意思是可以取到81,3的倍数是不符合题意的.【解答】解:在不超过81的数字中3的倍数有81÷3=27(个).在不超过81的数字中有27是和81有最大公约数大于1的数.互质的共有81﹣27=54(个)故答案为:54【点评】此题是逆向思维,要找到互质的,首先找到不互质的更为容易,特别注意1和81也是互质的.所以不需要讨论.14.(12分)任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积.这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理.勾般定理有看悠悠4000年的历史,出现了数百个不同的证明.魏晋时期的中国古代数学家刘徽给出了如图1所示的简洁而美妙的证明方法,如图2是以这个方法为基础设计的刘徽模式勾股拼围板刘徽模式勾股拼图板的5个组块,还可以拼成个如图3所示的平行四边形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个平行四边形的周长为厘米【分析】直角边为3和4的那么斜边长为5,在根据这个平行四边形的面积是不变的,高为4时求出一边即可求出周长.【解答】解:依题意可知:这个图形的面积是32+42=25(平方厘米),斜边长为5.再根据最后的平行四边形的面积是底乘高.在高位4时,底边长为:25÷4=(厘米)周长为:=(厘米)故答案为:【点评】本题的关键是根据面积相当求出当高为4时候的底边长,根据勾股定理知道斜边为5,边长相加既是周长.问题解决.15.(12分)在的圆圈中填入1到16的自然数,(每一个只能用一次),连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的和.那么,8阶幻形图的幻和为34,并继续完成以下8阶幻星图.【分析】8条线的幻和相加就是把所有的数字加了2遍.根据幻和的8倍就是所有数字和的2倍即可求解.【解答】解:根据所有的数字和的两倍就是幻和的8倍可得:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16=136.136×2=272,272÷8=34.首先根据幻和为34,34﹣2﹣4=28,那么28=16+12唯一情况.在接下来根据数字规律进行分析即可.故答案为:34【点评】本题的关键问题是所有的数字和的2倍等于每一条线的幻和相加.问题解决.。

第6-10届走美杯6年级初赛试题解析

第6-10届走美杯6年级初赛试题解析

第六届“走进每秒的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛小学六年级试卷一、填空题I(每题8分,共40分)1. 11111111 612203042567290+++++++=解:原式=11111111223349102105-+-++-=-=L L2.一个表面积为56emz的长方体如图切成27个小长方体,这27个小长方体表面积的和是______cm2.解:每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为168cm2.3.将2、4、6、8、12、18、24、36、72填人右边的九宫格,使每行每列及两条对角线上三数的积都相等.每行的三个数的积是______.解:每行三个数的积相等,所以这个积的3次方等于9个数的积,这就个数是:2130、2230、2131、2330、2231、2132、2331、2232、2332,它们的积21839,所以每行上的3个数的积为2633=1728. 4.0.2.0080.A BCC A B••••=,三位数ABC的最大值是多少?解析:2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.5. 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.分析:根据容斥关系:四边形EFGO 的面积=三角形AFC+三角形DBF-白色部分的面积 三角形AFC+三角形DBF=长方形面积的一半即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 所以四边形的面积=60-50=10二、填空题Ⅱ(每题l0分,共50分)6. 如图,ABCD 是正方形.阴影部分的面积为_______.(π取3.14)分析:正方形和它的内切圆的面积比是固定的,即4:π.小正方形的面积等于(3+5)2-4×3×5÷2==34,所以其内切圆的面积等于34÷4×(4-π)=7.317. 用数字l ~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有种组成方法.分析:l ~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.8.N 为自然数,且1+N ,2+N 、……、9+N 与690都有大于l 的公约数.N 的最小值为_______.解析:690=2×3×5×23,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l 的公约数.所以9个数中只有4个奇数,剩下的5个数,有3个3的倍数,1个5的倍数,1个23的倍数,则1+N 、3N +、5N +、7N +、9N +是偶数,剩下的4个数中2+N 、8N +是3的倍数(5各偶数当中只有5N +是3的倍数),还有4N +、6N +一个是5的倍数,一个是23的倍数.剩下的可以用中国剩余定理求解,5N +是2和3的倍数,且相邻两个数中一个是23的倍数,另一个是5的倍数,显然524N +=是最小解,所以N 的最小值为19.9. 50位同学围成一圈,从某同学开始顺时针报数.第一位同学报l ,跳过一人第 三位同学报2,跳过两人第六位同学报3,……这样下去,报到2008为止.报2008的同学第一次报的是_______.分析:将这些学生按报数方向依次编号;1、2、3、……49、50、51……2008,每一个人的编号不唯一,例如编号为2001、1951……101、51的和编号为1的为同一个人,这样第n 次报数的人的编号为()12n n +, 报2008的同学的编号为2017036,他的最小编号为36,我们知道36=1+2+3+4+5+6+7+8,所以报2008的同学第一次报8.10.用l —9填满三角形空格,一个格子只能填人一个数字,使每个数字在每一行,每一列(包括不相连的行,列)及每个粗黑线围成的区域中至多出现一次.分析:解题顺序如第二附图,依照A 、B 、C 、D ……的顺序.三、填空题Ⅲ(每题l2分,共60分)11.A 、B 两杯食盐水各有40克,浓度比是 3:2.在B 中加入60克水,然后倒人A 中________克.再在A 、B 中加人水,使它们均为100克,这时浓度比为7:3.分析:在B中加入60克水后,B盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水的盐质量比仍然为3:2,B中的盐占所有盐的质量的22325=+,但最终状态B中的盐占所有盐的质量的337310=+,也就是说B中的盐减少了32111054-÷=,也就是说从A中倒出了14的盐水,即25克.12.中午l2时,校准A、B、C三钟.当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分.晚上C钟11点时,A钟_____点_____分,B钟_______点_____分.分析:下午A钟6点,B钟5点50分,两钟的运行比为360:350=36:35B钟7点时,C钟7点20分,时钟运行比为420:440=21:22,A:B:C=108:105:110所以C钟11点的时候,A钟10:48,B钟10:30.13.一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有______种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.分析:枚举法,枚举出所有方法:1423、2143、2413、3124、3142、3412、3421、4123、4132、4231、4312、4321.14.机器人A、B从P出发到Q,将Q处的球搬到P点.A每次搬3个,往返一次需l5秒.8每次搬5个,往返一次需25秒.竞赛开始8立即出发,A在B后10秒出发.在竞赛开始后的420秒内,A领先的时间是_______秒,B领先的时间是______秒.(领先指搬到P的球多).分析:对俩机器人的工作情况分别ABA-B:时间0- 25- 40- 50- 55- 70- 75- 85- 100- 115 ……个数差0 -2 1 -4 -1 2 -3 0 -2 1 ……所以从25秒开始,每隔75秒就会出现一个循环,即周期为75秒.前25秒,A、B都没有完成搬运。

