宁夏回族自治区银川市第一中学等比数列经典例题
宁夏银川市一中2022高一数学下学期期末考试试题(含解析)
A. 或 B. C. D.以上答案都不对
【答案】C
【解析】
试题分析:由正弦定理得 ,得 ,结合 得 ,故选C.
考点:正弦定理.
5.若正实数x,y满足不等式 ,则 的取值范围是( )
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:由正实数 满足不等式 ,得到如下图阴影所示 区域:
【详解】(1)因为 ,
所以 , ,
所以 是等比数列,其中首项是 ,公比为 ,
所以 , .
(2) ,
所以 ,
由(1)知, ,又 ,
所以 .
所以 ,
所以 两式相减得
.
所以 .
(3)
,所以当 时, ,
当 时, ,即 ,
所以当 或 时, 取最大值是 .
只需 ,
即 对于任意 恒成立,即
所以 .
【点睛】本题考查了等比数列的证明,错位相减法求前N项和,数列的单调性,数列的最大值,二次不等式恒成立问题,综合性强,计算量大,意在考查学生解决问题的能力.
银川一中2022/2022度(下)高一期末考试
数学试卷
一、选择题(本大题共12小题,每小题5分,共60分,每题只有一个选项符合题意)
1.在等差数列 中,若 , ,则 ( )
A. B.0C. 1 D. 6
【答案】C
【解析】
【分析】
根据等差数列性质得到答案.
【详解】等差数列 中,若 ,
【点睛】本题考查了等差数列的性质,属于简单题.
,通过均值不等式得到答案.
【详解】(1) 为等差数列,设公差为 , , , , ,
.
设从第3行起,每行的公比都是q,且 , , , ,
宁夏回族自治区银川一中2023-2024学年高三上学期第四次月考理科数学试题(解析版)
银川一中2024届高三年级第四次月考数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{05}A xx =<<∣,104x B x x ⎧⎫+=≤⎨⎬-⎩⎭,则A B = ()A.[]1,4- B.[)1,5- C.(]0,4 D.()0,4【答案】D 【解析】【分析】由分式不等式的解法,解出集合B ,根据集合的交集运算,可得答案.【详解】由不等式104x x +≤-,则等价于()()1404x x x ⎧+-≤⎨≠⎩,解得14x -≤<,所以{}14B x x =-≤<,由{}05A x x =<<,则{}04A B x x ⋂=<<.故选:D.2.复平面上,以原点为起点,平行于虚轴的非零向量所对应的复数一定是()A.正数 B.负数C.实部不为零的虚数D.纯虚数【答案】D 【解析】【分析】根据向量的坐标写出对应复数,然后判断即可.【详解】由题意可设()()0,0OZ a a =≠,所以对应复数为()i 0a a ≠,此复数为纯虚数,故选:D.3.已知某几何体的三视图如图所示,则该几何体的体积为()A.20B.32C.203D.323所以该几何体的体积为【答案】D 【解析】【分析】先根据几何体的三视图得出该几何体的直观图,再由几何体的特征得出几何体的体积.【详解】解:如图,根据几何体的三视图可以得出该几何体是底面为矩形的四棱锥E -ABCD ,该几何体的高为EF ,且EF =4,13224433E ABCD V -=⨯⨯⨯=,故选:D.4.“不以规矩,不能成方圆”出自《孟子·离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的方尺,是古人用来测量、画圆和方形图案的工具.敦煌壁画就有伏羲女娲手执规矩的记载(如图(1)).今有一块圆形木板,以“矩”量之,如图(2).若将这块圆形木板截成一块四边形形状的木板,且这块四边形木板的一个内角α满足3cos 5α=,则这块四边形木板周长的最大值为()A.20cmB.C. D.30cm【答案】D 【解析】【分析】作出图形,利用余弦定理结合基本不等式可求得这个矩形周长的最大值.【详解】由题图(2)cm =.设截得的四边形木板为ABCD ,设A α∠=,AB c =,BD a =,AD b =,BC n =,CD m =,如下图所示.由3cos 5α=且0πα<<可得4sin 5α=,在ABD △中,由正弦定理得sin aα=,解得a =在ABD △中,由余弦定理,得2222cos a b c bc α=+-.,所以,()()()()222222616168055545b c b c b c bc b c b c ++=+-=+-≥+-⨯=,即()2400b c +≤,可得020b c <+≤,当且仅当10b c ==时等号成立.在BCD △中,πBCD α∠=-,由余弦定理可得()222226802cos π5a m n mn m n mn α==+--=++()()()()22224445545m n m n m n mn m n ++=+-≥+-⨯=,即()2100m n +≤,即010m n <+≤,当且仅当5m n ==时等号成立,因此,这块四边形木板周长的最大值为30cm .故选:D.5.若13α<<,24β-<<,则αβ-的取值范围是()A.31αβ-<-<B.33αβ-<-<C.03αβ<-<D.35αβ-<-<【答案】B 【解析】【分析】利用不等式的性质求解.【详解】∵24β-<<,∴04β≤<,40β-<-≤,又13α<<,∴33αβ-<-<,故选:B.6.已知向量(1,1)a = ,(,1)b x =- 则“()a b b +⊥”是“0x =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据题意,利用向量垂直的坐标表示,列出方程求得0x =或=1x -,结合充分条件、必要条件的判定方法,即可求解.【详解】由向量(1,1)a = ,(,1)b x =-,可得(1,0)a b x +=+r r ,若()a b b +⊥,可得()(1)0a b b x x +⋅=+= ,解得0x =或=1x -,所以()a b b +⊥是0x =的必要不充分条件.故选:B.7.“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,它在很多特殊领域发挥了超常的贡献值.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).现以边长为4的正三角形作一个“莱洛三角形”,则此“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-【答案】A 【解析】【分析】求出正三角形的面积和弓形的面积,进而求出“莱洛三角形”的面积.【详解】正三角形的面积为21π4sin 23⨯=圆弧的长度为π4π433l =⨯=,故一个弓形的面积为18π423l ⨯-=-,故“莱洛三角形”的面积为8π38π3⎛-+=- ⎝.故选:A8.若数列{}n a 满足11a =,1121n n a a +=+,则9a =()A.10121- B.9121- C.1021- D.921-【答案】B 【解析】【分析】根据题意,由递推公式可得数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,即可得到数列{}n a 的通项公式,从而得到结果.【详解】因为11a =,1121n n a a +=+,所以111121n n a a +⎛⎫+=+ ⎪⎝⎭,又1112a +=,所以数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,所以112n n a +=,即121n n a =-,所以99121a =-.故选:B9.如图,圆柱的轴截面为矩形ABCD ,点M ,N 分别在上、下底面圆上,2NB AN =,2CM MD =,2AB =,3BC =,则异面直线AM 与CN 所成角的余弦值为()A.10B.4C.5D.20【答案】D 【解析】【分析】作出异面直线AM 与CN 所成角,然后通过解三角形求得所成角的余弦值.【详解】连接,,,,DM CM AN BN BM ,设BM CN P ⋂=,则P 是BM 的中点,设Q 是AB 的中点,连接PQ ,则//PQ AM ,则NPQ ∠是异面直线AM 与CN 所成角或其补角.由于 2NB AN =, 2CMDM =,所以ππ,36BAN NBA ∠=∠=,由于2AB =,而AB 是圆柱底面圆的直径,则AN BN ⊥,所以1,AN BN ==,则122AM PQ AM ====,12CN PN CN ====,而1QN =,在三角形PQN中,由余弦定理得1010313144cos 20NPQ +-+-∠==.故选:D10.已知n S 是等差数列{}n a 的前n 项和,且70a >,690a a +<则()A.数列{}n a 为递增数列B.80a <C.n S 的最大值为8SD.140S >【答案】B 【解析】【分析】由70a >且78690a a a a +=+<,所以80a <,所以公差870d a a =-<,所以17n ≤≤时0n a >,8n ≥时0n a <,逐项分析判断即可得解.【详解】由70a >且78690a a a a +=+<,所以80a <,故B 正确;所以公差870d a a =-<,数列{}n a 为递减数列,A 错误;由0d <,70a >,80a <,所以17n ≤≤,0n a >,8n ≥时,0n a <,n S 的最大值为7S ,故C 错误;114147814()7()02a a S a a +==+<,故D 错误.故选:B11.银川一中的小组合作学习模式中,每位参与的同学都是受益者,以下这道题就是小组里最关心你成长的那位同桌给你准备的:中国古代数学经典《九章算术》系统地总结了战国秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为3,则阳马P ABCD -的外接球的表面积等于()A.15πB.16πC.17πD.18π【答案】C 【解析】【分析】因条件满足“墙角”模型,故可构建长方体模型求解外接球半径,利用公式即得.【详解】如图,因PA ⊥平面ABCE ,AD DE ⊥,故可以构造长方体ADEF PQRS -,易得:长方体ADEF PQRS -的外接球即鳖臑P ADE -的外接球,设球的半径为1R ,PA x =,由12PE R ==,且314π33R =,解得:1R =, 3.x =又因四边形ABCD 为正方形,阳马P ABCD -的外接球即以,,PA AB AD为三条两两垂直的棱组成的正四棱柱的外接球,设其半径为2R22R ==,解得:2172R =故阳马P ABCD -的外接球的表面积为2224π4π(17π.2R =⨯=故选:C.12.若曲线ln y x =与曲线22(0)y x x a x =++<有公切线,则实数a 的取值范围是()A.(ln 21,)--+∞B.[ln 21,)--+∞C.(ln 21,)-++∞D.[ln 21,)-++∞【答案】A 【解析】【分析】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,然后利用导数的几何意义表示出切线方程,则可得21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,再构造函数,然后利用导数可求得结果.【详解】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,由()ln f x x =,得1()f x x '=,所以公切线的斜率为11x ,所以公切线方程为1111ln ()-=-y x x x x ,化简得111(ln 1)y x x x =⋅+-,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,由2()2(0)g x x x a x =++<,得()22g x x '=+,则公切线的斜率为222x +,所以公切线方程为22222(2)(22)()y x x a x x x -++=+-,化简得2222(1)y x x x a =+-+,所以21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,由1>0x ,得210x -<<,令2()ln(22)1(10)F x x x x =-+--<<,则1()201F x x x '=-<+,所以()F x 在(1,0)-上递减,所以()(0)ln 21F x F >=--,所以由题意得ln 21a >--,即实数a 的取值范围是(ln 21,)--+∞,故选:A【点睛】关键点点睛:此题考查导数的几何意义,考查导数的计算,考查利用导数求函数的最值,解题的关键是利用导数的几何意义表示出公切线方程,考查计算能力,属于较难题.二、填空题:本大题共4小题,每小题5分,共20分.13.若实数,x y 满足约束条件4,2,4,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则2z x y =-+的最大值为________.【答案】4【解析】【分析】依题意可画出可行域,并根据目标函数的几何意义求出其最大值为4.【详解】根据题意,画出可行域如下图中阴影部分所示:易知目标函数2z x y =-+可化为2y x z =+,若要求目标函数z 的最大值,即求出2y x z =+在y 轴上的最大截距即可,易知当2y x =(图中虚线所示)平移到过点A 时,截距最大,显然()0,4A ,则max 4z =,所以2z x y =-+的最大值为4.