等差等比数列知识点梳理及经典例题
等差、等比数列性质类比

等差、等比数列知识点一、等差数列:1.等差数列的证明方法:1. 定义法:2.等差中项:对于数列{}n a ,若212+++=n n n a a a则{an}为等差数列。
2.等差数列的通项公式:d n a a n )1(1-+=------该公式整理后是关于n 的一次函数3.等差数列的前n 项和 1.2)(1n n a a n S +=2. d n n na S n 2)1(1-+= 3.Bn An S n +=2 4.等差中项: 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
即:2b a A +=或b a A +=2 5.等差数列的性质:(1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n)(-+=(2).对于等差数列{}n a ,若m+n=p+q ,则a m+a n=a p+a q 。
(3)若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k kS S -2,k k S S 23-成等差数列。
如下图所示:kkk k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++(4).设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质: ○1当n 为偶数时,d 2n S =-奇偶S , ○2当n 为奇数时,则中偶奇a S =-S ,=偶奇S S n n 1+. 二、等比数列:1.等比数列的判定方法:①定义法若)0(1≠=+q q a a nn ②等比中项:若212++=n n n a a a ,则数列{}n a 是等比数列。
2.等比数列的通项公式:如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 。
等差数列与等比数列例题和知识点梳理

等差数列及其前n 项和 等比数列及其前n 项和等差数列及其前n 项和1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差为12d .5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 概念方法微思考1.“a ,A ,b 是等差数列”是“A =a +b2”的什么条件?提示 充要条件.2.等差数列的前n 项和S n 是项数n 的二次函数吗?提示 不一定.当公差d =0时,S n =na 1,不是关于n 的二次函数.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) 题组二 教材改编2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .343.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.题组三 易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( ) A .d >875B .d <325C.875<d <325D.875<d ≤3255.(多选)设{a n }是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值6.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =____时,{a n }的前n 项和最大.7.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.等差数列基本量的运算1.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .122.(2019·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n3.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.4.(2019·全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.等差数列的判定与证明例1 (2020·日照模拟)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.跟踪训练1 在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求{}a n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1n 2a n 的前n 项和S n .等差数列性质的应用命题点1 等差数列项的性质例2 (2019·江西师范大学附属中学模拟)已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7等于( ) A .2 B .7 C .14 D .28命题点2 等差数列前n 项和的性质例3 (1)(2020·漳州质检)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A .35B .42C .49D .63(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.跟踪训练2 (1)已知等差数列{a n }、等差数列{b n }的前n 项和分别为S n ,T n ,若S n T n =n +2n +1,则a 6b 8的值是( )A.1316B.1314C.1116D.1115(2)(2019·莆田质检)设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( )A .6B .7C .8D .131.在等差数列{a n }中,a 1=2,a 5=3a 3,则a 3等于( ) A .-2 B .0 C .3 D .62.(2019·晋城模拟)记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A .3 B .2 C .-2 D .-33.在等差数列{a n }中,已知a 1 011=1,则该数列前2 021项的和S 2 021等于( ) A .2 020 B .2 021 C .4 040 D .4 0424.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,给出下列结论:①a 10=0;②S 10最小;③S 7=S 12;④S 20=0. 其中一定正确的结论是( )A .①②B .①③④C .①③D .①②④5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .176C .183D .1846.(2019·宁夏银川一中月考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( ) A .15 B .16 C .17 D .147.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( ) A .a 10=0 B .S 10最小 C .S 7=S 12 D .S 20=08.(多选)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则( ) A .a n =-12n-1B .a n =⎩⎪⎨⎪⎧-1,n =1,1n -1-1n,n ≥2,n ∈N *C .数列⎩⎨⎧⎭⎬⎫1S n 为等差数列D.1S 1+1S 2+…+1S 100=-5 0509.(2019·全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.10.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n =3n -12n +3,则a 10b 10=________.11.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.12.已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.13.(2020·大连模拟)已知等差数列{a n }的前n 项和为S n ,b n =2n a且b 1+b 3=17,b 2+b 4=68,则S 10等于( )A .90B .100C .110D .12014.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N *),且a 1=2,则a 20=________.15.(2020·黑龙江省哈尔滨市第三中学模拟)已知x 2+y 2=4,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为( ) A .210 B.1210 C.10 D.321016.记m =d 1a 1+d 2a 2+…+d n a nn ,若{}d n 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}d n 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n-1等比均值”为3.记c n =2a n+k log 3b n ,数列{}c n 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.