力学例题

合集下载

高一物理力学典型例题

高一物理力学典型例题

以下是一些高一物理力学的典型例题:1. 一个物体在水平地面上做匀速直线运动,受到的摩擦力是20N,那么物体受到的拉力是()A. 大于20NB. 等于20NC. 小于20ND. 无法判断答案:B解析:物体做匀速直线运动时,处于平衡状态,受到的摩擦力和拉力是一对平衡力,所以拉力等于摩擦力等于20N。

2. 一辆汽车在平直的公路上行驶,从甲地经过乙地到达丙地,若汽车在甲、乙两地间的平均速度为v1,在乙、丙两地间的平均速度为v2,则汽车从甲地到丙地的平均速度为()A. (v1+v2)/2B. v1+v2C. v1v2/(v1+v2)D. v1v2/v1+v2答案:C解析:设甲、乙两地间的距离为s1,乙、丙两地间的距离为s2,则汽车从甲地到乙地的时间t1=s1/v1,从乙地到丙地的时间t2=s2/v2,则汽车从甲地到丙地的平均速度v=s1+s2/t1+t2=s1+s2/s1/v1+s2/v2=v1v2/v1+v2。

3. 一个物体在竖直方向上做自由落体运动,其在t时间内位移为x,在紧接着的t时间内位移为x\prime,则物体刚下落时离地面的高度为()A. x+x\prime/t\textsuperscript{2}B. x-x\prime/t\textsuperscript{2}C.x+x\prime/t\textsuperscript{2}-gt\textsuperscript{2}/4D.x+x\prime/t\textsuperscript{2}+gt\textsuperscript{2}/4 答案:C解析:根据自由落体运动的位移时间关系公式,有x=gt\textsuperscript{2}/2;x′=g(t+t\textsubscript{0})\textsuperscript{2}/2,其中t\textsubscript{0}=t,解得物体刚下落时离地面的高度h=x+x′/t\textsuperscript{2}-gt\textsuperscript{2}/4。

初中物理力学经典例题15道题

初中物理力学经典例题15道题

初中物理力学经典例题15道题1. 一个质量为2kg的物体,在水平地面上受到10N的水平拉力,求物体的加速度。

解答:根据牛顿第二定律,物体的加速度等于合外力除以物体的质量。

所以物体的加速度为a = F/m = 10N / 2kg = 5m/s^2。

2. 一个质量为0.5kg的物体受到一个5N的竖直向下的重力,求物体的重力加速度。

解答:重力加速度是指物体在自由下落时垂直于地面的加速度。

根据牛顿第二定律,物体的重力加速度等于重力除以物体的质量。

所以物体的重力加速度为g = F/m = 5N / 0.5kg = 10m/s^2。

3. 一个质量为4kg的物体,向右运动时受到一个10N的水平拉力和一个8N的水平推力,求物体的加速度。

解答:物体的加速度等于合外力除以物体的质量。

合外力等于水平拉力减去水平推力,即F = 10N - 8N = 2N。

所以物体的加速度为a = F/m = 2N / 4kg = 0.5m/s^2。

4. 一个质量为2kg的物体,在斜面上受到一个与斜面垂直的力为10N的重力和一个沿斜面方向的力为4N,斜面的倾角为30度,求物体的加速度。

解答:首先将斜面上的力分解为与斜面垂直方向的力和沿斜面方向的力,即重力沿斜面方向的分力为F1 = mg * sinθ,沿斜面方向的合力为F2 = mg * cosθ。

其中,m = 2kg,g = 9.8m/s^2,θ = 30°。

所以沿斜面方向的合力为F2 = 2kg * 9.8m/s^2 * cos(30°) ≈ 16.96N。

物体的加速度等于沿斜面方向的合力除以物体的质量,即a = F2/m = 16.96N / 2kg ≈ 8.48m/s^2。

5. 一个质量为3kg的物体,向左运动时受到一个3N的水平拉力和一个5N的水平推力,求物体的加速度。

解答:物体的加速度等于合外力除以物体的质量。

合外力等于水平推力减去水平拉力,即F = 5N - 3N = 2N。

初中物理力学经典例题

初中物理力学经典例题

初中物理力学经典例题以下是一些经典的初中物理力学例题:1. 一个质量为5kg的物体静止在水平地面上,施加一个10N的水平力。

求物体的加速度。

解答:根据牛顿第二定律F = ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。

由于力和质量已知,将其代入方程可以求得加速度。

所以a = F / m = 10N / 5kg = 2m/s²。

2. 一个弹簧常数为200N/m的弹簧拉伸10cm后,求弹簧所受的弹力。

解答:根据胡克定律F = kx,其中F是弹簧所受的弹力,k是弹簧的弹簧常数,x是弹簧的伸长量。

由于弹簧常数和伸长量已知,将其代入方程可以求得弹力。

所以F = 200N/m × 0.1m = 20N。

3.一个物体以2m/s的速度沿直线运动,经过5s后速度变为8m/s。

求物体的加速度。

解答:根据加速度的定义a = (vf - vi) / t,其中a是物体的加速度,vf是物体的最终速度,vi是物体的初始速度,t是时间间隔。

由于初始速度、最终速度和时间间隔已知,将其代入方程可以求得加速度。

所以 a = (8m/s - 2m/s) / 5s = 1.2m/s²。

4. 一个质量为2kg的物体以10m/s的速度水平地撞击到静止的墙壁,反弹后以8m/s的速度反向运动。

求撞击过程中墙壁对物体的平均力。

解答:由于撞击过程中物体速度发生了变化,需要用动量定理来求解。

根据动量定理FΔt = Δmv,其中F是力,Δt是撞击时间,Δm是物体的质量变化量,v是物体的速度变化量。

由于质量变化量为零(质量不变),而速度变化量已知,可以求得撞击时间。

所以Δt = Δmv / F = (2kg × (8m/s - (-10m/s))) / (8m/s) = 9.5s。

由于撞击过程是瞬间发生的,可以认为撞击时间非常短,近似为0。

因此,墙壁对物体的平均力可以近似为墙壁对物体的瞬时力,即F = Δmv / Δt = 2kg × (8m/s - (-10m/s)) / 0s = ∞(无穷大)。

(完整版)高一物理力学典型例题

(完整版)高一物理力学典型例题

高中物理力学典型例题1、如图1—1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。

绳上挂一个光滑的轻质挂钩。

它钩着一个重为12牛的物体.平衡时,绳中张力T=____分析与解:本题为三力平衡问题。

其基本思路为:选对象、分析力、画力图、列方程。

对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。

所以,本题有多种解法。

解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。

解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。

以两个拉力为邻边所作的平行四边形为菱形.如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛.想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。

)2、如图2—1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B 上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等.在轻绳两端C、D分别施加竖直向下的恒力F=mg。

先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变.(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。

因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小.当物块的合外力为零时,速度达到最大值。

之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。

力学题库1(例题与作业)

力学题库1(例题与作业)

第一章质点运动学例1、质点沿x轴正向运动,加速度a=-kv,k为常数。

设从原点出发时速度为v0,求运动方程x=x(t)与速度—位移关系v=v(x)。

例2、已知斜抛运动的抛射角为θ,初速度为v0。

求其轨迹方程。

例3、如图,小船在绳子的匀速v0牵引下运动,已知h。

求θ位置时船的速度与加速度大小。

(两种方法)例4、有一轮以匀角速ω旋转,一质点自轮心沿水平轮轴以匀速v0向轮边移动。

求质点的轨迹方程,以及t时刻质点的速度和加速度大小。

*例5、一只狼沿着半径为R的圆形岛边缘按逆时针方向匀速跑动,当狼经过某点时,一只猎犬以相同的速率从岛中心出发追逐狼。

设追逐过程中犬、狼、岛中心始终在一直线上,求猎犬的轨迹和追上狼时的位置。

*例6、(上海高考题改编)下图为平静海面上拖船A、B拖着驳船C运动的示意图。

已知A、B的速度分别沿缆绳CA、CB方向,且A、B、C不共线。

以下说法正确的是()(多选)(A)C的速度大小可能介于A、B的速度大小之间(B)C的速度一定不小于A、B的速度(C)C的速度方向可能在CA、CB的夹角之外(D)C的速度方向一定在CA、CB的夹角之内**例7、已知点P0(l,0)处有一小船,以长为l的线,拉着小船从原点向上走,小船沿着绳运动,PQ为P点切线,Q点恒在y轴上。

(1)以图中θ为参数,求P点的轨迹方程。

(曳物线)(2)若Q 点以匀速u 向上运动,求θ位置处P 点的加速度。

练习题1、一质点沿x 轴运动,其速度—时间关系为⎪⎭⎫ ⎝⎛+=t t v 6sin 23ππ,式中各量均取国际单位。

已知当t =0时质点在x =-2m 处。

求:(1)2s 时质点的位置;(2)0s 至2s 质点的位移;(3)0s 和2s 两时刻质点的加速度。

2、一质点以初速度v 0=5i 开始离开原点,其运动加速度为a =-i -j 。

求:(1)质点到达x 坐标最大值时的速度;(2)上述时刻质点的位置。

3、如图所示,长为l 的棒的一端A 靠在墙上,另一端B 搁在地面上,A 端以恒定速率u 向下运动。

(完整版)八年级的物理力学典型例题.docx

(完整版)八年级的物理力学典型例题.docx

液体压强典例例 1 小华制成如图 5 所示的“自动给水装置”,是用一个装满水的塑料瓶子倒放在盆景中,瓶口刚好被水浸没。

其瓶中水面能高于盆内水面,主要是由于()A、瓶的支持力的作用B、瓶的重力作用C、水的浮力作用支持力D、大气压的作用【解题思路】瓶内高于水面的水与瓶的支持力和重力作用无关,可排除A、 B。

瓶内装满水瓶子倒放在盆景中后,是大气压的作用,与浮力无关。

【点评】只所以瓶中水面能高于盆内水面是由于瓶外大气压比瓶内上面的空气气压大。

此题考查学生是否理解大气压在生产生活中的应用原理;考查学生的物理知识与生产生活结合能力。

难度较小。

例 2 在塑料圆筒的不同高处开三个小孔,当筒里灌满水时.各孔喷出水的情况如图 5 所示,进表明液体压强()A.与深度有关B.与密度有关C.与液柱粗细有关D.与容器形状有关图 5【解题思路】由图示可知,小孔距水面越远,孔中喷出的水流越远,这说明液体的压强随深度的增加而增大。

【答案】 A【点评】本题考查了液体内部压强的特点。

理解水从孔中喷出的越远,液体压强越大,是解题的关键。

本题难度中等。

例 3 在两个完全相同的容器 A 和B 中分别装有等质量的水和酒精(p水>p 酒精 ) ,现将两个完全相同的长方体木块甲和乙分别放到两种液体中,如图 2 所示,则此时甲和乙长方体木块下表面所受的压强P 甲、 P 乙,以及 A 和B 两容器底部所受的压力F A、 F B的关系是A.P甲<P 乙F A<F B。