2015年第13届“走美杯”小学数学竞赛试卷(六年级初赛B卷)

2015年第13届“走美杯”小学数学竞赛试卷(六年级初赛B卷)

2015年第13届“走美杯”小学数学竞赛试卷(六年级初赛B卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:++=.2.(8分)某商品今年的生产成本比去年增加了5%,扔保持原来的销售价格,则每件产品的利润下降了20%,那么,如果要保持成本在销售价格中所占的百分比,销售价格应该在去年的基础上提高%.3.(8分)用1,2,3,4,5,6,7,8这八个数字给4名男生与4名女生编号,要求是男生用奇数,女生用偶数,那么,一共有种不同的编号方法.4.(8分)用2015减去它的,再减去余下的,再减去余下的,…,以此类推,一直减去余下的,那么最后的得数为.5.(8分)“24点游戏”很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q.则可以由算法(2×Q)×(4﹣3)得到24.王亮在一次游戏中抽到了4,4,7,7,经过思考.他发现(4﹣)×7=24.我们将满足(a﹣)×b=24的牌组{a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”.二、填空题(共5小题,每小题10分,满分50分)6.(10分)在荷兰的小镇卡茨林赫弗尔2013年6月建成了一个由三个半圆组成的城市雕塑,三个半圆的直径分别为24.2m,19.3m,4.9m.这个雕塑的原始图形来自于阿基米德《引理集》中的鞋匠刀形(Arbelos),即图中的阴影部分所示的图形.那么该城市雕塑中的鞋匠刀形的周长为(圆周率用π表示).7.(10分)“足球”可以近似地看成是由一些五边形与正六边形组成的几何体,每一个顶点处有3条棱,这个几何体是阿基米德立体(Archimedean Solids)中的一个,通常,可以通过如图所示的方法,截正二十面体得到“足球”,那么,一个“足球”的棱数为.8.(10分)如图所示,BD,CE分别是∠ABC的角平分线,如果∠BAC=62°,那么,∠BFC=°.9.(10分)将图中的边染色,要求有共同顶点的两个相邻的边染不同的颜色,则至少需要中颜色.10.(10分)索马里方体是丹麦物理学家皮特•海音(Piet Hein)发明的7个小立方体组块(如图所示),如果假设这些小立方体的边长为1,则利用这7个组块不仅可以组成一个3×3的立方体,还可以组成很多美妙的几何体,那么,要组成下面的几何体,需要用到的3个索玛立方体的编号是.三、填空题(共5小题,每小题12分,满分60分)11.(12分)一个大于0的自然数如果满足所有因数(即约数)之和等于它自身的2倍,则称这个数为完全数(或完美数),比如,最小的完全数是6,因为6的所有因数为1,2,3,6,而1+2+3+6=12.古希腊时代的人们就已经认识完全数,并且找到了前4个6,28,496,8128完全数,那么,8128的全体质因数为.12.(12分)只能被1和自身整除的大于1的自然数叫做质数或素数.比如2,3,5,7,11等,如果将117分拆成10个质数之和,要求其中最大的质数尽可能大,那么,这个最大的质数为.13.(12分)我们可以将全体正整数和正分数按照如图所示的方法,从1开始,一层一层地“生长”出来;是第一层;第二层是,,第三层是,,,,…按照这个规律,在第层.14.(12分)如果两个自然数的积被13除余1,那么我们称这两个自然数互为“模13的倒数”比如,2×7=14,被13除余1,则2和7互为“模13的倒数”;1×1=1,则1的“模13的倒数”是它自身.显然,一个自然数如果存在“模13的倒数”则它的倒数并不是唯一的,比如,14就是1的另一个“模13的倒数”.判断1,2,3,4,5,6,7,8,9,10,11,12是否有“模13的倒数”,并利用所得结论计算1×2×3×4×5×6×7×8×9×10×11×12(记为12!,读作12的阶乘)被13除所得的余数.15.(12分)如果一个正方形能够被分割为若干个边长不等的小正方形,则这个正方形称为完美正方形.下面的正方形是已知包含21个小正方形的完美正方形(称为21阶完美正方形),这是迄今为止知道的最小阶数的完美正方形.分割方法如图所示,其中小正方形中心的数字代表其边长,请计算这个完美正方形的边长,并写在这里.2015年第13届“走美杯”小学数学竞赛试卷(六年级初赛B卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:++=.【分析】先把算式拆分为×+×+×,再根据乘法的分配律简算即可.【解答】解:++=×+×+×=×(++)=×1=;故答案为:.【点评】此题重点考查了学生对分数的拆项和运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(8分)某商品今年的生产成本比去年增加了5%,扔保持原来的销售价格,则每件产品的利润下降了20%,那么,如果要保持成本在销售价格中所占的百分比,销售价格应该在去年的基础上提高5%.【分析】要使成本在销售价格中所占的百分比不变,设去年的成本为a,销售价格为b,去年成本与销售价格的百分比,即为:,设须提高去年售价的x,则可列关系式,求解即可.【解答】解:根据分析,设去年的成本为a,销售价格为b,去年成本与销售价格的百分比,即为:,销售价格在去年的基础上提高x,则有:,解得:x=5%,即:销售价格应该在去年的基础上提高5%.故答案是:5%.【点评】本题考查了利润利息和纳税的问题,本题突破点是:设成本在销售价格中所占的百分比,列出关系式,求解即可得出.3.(8分)用1,2,3,4,5,6,7,8这八个数字给4名男生与4名女生编号,要求是男生用奇数,女生用偶数,那么,一共有576种不同的编号方法.【分析】按题意,男生用奇数编号,有四个奇数,每个人有四个选择,故将四个奇数与四名男生进行排列,有4×3×2×1=24种编号方法,同理女生的编号方法利用排列的性质也可以求得,故总的编号方法不难求得.