故答案为:414.已知偶函数()f x 满足()()()422f x f x f +=+,则()2022f =__________.【答案】0【解析】【分析】由偶函数的定义和赋值法,以及找出函数的周期,然后计算即可.【详解】令2x =-,则()()()2222f f f =-+,又()()22f f -=,所以()20f =,于是()()()422f x f x f +=+化为:()()4f x f x +=,所以()f x 的周期4T =,所以()()()20225054220f f f =⨯+==.故答案为:0.15.在ABC 中,已知3AB =,4AC =,3BC =,则BA AC ⋅的值为________.【答案】8-【解析】【分析】根据数量积的定义结合余弦定理运算求解.【详解】由题意可得:cos ⋅=-⋅=-⋅∠uu r uuu r uu u r uuu r uu u r uuu rBA AC AB AC AB AC A22222291698222+-+-+-=-⋅⨯=-=-=-⋅AB AC BC AB AC BC AB AC AB AC ,即8BA AC ⋅=-.故答案为:8-.16.将函数sin y x =的图象向左平移π4个单位长度,再把图象上的所有点的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()f x ,已知函数()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,则ω的取值范围为__________.【答案】150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】根据函数图像平移变换,写出函数()y f x =的解析式,再由函数()y f x =在区间π3π,24⎛⎫ ⎪⎝⎭上单调递增,列出不等式组求出ω的取值范围即可【详解】将函数sin y x =的图象向左平移π4个单位长度得到πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象,再将图象上每个点的横坐标变为原来的1(0)ωω>倍(纵坐标不变),得到函数()πsin 4y f x x ω⎛⎫==+⎪⎝⎭的图象, 函数()y f x =在区间π3π,24⎛⎫⎪⎝⎭上单调递增,所以3ππ242T ≥-,即ππ4ω≥,解得04ω<≤,①又πππ3ππ24444x ωωω+<+<+,所以πππ2π2423πππ2π442k k ωω⎧+≥-+⎪⎪⎨⎪+≤+⎪⎩,解得3184233k k ω-+≤≤+,②由①②可得150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦,故答案为:150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.如图,在棱长为a 的正方体1111ABCD A B C D -中,M ,N 分别是1AA ,11C D 的中点,过D ,M ,N 三点的平面与正方体的下底面1111D C B A 相交于直线l .(1)画出直线l 的位置,保留作图痕迹,不需要说明理由;(2)求三棱锥D MNA -的体积.【答案】(1)答案见解析(2)324a 【解析】【分析】(1)延长DM 与11D A 的延长线交于E ,连接NE 即为所求;(2)根据D MNA N DAM V V --=结合三棱锥的体积公式求解出结果.【小问1详解】如图所示直线NE 即为所求:依据如下:延长DM 交11D A 的延长线于E ,连接NE ,则NE 即为直线l 的位置.11E DM D A ∈ ,E DM ∴∈⊂平面DMN ,11E D A ∈⊂平面1111D C B A ,E ∴∈平面DMN ⋂平面1111D C B A ,又由题意显然有N ∈平面DMN ⋂平面1111D C B A ,EN ∴⊂平面DMN ⋂平面1111D C B A ,则NE 即为直线l 的位置.【小问2详解】因为D MNA N DAM V V --=,所以3111112332224D MNA DAMa aa V ND S a -⨯=⨯⨯=⨯⨯= .18.已知数列{}n a 是等比数列,满足13a =,424a =,数列{}nb 满足14b =,422b =,设n n nc a b =-,且{}n c 是等差数列.(1)求数列{}n a 和{}n c 的通项公式;(2)求{}n b 的通项公式和前n 项和n T .【答案】18.13·2n n a -=,2n c n =-19.1322n n b n -=⋅+-,21332322=⋅-+-n n T n n 【解析】【分析】(1)根据等差数列、等比数列定义求解;(2)先写出数列{}n b 的通项公式,再分组求和即可求解.【小问1详解】设等比数列{}n a 的公比为q ,因为13a =,34124a a q ==,所以2q =,即132n n a -=⋅,设等差数列{}n c 公差为d ,因为1111c a b =-=-,444132c a b c d =-=+=,所以1d =,即2n c n =-.【小问2详解】因为n n n c a b =-,所以n n n b a c =-,由(1)可得1322n n b n -=⋅+-,设{}n b 前n 项和为n T ,()()131242212-=⋅+++⋅⋅⋅++-++⋅⋅⋅+n n T n n 21232122n n n n -+=⋅+--21332322n n n =⋅-+-.19.为践行两会精神,关注民生问题,某市积极优化市民居住环境,进行污水排放管道建设.如图是该市的一矩形区域地块ABCD ,30m AB =,15m AD =,有关部门划定了以D 为圆心,AD 为半径的四分之一圆的地块为古树保护区.若排污管道的入口为AB 边上的点E ,出口为CD 边上的点F ,施工要求EF 与古树保护区边界相切,EF 右侧的四边形BCFE 将作为绿地保护生态区. 1.732≈,长度精确到0.1m ,面积精确到20.01m )(1)若30ADE ∠=︒,求EF 的长;(2)当入口E 在AB 上什么位置时,生态区的面积最大?最大是多少?【答案】(1)17.3m(2)AE =2255.15m 【解析】【分析】(1)根据DH HE ⊥得Rt Rt DHE DAE ≅ ,然后利用锐角三角函数求出EF 即可;(2)设ADE θ∠=,结合锐角三角函数定义可表示,AE HF ,然后表示出面积,结合二倍角公式化简,再利用基本不等式求解.【小问1详解】设切点为H ,连结DH ,如图.15DH DA == ,DA AE ⊥,DH HE ⊥,Rt Rt DHE DAE ∴≅△△;30HDE ADE HDF ∴∠=∠=∠=︒;15tan 3015tan 3017.3m EF EH HF ∴=+=︒+︒≈.【小问2详解】设ADE θ∠=,则902EDH θ∠=︒-,15tan AE θ∴=,()15tan 902HF θ︒=-.()1111515tan 1515tan 1515tan 902222ADE DHE DHF AEFD S S S S θθθ=+=⨯⨯++⨯⨯+⨯⨯︒-△△△梯形 2225111tan 31225tan 225tan 225tan 2tan 222tan 44tan θθθθθθθ⎛⎫-⎛⎫=+=+⨯=+ ⎪ ⎪⎝⎭⎝⎭22513tan 4tan 2θθ⎛⎫=+≥⎪⎝⎭,当且仅当tan 3θ=,即30θ=︒时,等号成立,30152ABCD BCFE AEFD S S S ∴=-=⨯-梯形梯形矩形,15tan AE θ∴==时,生态区即梯形BCEF 的面积最大,最大面积为2450255.15m 2-≈.20.已知向量()π2cos ,cos21,sin ,16a x x b x ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭.设函数()1,R 2f x a b x =⋅+∈ .(1)求函数()f x 的解析式及其单调递增区间;(2)将()f x 图象向左平移π4个单位长度得到()g x 图象,若方程()21g x n -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解12,x x ,求实数n 的取值范围,并求()12sin2x x +的值.【答案】(1)()πsin 26f x x ⎛⎫=-⎪⎝⎭,()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)实数n的取值范围是)1,1-,()12sin22x x +=【解析】【分析】(1)利用向量数量积的坐标公式和三角恒等变换的公式化简即可;(2)利用函数的平移求出()g x 的解析式,然后利用三角函数的图像和性质求解即可.【小问1详解】由题意可知()1π1112cos sin cos212cos sin cos cos2262222f x a b x x x x x x x ⎛⎫⎛⎫=⋅+=⋅+--+=⋅+-- ⎪ ⎪ ⎪⎝⎭⎝⎭21cos211cos cos cos2=sin2cos22222x x x x x x x +=⋅+--+--1πsin2cos2sin 2226x x x ⎛⎫=-=- ⎪⎝⎭()πsin 26f x x ⎛⎫∴=- ⎪⎝⎭.由πππ2π22π,Z 262k x k k -+≤-≤+∈,可得ππππ,Z 63k x k k -+≤≤+∈,∴函数()f x 的单调增区间为()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】()ππππsin 2sin 24463g x f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,πππ2π22π,Z 232k x k k -+<+<+∈ ,得5ππππ,Z 1212k x k k -+<<+∈,()πsin 23g x x ⎛⎫∴=+ ⎪⎝⎭在区间()5πππ,πZ 1212k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,同理可求得()πsin 23g x x ⎛⎫=+ ⎪⎝⎭在区间()π7ππ,πZ 1212k k k ⎛⎫++∈ ⎪⎝⎭上单调递减,且()g x 的图象关于直线ππ,Z 122k x k =+∈对称,方程()21g x n -=,即()12n g x +=,∴当π0,2x ⎡⎤∈⎢⎥⎣⎦时,方程()12n g x +=有两个不同的解12,x x ,由()g x 单调性知,()g x 在区间π0,12⎡⎤⎢⎥⎣⎦上单调递增,在区间π12π,2⎡⎤⎢⎥⎣⎦上单调递减,且()πππ0,1,,261222g g g g ⎛⎫⎛⎫⎛⎫====- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故当31122n +≤<时,方程()12n g x +=有两个不同的解12,,x x11n -≤<,实数n 的取值范围是)1,1-.又()g x 的图象关于直线π12x =对称,12π212x x +∴=,即()1212π3,sin262x x x x +=∴+=.21.已知函数()ln 1,R f x x ax a =-+∈.(1)若0x ∃>,使得()0f x ≥成立,求实数a 的取值范围;(2)证明:对任意的2222*22221223341N ,e,e 112233k k k k k+++++∈⨯⨯⨯⨯<++++ 为自然对数的底数.【答案】(1)1a ≤;(2)证明见解析.【解析】【分析】(1)变形不等式()0f x ≥,分离参数并构造函数,再求出函数的最大值即得.(2)由(1)的信息可得ln 1(1)x x x <->,令221(N )x k k k k k*+∈+=+,再利用不等式性质、对数运算、数列求和推理即得.【小问1详解】函数()ln 1f x x ax =-+,则不等式()ln 10ln 1x f x ax x a x +≥⇔≤+⇔≤,令ln 1()x g x x+=,求导得2ln ()xg x x'=-,当(0,1)x ∈时,()0g x '>,函数()g x 递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 递减,因此当1x =时,max ()1g x =,依题意,1a ≤,所以实数a 的取值范围是1a ≤.【小问2详解】由(1)知,当1x >时,()(1)g x g <,即当1x >时,ln 1x x <-,而当N k *∈时,222111111()11k k k k k k k k ++=+=+->+++,因此2211111ln 1()111k k k k k k k k ++<+--=-+++,于是222222221223341ln ln ln ln 112233k k k k +++++++++++++ 11111111(1)()()()112233411k k k <-+-+-++-=-<++ ,即有222222*********ln()1112233k k k k +++++⨯⨯⨯⨯<++++ ,所以222222*********e 112233k k k k+++++⨯⨯⨯⨯<++++ .【点睛】结论点睛:函数()y f x =的定义区间为D ,(1)若x D ∀∈,总有()m f x <成立,则min ()m f x <;(2)若x D ∀∈,总有()m f x >成立,则max ()m f x >;(3)若x D ∃∈,使得()m f x <成立,则max ()m f x <;(4)若x D ∃∈,使得()m f x >成立,则min ()m f x >.