B.P甲=P 乙FA>FB。

C.P甲=P 乙FA<FB。

D .P甲= P乙F A= FB。

例 4 如图 1 所示,在三个相同的容器中分别盛有甲、乙、丙三种液体;将三个完全相同的铜球,分别沉入容器底部,当铜球静止时,容器底受到铜球的压力大小关系是F < F < ,甲乙丙则液体密度相比较图 1A .一样大B .乙的最小C .丙的最小D . 甲的最小例 5 右图为小明发明的给鸡喂水自动装置,下列是同学们关于此装置的讨论, 其中说法正确的是()A .瓶内灌水时必须灌满,否则瓶子上端有空气,水会迅速流出来B .大气压可以支持大约10 米高的水柱,瓶子太短,无法实现自动喂水C .若外界大气压突然降低,容器中的水会被吸入瓶内,使瓶内的水面升高D .只有当瓶口露出水面时,瓶内的水才会流出来例 6 内都装有水的两个完全相同的圆柱形容器, 放在面积足够大的水平桌面中间位置上。

高一物理力学经典例题

高一物理力学经典例题

高一物理力学经典例题1. 一维运动中的速度与加速度计算题目描述一辆汽车以恒定速度v行驶了t时间,在某一时刻该车突然加速a,然后以加速度a行驶了一个时间间隔t1,最后以减速度b减速到停止。

求汽车以恒定速度v行驶的距离和总时间。

解答设汽车以恒定速度v行驶的距离为S1,加速度为a行驶的距离为S2,减速度为b行驶的距离为S3,总时间为T。

根据物理学中的基本关系式:速度v = 距离S / 时间t,我们可以得到以下关系:- 恒定速度v行驶的距离S1 = v × t - 初速度为v,加速度为a,时间间隔为t1时的位移S2 = v × t1 + 0.5 × a × t1² - 以减速度b减速到停止的位移S3 = 0.5 × b × (T - t -t1)² - 总时间T = t + t1 + (T - t - t1)代入上述方程,我们可以解得答案。

2. 牛顿第二定律与力的计算题目描述一个质量为m的物体,受到一个恒定的水平力F作用,获得了加速度a。

根据牛顿第二定律,计算物体所受的力F。

解答根据牛顿第二定律 F = ma,我们可以计算物体所受的力F。

给定质量m和加速度a,代入上述公式即可得到答案。

3. 竖直上抛运动中的最大高度和落地时间计算题目描述一个物体以初速度v0竖直向上抛出,经过一段时间后落回原点。

已知重力加速度g,求物体的最大高度和落地时间。

对于竖直上抛运动,我们可以利用运动学中的关系式来计算最大高度和落地时间。

1.计算最大高度:–最大高度h = (v0²) / (2g)2.计算落地时间:–首先计算上升时间t1 = v0 / g–再计算下降时间t2 = 2t1–最后计算落地时间t = t1 + t2代入已知的初速度v0和重力加速度g,即可计算出最大高度和落地时间。

4. 斜抛运动中的最大高度和飞行时间计算题目描述一个物体以初速度v0与水平面成角度θ斜抛出,求物体的最大高度和飞行时间。

静力学30个例题

静力学30个例题

F F
ix
0 0
FAx FBC cos 45 0
FAy FBC sin 45 F1 0
iy
M F A i 0

FBC sin 45
l F1 l 0 2
FBC 2 2 F1 可得 FAx 2 F1 F F 1 Ay ( 2) 三力矩式: M A Fi 0
y F1
A B
F4
y

D C
2
45
A
Fx MB Fy
1
D B Cx
M
F2
x
F3
F
y
A
MC
B
F
解:1 计算力系的主矢 F :
D C
x
F
y
A (-3,0) B
D Cx
Fx Fix F4 cos 45 F2 2 KN F y Fiy F1 F3 F4 sin 45 1KN

Fx c xdF
0 L
xc
1 F
q0 x 2 2 0 l dx 3
l
例 11 已知:矩形板的四个顶点上分别作用四个力及一个力偶如图 a 所示。其 中 F1 2 KN , F2 3KN , F3 4 KN , F4 2 KN 力偶矩 M 10 KM m ,转向如图 所示,图中长度单位为 m 。试分别求:1)力系向点 B 简化结果 2)力系向点 C 简化 结果 3)力系简化的最后结果
tg 1 2
FA FB F sin( 90 ) sin 45 sin( 45 )
F sin 45 FA cos

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

结构力学自由度的计算例题及解析

结构力学自由度的计算例题及解析

1. 对于一个简单的平面桁架结构,若共有6个节点和10根构件,那么其自由度为多少?- A. 6- B. 8- C. 10- D. 122. 在一个平面梁结构中,每个支座具有多少个约束?- A. 1- B. 2- C. 3- D. 43. 计算一个刚性连接的平面框架结构的自由度时,若结构有8个节点和12根构件,自由度公式为:自由度 = 3n - 2j,其中n是节点数,j是构件数。

该结构的自由度是多少?- A. 4- B. 6- C. 8- D. 104. 一个平面结构中,假设有4个节点,6根构件,所有构件都在一个平面上,计算其自由度时需考虑:- A. 3自由度每节点,减去2自由度每构件- B. 2自由度每节点,减去1自由度每构件- C. 2自由度每节点,减去2自由度每构件- D. 3自由度每节点,减去1自由度每构件5. 对于一个三维空间的桁架结构,若有10个节点和20根构件,其自由度计算应使用的公式是:- A. 自由度 = 6n - 3j- B. 自由度 = 3n - 2j- C. 自由度 = 3n - 3j- D. 自由度 = 6n - 6j6. 在平面框架结构中,如果节点数为5,构件数为8,计算其自由度时,正确的自由度为: - A. 6- B. 8- C. 10- D. 127. 对于一个有10个节点和15根构件的平面结构,其自由度为:- A. 15- B. 18- D. 248. 一个简单的平面框架结构中有6个节点,8根构件,计算自由度时,如果框架是完全支撑的,结果是:- A. 3- B. 6- C. 9- D. 129. 对于一个空间框架结构,其中有5个节点和12根构件,计算自由度时所用的公式为: - A. 自由度 = 6n - 3j- B. 自由度 = 3n - 2j- C. 自由度 = 6n - 2j- D. 自由度 = 3n - 3j10. 若一个平面结构中节点数为7,构件数为10,且结构为刚性框架,计算其自由度时,结果为:- A. 5- B. 7- C. 9- D. 11。

经典力学例题

经典力学例题

1、平面任意力系例;无重水平梁地支撑和载荷如图所示,已知力F 和强度为q=F/b 地均不载荷.求 支架A 和B 地约束力.【解析】平面任意力系平衡条件.【答案】取梁分析E F X =0,F A X +F COS 30° =0E F Y =0,F ay +F B -Fsin30o -qb=0 E MA(F)=0,Fbsin30° +qb5/2b -2F B b =0解得;F*—F = ay F B =2、摩擦平衡问题静滑动摩擦力地方向与物体运动趁势方向相反,大小在零与最大静摩擦力之间;即0W F sW F max一般静摩擦力由平衡条件确定,最大静摩擦力;F max =f s FN 称为库伦摩擦定律,即静摩擦定律,其中f s 是摩擦系数.动滑动摩擦力地方向与相对滑动方向相反,大小F‘ =fFN 称为库伦动摩擦定律.即动滑动摩擦定律,f 是动摩 擦系数.例;材料不同地两块A 和B 叠放在水平面上.巳知物块A 重0.5KN,物块B 重0.2KN 物块A 、B 间地摩擦系 数f 1=0.25,物块B 与地面间地摩擦系数f 2=0.2,拉动物块B 所需要地最小力为?答案;F=(F A +F B )X f 2例3.自重为P=100KN 地T 字型钢架ABD,置于垂面内.如图.巳知q=20kn/m,F=400KN.M=20KN.M, L=1m.求固定端 地约束力.例4;求图示结构地固定端A 和 连杆支座B 地支座反力.解.利用平面任意力系地平衡条件求解;由图得;E Fx=0, -Fcos30 ° +1/2q*3L+Fax=0MA-3qL.L/2-M+Fsin30° .3L=0 解得;Fx= Fy= M A = E Fy=0, -Fsin30 ° -p+Fay=0 E M A (F)=0,解;利用物体系统地平衡I、问题求如图.取CB为研究对象,Emc=0,2RB-10=0——► RB=5KN取整体为研究对象E y=0,Y A+RB-2X20=0 ------- ► Y A=35KN工X=0,X A+50=0------ ►X A=—50E M A=0,M A+5 X 4-10-40 X 1-50 X 2=0〃-►M A=130KN2、材料力学基础概念材料力学地任务1、强度;构件抵抗破坏地能力,即在规定地使用条件下.构件不会发生断裂或显著地永久形变.2、刚度;构件抵抗变形地能力,即在规定地使用条件下,变型不超过允许地限度.3、稳定性;构件保持原有地平衡形式地能力,即在规定地使用条件下,构件能始终保持原有地平衡形式它地任务就是在满足刚度、强度和稳定性地前提下,从经济方面为构件选择适宜地材料,确定合理地形状和尺寸,为构件地设计提供基本理论和计算方法.杆地几何特征是纵向(长度方向)尺寸远大于横向(垂直与长度方向)尺寸.轴、梁和柱均属于杆.轴线为直线地杆称为真杆,轴线为曲线地杆称曲杆,等截面地直杆简称等直杆,横截面大小不等地杆称为变截面杆.杆件地四种基本形变;1、拉伸与压缩.2、剪切.3、扭转4、弯曲.12、轴杆地拉伸与压缩轴杆地拉伸与压缩地强度计算.例;图示桁架.杆1、2地横截面均匀为图形,直径分别为d1=30mm、d2=20mm、两杆材料相同,许用应力【Q】=160MPa,该桁架在节点A 处受垂直方向地载荷F作用,求F地最大允许直.如图所示三个力构成矢量三角形,有勾股定理可知;FN1 - FN2 二巨sin45° sin30G sinlOS0假设杆1、2都能够满足强度要求,则有Q1=F N1/A1=F N1/3.14* (D1/2) *(D"2)W[160]MPa F N1W113040NQ2=F N2/A2=F N2/3.14* (D2/2) *(D2/2)W[160]MPa F N2W50240N 有F1和F2强度得到F地最大允许值得、si<FW血砰得F力为97KN 例2;某铣床工作台进给液压缸如图所示,缸内工作油缸P=2MPa,内经D=75mm,活塞杆直径d=18mm,已知活塞杆材料地许应力【Q】=50MPa. 试校该活塞杆地强度.解;利用轴向拉伸或压缩时地强度解题.F=PA=2*1000000*3.14(D/2)*(D/2)=2*1000000*3.14* ( 75/2 ) (75/2)*0.000000=8831.25NQ=F/[3.14(d/2)*(d/2)]=8831.25/(3.14*81*0.000000)=34.7MPa<[q]=50M Pa故活塞杆满足强度要求13、拉伸或压缩时地变形例3,钢杆AC、BD吊一横梁AB (重量与变型不计),F=20NK,_T 钢杆横截面积A=1CM2,E=200GPa,试求两杆地应力及F力作用点G 地位移.由与载荷作用于梁地中部,由力矩平衡定理可知,FNAC=FNBD=F/2=20/2=10KN又因为AC和BD地两杆材料和横截面积都相同,则由应力公式可知Q=F/AQac=Qbd=F/2/A=10*1000/1*0.0000=100MPa(2).杆在载荷F地作用力下产生形变△L ac =F/2/LAC/EA=20/2*1000*2/200*1000000000*1*0.0001=0.00△L bd =F/2/Lbd/EA=20/2*1000*1/200*100000000*1*0.0001=0.0005m 例4.如图所示一三角架,杆AB为园钢杆,【Q】1=120MPa.直径d=24mm; 杆BC为正方形截面杆[Q]2=60MPa,边长a=20mm.求三脚架地许可荷载[p].利用平衡条件得到.N1=N2=P杆1【P1】=[N1]=[Q]*A1=34.6KN杆2【P2】=[N2]=[Q]*A2=24KN取[P]=24KN13、剪切当构件受到两个大小相等,反向相反,力地作用线相互平行且距离很近地两个力作用时.两力间地横截面发生相对错动,这种变形称为剪切. 受剪切上地内力称剪力.工程上采用实用算法,假设应力在剪切内均匀分布,设剪切面积为A,则应力为T=Fs/A强度地条件是;t=Fs/AW[t]挤压地实用计算螺栓、螺钉、键、柳钉等连接件,除了承受剪切以外,在连接件和被连接件地接触面上还相互压紧一这一现象称为挤压.作用在挤压面单位面积上地挤压力习惯上称挤压应力,用Qbs表示,挤压应力在挤压面上地分布比较复杂,所以和剪切一样,也采用使用计算,为保证构件正常,满足挤压强度条件;Qbs二Fbs/AbsW [Qbs]试中Fbs为挤压面上挤压力.Abs为挤压面积,[Qbs]为材料许用挤压应力.挤压面积根据接触面积而定,一般有两种,(1)平面接触时,挤压面积等于实际承压面积;(2)柱面接触时(如柳钉,销轴等)挤压面积为实际面积在其直径平面上地投影,即Abs=dt式中d为柳钉或销轴直径;t为接触柱面地高度,例;木接头如图所示,已知a=b=12cm. h=35cm,c=4.5cm, F=40KN.试求切应力和挤压力.剪切面地面积为A=bh=12*0.02*35*0.02=0.042m2挤压面地面积为A j「bc=12*0.02*4.5*0.01=5.4*10-3m2 则切应力t=F/A=40000N/0.042M2=0.952MPa挤压应力Q jy=F/A jy=40000N/5.4*0.001M2=7.41MPa例;一螺栓将拉杆与厚为8mm地两快板相连接,如图零件材料相同.其许应力均为【Q】=80MPa.【T】=60MPa,【Q jy】=160MPa.若拉杆厚度t=15m m,拉力F=120K N.试求螺栓直径d及拉杆厚度 b.利用剪切和挤压地实用计算求解;螺栓受到地挤压面积A=dt=15d*0.000000 tf拉杆欲满足强度要求.则Q拉W【Q】=80MPaQ y=F/AQ &=F/A图示钢板地厚度L=5mm,其极限切tb=400MPa,试问要加多大地冲压力,才能是钢板上冲出一个直径d=18mm地圆孔.利用剪切地实用计算求解, (1)受剪切力地面积为;A=3.14・d・t (2)剪断所需地冲剪力为;F=T・3.14 d仁400X3.14X18X5=113Kn b例;两块钢板个厚t】二8哑,t2=10哑,用直径相同飞柳钉搭界受拉力P=200KN地作用,如图,设柳钉地许应力分别为【t】=140MPa,[Qbs]=320MPa, 试求柳钉地直利用挤压实用计算求解;Pbs=P/5=40KND2 N 40*1000*4/3.14 - 140=19.1mm Qbs=40 X 1000/d - 8 W【Q】bs=320MPaDN15.63mm.取 d=20mm13,扭矩-外力偶据、扭矩和扭矩图杆件在垂直轴线地两个平面内受到等值,反向地力偶作用时,杆件个截面绕轴线作相对转动,这种变形称为扭矩.为;已知传动地功率p (kw),转速n (转/分),则外力偶据M=9550P/n (N • m)MO待续...12 / 12。