【解答】解:根据分析,男生用奇数编号,有四个奇数,每个人有四个选择,故将四个奇数与四名男生进行排列,共有:4×3×2×1=24种编号方法;女生用偶数编号,共有4个偶数编号,故四个偶数与四个女生进行一一排列,共有:4×3×2×1=24种不同的编号方法,一共有:24×24=576种不同编号方法.故答案是:576.【点评】本题考查了排列组合,突破点是:利用排列和组合,以及奇数偶数的个数,求得总的不同的编号方法.4.(8分)用2015减去它的,再减去余下的,再减去余下的,…,以此类推,一直减去余下的,那么最后的得数为65.【分析】把每次减少前的数看作单位“1”,则分别剩下单位“1”的(1﹣)、(1﹣)、(1﹣)、…、(1﹣),然后根据分数乘法的意义,用2015乘这些分率即可解决问题.【解答】解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015×=2015×=65故答案为:65.【点评】本题关键是确定每次剩余它前面的几分之几,计算中要根据规律约分巧算.5.(8分)“24点游戏”很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q.则可以由算法(2×Q)×(4﹣3)得到24.王亮在一次游戏中抽到了4,4,7,7,经过思考.他发现(4﹣)×7=24.我们将满足(a﹣)×b=24的牌组{a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”(2,2,13,13),(3,3,9,9),(6,6,5,5),(8,8,4,4),(12,12,3,3).【分析】先根据“王亮牌组”的特征,得出a,(b﹣1)是24的约数,最后借助扑克牌的特点即可得出结论.【解答】解:依题意可知:根据(a﹣)×b==a(b﹣1)=24;那么a和(b﹣1)就是24的约数;显然(a,b)的数字组合为(2,13),(3,9),(6,5),(8,4),(12,3)(扑克中最大为13)故答案为:(2,2,13,13),(3,3,9,9),(6,6,5,5),(8,8,4,4),(12,12,3,3).【点评】此题是填符号组算式,主要考查了约数,以及理解“王亮牌组”的特点,得出a,(b﹣1)是24的约数是解本题的关键.二、填空题(共5小题,每小题10分,满分50分)6.(10分)在荷兰的小镇卡茨林赫弗尔2013年6月建成了一个由三个半圆组成的城市雕塑,三个半圆的直径分别为24.2m,19.3m,4.9m.这个雕塑的原始图形来自于阿基米德《引理集》中的鞋匠刀形(Arbelos),即图中的阴影部分所示的图形.那么该城市雕塑中的鞋匠刀形的周长为24.2π(圆周率用π表示).【分析】显然,阴影部分的周长由三个圆的半圆弧组成的,故图中的阴影部分所示的图形那么该城市雕塑中的鞋匠刀形的周长可以用三个圆的半圆周长公式即可求得.【解答】解:根据分析,阴影部分的周长由三个圆的半圆弧组成的,故图中的阴影部分所示的图形那么该城市雕塑中的鞋匠刀形的周长===24.2π故答案是:24.2π.【点评】本题考查了圆的周长,突破点是:利用圆的周长公式不难求得阴影部分的周长.7.(10分)“足球”可以近似地看成是由一些五边形与正六边形组成的几何体,每一个顶点处有3条棱,这个几何体是阿基米德立体(Archimedean Solids)中的一个,通常,可以通过如图所示的方法,截正二十面体得到“足球”,那么,一个“足球”的棱数为90.【分析】可以根据多面体的顶点V,面数F,棱数E之间关系式V+F﹣E=2,先求出正五边形和正六边形的个数,再求棱数.【解答】解:根据分析,设多面体的顶点V,面数F,棱数E之间关系式为:V+F ﹣E=2;设有正五边形x个,正六边形y个,由题意得:解得:x=12,y=20.则棱的总数为E=(5×12+6×20)=90.故答案是:90.【点评】本题考查了组合图形的计数,突破点是:根据关系式V+F﹣E=2,先求出正五边形和正六边形的个数,再求棱数.8.(10分)如图所示,BD,CE分别是∠ABC的角平分线,如果∠BAC=62°,那么,∠BFC=121°.【分析】根据三角形的内角和,得知:∠A+∠ABC+∠ACB=180°⇒∠A+2∠FBC+2∠FCB=180°⇒∠FBC+∠FCB=(180°﹣∠A)==59°.【解答】解:根据分析,根据三角形的内角和,得知:∠A+∠ABC+∠ACB=180°⇒∠A+2∠FBC+2∠FCB=180°⇒∠FBC+∠FCB=(180°﹣∠A)==59°又∵∠BFC=180°﹣∠FBC﹣∠FCB=180°﹣59°=121°.故答案是:121°.【点评】本题考查了长度和角度,突破点是:根据三角形的内角和以及角平分线的性质,可以求得∠BFC.9.(10分)将图中的边染色,要求有共同顶点的两个相邻的边染不同的颜色,则至少需要3中颜色.【分析】首先分析内五边形的染色最低需要3色,那么只要枚举出3色可以染出来此图即可.【解答】解:依题意可知:首先分析内5点是循环的用数字代表颜色即是至少是12123的情况为3种颜色.如图所示3种颜色可以完成此图的染色.故答案为:3【点评】本题考查对染色问题的理解和运用,关键问题是找到内五边形的最低染色的标准,问题解决.10.(10分)索马里方体是丹麦物理学家皮特•海音(Piet Hein)发明的7个小立方体组块(如图所示),如果假设这些小立方体的边长为1,则利用这7个组块不仅可以组成一个3×3的立方体,还可以组成很多美妙的几何体,那么,要组成下面的几何体,需要用到的3个索玛立方体的编号是1号,3号,5号或1号,3号,6号.【分析】首先确定目标图形需要多少块单位立方体(棱长为1的立方体),由题意可知需要11块,索玛立方体的1号包含3个单位立方体,2号到7号包含4个单位立方体,而目标图形需要11个单位立方体,只能是3+4+4,所以1好必须选择,之后通过观察即可解决问题.