等比数列及其前n 项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k. (3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n},⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .4.在等比数列{a n }中,若S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外). 概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示 仍然是一个等比数列,这两个数列的公比互为倒数.2.任意两个实数都有等比中项吗?提示 不是.只有同号的两个非零实数才有等比中项. 3.“b 2=ac ”是“a ,b ,c ”成等比数列的什么条件?提示 必要不充分条件.因为b 2=ac 时不一定有a ,b ,c 成等比数列,比如a =0,b =0,c =1.但a ,b ,c 成等比数列一定有b 2=ac .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 题组二 教材改编2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.3.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11题组三 易错自纠4.(多选)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( )A.⎩⎨⎧⎭⎬⎫1a n B .log 2a 2nC .{a n +a n +1}D .{a n +a n +1+a n +2}5.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.6.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.7.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB =210 MB)等比数列基本量的运算1.(2020·晋城模拟)设正项等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则公比q 等于( )A .5B .4C .3D .22.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .23.(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.4.(2018·全国Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .等比数列的判定与证明例1 (2019·四川省名校联盟模拟)已知数列{a n }的前n 项和为S n ,且满足2S n =-a n +n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12为等比数列;(2)求数列{a n -1}的前n 项和T n .跟踪训练1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.等比数列性质的应用例2 (1)(2019·黑龙江省大庆第一中学模拟)在各项不为零的等差数列{a n }中,2a 2 019-a 22 020+2a 2 021=0,数列{b n }是等比数列,且b 2 020=a 2 020,则log 2(b 2 019·b 2 021)的值为( ) A .1 B .2 C .4 D .8(2)(2020·长春质检)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.跟踪训练2 (1)(2019·安徽省江淮十校月考)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( ) A .8 B .16 C .32 D .64(2)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N *).对于数列通项公式的求解,除了我们已经学习的方法以外,根据所给递推公式的特点,还有以下几种构造方式.构造法1 形如a n +1=ca n +d (c ≠0,其中a 1=a )型 (1)若c =1,数列{a n }为等差数列; (2)若d =0,数列{a n }为等比数列;(3)若c ≠1且d ≠0,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.例1 在数列{a n }中,若a 1=1,a n +1=3a n +2,则通项a n =________.构造法2 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)的求解方法是两端同时除以p n +1,即得a n +1pn +1-a n p n =q ,则数列⎩⎨⎧⎭⎬⎫a n p n 为等差数列. 例2 (1)已知正项数列{a n }满足a 1=4,a n +1=2a n +2n +1,则a n 等于( ) A .n ·2n -1 B .(n +1)·2n C .n ·2n +1 D .(n -1)·2n(2)(2019·武汉市二中月考)已知正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项a n 等于( ) A .-3×2n -1 B .3×2n -1 C .5n +3×2n -1 D .5n -3×2n -1构造法3 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型) 可化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两根. 例3 数列{a n }中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列{a n }的通项公式.构造法4 倒数为特殊数列(形如a n =pa n -1ra n -1+s 型)例4 已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.1.(2020·韶关模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 23=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .242.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-193.(2019·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于( )A .93B .189 C.18916 D .3785.(2020·永州模拟)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列6.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-162 C .2 D .1627.(多选)在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8 D .-128.(多选)在等比数列{a n }中,公比为q ,其前n 项积为T n ,并且满足a 1>1,a 99·a 100-1>0,a 99-1a 100-1<0,下列选项中,结论正确的是( ) A .0<q <1 B .a 99·a 101-1<0C .T 100的值是T n 中最大的D .使T n >1成立的最大自然数n 等于1989.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________.10.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.11.(2018·全国Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.12.(2019·淄博模拟)已知数列{a n }的前n 项和为S n ,a 1=34,S n =S n -1+a n -1+12(n ∈N *且n ≥2),数列{b n }满足:b 1=-374,且3b n -b n -1=n +1(n ∈N *且n ≥2).(1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.13.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1 成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.14.已知在等比数列{a n }中,a n >0,a 22+a 24=900-2a 1a 5,a 5=9a 3,则a 2 020的个位数字是____.15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2,….设第n 次“扩展”后得到的数列为1,x 1,x 2,…,x t ,2,并记a n =log 2(1·x 1·x 2·…·x t ·2),其中t =2n -1,n ∈N *,求数列{a n }的通项公式.16.已知数列{a n }的前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是首项为3,公差为2的等差数列,若b n =2n a ,数列{b n }的前n 项和为T n ,求使得S n +T n ≥268成立的n 的最小值.。
等差等比数列知识点总结和练习题(含答案)