(二)选考题:共10分.请考生在第22、23题中任选一道作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()2π3θρ=∈R .(1)求C 的普通方程和直线l 的直角坐标方程;(2)若点P 是C 上的一点,求点P 到直线l 的距离的最小值.【答案】(1)C 的普通方程2212x y -=;直线l0y +=(2【解析】【分析】(1)利用消参法求C 的普通方程,根据极坐标可知直线l 表示过坐标原点O ,倾斜角为2π3的直线,进而可得斜率和直线方程;(2)设33,P t t t t ⎛⎫+- ⎪⎝⎭,利用点到直线的距离结合基本不等式运算求解.【小问1详解】因为曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),两式平方相减得22223312x y t t t t ⎛⎫⎛⎫-=+--= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程2212x y -=;又因为直线l 的极坐标方程为()2π3θρ=∈R ,表示过坐标原点O ,倾斜角为2π3的直线,可得直线l的斜率2πtan 3k ==,所以直线l的直角坐标方程y =0y +=.【小问2详解】由题意可设33,P t t t t ⎛⎫+- ⎪⎝⎭,设点33,P t t t t ⎛⎫+- ⎪⎝⎭到直线l0y +=的距离为d ,则d =当且仅当))311t t+=,即(232t=-时,等号成立,所以点P 到直线l .【选修4-5:不等式选讲】23.已知函数()22f x x x =-++.(1)求不等式()24f x x ≥+的解集;(2)若()f x 的最小值为k ,且实数,,a b c ,满足()a b c k +=,求证:22228a b c ++≥.【答案】(1)(,0]-∞(2)证明见解析【解析】【分析】(1)根据题意分<2x -、22x -≤≤和2x >三种情况解不等式,综合可得出原不等式的解集;(2)利用绝对值三角不等式可求得()f x 的最小值,再利用基本不等式可证得所证不等式成立.【小问1详解】由题意可知:2,2()224,222,2x x f x x x x x x -<-⎧⎪=-++=-≤≤⎨⎪>⎩,①当<2x -时,不等式即为224x x -≥+,解得1x ≤-,所以<2x -;②当22x -≤≤时,不等式即为424x ≥+,解得0x ≤,所以20x -≤≤;③当2x >时,不等式即为224x x ≥+,无解,即x ∈∅;综上所示:不等式()24f x x ≥+的解集为(,0]-∞.【小问2详解】由绝对值不等式的性质可得:()22(2)(2)4=-++≥--+=f x x x x x ,当且仅当22x -≤≤时,等号成立,所以()f x 取最小值4,即4k =,可得()4+=a b c ,即4ab ac +=,所以()()22222222228a b c a bac ab ac ++=+++≥+=当且仅当22224ab ac a b b c +=⎧⎪=⎨⎪=⎩,即a b c ===时,等号成立.。
宁夏银川一中等比数列单元测试题
一、等比数列选择题1.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( )A .40B .81C .121D .2422.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =3.已知等比数列{}n a 的前n 项和为,n S 且639S S =,则42aa 的值为( )AB .2C.D .44.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .15.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .326.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-7.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4 B .5 C .4或5 D .5或6 8.若1,a ,4成等比数列,则a =( )A .1B .2±C .2D .2-9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭11.题目文件丢失!12.12与12的等比中项是( )A .-1B .1C.2D.2±13.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( )A .3B .505C .1010D .202014.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .3615.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 16.数列{a n }满足211232222n n na a a a -+++⋯+=(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )A .5512⎛⎫ ⎪⎝⎭B .10112⎛⎫- ⎪⎝⎭C .9112⎛⎫- ⎪⎝⎭ D .6612⎛⎫ ⎪⎝⎭17.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6B .7C .8D .918.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( ) A .2B .1或2C .-2或2D .-2或1或219.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .420.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .11024二、多选题21.题目文件丢失!22.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比23.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列24.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥25.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-126.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8D .-1227.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n=C .13(1)n a n n =--D .{}3n S 是等比数列28.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34229.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )A .{}n a 是等比数列B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同 30.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 31.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩32.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项) 33.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1034.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98na n n=+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C. 2.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 3.D 【分析】设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q,故2424a q a ==. 【详解】解:设等比数列{}n a 的公比为q ,因为639S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3456123a a a q a a a ++=++,所以38q =,故2q,所以2424a q a ==. 故选:D. 4.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 5.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---, 令210t q =>,则()222421211t t t q q-=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 6.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 7.C 【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解. 【详解】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值. 故选:C. 8.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 9.D 【分析】利用已知条件求得1,a q ,由此求得1a q +. 【详解】依题意222111131912730a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩,所以14a q +=.故选:D 10.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.11.无12.D 【分析】利用等比中项定义得解. 【详解】2311()((22-==±,的等比中项是 故选:D 13.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C 14.B 【分析】第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1666n n n a -=⨯=到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 15.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 16.B 【分析】根据题意得到22123112222n n n a a a a ---++++=,(2n ≥),与条件两式作差,得到12n n a =,(2n ≥),再验证112a =满足12n n a =,得到12n n a =()*n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足211232222n n n a a a a -++++=, 22123112222n n n a a a a ---++++=,(2n ≥) 则1112222--=-=n n n n a ,则12n n a =,(2n ≥), 又112a =满足12n n a =,所以12n n a =()*n N ∈, 因此1010210123101011111112211222212S a a a a ⎛⎫- ⎪⎛⎫⎝⎭++=+++==- ⎪+⎝-=⎭.故选:B 17.B 【分析】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,由此能求出该女子所需的天数至少为7天. 【详解】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,5(12)312012n n S -∴=-,解得2125n . 因为6264=,72128=∴该女子所需的天数至少为7天.故选:B 18.C 【分析】设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】设等比数列{}n a 的公比为q , 当1q =时,4121422S a S a ==,不合题意; 当1q ≠时,()()41424222111115111a q S q q q S qa q q---===+=---,解得2q =±. 故选:C. 19.A 【分析】利用已知条件化简,转化求解即可. 【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 20.C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n na a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 二、多选题 21.