【解答】解:首先确定目标图形需要多少块单位立方体(棱长为1的立方体),由题意可知需要11块,索玛立方体的1号包含3个单位立方体,2号到7号包含4个单位立方体,而目标图形需要11个单位立方体,只能是3+4+4,所以1好必须选择,之后通过观察可知,1号,3号,5号或1号,3号,6号是成立的.(3号放在最底层,且保持图中的姿势,1好放在3号上面).故答案为1号,3号,5号或1号,3号,6号.【点评】本题考查剪切拼接、索马里方体,解题的关键是利用数形结合的思想思考问题,学会观察、尝试、动手操作解决问题.三、填空题(共5小题,每小题12分,满分60分)11.(12分)一个大于0的自然数如果满足所有因数(即约数)之和等于它自身的2倍,则称这个数为完全数(或完美数),比如,最小的完全数是6,因为6的所有因数为1,2,3,6,而1+2+3+6=12.古希腊时代的人们就已经认识完全数,并且找到了前4个6,28,496,8128完全数,那么,8128的全体质因数为1,2,4,8,16,32,64,127,254,508,1016,2032,4064,8128.【分析】首先是分解质因数,计算共有多少个约数.同时成组寻找即可.【解答】解:8128=26×127.因数个数(6+1)×(1+1)=14个,8128=1×8128=2×4064=4×2032=8×1016=16×508=32×254=64×127.故答案为:1,2,4,8,16,32,64,127,254,508,1016,2032,4064,8128.【点评】要想找到所以的因数关键在于计算出所有的因数个数然后按照顺序成对写出.12.(12分)只能被1和自身整除的大于1的自然数叫做质数或素数.比如2,3,5,7,11等,如果将117分拆成10个质数之和,要求其中最大的质数尽可能大,那么,这个最大的质数为97.【分析】117分成最小的9个2,第十个数也是小于100的,可以从100以内最大的质数开始枚举.【解答】解:100以内最大的质数是97,117﹣97=20,将20分拆成9的质数的和20=2×7+3×2正好符合题意.故答案为:97.【点评】首先要熟记100以内的25个质数,最大是97,尝试枚举即可,同时要注意本题可以是重复数字.13.(12分)我们可以将全体正整数和正分数按照如图所示的方法,从1开始,一层一层地“生长”出来;是第一层;第二层是,,第三层是,,,,…按照这个规律,在第9层.【分析】首先发现数阵图的规律是数阵图的规律是上边数字的乘积是下方的数字.同时发现的和是8,在相乘的分数中8即是小数3分子又是大数5的分母.枚举即可.【解答】解:依题意可知:根据数阵图规律可知;;;;数阵图的规律是上边数字的乘积是下方的数字.同时发现的和是8,在相乘的分数中8即是小数3分子又是大数5的分母.那么对应相乘的数字就是.那么他们前一个数字就是.×=.可知是第七行.是第八行,和即再第九行.故答案为:9【点评】本题考查对数阵图的理解和运用,关键是找到数字的变化规律.问题解决.14.(12分)如果两个自然数的积被13除余1,那么我们称这两个自然数互为“模13的倒数”比如,2×7=14,被13除余1,则2和7互为“模13的倒数”;1×1=1,则1的“模13的倒数”是它自身.显然,一个自然数如果存在“模13的倒数”则它的倒数并不是唯一的,比如,14就是1的另一个“模13的倒数”.判断1,2,3,4,5,6,7,8,9,10,11,12是否有“模13的倒数”,并利用所得结论计算1×2×3×4×5×6×7×8×9×10×11×12(记为12!,读作12的阶乘)被13除所得的余数12.【分析】判断1,2,3,4,5,6,7,8,9,10,11,12是否有“模13的倒数”只需从定义出发判断即可;计算1×2×3×4×5×6×7×8×9×10×11×12被13除所得的余数需要用同余的性质2来简化运算.【解答】解:观察1,2,3,4,5,6,7,8,9,10,11,12易发现:2×7=14 14÷13=1 (1)3×9=27 27÷13=2 (1)4×10=40 40÷13=3 (1)5×8=40 40÷13=3 (1)6×11=66 66÷13=5 (1)12×12=144 144÷13=11 (1)所以1,2,3,4,5,6,7,8,9,10,11,12都有“模13的倒数”.由同余的性质2可知:对于同一个除数,两个数的乘积与他们的余数的乘积同余,则:1×2×3×4×5×6×7×8×9×10×11×12=1×2×7×3×9×4×10×5×8×6×11×12=14×27×40×40×66×1214×27×40×40×66×12≡12(mod13)所以,1×2×3×4×5×6×7×8×9×10×11×12被13除所得的余数为12.答:1,2,3,4,5,6,7,8,9,10,11,12有“模13的倒数”;1×2×3×4×5×6×7×8×9×10×11×12被13除所得的余数为12.【点评】本题主要考察同余的性质2,但在运用同余性质2时,需要观察并找到2×7,3×9,…,6×11,刚好都是1×2×3×4×5×6×7×8×9×10×11×12的因式这一规律,方可解题.15.(12分)如果一个正方形能够被分割为若干个边长不等的小正方形,则这个正方形称为完美正方形.下面的正方形是已知包含21个小正方形的完美正方形(称为21阶完美正方形),这是迄今为止知道的最小阶数的完美正方形.分割方法如图所示,其中小正方形中心的数字代表其边长,请计算这个完美正方形的边长,并写在这里112.【分析】根据小正方形中心的数字代表其边长,求出变成是50、35、27的三个小正方形的边长的和,即可求出这个完美正方形的边长是多少即可.【解答】解:根据分析,根据小正方形中心的数字代表其边长,求出变成是50、35、27的三个小正方形的边长的和,即:50+35+27=85+27=112.故答案是:112.【点评】本题考查了剪切和拼接,突破点是:根据小正方形中心的数字代表其边长,求出变成是50、35、27的三个小正方形的边长的和.。