初中物理力学经典例题(带解析)

初中物理力学经典例题(带解析)

初中物理力学经典例题(带解析)一、单选题(共11题;共22分)1.如右图用同样的滑轮组分别提起质量相等的一个物体和两个物体,比较甲、乙两图,正确表示机械效率关系的是()甲=η乙B.η甲<η乙C.η甲>η乙D.无法比较A.η2.甲物体放在光滑的水平面上,乙物体放在粗糙的水平面上,它们分别在相等的水平力F作用下移动相等的距离s,那么,力F对两物体所做的功()A.甲较多B.乙较多C.相等D.无法确定3.下列生活实例中,对图片描述正确的有()A.甲图:不计阻力及能量损耗,网球从刚击球拍到球拍形变最大过程中,网球机械能守恒B.乙图:铁锁来回摆动最终停下,在铁锁下降过程中,重力势能全部转化为动能C.丙图:人造地球卫星由于不受空气阻力,只有动能和势能的转化D.丁图:运动员从高处落下,动能转化为重力势能4.如图所示,轻质杠杆AB可绕O点转动,当物体C浸没在水中时杠杆恰好水平静止,A、B两端的绳子均不可伸长且处于张紧状态。

已知C是体积为1dm3、重为80N的实心物体,D是边长为20cm、质量为20kg 的正方体,OA:OB=2:1,圆柱形容器的底面积为400cm2(g=10N/kg),则下列结果不正确的是()A.物体C的密度为8×103kg/m3B.杠杆A端受到细线的拉力为70NC.物体D对地面的压强为1.5×103PaD.物体C浸没在水中前后,水对容器底的压强增大了2×130Pa1/165.汽车在平直公路上以速度v匀速行驶,发动机功率为P,牵引力为F0,t1时刻开始,司机减小了油门,使汽车保持恒定功率所行驶,到t2时刻,汽车又开始做匀速直线运动,速度为v.已知运动过程中汽车所受阻力f恒定不变,汽车牵引力F随时间t变化的图像如图所示,则()A.t1至t2时间内,汽车做加速运动B.F0=2fC.t1时刻之后,汽车将保持功率P0行驶D.v= 1 2v06.质量相同的甲、乙两实心金属球密度之比为3:2,将甲球浸没在液体A中,乙球浸没在液体B中,A、B 两种液体的密度之比为5:4,则此时甲、乙两球所受浮力之比为()A.6:5B.:56C.:815D.1:587.小华同学利用如图所示的装置提起水中的物块,下列判断正确的()A.装置中的滑轮是定滑轮B.装置中的AOB是省力杠杆C.物块在上表面露出水面前,所受浮力不断减小D.该滑轮的机械效率可以达到100%﹣4m38.实心正方体木块(不吸水)漂浮在水上,如图所示,此时浸入水中的体积为6×10,然后在其上表面放置一个重4N的铝块,静止后木块上表面刚好与水面相平(g取10N/kg,ρ水=1.0×130kg/m3)则该木块()A.未放置铝块前,木块受到的浮力是10NB.放置铝块后,木块排开水的体积是1×10﹣3m3C.木块的密度是0.7×103kg/m3D.放置铝块后,木块下表面受到水的压强增大了600Pa9.下列涉及压强知识说法不正确的是()2/16A.海绵块的形变显示了压力作用效果B.用微小压强计可以研究液体压强C.托里拆利实验可以测出大气压值D.船闸不是连通器10.如图所示,用6N的水平拉力F拉动物体A在水平地面上向右匀速运动,物体B静止不动,弹簧测力计示数为2N,下列说法正确的是()A.A对B的摩擦力大小为4N,方向水平向右B.B对A的摩擦力大小为2N,方向水平向右C.地面对A的摩擦力大小为4N,方向水平向左D.地面对A的摩擦力大小为6N,方向水平向左11.重力相同的a、b两件货物在两台吊车钢索的牵引下竖直向上运动,它们运动的s—t图像分别如图甲、乙所示,则在图像描述的运动过程中()A.它们都做匀速直线运动B.a货物所受重力和钢索对它的牵引力是一对作用力与反作用力C.b货物所受重力和钢索对它的牵引力是一对平衡力D.前6s内,a货物运动的平均速度小于b货物运动的平均速度3/16二、填空题(共2题;共6分)12.在斜面上将一个重600N的物体匀速拉到高处,沿斜面向上的拉力F=400N,拉动的距离s=4.5m,提升高度h=1.8m,所用时间t=30s。

(带答案)初中物理第七章力学经典大题例题

(带答案)初中物理第七章力学经典大题例题

(带答案)初中物理第七章力学经典大题例题单选题1、茶杯放在水平桌面上,下列关于茶杯和桌面受力情况的叙述中,不正确的是()A.杯子所受重力的施力物体是地球B.茶杯受到向上的弹力是因为茶杯发生了弹性形变C.此时桌面发生了弹性形变D.桌面受到向下的弹力是因为茶杯发生了弹性形变2、下列运动情景中,能明显观察到力使物体发生形变的是()A.足球在空中成弧线落下B.跳水运动员向下压弯跳板C.在地面上的课桌保持静止D.篮球碰到篮板后改变运动方向3、由下列几个实例联想到的物理知识,其中错误的是()A.“孤掌难鸣”表明力是物体对物体的作用B.划船时,使船前进的力的施力物体是船桨C.点心师傅将包子皮捏出漂亮的花边,是力改变了物体的形状D.把鸡蛋往碗沿上一磕,鸡蛋就破了,说明力的作用是相互的4、2022年冬奥会将在北京举行,跳跃式滑雪运动员也在积极备赛训练,下图正确表示滑雪运动员在空中时滑翔时所受重力示意图的是()A.B.C.D.5、如图所示是教材中运动员踢足球的情景插图,下列说法正确的是()A.踢球时,脚会痛是因为力的作用是相互的B.踢球时,脚对球的作用力大于球对脚的作用力C.运动员用头顶足球运动方向的改变,不属于改变物体的运动状态D.守门员抱住飞来的足球,不属于改变物体的运动状态6、下列估测最接近实际的是()A.一本物理参考书的宽度约为5cmB.上课铃响一次持续的时间约5minC.一名中学生的重力约为500ND.中学生的步行速度约为20m/s7、如图所示为某届奥运会运动项目图标,其中不是利用“力的作用是相互的”这一原理的是()A.游泳B.皮划艇C.蹦床D.举重8、如图所示,一个长方体的物块A静止在水平桌面上,物块受到水平桌面的支持力本质上也是弹力,下列关于该支持力的分析正确的是()A.该支持力的作用点在水平桌面上B.支持力是由于水平桌面发生弹性形变产生的C.支持力是由于物块A发生弹性形变产生的D.该支持力的作用效果是使水平桌面发生形变9、如图所示实例中,与另外三个力所产生的作用效果不同的是()A.压弯的跳板B.人推动箱子C.磁铁改变小钢球运动轨迹D.守门员抓住球10、下列关于力的说法正确的是()A.成语“孤掌难鸣”说明一个物体一定不会产生力的作用B.《墨子》:”以卵投石,尽天下之卵,不可毁也。