无22.BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 23.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 24.ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b < 又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 25.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确; 若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.26.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】5721624a q q a ==⇒=±, 当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 27.ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 公差为3,又11113S a ==,所以133(1)3n n n S =+-=,13n S n=.B 正确;2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错;由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确.故选:ABD . 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.28.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 29.AD 【分析】根据{}n S 为等比数列等价于2n na a +为常数,从而可得正确的选项. 【详解】{}n S 为等比数列等价于1n n S S +为常数,也就是等价于12+1n n n n a a a a ++即2n na a +为常数.对于A ,因为{}n a 是等比数列,故22n na q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2nn n a n a -=-=,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅不是等比数列,2121n n a a +-不是常数,故B 错. 对于C ,取2123,2n nn n a a -==,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅是等比数列,21213n n a a +-=,2222n naa +=,两者不相等,故C 错. 对于D ,根据条件可得2n na a +为常数.故选:AD. 【点睛】本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题. 30.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 31.ABD 【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列,综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 32.BCD 【分析】举反例,反证,或按照等比数列的定义逐项判断即可. 【详解】解:设{}n a 的公比为q ,A. 设()1nn a =-,则10n n a a ++=,显然{}1n n a a ++不是等比数列.B.2211n n n n a a q a a +++=,所以{}1n n a a +为等比数列. C. ()()24222221222211n n n n n n a q q a a q a a a q +++++==++,所以{}221n n a a ++为等比数列. D. 当1q =时,n S np =,{}n S 显然不是等比数列; 当1q ≠时,若{}n S 为等比数列,则()222112n n n S S n S -+=≥,即()()()211111111111n n n a q a q a q q q q-+⎛⎫⎛⎫⎛⎫---⎪⎪⎪= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭,所以1q =,与1q ≠矛盾,综上,{}n S 不是等比数列. 故选:BCD. 【点睛】考查等比数列的辨析,基础题. 33.AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误;由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AD 【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案. 【详解】98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”;67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.故选:AD . 【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。
宁夏银川一中高二数学上学期期中考试 新人教A版
班级___ 姓名___ 学号__一、选择题(本大题共10个小题,每小题4分,共40分)1.数列 11,22,5,2的一个通项公式是( )A. n aB. n aC. n a =D. n a 2.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12) C .(3,2) D .(1,3) 3.已知等比数列{n a }中,n a >0,955,a a 为方程016102=+-x x 的两根,则805020a a a ⋅⋅的值为( )A .32B .64C .256D .±644.已知向量a =(1,1),b =(2,x ).若b a +与a b 24-平行,则实数x 的值是( )A .-2B .0C .1D .25.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B =( ) A.53 B.54 C.55 D.56 6.一个等差数列的前4项是a ,x ,b ,x 2,则ba 等于( ) A .41 B .21 C .31 D .32 7.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,又a 、b 、c 成等比数列,且c =2a ,则cos B =( ) A.14 B.34 C.24 D.238.△ABC 中,a 、b 、c 分别为∠A、∠B、∠C 的对边,如果a 、b 、c 成等差数列,∠B=30° △ABC 的面积为23,那么b 等于( ) A.231+ B.31+ C.232+ D.32+ 9.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( )A .2OA →-OB → B .-OA →+2OB → C. 23OA →-13OB → D .-13OA →+23OB →10. 设函数f (x )满足f (n +1)=2)(2n n f +(n ∈N *),且f (1)=2,则f (20)为( ) A .95 B .97 C .105 D .192 二、填空题(本大题共5小题,每小题4分,共20分.)11.已知数列{a n }中,a 1=1,a n +1=a n 2a n +3,则a 5=______________. 12.已知等差数列{a n }的前n 项和为S n ,若OC a OA a OB 2001+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=13.给出下列命题:①若22b a +=0,则b a ==0;②若A (x 1,y 1),B(x 2,y 2),则)2,2(212121y y x x AB ++=; ③已知c b a ,,是三个非零向量,若0=+b a ,则|c a ⋅|=|c b ⋅|;④已知λ1>0,λ2>0,e 1,e 2是一组基底,a =λ11e +λ22e ,则a 与1e 不共线,a 与2e 也不共线; ⑤a 与b 共线⇔||||b a b a =⋅.其中正确命题的序号是_____________.14.数列}{n a 的前n 项和)1(log 1.0n S n += ,则____991110=+++a a a15.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .测得 00153030BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为060,则塔高AB= 米;三、解答题:本大题共5小题,共60分,解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)在△ABC 中,角A 、B 、C 所对应的边分别为a,b,c,已知a =33,c =2,B =150°,求边b 的长及A 的正弦值.17.(本题满分12分)已知|a |=3,|b |=2.(1)若a 与b 的夹角为150°,求|a +2b |;(2)若a -b 与a 垂直,求a 与b 的夹角大小.18.(本题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若c =1,求a 的值.19.(本题满分12分)已知数列}{n a 是首项为1的等差数列,且公差不为零,而等比数列{}n b 的前三项分别是621,,a a a 。
银川第第一中学学2019年高三年级第四次抽考文科试题(含解析).doc
银川第第一中学学2019年高三年级第四次抽考文科试题(含解析)数 学 试 卷〔文〕2017、11第一卷【一】选择题〔本大题共12小题,每题5分,总分值60分、在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳、〕1、集合}13|{},1|12||{>=<-=x x N x x M ,那么N M ⋂=〔 〕 A 、φ B 、}0|{<x x C 、}1|{<x x D 、}10|{<<x x2、παπ2<<,且31cos -=α,那么2tan α=〔 〕 A 、2- B 、22-C 、2±D 、22± 3、假设)10(02log ≠><a a a 且,那么函数)1(log )(+=x x f a 旳图像大致是〔 〕4、等比数列}{n a 旳公比为正数,且1,422475==⋅a a a a ,那么1a =〔 〕 A 、21B 、22C 、2D 、2 5、设f 〔x 〕、g 〔x 〕是R 上旳可导函数,)('x f ,)('x g 分别为f 〔x 〕、g 〔x 〕旳导函数,且满足)('x f g 〔x 〕+f 〔x 〕)('x g <0,那么当a <x <b 时,有〔 〕A 、f 〔x 〕g 〔b 〕>f 〔b 〕g 〔x 〕B 、f 〔x 〕g 〔a 〕> f 〔a 〕g 〔x 〕C 、f 〔x 〕g 〔x 〕>f 〔b 〕g 〔b 〕D 、f 〔x 〕g 〔x 〕>f 〔b 〕g 〔a 〕6、过点〔0,1〕且与曲线11-+=x x y 在点〔3,2〕处旳切线垂直旳直线旳方程为〔 〕A 、012=+-y xB 、012=-+y xC 、022=-+y xD 、022=+-y x7、为了得到函数x x y 2cos 2sin +=旳图像,只需把函数x x y 2cos 2sin -=旳图像〔 〕 A 、向左平移4π个长度单位 B 、向右平移4π个长度单位 C 、向左平移2π个长度单位 D 、向右平移2π个长度单位 A 、假设a 2>b 2,那么a >b B 、假设1a >1b,那么a <b C 、假设ac >bc ,那么a >b D 、假设a <b ,那么a <b9、 假设函数)(x f 旳导函数34)('2+-=x x x f ,那么使得函数)1(-x f 单调递减旳一个充分不必要条件是x ∈〔 〕A 、〔0,1〕B 、〔3,5〕C 、〔2,3〕D 、〔2,4〕10、假设a >0,b >0,a ,b 旳等差中项是12,且α=a +1a ,β=b +1b ,那么α+β旳最小值为〔 〕A 、2B 、3C 、4D 、511、△ABC 中,∠A=60°,∠A 旳平分线AD 交边BC 于D ,AB=3,且)(31R AB AC AD ∈+=λλ,那么AD 旳长为〔 〕A 、1B 、3C 、32D 、312、变量x 、y 满足旳约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,那么y x z 23+=旳最大值为〔 〕A 、-3B 、25 C 、-5 D 、4 第二卷本卷包括必考题和选考题两部分。
宁夏回族自治区银川一中2023-2024学年高二上学期期末考试数学试题
B.方程 f x g x 有两个实数根
C.若直线 y a 与函数 g x 交于点 A x1, y1 , B x2 , y2 ,与函数 f x 交于点
B x2 , y2 , C x3, y3 ,则 x1x3 x22
(2)若 f (x) 在 (1,1) 上单调递增,求实数 a 的取值范围.