走美杯试题汇总及答案

走美杯试题汇总及答案

走美杯试题汇总及答案一、选择题1. 甲、乙、丙三人分别从A、B、C三个地方同时出发,向同一个目的地D出发,他们的速度比为3:2:1。

如果甲到达D地后立即返回,在距离D地4千米的地方遇到乙,那么A、B两地之间的距离是多少千米?A. 24B. 28C. 36D. 40答案:C解析:设A、B两地之间的距离为x千米,甲、乙、丙的速度分别为3v、2v、v。

甲到达D地后返回,与乙相遇时,甲乙两人共行了2x+4千米。

根据速度比,甲乙相遇时,甲行了3/2 * (2x+4)千米,乙行了2/2 * (2x+4)千米。

由于甲乙速度比为3:2,所以有3/2 * (2x+4) = 3x,解得x=36。

2. 一个自然数N,如果它加上101后是一个完全平方数,那么N的最大值是多少?A. 990B. 999C. 1009D. 9801答案:B解析:设N+101=a^2,其中a为自然数。

要使N最大,a应尽可能大。

由于a^2-101=N,所以a^2应尽可能接近101的下一个完全平方数,即121。

因此,a=11,N=121-101=20。

但题目要求N的最大值,所以应取a=10,此时N=10^2-101=99。

但99不是选项,因此应取a=9,此时N=9^2-101=80,也不是选项。

最后取a=8,此时N=8^2-101=-3,显然不符合题意。

因此,应取a=10,此时N=999,是选项中的最大值。

3. 一个长方体的长、宽、高分别为a、b、c,且a、b、c均为正整数。

如果长方体的体积是2010,那么a+b+c的最小值是多少?A. 14B. 15C. 16D. 17答案:B解析:2010=2×3×5×67,要使a+b+c最小,应尽量使a、b、c的值接近。