(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n = 2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列. ⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知cb a 1,1,1成等差数列,求证: (1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac b ac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,.(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为 2128,求项数n. ① ②①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,①②①,②⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列练习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21 (B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
高考数学热点问题专题解析——等差等比数列综合问题

等差等比数列综合问题一、基础知识:1、等差数列性质与等比数列性质:2、等差数列与等比数列的互化:(1)若{}n a 为等差数列,0,1c c >≠,则{}n a c 成等比数列证明:设{}n a 的公差为d ,则11n n n n a a a d a c c c c++-==为一个常数所以{}n a c 成等比数列(2)若{}n a 为正项等比数列,0,1c c >≠,则{}log c n a 成等差数列 证明:设{}n a 的公比为q ,则11log log log log n c n c n c c na a a q a ++-==为常数 所以{}log c n a 成等差数列 二、典型例题:例1:已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A. 1 B. 1-或2 C. 2 D. 1-思路:由“1324,,2a a a 成等差数列”可得:3123122422a a a a a a =+⇒=+,再由等比数列定义可得:23121,a a q a a q ==,所以等式变为:22q q =+解得2q =或1q =-,经检验均符合条件答案:B例2:已知{}n a 是等差数列,且公差d 不为零,其前n 项和是n S ,若348,,a a a 成等比数列,则( )A. 140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <> 思路:从“348,,a a a 成等比数列”入手可得:()()()22438111327a a a a d a d a d =⇒+=++,整理后可得:2135a d d =-,所以135d a =-,则211305a d a =-<,且()2141646025a dS d a d =+=-<,所以B 符合要求 答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用1,a d (或1,a q )进行表示,从而得到1,a d (或1,a q )的关系例3:已知等比数列{}n a 中的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=_______________思路:由等比数列性质可得:1011912a a a a =,从而51011912a a a a e ==,因为{}n a 为等比数列,所以{}ln n a 为等差数列,求和可用等差数列求和公式:101112201011ln ln ln ln ln 2010ln 502a a a a a a a ++++=⋅== 答案:50例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各减2,则成等差数列,则这三个数为___________思路:可设这三个数为,,a a aq q ,则有3=512512aa aq a q⋅⋅⇒=,解得8a =,而第一个数与第三个数各减2,新的等差数列为82,8,82q q--,所以有:()816282q q ⎛⎫=-+- ⎪⎝⎭,即22252520q q q q +=⇒-+=,解得2q =或者12q =,2q =时,这三个数为4,8,16,当12q =时,这三个数为16,8,4 答案: 4,8,16小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。
(完整版)等差等比数列知识点总结