19.记
Sn
为数列 an 的前
n
项和,已知
a1
1,
Sn an
是公差为
1 3
的等差数列.
(1)求 an 的通项公式;
(2)证明:
1 a1
1 a2
1 an
2.
20.在① a3 5,a2 a5 6b2 ;② b2 2,a3 a4 3b3 ;③ S3 9,a4 a5 8b2 ,这三个
一个解答计分.
21.已知抛物线 C : y2 2 px p 0 上的点 M 到焦点 F 的距离为 5,点 M 到 x 轴的距离
为 6p .
(1)求抛物线 C 的方程; (2)若抛物线 C 的准线 l 与 x 轴交于点 Q,过点 Q 作直线交抛物线 C 于 A,B 两点,设直 线 FA,FB 的斜率分别为 k1 , k2 .求 k1 k2 的值.
C. x2 y2 1 144 25
D. x2 y2 1 25 144
3.曲线
f
x
x
cos
x
在点
π 2
,
f
π 2
处的切线斜率为(
)
A.0
B.1
C.-1
D.2
4.已知数列 an 满足
2an1Biblioteka 2an1 ,其中a8
宁夏回族自治区银川一中2023届高三二模数学(理)试题
②设 an
1 n 1
n
1
2
n
1
n
1
n
N
* ,求证: an
ln
2
(二)选考题:共 10 分.请考生在第 22、23 两题中任选一题做答,如果多做,则按所做的第一题记分. 22.[选修 4—4:坐标系与参数方程]
在直角坐标系
xOy
中,曲线
C
的参数方程为
x
y
t t
(t
为参数,常数
0
),以坐标原点为极点,
(1)弦 AB 上是否存在点 D ,使得 O1D ∥平面 A1AC ,请说明理由; (2)若 BC 2 , ABC 30 ,点 A1 , A , B , C 都在半径为 2 的球面上,求二面角 C A1B A 的余
弦值. 21.(12 分)
已知函数 f x a x11 dt x 12 x 1 .
7.【答案】A【详解】因为 a b 2 cos 75 cos15 2sin 75sin15 2 cos 15 75 0 ,
a 2 , b 1.所以
2a b
a b
2 2a
b
2
8
0 .所以
8.
8.【答案】A【详解】由题意设一条渐近线的倾斜角为
,
0,
2
,
则另一条渐近线的倾斜角为 5 ,由双曲对称性可得 5 ,∴ ,则一条渐近线的斜率为 6
(1)求an 的通项公式;
(2)若 bn
1 an an 1
,bn 的前 n
项和为 Tn
,证明: Tn
1 6
.
18.(12 分) 某校工会开展健步走活动,要求教职工上传 3 月 1 日至 3 月 7 日的微信记步数信息,下图是职工甲和职工乙微 信记步数情况:
宁夏回族自治区银川一中2025届高三上学期第三次月考数学试卷
宁夏回族自治区银川一中2025届高三上学期第三次月考数学试卷一、单选题1.i 是虚数单位,复数2i12i-=+()A .1-B .1C .i-D .i2.若数列{}n a 的前n 项和(1)n S n n =+,则6a 等于()A .10B .11C .12D .133.已知函数为()()2,0e ln 1,0x ax a xf x x x ⎧-<⎪=⎨++≥⎪⎩在上单调递增,则实数a 的取值范围是()A .(),0∞-B .[)1,0-C .[)1,-+∞D .0,+∞4.已知()5cos 2cos 22παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为()A .7-B .7C .1D .1-5.已知数列{}n a 为等比数列,2462461118,2a a a a a a ++=++=,则4a =()A.B.±C .2D .2±6.设等差数列{}n a 的前n 项和为n S ,且2822a a +=-,11110S =-,则n S 取最小值时,n 的值为()A .15或16B .13或14C .16或17D .14或157.我国古代数学家秦九韶左《数书九章》中记述了了“一斜求积术”,用现代式子表示即为:在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC V 的面积S =()cos 3cos 0c B b a C ++=,且222 4c a b --=,则ABC V 的面积为()AB .CD .8.已知函数()2ln ,021,0x x x f x x x x >⎧=⎨--+≤⎩函数()()()()21g x f x a f x a =---⎡⎤⎣⎦,则下列结论正确的是()A .若1e<-a ,则()g x 恰有2个零点B .若()g x 恰有2个零点,则a 的取值范围是()1,2,e ∞∞⎛⎫--⋃+ ⎪⎝⎭C .若()g x 恰有3个零点,则a 的取值范围是[)0,1D .若12a ≤<,则()g x 恰有4个零点二、多选题9.已知函数()sin()f x x ωϕ=+(0,π0)ωϕ>-<<的部分图象如图所示,则()A .65ω=B .π3ϕ=-C .56ω=D .(2π)2f =-10.下列说法正确的是()A .函数1cos 2y x =+的最小正周期是πB .函数tan 2y x =的图像的对称中心是π,04k ⎛⎫⎪⎝⎭,Zk ∈C .函数()ln 2cos 21y x =+的递增区间是ππ,π3k k ⎛⎤- ⎥⎝⎦,Zk ∈D .函数sin 2y x =的图像可由函数πcos 26y x ⎛⎫=- ⎪⎝⎭的图像向右平移π6个单位而得到11.正方形ABCD 的边长为4,E 是BC 中点,如图,点P 是以AB 为直径的半圆上任意点,AP AD AE λμ=+,则()A .μ最大值为1B .λ最大值为2C .存在P 使得1λμ+=D .AP AD ⋅最大值是8三、填空题12.已知单位向量a b ,满足1a b -= ,则a b 在方向上的投影向量为.13.已知323a b =+,则2a b -的最小值为.14.设函数22()log ||f x x x -=-,则不等式(2)(22)f x f x -≥+的解集为.四、解答题15.已知数()2π24cos 24f x x x ⎛⎫=-+- ⎪⎝⎭.(1)求()f x 的最小正周期和对称轴方程;(2)求()f x 在π,02⎡⎤-⎢⎥⎣⎦的最大值和最小值.16.已知数列{}n a 满足112,32n n a a a +==+.(1)证明:数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)设()1n n b n a =+,求数列{}n b 的前n 项和n S .17.在锐角ABC V 中,内角,,A B C 的对边分别为,,a b c ,且22222tan tan c A B a c b+=+-.(1)求角A 的大小;(2)若2BC =,点D 是线段BC 的中点,求线段AD 长的取值范围.18.已知函数()e xf x ax =-和()()ln R g x ax x a =-∈(1)若函数()y g x =是定义域上的严格减函数,求a 的取值范围.(2)若函数()e x f x ax =-和()ln g x ax x =-有相同的最小值,求a 的值(3)若1a =,是否存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列19.定义:若数列{}n a 满足()21,n n n a pa qa p q ++=+∈R ,则称数列{}n a 为“线性数列”.(1)已知{}n a 为“线性数列”,且12342,8,24,64a a a a ====,证明:数列{}12n n a a +-为等比数列.(2)已知11(1(1n n n a --=+.(i )证明:数列{}n a 为“线性数列”.(ii )记21n n n b a a +=,数列{}n b 的前n 项和为n S ,证明:18n S <.。
宁夏银川一中2024年高三数学第一学期期末考试试题含解析
宁夏银川一中2024年高三数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足(1)2z i -=,其中i 为虚数单位,则1z -=( ). A .iB .i -C .1i +D .1i -2.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( ) A .–10B .14-C .–18D .–203.()2523(2)x x x --+的展开式中,5x 项的系数为( ) A .-23B .17C .20D .634.已知函数()sin()(0,)2f x x πωϕωϕ=+><的最小正周期为(),f x π的图象向左平移6π个单位长度后关于y 轴对称,则()6f x π-的单调递增区间为( )A .5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D .,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦5.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多7.设i 是虚数单位,若复数1z i =+,则22||z z z+=( )A .1i +B .1i -C .1i --D .1i -+8.已知命题300:2,80p x x ∃>->,那么p ⌝为( ) A .3002,80x x ∃>-≤ B .32,80x x ∀>-≤ C .3002,80x x ∃≤-≤D .32,80x x ∀≤-≤9.若||1OA =,||3OB =0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3C .33D 310.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。
宁夏银川市第一中学2020届高三上学期第二次月考数学(理)试卷 含答案
银川一中2020届高三年级第二次月考理 科 数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}21|<<-=x x A ,{}02|2<-=x x x B ,则=B A A .(0,2) B .(-1,0) C .(-2,0)D .(-2,2)2.如果x ,y 是实数,那么“0<xy ”是“||||||y x y x +=-”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知α=αcos sin 2,则α+α+α2cos 12sin 2cos =A .23B .3C .6D .12 4.设21=a ,数列{}1n a +是以3为公比的等比数列,则4a = A .80B .81C .54D .535.若两个向量a 与b 的夹角为θ,则称向量“a b ⨯” 为“向量积”,其长度||||||sin a b a b θ⨯=⋅⋅,已知||1a =,||5b =,4a b ⋅=-,则||a b ⨯=A .-4B .3C .4D .56.设函数x x x f sin )(=,]2,2[ππ-∈x ,若)()(21x f x f >,则下列不等式必定成立的是 A .21x x < B .21x x > C .2221x x <D .2221x x >7.已知536cos =⎪⎭⎫⎝⎛-απ,则=⎪⎭⎫ ⎝⎛-32sin πα A .53 B .54 C .53- D .54-8.设函数()sin(2)3f x x π=+,则下列结论正确的是A .()f x 的图像关于直线3x π=对称B .()f x 的图像关于点(,0)4π对称C .把()f x 的图像向左平移12π个单位,得到一个偶函数的图像 D .()f x 的最小正周期为π,且在[0,]6π上为增函数9.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则()()20202019f f +-=A .2B .1C .1-D .2-10.函数a ax x y +-=23在(0,1)内有极小值,则实数a 的取值范围是A.()0,∞-B.⎪⎭⎫ ⎝⎛∞-23, C. ⎪⎭⎫ ⎝⎛23,0D.()3,011.已知正方形ABCD 的边长为2,M 为平面ABCD 内一点,则)()(+⋅+ 的最小值为A .-4B .-3C .-2D .-112.已知函数21,0,()(1)1,0,x x f x f x x ⎧-≤=⎨-+>⎩若数列()()g x f x x =-的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为 A .(1)2n n n a -=B .(1)n a n n =-C .1n a n =-D .22nn a =-二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为120°,2||=,1||=,则=-2|b ________. 14.若数列{}n a 满足*111(,)n nd n N d a a +-=∈为常数,则称数列{}n a 为调和数列. 已知数列1{}nx 为调和数列,且1220516200,x x x x x +++=+则= .15.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西15°的方向航行,半小时后,又测得灯塔在货轮的北偏东60°处,则货轮的航行速度为 里/小时.16.已知数列{}n a 满足11=a ,12+=+n n n a a a (*∈N n ),数列{}n b 是单调递增数列,且k b -=1,nn n a a k n b )1)(2(1+-=+(*∈N n ),则实数k 的取值范围为_______________.三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.第17~21题为必考题,第22、23题为选考题. (一)必考题:共60分 17.(本题满分12分)已知等差数列{}n a 中,首项11a =,公差d 为整数,且满足13243,5,a a a a +<+>数列{}n b 满足11.n n n b a a +=,且其前n 项和为n S .(1)求数列{}n a 的通项公式;(2)若2S 为*1,()m S S m N ∈的等比中项,求正整数m 的值.18.(本题满分12分)已知)cos 2,sin (cos ),sin ,sin (cos x x x x x x -=+=,设x f ⋅=)(. (1)求函数)(x f 的单调增区间;(2)三角形ABC 的三个角,,A B C 所对边分别是,,a b c , 且满足(),1,32103A fB a b π==+=,求边c .19.(本题满分12分)在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且满足274cos cos2()22A B C -+=.(1)求角A 的大小;(2)若3b c +=,求a 的最小值. 20.(本题满分12分)已知单调递增的等比数列423432,2,28:}{a a a a a a a n 是且满足+=++的等差中项. (1)求数列}{n a 的通项公式;(2)若502,,log 12121>⋅++++==+n n n n n n n n S b b b S a a b 求使 成立的正整数n 的最小值.21.(本小题满分12分)设2)(ax xe x f x-=,ae x x x x g -+-+=1ln )(2. (1)求)(x g 的单调区间; (2)讨论)(xf 零点的个数;(3)当0>a 时,设0)()()(≥-=x ag x f x h 恒成立,求实数a 的取值范围.(二)选考题:共10分。
宁夏银川市第一中学届高三模拟考试数学试题及答案 (理)
2014年普通高等学校招生全国统一考试理 科 数 学(银川一中第三次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}1|||{〈=x x A ,|{x B =x 31log <0},则B A ⋂是( )A .∅B .(-1,1)C .)21,0( D .(0,1)2.若bi i ai -=+1)21(,其中a 、b ∈R ,i 是虚数单位,则=+||bi a ( )A .i +21 B .5C .25 D .45 3.已知实数,x y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =--1的最大值为( )A .5B .4C .12D . 3- 4.在等比数列{a n }中,,271=a 534a a a =,则6a =( ) A .811 B .271 C .91D .315.将4名学生分别安排到甲、乙,丙三地参加社会实践活动,每个地方至少安排一名学生参加,则不同的安排方案共有( ) A .36种B .24种C .18种D .12种6.已知双曲线221(0)kx y k -=>的一条渐近线与直线2x+y-3=0垂直,则双曲线的离心率是( ) ABC.D7.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的体积是( )A . 2123π+B .283π+ C .12π+ D .8π+8.已知a 为如图所示的程序框图输出的结果,则二项式6⎛⎝的展开式中常数项是( )A. -20B. 52 C. -192 D. -1609.设παπ〈〈2,54sin =α,则αααα2cos cos 2sin sin 22++的值为 ( )A .8B .10C .-4D . -2010.已知正三角形ABC 的边长是3,D 是BC 上的点,BD=1,则∙=( )A .29-B .23- C .215 D .2511.已知抛物线C :y 2=8x 的焦点为F ,点)2,2(-M ,过点F 且斜率为k 的直线与C 交于A ,B 两点,若0=∙MB MA ,则k=( )A B .2C . 12D .212.设()f x 是定义在R 上的偶函数,x R ∀∈,都有(2)(2)f x f x -=+,且当[0,2]x ∈时,()22x f x =-,若函数()()log (1)a g x f x x =-+()0,1a a >≠在区间(1,9]-内恰有三个不同零点,则实数a 的取值范围是( ) A .1(0,)(7,)9+∞ B. 1(,1)(1,3)9C. 11(,)(3,7)95 D. 11(,)(5,3)73第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有18件,那么此样本的容量n= 。
宁夏回族自治区银川市第一中学数列多选题试题含答案
宁夏回族自治区银川市第一中学数列多选题试题含答案一、数列多选题1.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+= ⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误;故选:BC.2.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( ) A .数列{}n a 是等差数列B .12n naC .22222123213n na a a a -++++= D .122334111111n n b b b b b b b b +++++< 【答案】BCD 【分析】利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误. 【详解】对任意的n *∈N ,21n n S a =-.当1n =时,11121a S a ==-,可得11a =; 当2n ≥时,由21n n S a =-可得1121n n S a --=-, 上述两式作差得122n n n a a a -=-,可得12n n a a -=,所以,数列{}n a 是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,A 选项错误,B选项正确;()221124n n na --==,所以,22221231441143nn n a a a a --==-++++,C 选项正确; 212log log 2n n n b a n +===,()1111111n n b b n n n n +==-++, 所以,12233411111111111111112233411n n b b b b b b b b n n n +++++=-+-+-++-=-<++, D 选项正确. 故选:BCD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.3.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.4.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----. 因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.5.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( ) A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得.【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B 错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.6.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确; ()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.7.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n -+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确.【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.8.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( )A .24a =B .2nn S =C .38n T ≥D .12n T <【答案】ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断. 【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=, 令12(1)n n n b n n a ++=+,12123(11)8b a +==+,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确;【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n n a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.二、平面向量多选题9.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)- B .(6,15)C .(2,3)-D .(2,3)【答案】ABC 【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.10.关于平面向量有下列四个命题,其中正确的命题为( ) A .若a b a c ⋅=⋅,则b c =;B .已知(,3)a k =,(2,6)b =-,若//a b ,则1k =-;C .非零向量a 和b ,满足||||||a b a b ==-,则a 与a b +的夹角为30º;D .0||||||||a b a b a b a b ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭【答案】BCD通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义知,C 正确,通过化简计算得D 正确. 【详解】对A ,当0a = 时,可得到A 不成立; 对B ,//a b 时,有326k =-,1k ∴=-,故B 正确. 对C ,当||||||a b a b ==-时,a 、b 、a b -这三个向量平移后构成一个等边三角形,a b + 是这个等边三角形一条角平分线,故C 正确.对D ,22()()()()110||||||||||||a b a b a b a a a b b b +⋅-=-=-=,故D 正确. 故选:BCD . 【点睛】本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.属于基础题.。