大学力学精选例题

大学力学精选例题

精选例题30道1.某质点的运动学方程为2=10+15t +5t -r i j k (单位:m ,s )。

求t=0,1时质点的速度矢量。

解:因x=-10=常量,故质点在距原点10m 处与O yz 平行的平面上原点。

根据==++d dx dy dzv dt dt dt dtr i j k , =15+10t v j k (单位:m/s ,s )v1510cos =0, cos =, cos =v v v tv vαβγ。

当t=0 s 时,v=15 m/s ,cos =1, cos =cos =0v v v βαγ当t=01s 时,v=18.03 m/s ,cos =0, cos =0.832, cos =0.555v v v αβγ即 =90, =33, =56v v v α︒β︒42'γ︒18'2.一质点平面运动的加速度为=cos , =sin , , 0, 0x y a t a t A B A B -A -B ≠≠≠。

初始条件为00=0, =, =, =00y t v B x A y 。

求质点轨迹。

00=+()=cos =sin ,=+()=B sin =Bcos .ttx 0x x t tty 0y y t v v a t dt tdt t v v a t dt tdt t -A -A -B ⎰⎰⎰⎰解:根据平面直角坐标系中质点速度公式有又根据位移公式有00x=x +()=A sin =cos ,y=y +()=cos =Bsin .t t0x t tt0y t v t dt tdt t v t dt tdt t -A A B ⎰⎰⎰⎰所以=cos , =sin .Bx yt t A 取两式平方和 2222+=1.Bx y A这表明质点沿椭圆运动。

t=0,1时的速度矢量3.汽车在半径为200m 的圆弧形公路上刹车,刹车开始阶段的运动学方程为 3=200.2s t t - (单位:m ,s ).求汽车在t=1 s 时的加速度。

力学练习题

力学练习题

(A) L A L B , E kA E kB.(B) L A L B , E kA E kB.(C) LAL B , E kA E kB・开始时转台以匀角速度3o 转动,此时有一质量为 m 的人站在转台中心,随后人沿半径向3解题示例 例题5— 5如图5—9所示。

弹簧的质量忽略不计,而倔强系数k 11.6牛顿/米。

绳子 质量忽略不计且不可伸长。

滑轮的半径 R 10厘米,绕其抽转动的转动惯量 I 0.01千 克.米2。

空气阻力不计,求质量 m 1千克的物体从静 止开始(此时弹簧 无伸长)落下h 1米时的速度大小 (v h )。

F lf l己知2k 11.6N/m , R 10cm , I 0.01kg m , h 1m , m 1kg 求V h 例题5 一 6 一均匀棒长l 0.4米,质量M 1千克,可绕通过其 上端O 的水平轴转动,质量 m 0.01千克的弹片以速度 v 200 米/秒射入棒中,射入处离 O 点为0.3米(图5-11 )。

求棒与弹片 一起转动时的角速度 ,及转过的角度 。

已知I 、M 、m 、弹片射入处 求、 角动量与刚体转动练习题 一.选择题 1.人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为 和Ek 分别表示对地心的角动量及其动能的瞬时值,则应有B85—*11A 和B 。

用L(D ) L A L B , E kA E kB ・ 解:由角动量守恒 因为势能 E pA E pB E kA E kB答案:(C )L A L B 由机械能守恒,2.由一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J外跑去,当人到达转台边缘时,转台的角速度为3.如图所示,一静止的均匀细棒,长为 L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴 0在水平面内转动,转动惯量为1/3 ML2. 一质量为m 、速率为v 的子弹4. 关于力矩有以下几种说法:(1 )对某个定轴而言,内力矩不会改变刚体的角动量。

【精】理论力学经典例题

【精】理论力学经典例题

m2vB
(m1
vr 2ve 20 cm/s
vr C
O
M
w
ve va A
B
小环M的加速度分析如图所示 :
aa ae ar aC
O
aC 2wvr 2 0.5 20 w
B
20 cm/s2
aen M ar C
ac
a aA
y
aen w 2 OM
a 向y方向投影,有: a
0.52
cos
20
aen
5 cm/s2
2w
4ew
3
1
8ew 2
3
B h
aC aa
art
A
aen q
arn
C
O
w
aa cosq aen cosq arn aC
aa
2 (2ew2
3
3 16ew2 8ew2 ) 2 ew2
2 33
3
9
例13 图示曲杆OBC绕O轴转动,使套在其上的小环M沿固定直 杆OA滑动。已知OB=10 cm,OB与BC垂直,曲杆的角速度为 0.5rad/s,求当φ=60°时小环M的速度和加速度。
va ve vr
va
vr
A
ve
ve w OA
q
va ve tanq w OA
32 3
3ew
3
C O w
vr
ve
cosq
2ew
3
4
3ew
3
2
加速度分析如图
aa ae ar aC
aen OA w 2 2ew 2
arn
vr 2 R
16ew 2
33
aC
2wvr

(完整版)初中物理力学经典例题(带解析)

(完整版)初中物理力学经典例题(带解析)

初中物理力学经典例题(带解析)一、单选题(共11题;共22分)1.如右图用同样的滑轮组分别提起质量相等的一个物体和两个物体,比较甲、乙两图,正确表示机械效率关系的是( )A. η甲=η乙B. η甲<η乙C. η甲>η乙D. 无法比较2.甲物体放在光滑的水平面上,乙物体放在粗糙的水平面上,它们分别在相等的水平力F作用下移动相等的距离s,那么,力F对两物体所做的功( )A. 甲较多B. 乙较多C. 相等D. 无法确定3.下列生活实例中,对图片描述正确的有( )A. 甲图:不计阻力及能量损耗,网球从刚击球拍到球拍形变最大过程中,网球机械能守恒B. 乙图:铁锁来回摆动最终停下,在铁锁下降过程中,重力势能全部转化为动能C. 丙图:人造地球卫星由于不受空气阻力,只有动能和势能的转化D. 丁图:运动员从高处落下,动能转化为重力势能4.如图所示,轻质杠杆AB可绕O点转动,当物体C浸没在水中时杠杆恰好水平静止,A、B两端的绳子均不可伸长且处于张紧状态。

已知C是体积为1dm3、重为80N的实心物体,D是边长为20cm、质量为20kg 的正方体,OA:OB=2:1,圆柱形容器的底面积为400cm2(g=10N/kg),则下列结果不正确的是()A. 物体C的密度为8×103kg/m3B. 杠杆A端受到细线的拉力为70NC. 物体D对地面的压强为1.5×103PaD. 物体C浸没在水中前后,水对容器底的压强增大了2×103Pa5.汽车在平直公路上以速度v匀速行驶,发动机功率为P,牵引力为F0 ,t1时刻开始,司机减小了油门,使汽车保持恒定功率所行驶,到t2时刻,汽车又开始做匀速直线运动,速度为v.已知运动过程中汽车所受阻力f恒定不变,汽车牵引力F随时间t变化的图像如图所示,则()v0A. t1至t2时间内,汽车做加速运动B. F0=2fC. t1时刻之后,汽车将保持功率P0行驶D. v= 126.质量相同的甲、乙两实心金属球密度之比为3:2,将甲球浸没在液体A中,乙球浸没在液体B中,A、B 两种液体的密度之比为5:4,则此时甲、乙两球所受浮力之比为()A. 6:5B. 5:6C. 8:15D. 15:87.小华同学利用如图所示的装置提起水中的物块,下列判断正确的()A. 装置中的滑轮是定滑轮B. 装置中的AOB是省力杠杆C. 物块在上表面露出水面前,所受浮力不断减小D. 该滑轮的机械效率可以达到100%8.实心正方体木块(不吸水)漂浮在水上,如图所示,此时浸入水中的体积为6×10﹣4m3,然后在其上表面放置一个重4N的铝块,静止后木块上表面刚好与水面相平(g取10N/kg,ρ水=1.0×103kg/m3)则该木块()A. 未放置铝块前,木块受到的浮力是10NB. 放置铝块后,木块排开水的体积是1×10﹣3m3C. 木块的密度是0.7×103kg/m3D. 放置铝块后,木块下表面受到水的压强增大了600Pa9.下列涉及压强知识说法不正确的是()A. 海绵块的形变显示了压力作用效果B. 用微小压强计可以研究液体压强C. 托里拆利实验可以测出大气压值D. 船闸不是连通器10.如图所示,用6N的水平拉力F拉动物体A在水平地面上向右匀速运动,物体B静止不动,弹簧测力计示数为2N,下列说法正确的是()A. A对B的摩擦力大小为4N,方向水平向右B. B对A的摩擦力大小为2N,方向水平向右C. 地面对A的摩擦力大小为4N,方向水平向左D. 地面对A的摩擦力大小为6N,方向水平向左11.重力相同的a、b两件货物在两台吊车钢索的牵引下竖直向上运动,它们运动的s—t图像分别如图甲、乙所示,则在图像描述的运动过程中()A. 它们都做匀速直线运动B. a货物所受重力和钢索对它的牵引力是一对作用力与反作用力C. b货物所受重力和钢索对它的牵引力是一对平衡力D. 前6s内,a货物运动的平均速度小于b货物运动的平均速度二、填空题(共2题;共6分)12.在斜面上将一个重600N的物体匀速拉到高处,沿斜面向上的拉力F=400N,拉动的距离s=4.5m,提升高度h=1.8m,所用时间t=30s。

物理力学经典例题

物理力学经典例题

物理力学经典例题例题1. 一个质量为m的物体,以速度v沿着水平方向运动,撞到一个质量为M的静止物体,两者发生完全弹性碰撞,求碰撞后两个物体的速度。

解:根据动量守恒和能量守恒定律,可以得到以下方程组:mv = mv1' + Mv2'1/2mv^2 = 1/2mv1'^2 + 1/2Mv2'^2其中,v1'和v2'分别为碰撞后两个物体的速度。

解方程组可以得到:v1' = (m - M)/(m + M) * vv2' = 2m/(m + M) * v例题2. 一个质量为m的物体,以速度v沿着水平方向运动,撞到一个质量为M的静止物体,两者发生完全非弹性碰撞,求碰撞后两个物体的速度。

解:在完全非弹性碰撞中,两个物体合并成一个物体,质量为m+M,速度为v'。

根据动量守恒定律,可以得到以下方程:mv = (m + M)v'解方程可以得到:v' = m/(m + M) * v例题3. 一个质量为m的物体,以速度v沿着水平方向运动,撞到一个质量为M的静止物体,两者发生完全非弹性碰撞,碰撞后两个物体沿着一条直线运动,求碰撞后两个物体的速度。