因此,可取a=2×3=6,b=5,c=67,此时a+b+c=6+5+67=78。

但题目要求a+b+c的最小值,因此应取a=2,b=3×5=15,c=67,此时a+b+c=2+15+67=84。

走美六年级整理

走美六年级整理

第五届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛小学六年级试卷填空题(共15题,满分150.第1~4题每题8分,第5~8题每题10分, 第9~12题每题12分, 第13~15题每题10分)1.2007×2007×……×2007(2008个2007)的个位数字是 .2.分数73,94,3517,203101,301151中最大的一个是: 。

3.2×3的棋盘上有5个棋子及1个空格.每步可将1个棋子移动到旁边的空格(横向或纵向).经过若干步移动后,由图1变到图2.A = ,B = .4.梯形ABCD 中,AE 与DC 平行,S △ABE =15,S △BCF = .5.1000千克葡萄含水率为96.5%.一周后含水率降为96%.这些葡萄的重量减少了 千克.6.计算:=⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++173327134173327125134173327173327125 . 7.如图,请在下图每个方框中填入一个数字,使乘法竖式成立.8.从1,2,3,4,…,2007中取N 个不同的数,取出的数中任意三个的和能被15整除.N 最大为 .9.一个自然数,在3进制中的数字和是2007.它在9进制中的数字和最小是 ,最大是 .图1 图210.将1、3、5、7、9填入等号左边的5个方框中, 2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最小为 .□÷□+□+□□=□÷□+□□11.如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体.这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比: : : .12.甲乙两船,在静水中速度都是每时30千米.一次甲乙两船分别从A,B 两码头同时出发相向而行,到途中的C 地后返回.结果乙比甲先到达C 地0.5小时,而乙返回B 码头后1.5小时甲才返回A 码头.已知A 在B 的上游,且水速为每时2千米.AB 的距离 为 千米.13.101001981961101816141211⨯⎪⎭⎫ ⎝⎛+-++-+-+- 的整数部分是 .14.称能表示成1+2+3+…+K 的形式的自然数为三角数.有一个四位数N ,它既是三角数,又是完全平方数.N = .15.如图,27个单位正方体拼成大正方体,沿着面上的格线,从A 到B 的最短路线共有 条.第六届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷一、填空题(共10题,第1~5题每题8分,第6~10题每题10分) 1.28121115110161311++++++= . 2.⎥⎦⎤⎢⎣⎡-++⨯) (17131212007=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛++2119615141,其中( )内应填 .3. 将循环小数∙∙180.0与∙∙683002.0相乘,小数点后第2008位是 .4. 在右图的每个方框中填入一个适当的数字,使得乘法竖式成立.乘积等于 .5. 自然数N 有45个正约数.N 的最小值为 .6. 右图中,AB=3,阴影部分的面积是 .7. M 、N 为非零自然数,且2007M+2008N被7整除.M+N的最小值为 .8. 从1~25这25个自然数中,每次取出两个不同的数,使它们的和是4的倍数,共有___________种不同的取法.9. 如图,正方体的棱长为6cm ,连接正方体其中六条棱的中点形成一个正六边形,而连接其中三个顶点形成一个三角形.正方体夹在六边形与三角形之间的立体图形有 个面,它的体积是 cm 3. 10. 由20个边长为1的小正方形拼成的一个4×5长方形中有一格有“☆”.图中含有“☆”的所有长方形(含正方形)共 个,它们的面积总和是 .二、解答题(共2题,每题15分)11. 如图,A,B,C,D,E,F,G ,H,I 代表九个各不相同的正整数, A,B,C,D,E,F,G,H,I 的总和为2008,并且每个圆中所填数的和都等于M .(1)M 最大为多少?(2)M 最小为多少?12. 如图,一罪犯以每小时100千米的速度驾车从A 地向海边的港口B 处逃窜.我公安干警在罪犯离开A 地10分钟时到达A 地,立即以每小时120千米向B 追去.如果不发生意外的话,当罪犯赶到B 处1分钟后,公安干警才能到达B .但“天网恢恢,疏而不漏”,当天适逢暴雨,CB 路段泥泞不堪,罪犯在此的车速要减少20%,我公安干警凭借优良的训练,车速只减10%,结果在离B 还有200米处追上罪犯并将他擒获.(1)求AB 距离.(2)求AC 距离.2009年第七届走美六年级初赛试题注意事项:1、考生要按要求在密封线内填好考生的有关信息2、不允许使用计算器。