宁夏回族自治区银川市第一中学数列的概念经典例题
一、数列的概念选择题1.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( )A .504B .294C .294-D .504-2.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37323.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞4.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯5.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .46.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252437.的一个通项公式是( )A.n a =B.n a =C.n a =D.n a =8.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 9.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( )A .1007B .1008C .1009.5D .101010.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156011.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .612.若数列{a n }满足1112,1nn na a a a ++==-,则2020a 的值为( ) A .2B .-3C .12-D .1313.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .214.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1015.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A.101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭16.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4817.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+18.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648B .722C .800D .88219.已知数列{}n a满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015B .2016C .1512D .3025220.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .1024二、多选题21.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 22.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >23.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .224.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .425.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n =B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 26.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值27.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.28.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =29.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥30.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列31.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列32.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >33.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-34.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】根据递推公式,算出数列前4项,确定数列周期,即可求出结果. 【详解】∵12a =,111n n n a a a +-=+,∴213a =,311131213a -==-+,41123112a --==--+, 又121111111111n n n n n n n n a a a a a a a a +++---+===--+++,所以421n n n a a a ++=-=, ∴数列{}n a 的周期为4,且123476a a a a +++=-, ∵10084252÷=,∴100872522946S ⎛⎫=⨯-=- ⎪⎝⎭. 故选:C. 【点睛】本题主要考查数列周期性的应用,属于常考题型.2.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.3.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D.【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.4.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.5.D解析:D 【分析】根据332a S S =-,代入即可得结果. 【详解】()()3233222224a S S =-=+-+=.故选:D. 【点睛】本题主要考查了由数列的前n 项和求数列中的项,属于基础题.6.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n <2时,a n +1-a n >0,即a n +1>a n ;当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.7.C解析:C 【分析】根据数列项的规律即可得到结论. 【详解】因为数列3,7,11,15⋯的一个通项公式为41n -,,⋯的一个通项公式是n a = 故选:C . 【点睛】本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.8.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.10.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.11.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.12.D解析:D 【分析】分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】由题意知,212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,612312a +==--,…,因此数列{}n a 是周期为4的周期数列, ∴20205054413a a a ⨯===. 故选D. 【点睛】本题主要考查的是通过观察法求数列的通项公式,属于基础题.13.B解析:B【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.14.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .15.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 16.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C17.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.18.C解析:C 【分析】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:222n a n =,即可得出. 【详解】由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:222n a n =.则此数列第40项为2220800⨯=. 故选:C19.C解析:C 【分析】通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112a =,211122a =,3111222a =+=, ⋯从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161(1)151222⨯+=, 故选:C 【点睛】关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.20.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.二、多选题21.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数,所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确;由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.22.BC 【分析】根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n n a n n n a a a a ++--==+,即11n n nn n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;(2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.23.AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.24.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2.∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.25.ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题26.AC 【分析】先根据题意得等差数列的公差,进而计算即可得答案. 【详解】解:设等差数列的公差为, 则,解得. 所以,,,所以当且仅当或时,取得最大值. 故选:AC 【点睛】本题考查等差数列的解析:AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;27.BC【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 28.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误.【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d Sd -⨯==-,A 选项错误;对于B 选项,()2229272dS d -⨯==-,()2779772dS d -⨯==-,B 选项正确; 对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD.【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.29.BC【分析】设公差d 不为零,由,解得,然后逐项判断.【详解】设公差d 不为零,因为,所以,即,解得,,故A 错误;,故B 正确;若,解得,,故C 正确;D 错误;故选:BC解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 30.AC【分析】由题意可知,即,则时,,可求解出,易知是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出,判断C ,D 的正误.【详解】解:由,得,所以时,,得时,,即时,,当时,由解析:AC【分析】 由题意可知112222n n n n a a a H n -+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误.【详解】解:由112222n n n n a a a H n -+++==, 得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,② 得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确. 25S =,414S =,627S =,故D 错,故选:AC .【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.31.BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.32.ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若,则,所以,所以,故A 选项正确;对于B 选项,若,则,由于,公差,故,故,所以是中最大的项;故B 选项正确;C. 若解析:ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误.故选:ABC .【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.33.AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.34.AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.35.AD【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误.【详解】解:,,故正确A.由,当时,,有最小值,故B 错误.,所以,故C 错误.,,故D 正确.解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
宁夏回族自治区银川市第一中学等比数列经典例题
一、等比数列选择题1.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 2.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭3.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n4.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>05.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭6.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45B .54C .99D .817.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2508.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .220209.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .813.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是( ) A .25B .254C .5D .2514.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9815.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6416.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .317.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >18.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11619.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50B .60C .70D .8020.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!24.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为125.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列26.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-27.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8328.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34229.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++30.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=31.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路32.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--33.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <34.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫⎨⎬⎩⎭的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m =C .若111625ni i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则116m n+的最小值为2512【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 2.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnnT ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n n λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121n nn n nλ-+--<==-+++,所以163321 21λb-<=-=-=+,所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫-⎪⎝⎭.