解:在完全非弹性碰撞中,两个物体合并成一个物体,质量为m+M,速度为v'。

根据动量守恒定律和能量守恒定律,可以得到以下方程组:mv = (m + M)v'1/2mv^2 = 1/2(m + M)v'^2解方程组可以得到:v' = v/2v1' = v/2v2' = 0其中,v1'和v2'分别为碰撞后两个物体的速度。

高一物理力学例题经典

高一物理力学例题经典

高一物理力学例题经典例题1 有一小孩掉进河里后抱住了一根圆木随水向下飘流,有三条船A、B、C在正对河岸P点的地方同时与圆木相遇,但三条船上的船员都没有注意到圆木上的小孩.A、B 两船逆水上行,C船顺水下行.相对水的速度,B船是A船的1.2倍,C船是B船的1.2倍. 当三条船离开P点行驶30分钟的时候, 船员们从收音机里听到圆木上有小孩需要救助的消息,三条船都立即调转船头,驶向圆木.在离P点6千米的地方,小孩被船员救起. 试回答三条船到达小孩和圆木的先后次序如何?_____.解:以流水为参照物.小孩和原木是静止的.船A上行时速度和下行时速度大小相等,船B也是这样,船C也是这样.船A、B、C 同时从小孩所处的位置向上游和下游行驶,速度不同,在30 分钟内行驶了不同的路程s1、s2、s3;在接下去的30分钟内, 三条船分别沿反方向行驶路程s1、s2、s3,回到小孩所处的位置.答:三条船同时到达小孩和原木.例题2 一列一字形队伍长120m,匀速前进. 通讯员以恒定的速率由队尾跑到队首,又跑回队尾,在此期间,队伍前进了288m. 求通讯员跑动的速率v是队伍前进的速率u的多少倍.分析:顺利解答本题的关键是, 找出通讯员的运动跟队首或队尾的运动的联系.解:设通讯员从队尾跑到队首所用的时间为t1, 从队首跑到队尾所用的时间为t2,那么u(t1+t2)=288 (1)在t1时间内,通讯员跑动的路程比队首移动的路程多120m:vt1-ut1=120 (2)在t2时间内,通讯员跑动的路程加上队尾移动的路程等于120m:vt2+ut2=120 (3)从(2)式中得出t1的表达式,从(3)式中得出t2的表达式,代入(1)式, 可算出:v=1.5u例题3 一物体作匀变速直线运动,某时刻速度的大小为4m/s, 1s后速度的大小变为10m/s.在这1s内(A)位移的大小可能小于4m(B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s2(D)加速度的大小可能小于10m/s2 (1996年高考全国卷试题)解:取初速度方向为正方向,则v0=4m/s,v t=10m/s或-10m/s.由 s=v t=(v0+v t)t/2,得 s=7m或-3m所以位移的大小为7m或3m.选项(A)正确,(B)错误.由 a=(v t-v0)/t得 a=6m/s2或-14m/s2所以加速度的大小为6m/s2或14m/s2,选项(C)错误,(D)正确.总之,本题选(A)(D).例题4 在三楼的阳台上 ,一人伸出阳台的手上拿着一只小球, 小球下面由细绳挂着另一个小球.放手,让两小球自由下落,两小球相继落地的时间差为t.又站在四层楼的阳台上,同样放手让小球自由下落,两小球相继落地的时间差为t',则(A)t<t' (B)t=t' (C)t>t'解:从三楼阳台外自由下落,下面的小球着地时,两球具有的速度为v,从四楼阳台外自由下落,下面的小球着地时, 两球具有的速度为v',显然v<v'.下面的小球着地后,上面的小球以较小的初速度v和较大的初速度v',继续作加速度为g的匀加速运动, 发生一定的位移(等于绳长),所需的时间显然是不同的:t>t'.选项(C)正确.例题5 一质点由静止从A点出发,先作匀加速直线运动,加速度大小为a,后做匀减速直线运动,加速度大小为3a,速度为零时到达B 点.A、B间距离为s.求质点运动过程中的最大速度.解:设质点第一阶段做匀加速运动的的时间为t1,末速度为 v, 这就是运动过程中的最大速度;设第二阶段做匀减速运动的时间为t2.那么第一阶段的位移为vt1/2,第二阶段的位移为vt2/2, 两者之和应为全程位移: vt1/2+vt2=s (1)又根据加速度的定义式,有t1=v/a (2)t2=v/(3a) (3)将(2)(3)两式代入(1)式:v2/(2a)+v2/(6a)=s所以 v=(3as/2)1/2例题6 两辆完全相同的汽车 ,沿水平直路一前一后匀速行驶, 速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的路程为s,若要保证两车在上述情况下不相撞,则两车在匀速行驶时保持的距离至少应为(A)s (B)2s (C)3s (D)4s(1992年高考全国卷试题)解:汽车从开始刹车到停下这个期间,平均速度为v0/2.在前车开始刹车到停下这段时间内,后车以速度v0匀速行驶, 行驶的距离应为s的两倍,即为2s.从前车开始刹车到两车都停下,前车的位移为s;后车的位移为 (2s+s)=3s.设前车刹车前(匀速行驶期间)两车的距离为l,为使两车不相撞,应满足:l+s≥3s所以l≥2s本题选(B)例题7 某人离公共汽车尾部20m,以速度v向汽车匀速跑过去, 与此同时汽车以1m/s2的加速度启动,作匀加速直线运动.试问, 此人的速度v分别为下列数值时,能否追上汽车?如果能, 要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=4m/s; (2)v=6m/s; (3)v=7m/s.思路:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑,得出汽车跟人的距离y随时间t变化的函数式. 然后考察对于正值t,y是否可能取零,如果是的,那么能追上,如果不能,那么不能追上.解:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑.在时间t内,人的位移等于vt;汽车的位移等于(1/2)at2=0.5t2.经过时间t时,汽车尾部跟人之间,距离为y=20+0.5t2-vt即 y=20+0.5(t2-2vt+v2)-0.5v2即 y=0.5(t-v)2+20-0.5v2 (*)上式中,y取正值时,表示汽车尾部在人前方y米,y取负值时,表示汽车的尾部在人后面│y│米(前面已假设人即使追上了汽车,也一直朝前跑).(甲)把v=4代入(*)式得y=0.5( t-4)2+12 (1)y恒大于零,y最小值为12.(乙)把v=6代入(*)式得y=0.5( t-6)2+2 (2)y恒大于零,y最小值为2.(丙)把v=7代入(*)式得y=0.5( t-7)2-4.5 (3)容易得出,当t=4,10时,y=0,这表示,如果人一直朝前跑, 那么经过4s时,人与汽车尾部平齐,经过10s时, 人又一次与汽车的尾部平齐.结论:(1)如v=4m/s,则人追不上汽车, 人跟汽车之间的最小距离为 12m.(2)如v=6m/s,则人追不上汽车, 人跟汽车之间的最小距离为 2m.(3)如v=7m/s,则人经过4s追上汽车.例题8 杂技演员表演一手抛接三球的游戏时, 三个球都抛过一次后,每一时刻手中最多只有一个球. 如果每只球上升的最大高度都为1.25m,那么每隔多长时间抛出一个球?g取10m/s2.(A)0.33s (B)0.33s到0.50s(C)0.50s (D)1.0s解:每个球做一次竖直上抛运动的时间是t=2(2h/g)1/2=2(2×1.25/10) 1/2=1.0s球从这一次被抛出到下一次被抛出,完成一个周期性运动, 设周期为T.如果每个球在手中停留的时间趋于零,那么T=t=1.0s;如果手中总停留着一个球,一个球停留的时间是t',那么T=t+t' ,且 t'=(1/3)T那么 T=(3/2)t=1.5s.以上考虑的是两个极端情况.实际上1.0s<T<1.5s在T时间内抛出三个球,每隔T/3的时间抛出一个球:0.33s<T/3<0.5s ,选项(B)正确.请读者考虑:如果每秒钟抛出三个球,那么应使每个球上升多高?(答案:0.56m到1.25m)例题9 小球A从地面上方H高处自由下落,同时在A的正下方,小球B从地面以初速度v竖直上抛.不计空气阻力.要使A、B 发生下述碰撞,v、H应满足什么条件?(甲)在B上升到最高点时相碰;(乙)在B上升的过程中相碰;(丙)在时间T内在空中相碰;(丁)经过时间T时在空中相碰.解:设经过时间t在地面上方h高处相碰.则从开始运动到相碰, 小球A发生的位移大小为(H-h),小球B发生的位移大小为h,则:( H-h)=(1/2)gt2h=vt-(1/2)gt2由以上两式得 t=H/v (1)时间t应小于B球在空中运动的时间:t<2v/g (2)由(1)(2)得 2v2>gH (3)(甲)在最高点相碰:t=v/g (4)由(1)(4)得 v2=gH (5)所以v、H应满足(5)式.(乙)时间t应小于B球上升时间:t<v/g (6)由(1)(6)得 v2>gH (7)所以v、H应满足(7)式.(丙) t≤T (8)由(1)(8)得H≤vT (9)所以v、H应满足(3)(9)两式.(丁) t=T (10)由(1)(10)得 H=vT (11)所以v、H应同时满足(3)(11)两式.讨论: (11)代入(3):v>gT/2 (12)问题(丁)又可这样回答:v、H应满足(11)(12)两式.从(11)得出v=H/T,代入(3)或(12)可得H>gT2/2 (13)问题(丁)还可这样回答:v、H应满足(11)(13)两式.第三章牛顿运动定律例题1 某人在地面上最多能举起32Kg的重物,那么在以2m/s匀加速下降的电梯中,他最多能举起多少Kg的重物?g取10m/s2.解:此人能施加的向上的举力大小为F=m1g=32×10N=320N在匀加速下降的电梯中,设某人用举力F举起了质量为m2的物体.物体的加速度向下,所以合外力也向下. 对这个物体应用牛顿第二定律:m2g-F=m2a即 m2=F/(g-a)把举力大小F=320N,重力加速度大小g=10m/s2,物体加速度大小a =2m/s2代入上式,得m2=40Kg他最多能举起40Kg的物体.例题2 一个质量为200g的物体,以初速度v0=20m/s竖直上抛, 上升的最大高度为16m.