宁夏回族自治区银川市第一中学等比数列经典例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则4
2
S S =( ) A .76
B .32
C .
2132
D .
14
2.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 3.若1,a ,4成等比数列,则a =( )
A .1
B .2±
C .2
D .2-
4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里 B .86里 C .90里 D .96里 5.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )
A .2±
B .2
C .3±
D .3
6
.
12
与1
2的等比中项是( )
A .-1
B .1
C
.
2
D
.2
±
7.已知等比数列{}n a 的前n 项和为n S ,若2
13a a =,且数列{}13n S a -也为等比数列,则
n a 的表达式为( )
A .12n
n a ⎛⎫= ⎪⎝⎭
B .1
12n n a +⎛⎫= ⎪⎝⎭
C .23n
n a ⎛⎫= ⎪⎝⎭
D .1
23n n a +⎛⎫= ⎪⎝⎭
8.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )
A .15
B .10
C .5
D .3
9.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8
B .8±
C .8-
D .1
10.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32
B .16
C .8
D .4
11.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4
12.已知等比数列{}n a 的前5项积为32,112a <<,则35
124
a a a +
+的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭
B .()3,+∞
C .73,2⎛⎫ ⎪⎝⎭
D .[
)3,+∞
13.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
14.已知q 为等比数列{}n a 的公比,且1212a a =-,31
4a =,则q =( ) A .1- B .4
C .12-
D .12
±
15.在各项均为正数的等比数列{}n a 中,22
6598225a a a a ++=,则113a a 的最大值是
( ) A .25
B .
254
C .5
D .
25
16.数列{a n }满足2
1
1232222
n n n
a a a a -+++⋯+=
(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )
A .55
12⎛⎫ ⎪⎝⎭
B .10
112⎛⎫- ⎪⎝⎭
C .9
112⎛⎫- ⎪⎝⎭ D .66
12⎛⎫ ⎪⎝⎭
17..在等比数列{}n a 中,若11a =,54a =,则3a =( )
A .2
B .2或2-
C .2-
D
18.已知等比数列{}n a 的n 项和2n n S a =-,则22
212n a a a ++
+=( )
A .()2
21n -
B .
()1213
n
- C .41n -
D .
()1413
n
- 19.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥
B .若13a a =,则12a a =
C .222
1322a a a +≥
D .若31a a >,则42a a >
20.在数列{}n a 中,12a =,对任意的,m n N *
∈,m n m n a a a +=⋅,若
1262n a a a ++⋅⋅⋅+=,则n =( )
A .3
B .4
C .5
D .6
二、多选题21.题目文件丢失!
22.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到