故选:D.【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.3.D【分析】利用已知条件列出方程组求解即可得1,a q,求出数列{a n}的通项公式,再利用错位相减法求和即可.【详解】设等比数列{a n}的公比为q,易知q≠1,所以由题设得()()3136161711631a qSqa qSq⎧-⎪==-⎪⎨-⎪==⎪-⎩,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以a n=a1q n-1=2n-1,所以na n=n×2n-1.设数列{na n}的前n项和为T n,则T n=1×20+2×21+3×22+…+n×2n-1,2T n=1×21+2×22+3×23+…+n×2n,两式作差得-T n=1+2+22+…+2n-1-n×2n=1212n---n×2n=-1+(1-n)×2n,故T n=1+(n-1)×2n.故选:D.【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 4.A【分析】根据等比数列的求和公式及通项公式,可分析出答案.【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 5.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 6.C 【分析】利用等比数列的通项与基本性质,列方程求解即可 【详解】设数列{}n a 的公比为q ,因为341a a q =,所以3q =,所以24352299a a q q +=+=.故选C 7.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 8.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.D【分析】利用已知条件求得1,a q ,由此求得1a q +. 【详解】依题意222111131912730a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩,所以14a q +=.故选:D 10.C 【分析】由等比数列性质求得3a ,把35124a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】因为等比数列{}n a 的前5项积为32,所以5332a =,解得32a =,则235114a a a a ==,35124a a a ++ 1111a a =++,易知函数()1f x x x=+在()1,2上单调递增,所以35173,242a a a ⎛⎫++∈ ⎪⎝⎭, 故选:C . 【点睛】关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数. 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D.【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 13.B 【分析】由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】由等比数列的性质,可得()2222265986688682225a a a a a a a a a a ++=++=+=,又因为0n a >,所以685a a +=,所以268113682524a a a a a a +⎛⎫=≤=⎪⎝⎭, 当且仅当6852a a ==时取等号. 故选:B . 14.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 15.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S .【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =.16.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可 【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 17.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 18.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 19.B 【分析】由等比数列前n 项和的性质即可求得12S . 【详解】 解:数列{}n a 是等比数列,3S ∴,63S S -,96S S -,129S S -也成等比数列,即4,8,96S S -,129S S -也成等比数列, 易知公比2q,9616S S ∴-=,12932S S -=,121299663332168460S S S S S S S S =-+-+-+=+++=.故选:B. 20.D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭. 故选:D.二、多选题 21.无 22.无 23.无24.AC 【分析】计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =,所以1(1)2f =, 所以221(2)(1)4a f f ===, 31(3)(1)(2)8a f f f ===,……所以1()2n n a n N +=∈,所以11(1)122111212n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112S a ==, 故选:AC 【点睛】关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档题 25.AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q -=,A .23513a a q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32a q a =,363a q a =,在1q ≠时,两者不相等,错误; C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误;D .36936a aq a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列. 26.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 27.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 28.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 29.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 30.BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以 231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD 【点晴】本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 31.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确;对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确; 对于D ,由于4561111924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭,所以D 正确, 故选:ACD 【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 32.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 33.BCD 【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AB 【分析】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭,通过裂项求和可求得111ni i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确;因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以1111111116=1=455494132451ni i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.故选:AB. 【点睛】本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般.。
宁夏银川一中数列多选题试题含答案
宁夏银川一中数列多选题试题含答案一、数列多选题1.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<. 又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确. 故选:BCD. 【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.2.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.3.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.4.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】先证明数列1n a 是等差数列得1n a n =,进而得1(1)1n n n b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得:1111n n a a +=+,即1111n na a ,所以数列1na 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=,所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++, 所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .5.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.6.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.7.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC 【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.8.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD 【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.二、平面向量多选题9.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 的外接圆半径是3【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确;若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin 2A =,故ABC 的面积是:11sin 610222bc A =⨯⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin 3a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.10.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 【答案】AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.。
宁夏回族自治区银川市第一中学2021年高中数学数列多选题专题复习及解析
宁夏回族自治区银川市第一中学2021年高中数学数列多选题专题复习及解析一、数列多选题1.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减, 且10a >,20a >,…,20200a >,20210a <, 又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC. 故选:ABC.【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.2.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【答案】AC 【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】 因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=, 所以()()()212342122n n n n T b b b b b b -=++++++=,当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=- ⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】由题意得,12n n S n S n++=,∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有() A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0c D .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+ ⎪⎝⎭,从而判断,属于中档题.5.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.6.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.7.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+,所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.8.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误;∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.9.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;10.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证.【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-,两式相减得:12n n a a -=,又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列,所以2n n a =,24n n a =,数列{}2n a的前n 项和为()141444143n n n S +--'==-, 则22log log 2n n n b a n ===, 所以()1111111n n b b n n n n +==-⋅⋅++, 所以 1111111...11123411n T n n n =-+-++-=-<++, 故选:BD【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f(n)类型,可采用两项合并求解.。
宁夏回族自治区银川市第一中学等差数列经典例题
一、等差数列选择题1.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .132.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .213.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .04.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .145.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n6.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 7.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1628.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或209.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161B .155C .141D .13910.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( )A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =12.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10013.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4214.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 15.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1616.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .7217.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7218.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6419.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .920.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列23.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .224.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+25.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为826.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1227.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <28.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2229.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A.【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 5.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩, 所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B. 6.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 7.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.8.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d , 由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 9.B 【分析】画出图形分析即可列出式子求解. 【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B. 10.A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 11.D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n nnx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法. 12.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 13.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.14.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 15.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 16.A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 17.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 18.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 19.A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A 20.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤,所以{}n a 的前n 项和n S 的最大值为5S .二、多选题21.ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 23.AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 24.BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 25.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD. 26.ACD 【分析】由题可得16a d =-,0d <,21322n d dS n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 27.AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系. 28.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 29.ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 30.ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