没有风,且假设物体所受空气阻力的大小始终不变,求物体落回抛出点时的速度大小.g取10m/s2.解:物体受到的空气阻力跟物体相对空气的运动方向相反. 因此,在没有风的情况下, 物体受到的空气阻力跟物体相对地面的运动方向相反.物体上升时,受到的空气阻力向下;下降时, 受到的空气阻力向上.设空气阻力的大小始终为f.物体减速上升时,加速度向下,合外力也向下;加速下降时, 加速度向下,合外力也向下.由牛顿第二定律,物体减速上升时,加速度的大小为a1=(mg+f)/m即 a1=g+f/m (1)加速下降时,加速度的大小为a2=(mg-f)/m即 a2=g-f/m (2)由匀变速直线运动公式,上升阶段满足v02=2a1h (3)其中h=16m.下降阶段满足v2=2a2h (4)(1)+(2): a1+a2=2g (5)(3)+(4): v02+v2=2(a1+a2)h (6)(5)代入(6)得v02+v2=4gh (7)代入数据得 v=(240)1/2m/s=15.5m/s例题3 木块静止在光滑水平面上,子弹以较大的水平速度 v从木块左面射入,从右面射出,木块获得速度u. 设子弹对木块的作用力与速度无关.如v增大 ,则u(A)增大 (B)减小 (C)不变.思路:首先通过考察子弹相对木块的运动, 判断子弹穿行于木块的时间,与子弹的入射速度v有怎样的关系.解:子弹对木块的作用力向前,木块对子弹的作用力向后,这一对作用力是恒定的,在它们的作用下,子弹向前作匀减速直线运动, 木块向前作初速度为零的匀加速直线运动.子弹相对木块作匀加速运动.在子弹对木块的作用力与速度无关这个前提下,增大v以后,子弹匀减速运动的加速度仍为原来的值,木块作匀加速运动的加速度也仍为原来的值,从而子弹相对木块的加速度仍为原来的值.增大v以后,子弹穿行于木块期间,子弹相对木块运动的位移仍等于木块的长度.子弹相对木块运动的初速度等于v,增大v, 意味着增大子弹相对木块运动的初速度.所以增大v以后,子弹穿行于木块的时间减少.在较少的时间内,木块作初速度为零的匀加速运动, 获得的末速度u就较小.选项(B)正确.例题4 如图3-2所示,斜面的倾角为α.质量分别为m1、m2的两木块A、B,用细绳连接.它们与斜面之间的动摩擦因数μ相同 .现在A上施加一个沿斜面向上的拉力F,使A、B一起向上作匀加速运动.求证细绳上的拉力与μ和α无关.解:设A、B一起运动的加速度为a,对A、B组成的整体应用牛顿第二定律可得:F-(m1+m2)gsinα-μ(m1+m2)gcosα=(m1+m2)a即 F=(m1+m2)gsinα+μ(m1+m2)gcosα+(m1+m2)a (1)设细绳上的拉力大小为T,对B应用牛顿第二定律可得:T-m2gsinα-μm2gcosα=m2a即 T=m2gsinα+μm2gcosα+m2a (2)(1)式除以(2)式得F/T=(m1+m2)/m2 (3)由(3)式可见,细绳上的拉力决定于拉力F以及两个木块的质量, 与动摩擦因数μ以及斜面的倾角α无关.例题5 如图3-3所示,自由下落的小球,从它接触到竖直放置的轻弹簧开始,到弹簧被压缩到最短的过程中,(A)合力逐渐变小(B)合力先变小后变大(C)速度逐渐变小(D)速度先变小后变大解:小球刚接触到弹簧时,弹簧处于自然状态,弹簧对小球的作用力为零,小球受到的合力等于它受到的重力.在最初一段时间内,小球以自由落体运动的末速度为初速度,继续向下做加速运动. 小球向下运动一段适当的位移时(弹簧被压缩适当的长度时),小球弹簧对小球的向上的支持力大小正好等于重力,这时小球的合外力为零.由于小球已经具有了一定的速度,所以还要向下运动.弹簧被压缩的长度增加时,支持力也增大,支持力超过重力,合力向上, 所以从合外力为零的时刻以后向下的运动是减速运动.向下的减速运动进行到速度减为零为止.速度减为零时,弹簧被压缩到最短.再以后,小球向上运动,弹簧的长度增加.综上所述,小球从接触到弹簧开始, 到弹簧被压缩到最短的过程中,小球的合外力先是向下,逐渐减小,然后向上,逐渐增大;小球先作加速运动,然后作减速运动.选项(B)正确.例题6 如图3-4所示,在水平拉力F的作用下,物体A向右运动, 同时物体B匀速上升.可以判断(A)物体A的运动是匀速运动(B)绳子对物体A的拉力逐渐减小(C)水平地面对物体A的支持力逐渐增大(D)水平地面对物体A的摩擦力逐渐减小解:物体A的速度u跟物体B的速度v满足:v=ucosθ在v保持不变的情况下,u随着θ的变化而变化:物体A的运动不是匀速运动.由物体B匀速运动,可知绳子对物体B的拉力保持不变. 绳子对物体A的拉力T的大小总等于绳子对B的拉力,也是不变的.物体A的受力情况如图3-5所示,将 T沿水平方向和竖直方向分解为T x、T y,随着θ的减小,T x逐渐增大,T y逐渐减小.作用于物体A的T y、支持力N、重力G,三者满足:T y+N=GN随着Ty的减小而增大.根据f=μN水平地面对物体A的滑动摩擦力f随着N的增大而增大综上所述,选项(C)正确.例题7 一质点自倾角为α的斜面上方P点沿光滑的斜槽PB从静止开始下滑,如图3-6所示,为使质点在最短的时间内从P点到达斜面,则斜槽与竖直方向的夹角β应等于______.解:如图3-6作PC垂直于斜面,垂足为C.则∠CPA=α,∠CPB=α- β.应用牛顿第二定律可得,质点从斜面上下滑时,加速度为a=gcosβ应用匀变速直线运动公式可得PB=(1/2)at2即 t2=2PB/a=2[PC/cos(α-β)]/(gcosβ)即 t2=2PC/[gcos(α-β)cosβ]当α-β=β ,即β=α/2 时 ,t2取最小值,t取最小值,质点在最短的时间内从P点到达斜面.例题8 图3-7中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点. 当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( ).(A)F=Mg (B)Mg<F<(M+m)g(C)F=(M+m)g (D)F>(M+m)g (1992年高考上海卷试题)解:铁片离开秤盘时, 电磁铁对它的向上的拉力一定大于地球对它的重力mg.铁片在上升中,逐渐靠近电磁铁,电磁铁对它向上的吸引力逐渐增加,仍大于mg.根据牛顿牛顿第三定律,铁片对电磁铁向下的吸引力, 电磁铁对铁片的吸引力大小相等,大于mg.A和C组成的系统,受力平衡:绳子施加的拉力,等于系统的重力,与铁片对电磁铁向下的吸引力之和,大于(Mg+mg).选项(D)正确.例题9 把一个质量m=4Kg的长方体木块,分割成两个三棱柱形木块A和B,角α=30°,然后再对到一起,放在光滑的水平面上, 如图3-8所示.用大小为8N的水平力F沿图示方向推A, A、B 组成的长方体保持原来的形状,沿力的作用方向平动.(1)求A对B的作用力.(2)求A对B的静摩擦力.解:(1)A和B的加速度a,都是沿F方向.B的加速度是A对B的作用力Q产生的.所以,Q的方向跟F的方向相同,如图3-9所示.对A、B组成的系统应用牛顿第二定律:a=F/m=(8/4)m/s2=2m/s2对B应用牛顿第二定律:Q=(m/2)a=2×2N=4N(2)A对B的作用力Q是A对B的压力N和静摩擦力f的合力( 也可以说,Q可以分解为N和f),如图3-10(俯视图)所示.静摩擦力的大小为f=Q/2=2N例题10 如图3-11所示,A和B质量相等均为m,A与B之间的动摩擦因数为μ1,静摩擦因数为μ2,B与地面之间的动摩擦因数为μ3.原来在水平拉力F的作用下,A和B彼此相对静止 ,相对地面匀速运动(图3-11(a).撤消F后,A和B彼此保持相对静止,相对地面匀减速运动(图3-11(b).则A、B相对地面匀减速运动的过程中,A、B 之间的摩擦力的大小为(A)μ1mg (B)μ2mg (C)μ3mg (D)F/2解:B与地面之间的压力支持力大小始终等于A、B两个物体的总重力,因此地面对B的滑动摩擦力的大小始终为f=μ3(2mg)A、B匀速运动时,受力平衡:F=fA、B一起以加速度a做减速运动时,对于A、B组成的系统来说,地面对B的滑动摩擦力f就是合外力,等于(2ma);对于A来说,B对A的静摩擦力f1就是合力,等于(ma).于是f1=f/2综合以上三式得:f1=μ3mg和 f1=F/2本题选(C)(D).说明:因为A、B没有相对运动,所以A、B之间的动摩擦因数μ1用不到;因为B对A的静摩擦力不一定是最大静摩擦力,所以A、B 之间的静摩擦因数μ2用不到.例题11 如图3-12所示,质量为mA、mB的两个物体A和B 用跨过光滑滑轮的细绳相连.A沿倾角为θ的斜面向下加速下滑.A、B两物体加速度的大小相同,等于a.楔形物体C的下表面是光滑的.求台阶对C水平方向的作用力的大小.解:如图3-13,将物体A的加速度 a沿水平方向和竖直方向分解, 水平分加速度为ax=acosθ;物体B的加速度是向上的,没有水平分量;滑轮质心的加速度为零.在水平方向上,对由A、B、C以及滑轮,组成的系统,应用质点组牛顿第二定律,有F=m A a x.由以上两式得F=m A acosθ .例题12 如图3-14所示,三个质量相同,形状相同的楔形物体, 放在水平地面上.另有三个质量相同的小物体, 分别从斜面顶端沿斜面下滑.由于小物体跟斜面间的动摩擦因数不同, 第一个小物体匀加速下滑;第二个物体匀速下滑; 第三个小物体以一定的初速度匀减速下滑. 三个楔形物体都保持静止,水平面对它们的支持力分别为N1、N2、N3,则(A)N1=N2=N3 (B)N1<N2<N3 (C)N1>N2>N3解:楔形物体和小物体组成的系统受到的外力是: 水面地面对楔形物体的支持力,地球对楔形物体和小物体的重力, 以及水平地面施加于楔形物体的沿着接触面的静摩擦力.小物体匀加速下滑时,加速度沿斜面向下, 将加速度向水平方向和竖直方向分解时,竖直方向的分加速度是向下的. 根据质点组牛顿第二定律,竖直方向的作用力的合力向下,所以支持力N 1小于两者的重力之和.小物体匀速下滑时,加速度为零.支持力N 2等于两者的重力之和.小物体减速下滑时,加速度沿斜面向上, 将加速度沿水平方向和竖直方向分解时,竖直方向的分加速度向上. 根据质点组牛顿第二定律,竖直方向作用力的合力向上,支持力N 3大于两者的重力之和.本题选(B).