小学六年级毕业美术测试试题

小学六年级毕业美术测试试题

小学六年级毕业美术测试试题第一篇:小学六年级毕业美术测试试题小学六年级毕业美术测试试题(时间:60分钟)班级:学号:姓名:一、填空题。

(每空格1分,共46分)1、色彩三要素是()、()、()。

2、人们的面部有()等各种不同的表情3、()是具有悠久历史和优良传统的中华民族传统绘画。

4.、太阳光由()等七色组成的。

5、色彩具有冷暖的性质,红色给人以()的感觉,蓝色给人以()的感觉。

6、中国画作品《八骏图》是中国现代著名画家()的作品之一。

7、文房四宝是指:()。

8、橙色是由()和()组成,绿色是由()和()组成,紫色是由()和()组成的。

9、以画马见长的画家是(),以画虾见长的画家是()。

10、中国画的用笔分为()、()、()等。

11、紫色可由蓝色加()调合而成。

12、色相是色彩的最大特征,指色彩()的名称。

13、《蒙娜丽莎》是由意大利画家()画14、中国画从表现形式上可分为:写意画、工笔画。

15、制作纸工作品常用到:()等加工制作方法。

(填4个)16、人的五官是指:()()()()()。

17、水彩画的基本表现技法可分为:()画法、()画法。

二:选择题。

(每小题2分,共32分。

每小题中只有一个选项是正确的,请将正确选项的序号填在题后的括号内)1、以下的哪一种色彩是暖色。

()A、蓝色B、橙色C、绿色D、紫色2、二十世纪被中国文化部誉为“人民艺术家”称号的画家是()。

A、徐悲鸿 B、张大千 C、齐白石3、中国画的主要工具材料有()A、白纸、铅笔和彩色颜料B、铅笔和油画棒C、毛笔、墨、颜料和宣纸等4、下面哪一项不是属于透视关系?()A、近大远小B、近长远短 C、近窄远宽5、蓝色加黄色调出的是()A、黄色 B、紫色 C、黑色 D、绿色6、()是二十世纪中国画坛最具传奇色彩的国画大师。