宁夏回族自治区银川一中2023届高三二模数学(文)试题(1)
一、单选题二、多选题1. 设为第一象限角,若,则( )A.B.C.D.2. 方程表示实轴在轴上的双曲线,则实数的取值范围为( )A.B.C.D.3.设,,则( )A.B.C.D.4. 已知等差数列的前3项依次为,前项和为,且,则的值为( )A .9B .11C .10D .125. 正四面体P -ABC 中,点M 是BC 的中点,则异面直线PM 与AB 所成角的余弦值为( )A.B.C.D.6. 设复数( 为虚数单位), 的共轭复数为 ,则A.B .2C.D .17.已知,,,则的最小值为( )A .20B .24C .25D .288. 已知,与互为共轭复数,则( )A.B.C.D.9. 已知函数,则下列结论正确的是( )A.在定义域上是增函数B.的值域为C.D .若,,,则10. 在公比不为1的等比数列中,若,则的值可能为( )A .5B .6C .8D .911. 已知函数的一条对称轴为,则( )A.的最小正周期为B.C .在上单调递增D.12. 已知m ,n ,l 是三条不同的直线,,是两个不同的平面,以下说法错误的是( )A .若,,,,则B .若,,则C .若,,则D .若,,则宁夏回族自治区银川一中2023届高三二模数学(文)试题(1)宁夏回族自治区银川一中2023届高三二模数学(文)试题(1)三、填空题四、解答题13. 某空间几何体的三视图如图所示,则该几何体的外接球表面积为________.14. 已知函数的图象上存在三个不同的点,使得曲线在三点处的切线重合,则此切线的方程为__________.(写出符合要求的一条切线即可)15. 现有6 人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有___种.(用数字作答)16. 已知二次函数的最小值为1,且.(1)求的解析式;(2)在区间上,的图象恒在的图象上方,试确定实数的取值范围.17.已知数列的前n项和为,且.(1)若,求证:数列是等差数列;(2)求出数列的通项公式和前n 项和.18. 已知函数,.(1)设函数(为的导函数),求的零点个数;(2)若的最大值是0,求实数的值.19. 已知函数,.(1)求函数的单调区间;(2)若对任意的,不等式在上恒成立,求整数的最大值.20. 已知函数.(1)求的极值;(2)若恒成立,求的取值范围.21. 2021年秋,某市突发新冠疫情,随后经过各方的不懈努力,疫情得到全面控制,全市开始有序复工复产复学.该市某校高三年级为做好复学准备,对本年级的所有学生进行了问卷调查,其中一项为调查学生作业中的错题数量,为方便统计,现将调查结果分成了5组:、、、、[50,60],并得到如下频率分布直方图:(1)请根据以上信息,求的值,并求这组数据的中位数(结果保留两位小数);(2)为做进一步的了解,需从每组中抽取若干人进行电话专访.已知错题数在和的学生中利用分层抽样的方式共抽取了5人,再从5人中随机抽取3人进行电话专访,错题数在的回答3个问题,错题数在的回答5个问题,各个问题均不相同.用表示抽取的3名学生回答问题的总个数,求的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题1.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S =( ) A .76B .32C .2132D .142.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 3.若1,a ,4成等比数列,则a =( )A .1B .2±C .2D .2-4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里 B .86里 C .90里 D .96里 5.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )A .2±B .2C .3±D .36.12与12的等比中项是( )A .-1B .1C.2D.2±7.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭8.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .39.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .110.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .411.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .412.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞13.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1614.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±15.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是( ) A .25B .254C .5D .2516.数列{a n }满足211232222n n na a a a -+++⋯+=(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )A .5512⎛⎫ ⎪⎝⎭B .10112⎛⎫- ⎪⎝⎭C .9112⎛⎫- ⎪⎝⎭ D .6612⎛⎫ ⎪⎝⎭17..在等比数列{}n a 中,若11a =,54a =,则3a =( )A .2B .2或2-C .2-D18.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 19.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >20.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .6二、多选题21.题目文件丢失!22.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) ABCD23.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为124.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <25.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-26.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =B .2nn S =C .38n T ≥D .12n T <27.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8328.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n=C .13(1)n a n n =--D .{}3n S 是等比数列29.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列30.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++31.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列B .数列{}1n n a a +是等比数列C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列32.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( )A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+33.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-34.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--35.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列 C .已知()21nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S qq---===+---求解. 【详解】在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得212q =所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---, 故选:B 【点睛】本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 2.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 3.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 4.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 5.D 【分析】根据等比数列定义知3813q =,解得答案.【详解】4个数成等比数列,则3813q =,故3q =.故选:D. 6.D 【分析】利用等比中项定义得解. 【详解】23111()()(2222-==±,12∴与12的等比中项是2± 故选:D 7.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 8.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=,则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 9.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 10.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 11.A 【分析】利用已知条件化简,转化求解即可. 【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 12.C【分析】由等比数列性质求得3a ,把35124a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】因为等比数列{}n a 的前5项积为32,所以5332a =,解得32a =,则235114a a a a ==,35124a a a ++ 1111a a =++,易知函数()1f x x x=+在()1,2上单调递增,所以35173,242a a a ⎛⎫++∈ ⎪⎝⎭, 故选:C . 【点睛】关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数. 13.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 14.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩, 故选:C. 15.B 【分析】由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】由等比数列的性质,可得()2222265986688682225a a a a a a a a a a ++=++=+=,又因为0n a >,所以685a a +=,所以268113682524a a a a a a +⎛⎫=≤=⎪⎝⎭, 当且仅当6852a a ==时取等号. 故选:B . 16.B 【分析】根据题意得到22123112222n n n a a a a ---++++=,(2n ≥),与条件两式作差,得到12n n a =,(2n ≥),再验证112a =满足12n n a =,得到12n na =()*n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足211232222n n n a a a a -++++=, 22123112222n n n a a a a ---++++=,(2n ≥) 则1112222--=-=n n n n a ,则12n n a =,(2n ≥), 又112a =满足12n n a =,所以12n n a =()*n N ∈, 因此1010210123101011111112211222212S a a a a ⎛⎫- ⎪⎛⎫⎝⎭++=+++==- ⎪+⎝-=⎭.故选:B 17.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 18.D【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 19.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 20.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即12n na a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C二、多选题 21.无22.AB因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2111qq q q -=-+,因为1q ≠,所以21q q =+, 因为0q >,所以解得q =, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即321q q =+,整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >,所以解得12q -+=,综上q =或q =, 故选:AB 23.AC 【分析】计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =,所以1(1)2f =, 所以221(2)(1)4a f f ===, 31(3)(1)(2)8a f f f ===,……所以1()2n n a n N +=∈,所以11(1)122111212n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112S a ==,【点睛】关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档题 24.BD 【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n nS n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24nn a =,数列{}2na的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q =⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 25.BD 【分析】根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,逐项判断选项可得答案. 【详解】由638a a =,可得3338q a a =,则2q,当首项10a <时,可得{}n a 为单调递减数列,故A 错误; 由663312912S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11122121n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;故选:BD . 【点睛】关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求和公式. 26.ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断. 【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n nn a -=⋅=,令12(1)n n n b n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确;故选:ACD. 【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n nn a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a SS n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和. 27.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 28.ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 公差为3,又11113S a ==,所以133(1)3n n n S =+-=,13n S n=.B 正确;2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错;由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD . 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确;因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 30.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 31.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 32.CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 33.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n nn S ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.34.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 35.BCD 【分析】根据间隔递增数列的定义求解. 【详解】 A. ()1111111n k n n n k k n a a a a qq q a q +---+=-=--,因为1q >,所以当10a <时,n k n a a +<,故错误;B. ()()244441++n kn n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛⎫-=++-+=-= ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;C. ()()()()()()21212111n k n n k n k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦,当n 为奇数时,()2110k k --+>,存在1k 成立,当n 为偶数时,()2110kk +-->,存在2k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确;D. 若{}n a 是间隔递增数列且最小间隔数是3,则()()()2222020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *∈N 成立,则()220k t k +->,对于3k ≥成立,且()220k t k +-≤,对于k 2≤成立 即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立 所以23t -<,且22t -≥解得45t ≤<,故正确.故选:BCD【点睛】本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题.。