例题13 如图3-15,光滑水平面上有一块木板,质量为M=4Kg, 长为L=1.4m.木板右端放着一个小滑块,小滑块质量为m=1Kg, 尺寸远小于L,与木板之间的动摩擦因数为μ=0.4.原来它们都静止,现在大小为F=28N的水平力向右拉木板,使滑块从木板左端掉下, 此力作用时间至少为多长?解:根据题意,水平力作用一段时间后,滑块会从左端掉下. 这暗示我们,水平力开始作用期间,木板向右的加速度较大,速度较大, 滑块向右的加速度较小,速度较小.在滑块尚未滑到木板左端时,如水平力停止作用,那么在一段时间内,木板向右的速度仍大于滑块,那么此后经一段时间滑块有可能从左端掉下,那时, 木板向右的速度应大于等于木板向右的速度.由此可知,水平力作用适当的一段时间t1后, 木板向右的速度比滑块向右的速度大,大适当的数值,然后撤去水平力,当两者的速度正好相等时,滑块从木板左端掉下.t 1就是水平力作用的最短时间.向右的水平力F开始作用后,木板除受到这个力外,还受到向左的滑块施加的滑动摩擦力f=μmg=4N木板的加速度向右,大小为(F-f)/M=6m/s2滑块受到向右的滑动摩擦力,加速度向右,大小为f/m=4m/s2经时间t1时,撤去水平力F.此后滑块的加速度仍向右,大小仍为f/m=4m/s2.木板在向左的滑动摩擦力作用下,加速度向左,大小为f/M=1m/s2木板相对于滑块始终向右运动,滑块相对于木板始终向左运动.下面以木板为参照物,考察滑块在木板上的运动(图3-16). 滑块第一阶段作初速度为零的匀加速运动,末速度的大小记为v,第二阶段作匀减速运动,末速度为零.第一阶段,加速度的大小为a1=6-4=2m/s第二阶段,加速度的大小为a2=4+1=5m/s2根据匀变速直线运动公式,有v=a1t1即 v=2t1 (1)v=a2t2=5t2即 v=5t2 (2)L=(v/2)(t1+t2) 即 2.8=v(t1+t2) (3)由(1)(2(3)得 t1=1s使滑块从木板左端掉下,水平力F作用时间至少为1s.例题14 如图3-17所示,A、B两个光滑的梯形木块质量均为m, 紧挨着并排放在光滑水平面上.倾角θ=60°.欲使A、B在水平推力F 作用下,一起加速运动(两者无相对滑动),F不能超过多少?解:A受力情况如图3-18所示.A、B之间没有相对滑动, 意味着两者的加速度相同,都是沿水平方向,设大小为a.对A应用牛顿第二定律:Ncosθ+P= mg (1)F-Nsinθ= ma (2)对A、B组成的系统应用牛顿第二定律:F=(m+m)a (3)又 N>0 (4)P≥0 (5)a>0 (6)由(2)(3)两式得2F-2Nsinθ= F即 N=F/(2sinθ) (7)将(7)代入(1)得P=mg-(Fctgθ)/2 (8)mg-Fcosθ/(2sinθ)≥0F≤2mgtg60°F≤2×31/2mg欲使A、B在水平推力F作用下,一起加速运动(两者无相对滑动), F 不能超过2×31/2mg.例题15 如图3-19所示,楔形物体静止在水平面上,左右斜面都是光滑的,α>β.跨过定滑轮的细绳,系住两个物块 ,物块保持静止. 将细绳切断后,两个滑块运动,楔形物体仍保持静止,此时(A)地面对楔形物体的支持力大小与原来相同(B)地面对楔形物体的支持力比原来小(C)地面对楔形物体有静摩擦力,向左(D)地面对楔形物体有静摩擦力,向右解:两个物块的加速度都是沿斜面向下,都有竖直向下的分量,对两个物块和楔形物体组成的系统应用牛顿第二定律可知:对面对楔形物体的支持力小于三者的重力,比原来小.选项(B)正确,(A)错误.原来左边滑块处于静止状态,外力之和为零, 所以绳子对左边物块的拉力大小等于m1gsinα.原来右边滑块处于静止状态, 外力之和为零,所以绳子对右边物块的拉力大小等于m2gsinβ.而绳子对左边滑块的拉力 ,大小等于绳子对右边滑块的拉力.所以m1gsinα=m2gsinβ (1)图3-20中,左边滑块对楔形物体的压力N1=m1gcosα这个力的水平向右的分量为N1x=N1sinα即 N1x=m1gcosαsinα (2)类似地,右边滑块对楔形物体的压力N2的水平向左的分量为N2x=m2gcosβsinβ (3)由α>β可知 cosα<cosβ (4)将(1)乘以(4)得m1gsinαcosα<m2gsinβcosβ (5)由(2)(3)(5)可知N1x<N2x (6)楔形物体保持静止,外力之矢量和应为零: 地面对楔形物体的静摩擦力跟N1x、N2x三者之矢量和应为零.所以地面对楔形物体的静摩擦力向右.选项(D)正确,(C)错误.总之,本题选项(B)(D)正确.例题16 如图3-21所示,物体A、B质量分别为m1、m2, 叠放在倾角为α的斜面上, A、B之间的静摩擦因数为μ1, B 与斜面之间的动摩擦因数为μ2.A、B保持相对静止,一起加速下滑.μ1、μ2、α相互之间一定满足:(A)μ1≥μ 2 ,tgα>μ2(B)μ1≤μ 2 ,tgα>μ2(C)tgα>μ1≥μ2(D)tgα>μ2=μ1解:由物体A和物体B组成的系统,加速度a沿斜面向下, 根据牛顿第二定律有:(m1+m2)gsinα-μ2(m1+m2)gcosα=(m1+m2)a即 gsinα-μ2gcosα=a (1)其中 a>0 (2)由(1)(2)得μ2<tgα (3)物体A受到的静摩擦力f沿斜面向上,对物体A应用牛顿第二定律:m1gsinα-f=m1a (4)将(1)代入(4):m1gsinα-f=m1gsinα-μ2m1gcosα即 f=μ2m1gcosα (5)根据静摩擦因数的定义,物体A受到的最大静摩擦力为f max=μ1m1gcosα (6)根据最大静摩擦力的定义有f≤f max (7)由(5)(6)(7)得μ2m1gcosα≤μ1m1gcosα即μ2≤μ1 (8)(3)(8)两式是μ1、μ2、α相互之间一定满足的关系式.只有选项(A)正确.例题17 如图3-22所示,物块A的质量为m A,物块B的质量为m B.A与小车前表面之间的静摩擦因数为μ,小车上表面是光滑的. 当使用适当的推力使小车以“适当的加速度”向左作加速运动时,A、B都相对小车静止,跟小车一起运动. 小车的“适当的加速度”应在什么范围内?解:绳子对B的拉力跟绳子对A的拉力大小相等,设为T. 小车的适当的加速度,其大小设为a.对物体B应用牛顿第二定律:T=m B a (1)物体A受力情况如图3-23所示.小车对A的静摩擦力f可以向上,也可以向下,图中表示静摩擦力矢量的字母f可以取正值 ,也可以取负值, 其绝对值不能超过最大静摩擦力:-μN≤f≤μN (2)为以后演算的方便,可把(2)式写为两个不等式:f≤μN (3)-μN≤f (4)对物体A应用牛顿第二定律:N=m A a (5)f+T=m A g (6)将(1)代入(6)可得f=m A g-m B a (7)将(5)(7)代入(3)得m A g-m B a≤μm A a即 m A g≤μm A a+m B a于是a≥m A g/(μm A+m B) (8)将(5)(7)代入(4)得-μm A a≤ m A g-m B a即 m B a -μm A a≤ m A g即 a(m B -μm A)≤ m A g (9)(甲)若 m B -μm A>0则(9)式可化为a≤m A g/(m B-μm A) (9a)(乙)若 m B -μm A<0则(9)式可化为a≥m A g/(m B-μm A) (9b)(8)被满足时,(9b)自然满足.(丙)若 (m B -μm A)=0则(9)式自然满足.结论:(一)在 m B -μm A>0情况下,a的取值由(8)和(9a)的交集确定,即m A g/(μm A+m B)≤ a≤m A g/(m B-μm A)(二)在 m B -μm A<0情况下,a的取值由(8)和(9b)的交集确定,即a≥m A g/(μm A+m B)(三)在 m B -μm A=0情况下,a的取值由(8)确定,即a≥m A g/(μm A+m B)以上(二)(三)两条可以合并.例题18 如图3-24所示,两斜面高都是h,倾角分别为α、β,α<β.滑块1,与左边斜面之间的动摩擦因数为μ1,从顶端由静止而下滑,经过时间t1滑到底端,滑到底端时速度大小为v1.滑块2,与右边的斜面之间的动摩擦因数为μ2,从顶端由静止而下滑,经过时间t2滑到底端,滑到底端时速度大小为v2.(A)若已知v1=v2,那么可知t1>t2(B)若已知μ1=μ2,那么可知v1=v2(C)若已知t1=t2,那么可知μ1<μ2(D)若已知μ1<μ2,那么可知t1=t2解:作一般化考虑:斜面高为h,倾角为x, 滑块与斜面之间的动摩擦因数为μ,从顶端由静止而下滑,经过时间t滑到底端, 滑到底端时速度大小为v.在分析受力情况的基础上,根据牛顿第二定律,不难得出,滑块的加速度为a=gsinx-μgcosx (1)由匀变速直线运动的公式得h/sinx=(1/2)vt (2)h/sinx=(1/2)at2 (3)v2=2ah/sinx (4)(甲)由(2)可知,在v相同的情况下,倾角x越大,时间t越短.(乙)将(1)代入(4)得v2=2gh(1-μctgx) (5)由(5)可知,在μ相同的情况下,对于不同的倾角x,速度v不同.选项(B)不对.(丙)由(1)(3)得h/sinx=(1/2)(gsinx-μgcosx)t2 (6)即 2h/(t2sinx)=gsinx-μgcosx即 2h/(gt2sinxcosx)=sinx/cosx-μ即μ=tgx[1-2h/(gt2sin2x)] (7)由(7)式可知,在t相同的情况下,锐角x越大,动摩擦因数μ越大.选项(C)正确.(丁)由(6)可知,时间t跟倾角x和动摩擦因数μ有关,当 x分别取α和β时,不可能对于满足μ1<μ2的所有的μ1、μ2,时间 t总相同.选项(D)不对.总之,选项(A)(C)正确.例题19 在光滑的水平面上,放着两块长度相同、质量分别为M1和M2的木板, 在两木板的左端各放一个大小形状质量完全相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Section1.2P28 例题2把行星的轨道近似地看成圆形,计算太阳系内九大行星的向心加速度,并用双对数坐标作半径与周期、向心加速度与半径的曲线。