A、齐白石 B、张大千 C、徐悲鸿7、油画和()是世界上最重要的两大绘画体系。

A、水彩画B、版画 C、中国画8、属于冷色调的颜色是()。

2016年第十四届天津市“走美杯”初赛试卷(六年级)后附答案解析

2016年第十四届天津市“走美杯”初赛试卷(六年级)后附答案解析

2016年第十四届天津市“走美杯”初赛试卷(六年级)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:3= .2.(8分)某种商品若以6折(标价的60%)降价出售,仍相对于进货价获利10%,那么该商品标价应为进货价的倍.3.(8分)有一种骰子是非标准的,其上的点数分别为2,3,3,5,5,6,用这样两个骰子一起投掷一次,点数之和恰好等于8概率为(用最简分数表示).4.(8分)甲乙丙三种书.甲每本5元,乙每本3元,丙1元3本.现在要买三种书共100本(三种书都要有),总价恰好为100元.写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数).5.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,1+2+3+6=12.6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,可以从计算自然数的所有因数之和开始,研究完美数2016的所有因数之和为.二、填空题Ⅱ(每题10分)6.(10分)如图所示的图案由半圆构成,已知最大的圆的半径R=3,则阴影部分图形的周长为,面积为(圆周率用π表示)7.(10分)埃及人擅长数学,他们很早之前就发明了个计算圆的面积的公式:S=()2.其中,d是圆的直径.在这个公式当中,相当于将圆周率π取值为(保留两位小数).8.(10分)如图.将长方形纸片ABCD的两边AD与BC对折,得到折痕EF,再将点B折到EF上,得到折痕AM与点N,如果AM=3,那么,MN= .9.(10分)如图所示,从一个正三角形开始以下操作:第一步,将三个边分别三等分,在每一条边的中间三分之一处,向外做边长等于原来边长三分之一的小正三角形,并删除底边,得到一个六角星;第二步,对六角星的每一条边继续第一步的操作,得到一个更为复杂的六角星;,这样一直下去,就会得到一个类似雪花的美丽图形,这个图形是瑞典数学家柯赫于1904年首先构造出来的,被称为“柯赫曲线”.设原三角形的面积为1,那么,第3步后,所得到图形的面积为.10.(10分)阿凯,宝夯刚刚和崔蕊成为朋友,他们想知道崔蕊的生日日期,崔蕊最终给他们十个可能日期:5月15日、5月16日、5月19日、6月17日、6月18日、7月14日、7月16日、7月17日、8月14日、8月15日.崔蕊只告诉了阿凯她生日的月份,告诉了宝夯她生日的日子,但阿凯和宝夯进行了下面一段奇怪的对话,就都知道崔蕊的生日了.宝夯:我不知道崔蕊的生日.阿凯:你说话之前我不知道崔磊的生日,现在我知道了.宝夯,那我也知道崔蕊的生日了.那请问崔蕊的生日在哪一天?你的答案是:.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法.我们现在介绍一种“等差数列加密法”:以单词为单位,需要加密的单词的第一个字母对应到它后面的第一个字母(在字母表中的顺序,后同),第二个字母对应到它在字母表后面的第二个字母.第三个字母对应到它后面的第三个,,.比如.需要加密HELLO,H→I,E→G,L→O,L→P,O→T.加密后的密文为IGOPT.按照这种加密为法,小明收到了一个加密后的信息“JNRZJEVC”,那么,这个信息的原文是.12.(12分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2,3,5,7,11,13等.大于1的自然数如果不是素数,则称为合数.古希腊时代的人们已经知道,素数有无穷多个,其证明思路蕴含在以下问题中:前两个素数组成的算式2×3+1=7;同样,前三个素数的算式2×3×5+1=31,也是素数;前4个素数的算式2×3×5×7+1=211,前5个素数的算式2×3×5×7×11+1=2331,可以验证也是素数;但前6个素数的算式2×3×5×7×13+1=30031不是素数.显然2,3,5,7,11,13都不能整除这个数,所以,一定有比前6个素数大的素数整除30031,请写出满足条件的素数中的最大者:.13.(12分)将从1开始到100的连续的自然数相乘.得1×2×3×,×100.记为100!(读作100的阶乘)用3除100!显然,100!被3整除.得到一个商;再用3除这个商,,,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了次.14.(12分)在中的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和.那么,8阶幻星图的幻和为,并继续完成以下8阶幻星图.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四届“走美杯”小学六年级(B )卷
一、填空题Ⅰ
1. 计算:______6256961
3=+++.(用小数表达,精确到千分位)
2. 某种商品以6折(标价的60%)降价出售,仍相对于进货价获利10%,那么该商品标价应该为进货价的______倍.
3. 有一种骰子是非标准的,其上的点数分别为2,3,3,5,5,6,用这样的两个骰子一起投掷依次,点数之和恰好等于8的概率为______(用最简分数表示)
4. 甲乙丙三种书,甲每本5元,乙每本3元,丙1元3本,现要买三种书共100本(三种书都要有),总价恰好为100元,写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数)__________
____________________. 5. 大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,126321=+++,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,2016的所有因数之和为______.
二、填空题Ⅱ
6. 如图所示的图案由半圆组成,已知最大的圆的半径3=R ,则阴影部分图形的周长为
________
,面积为________(圆周率用π表示)
7. 埃及人擅长数学,他们很早之前就发明了一个计算圆的面积的公式:
2
98⎪⎭⎫ ⎝⎛=d S 其中,d 表示圆的直径
.
在这个公式中,相当于将圆周率π取值为________(保留两位小数).
8.如图,将长方形纸片ABCD的两边AD与BC对折,得到折痕EF,再将点B折到EF 上,得到折痕AM与点N.如果3
AM,那么,______
=
MN.
=
三、填空题Ⅲ
9.如图下图所示,从一个正三角形开始以下操作:
第一步:将三个边分别三等分,在每一条边的中间三分之一处,向外做边长等于原来边长三分之一的小正三角形,并删除底边,得到一个六角星;
第二步:对六角星的每一条边继续第一步的操作,得到一个更为复杂的六角星;
……
这样一直做下去,就会得到一个类似雪花的美丽图形,这个图形是瑞典数学家柯赫于1904年首先构造出来的,被称为“柯赫曲线”.
设原三角形的面积为1,那么,第3步后,所得到图形的面积为______.
9.阿凯,宝夯刚刚和崔蕊成为朋友,他们想知道崔蕊的生日日期.崔蕊最终给他们十个可能日期:5月15日、5月16日、5月19日、6月17日、6月18日、7月14日、7月16日、7月17日、8月14日、8月15日,崔蕊只告诉了阿凯她生日的月份,告诉了宝夯她生日的日子,但阿凯和宝夯进行了下面一段奇怪的对话,就都知道崔蕊的生日了.
宝夯:我不知道崔蕊的生日.
阿凯:你说话之前我不知道崔蕊的生日,现在我知道了
宝夯:那我也知道崔蕊的生日了.
__________.
那请问崔蕊的生日在哪一天?你的答案是:___
11.古罗马的凯撒大帝发明了世界上最早的数学加密方法,我们现在介绍一种“等差数列加密法";以单词为单位,需要加密的单词的第一个字母对应到它后面的第一个字母(在字母表中的顺序,后同),第二个字母对应到它在字母表后面的第二个字母,第三个字母对应到它后面的第三个,…,比如,需要加密 HELLO,H→1
E→G,L→0,L→P,O→T,加密后的密文为 IGOPT.
按照这种加密方法,小明收到了一个加密后的信息“ JNIZJEVO",那么,这个信息的原文是___________.
12.只能被1与其自身整除的大于1的自然数称为素数或质数,比如2,3,5,7,11,13等大于1的自然数如果不是素数,则称为合数,古希腊时代的人们已经知,道,素数有无穷多个,其证明思路蕴含在以下问题中:前两个素数组成的算式7132=+⨯;同样,前三个素数的算式
311532=+⨯⨯,也是素数:前4个素数的算式2×
3x5x7+1=2121117532=+⨯⨯⨯,前5个素数的算式23111117532=+⨯⨯⨯⨯,可以验证也是
素数;但前6个素数的算式30031113117532=+⨯⨯⨯⨯⨯不是素数,显然2,3,5,7,11,13都不能整除这个数,所以,一定有比前6个素数大的素数整除30031,,请写出满足条件的素数中的最大者:__________.
13. 将从1开始到100的连续的自然数相乘,得到100321⨯⋅⋅⋅⨯⨯⨯.记为100!(读作100的阶乘)用3除100!,显然,100!被3整除,得到一个商:再用3除这个商,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了______次.

14. 在如图所示的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和那么,8阶幻星图的幻和为______,并继续完成以下8阶幻星图:
15.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理,勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,
如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:
刘徽模式勾股拼图板的5个组块,还可以拼成个如右图所示的梯形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个梯形的上下底的长分别为______厘米与
______厘米.。

相关文档
最新文档