(此题熟练掌握双对数坐标应该就没问题了。

)P31例题3 由光滑钢丝弯成竖直平面里一条曲线,质点穿在此钢丝上,可沿着它滑动。

已知其切向加速度为-gsinθ,θ是曲线切向与水平方向的夹角。

试求质点在各处的速率。

Section1.3P33 例题5 如图所示,两船A和B各以速度vA和vB行驶,它们会不会相碰?P33 例题6 罗盘显示飞机头指向正东,空气流速表的读数为215 km/h,此时风向正南,风速65 km/h。

(a)求飞机相对地面的速度;(b)若飞行员想朝正东飞行,机头应指向什么方位?P34 例题7 观察者E和物体P 都绕中心S 作匀速圆周运动,但半径和周期不同。

试讨论S、P相对于E的运动情况。

Section2.1、2.2P52 例题2 当人在车(或船)上行走时,如车与地面(或船与水)的摩擦力可以忽略,已知①人对地的速度为v1,或已知②人对车(或船)的速度为v’1,试计算车(或船)对地的速度v2。

设开始时人和车(或船)相对地(或水)是静止的。

P53 例题4 两个溜冰者A和B,质量都是70kg,各以1m/s的速度互相趋近。

A拿着一质量为10kg 的木球,两人都能以相对于他们自己5m/s 的速度扔球,为了避免相撞,他们在相距10m时开始来回地扔球,设球在每人手里停留1s。

扔一次够吗?扔两次(即A接到回球)如何?如果球重为原来的一半,但他们能够扔得快一倍,他们须扔多少次?P55 例题5:一重锤从高度h = 1.5m处自静止下落,锤与被加工的工件碰撞后末速为0。

若打击时间Δt为0.1s、0.01s、0.001s 和0.0001s,试计算这几种情形下平均冲击力与重力的比值。

P55 例题6:虽然单个细微粒子撞击一个巨大物体上的力是局部而短暂的脉冲,但大量粒子撞击在物体上产生的平均效果是个均匀而持续的压力。

为简化问题,我们设粒子流中每个粒子的速度都与物体的界面(壁)垂直,并且速率也一样,皆为v。

此外,设每个粒子的质量为m,数密度(即单位体积内的粒子数)为n。

求下列两种情况下壁面受到的压强:(1)粒子陷入壁面;(2)粒子完全弹回。

Section2.3例:竖直上抛的物体,最小应具有多大的初速度v0才能不再回到地球?即求第二宇宙速度(或逃逸速度)。

•物体在运动过程中受到重力,指向始终竖直向下•物体高度变化很大,重量随高度变化•重量按万有引力平方反比律规律变化•取一维坐标,x 轴坐标原点在地心物体所受重力P的大小反比于与地心距离的平方随x而变例:光滑桌面上有一物体,质量为m,系于弹簧的一端。

弹簧是水平放置的。

将弹簧拉长x0,并给物体以初速度v0后任其运动,试求解这物体的运动。

弹簧的劲度系数为k。

(初始条件:t=0,x=x0,v=v0)P67 例题7:如图所示,用一细绳跨过一定滑轮,在绳的两端各悬质量为m1< m2,求它们的加速度及绳端的拉力。

设滑轮和绳子质量可忽略,绳子与滑轮间没有滑动摩擦。

P71 例题13:小雨点与大雨点相比,在空气中哪个降落得比较快?f阻∝Sv2,S 为雨点的横截面积,v是速度。

例:试研究抛射体在空气中的运动轨迹。

已知其被抛出的仰角为φ,初速度为v0。

假定空气阻力正比于物体的速度,阻力系数为h。

例:试研究抛射体在空气中的运动轨迹。

已知其被抛出的仰角为φ,初速度为v0。

假定空气阻力正比于物体的速度,阻力系数为hSection2.4P80页例14:一水桶绕自身的铅直轴以角速度ω旋转,当水与桶一起转动时,水面的形状如何?P80页例15:质量为m的小环套在半径为R的光滑大圆环上,后者绕竖直直径以匀角速ω转动。

试求小环的平衡位置随ω的变化。

P84 例16:质量为m 的小环套在半径为R 的光滑大圆环上,后者在水平面内以匀角速ω绕其上一点O 转动。

试分析小环在大环上运动时的切向加速度和水平面内所受的约束力。

Section3.1P117页例1: 单摆:挂在细棒下面的小球,棒质量可忽略,整个系统的全部质量集中在可视作质点的小球上。

摆长l ,小球质量m ,相对于小球铅直位置的角位移为θ,重力加速度为g 。

P118页例2:研究弹簧振子。

EP重-θ曲线P118页例3:倒摆装置,螺旋弹簧把它支撑在θ= 0 的平衡位置上。

摆锤在重力和弹性力的共同作用下运动,试从它的势能曲线讨论其运动的稳定性。

P80页例15:质量为m的小环套在半径为R的光滑大圆环上,后者绕竖直直径以匀角速ω转动。

试求小环的平衡位置随ω的变化。

Section3.5P126页例4:一质量为m、长度为l 的完全柔软绳子竖直地悬挂着,其下端刚刚与地面接触。

此时放开它,使之自静止状态下落。

求下落到所剩长度为z 时地面对绳子的作用力。

设绳子的质量均匀分布。

例:两个完全相同的滑块a 和b,质量均为m,用轻弹簧将它们连接在一起。

弹簧的原长为l,劲度系数为k。

将整个系统放在一光滑的水平直轨上,并保持静止。

在某时刻(记作t=0)突然给滑块a一个冲量,使它获得向右的初速度v0。

求解它们的运动。

Section3.6P131 例5:将一种材料做成小球,用另一种材料做成地板。

令小球从一定高度H 自由落下,测得其反跳高度为h,求这两种材料之间的恢复系数e。

P131 例6:将一个小皮球放在大皮球的上面,使之自由落下。

当它们落到地面上反弹时,小球跳得比原来高许多倍。

Section4.1 此章为考试重点。

P156 例1:一质量为m的质点系在绳子的一端,绳的另一端穿过水平光滑桌面中央的小洞O,起初下面用手拉着不动,质点在桌面上绕O作匀速圆周运动。

然后,慢慢地向下拉绳子,使它在桌面上那一段缩短。

质点绕O的角速度ω如何随半径r变化?P156 例2:两个同样重的小孩,各抓着跨过滑轮绳子的两端。

一个孩子用力向上爬,另一个则抓住绳子不动。

若滑轮的质量和轴上的摩擦都可忽略,哪一个小孩先到达滑轮?若两个小孩重量不等时情况如何?Section4.2、4.3P168 例3:刚体由固联在一无质量刚性杆两端的质点1和2组成(质量m1 = m2 = m),杆长2l,在其中点O 处与刚性轴ZOZ’成α角斜向固联。

此刚体以角速度ω绕轴旋转,求角动量的大小和方向。

P172 例5:求均匀立方体绕通过面心的中心轴的转动惯量IC。

P175 例7: 如图所示,为测量刚体转动惯量的装置。

待测的物体装在转动架上,细线的一端绕在半径为R的轮轴上,另一端通过定滑轮悬挂质量为m的物体,细线与转轴垂直。

从实验测得m自静止下落高度h的时间为t,求待测刚体对转轴的转动惯量。

忽略各轴承的摩擦,忽略滑轮和细线的质量,细线不可伸长,预先测定转动架对转轴的转动惯量为I0。

P175 例6: Atwood 机:用一细绳跨过定滑轮,在绳的两端各悬挂质量为m1和m2的物体,其中m1> m2,求它们的加速度及绳两端的张力T1和T2。

设绳不可伸长,质量可忽略,它与滑轮之间无相对滑动;滑轮的半径为R,质量为m,且分布均匀。

P176 例8:如图所示,以水平力f打击悬挂在P点的刚体,打击点为O。

若打击点选择合适,则打击过程中轴对刚体的切向力Ft 为0,该点称为打击中心。

求打击中心到轴的距离ro。

P177 例9:如图所示,一质量为m的子弹以水平速度射入一静止悬于顶端长棒的下端,穿出后速度损失3/4,求子弹穿出后棒的角速度ω。

已知棒长为l,质量为M。

P177 例10:如图所示,两个均匀圆柱各自绕自身的轴转动,两轴互相平行。

圆柱半径和质量分别为R1、R2、M1、M2。

开始时两柱分别以角速度ω1、ω2同向旋转。

然后缓缓移动它们,使互相接触。

求两柱在相互间摩擦力的作用下所达到的最终角速度ω’1、ω’2。

P178 例11:如图所示,绳的上端缠绕在圆柱上,下端系以重物mg。

重物自然下垂,由静止开始降落,并带动圆柱转动。

求重物降落了高度h时的速率v。

已知圆柱的质量和半径分别为M和R,并设绳的质量可忽略,且不可伸长。

P179 例12:如图所示,将单摆和一等长的匀质直杆悬挂在同一点,杆的质量m也与单摆的摆锤质量相等。

开始时,直杆自然下垂,将单摆摆锤拉到高度h0,令它自静止状态下摆,于铅直位置和直杆作弹性碰撞。

求碰撞后直杆下端达到的高度h。

P180 例13:Section4.4P182 例14:一质量为m半径为R的均匀圆柱体,沿倾角为θ的粗糙斜面自静止无滑下滚,求静摩擦力、质心加速度,以及保证圆柱体作无滑滚动所需最小摩擦系数。

P182 例15:将一根质量为m的长杆用细绳从两端水平地挂起来,其中一根绳子突然断了,另一绳内的张力是多少?P182 例16:一半径为R的乒乓球与水平桌面的摩擦系数为μ。

开始时,用手按球的上左侧,使球的质心以vC0的初速度向正x方向运动,并具有逆时针方向的初始角速度ω0,设vC0<2/3Rω0,试分析乒乓球以后的运动。

P183 例17:一质量为m、半径为r的轮子以角速度ω0旋转。

将它轻轻地放到地面上。

设地面的滑动摩擦系数为μ,求轮子最后的前进速度和角速度。

达到此运动状态经过了多少时间?P185 例18:如图所示,为一放在水平桌面上的线轴。

桌面有一定的摩擦力,可使线轴作纯滚动。

实验表明,用力向斜上方拉时,随着角度不同,线轴有时朝前滚,有时朝后滚。

试对此问题进行分析。

P185 例19:一半径为r的粗糙圆盘与水平地面紧密接触。

圆盘一面绕自转轴以角速度ω旋转,一面以速度v平移(v<<rω)。

设滑动摩擦系数μ与速度无关,求圆盘所受的阻力。

P186 例20:计算从同一高度h自静止状态沿斜面无滑滚下时,匀质(a) 圆柱(b)薄球壳(c)球体的质心获得的速度。

设三者的总质量和半径相同。

P187 例21: 一质量为m,长为l的匀质细杆,铅直地放置在光滑的水平地面上。

当杆自静止倒下时,求地面对杆端的支撑力。

P188 例22: 在光滑的桌面上有一质量为M、长2l的细杆,一质量为m的小球沿桌面以速率v0垂直地撞击在细杆的一端。

设碰撞是完全弹性的,求碰撞后球和杆的运动情况。

在什么条件下细杆旋转半圈后会第二次撞在小球上?P188 例23: 半径为R的圆木以角速度ω0在水平地面上作纯滚动,在前进的路上撞在一高度为h的台阶上。

设碰撞是完全非弹性的,即碰撞后圆木不弹回。

要圆木能够翻上台阶而又始终不跳离台阶,对台阶的高度有什么要求?Section4.5P190 例24:一架均匀的梯子,重为W,长2l,上端靠于光滑的墙上,下端至于粗糙的地面上,梯与地面的摩擦系数为μ。

有一体重为W1的人攀登到距梯下端l1的地方。

求梯子不滑动的条件。

Section5.1声-机械振动,机械波光-电磁振荡,电磁波P251 例1: 半径为r的小球在半径为R的半球形大碗内作纯滚动,这种运动是简谐振动吗?如果是,计算它的周期。

相关文档
最新文档