1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等差数列与等比数列十大例题

等差数列与等比数列十大例题例1、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n 。
(Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅,所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =n4(n+1)。
【命题意图】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。
例2、 设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数.(I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值. 解(Ⅰ)当1,111+===k S a n ,12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*)经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 422.=∴,即)18)(12()14(2+-+-=+-k km k km k km ,整理得:0)1(=-k mk , 对任意的*∈N m 成立, 10==∴k k 或例3、 等比数列{n a }的前n 项和为n s ,已知1S ,3S ,2S 成等差数列(1)求{n a }的公比q ;(2)求1a -3a =3,求n s 解:(Ⅰ)依题意有)(2)(2111111q a q a a q a a a ++=++由于 01≠a ,故 022=+q q又0≠q ,从而21-=q 5分 (Ⅱ)由已知可得321211=--)(a a 故41=a从而))(()())((n nn 211382112114--=----=S 10分 例 4、已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。
【专题训练】数列(等差、等比) 知识点总结及题型归纳

基本量法求数列的通项公式11.复习 等差数列(1)定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常.数.,那么这个数列就叫等差数列, 1(2)n n a a d n --=≥d a a n n =1--d a a n n =2-1--(由定义,累加法推得通项公式)…… d a a =12-(2)通项公式1(1)n a a n d =+-(3)性质: 在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;(4)前项和公式d n n na a a n S n n 2)1(2)(11-+=+=等比数列(1)定义 : 如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,1n a +:(0)n a q q =≠ (2)通项公式11-⋅=n n q a a(3)性质:在等比数列{}n a 中,q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中(4)前项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn例1(2015年全国卷I ) n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(1)求{}n a 的通项公式:变式1:(湖北省武汉部分重点中学2020届高三起点考试)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (1)求数列{a n }的通项公式;变式2:已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式;例2已知数列{a n }的前n 项和为S n ,且2n n S a n =-.(1) 证明数列{1n a +}是等比数列,并求数列{}n a 的通项公式;变式1:(湖北省黄冈中学2019届高三数学模拟试题1)已知各项均为正数的等比数列{a n }的前n 项和为S n ,a 1=14,a 3+a 5=564.(1)求数列{a n }的通项公式;变式3:已知数列{}n a ,{}n b ,其中1,511-==b a ,且满足)3(2111---=n n n b a a ,)3(2111----=n n n b a b ,2*,≥∈n N n .(1)求证:数列{}n n b a -为等比数列,并求数列{a n }、{b n }的通项公式;例3 .已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; 变式(浙江省名校联盟2020届高三第一次联考试题)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项.数列{}n b的通项公式nn b =Νn *∈.(1)求数列{}n a 的通项公式;数列(等差、等比)知识点清单一、数列的概念1.数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
word完整版等差等比数列知识点梳理及经典例题推荐文档

(3)8A 、等差数列知识点及经典例题一、数列由a n 与S n 的关系求a n由S n 求a n 时,要分n=1和n > 2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段1例〗根据下列条件,确定数列a n 的通项公式。
⑴⑷=1 .屮I =3%+2孑 (2 ) a\ = 1,4+i = C n+ 1) Ofl ?分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解; (3)将无理问题有理化,而后利用a n 与S n 的关系求解。
丁耳初=3兔+ 2,二%知+ 1=3(弘+1八二詈异=3工丽临为等比数列拾比+二為+ 1 = 2 * 3" 1 , A ^ = 2 * 3^-1.E^H =(n+> •-=服得 S T =(A ±^!当 42 时=5一5-='為f "(為尸O(2) ■!.片・1一亠「・| ^一 J ........................ 「 「亠记.故"—<-累乘可得,函数的形式表示为a nS (n 1) Si S n 1 (n 2)解答:(1)—(cud- a, i+4)(弼―a™- I〉,二(召+為丨)(的—编| —4) = QrTcin>0,「*爲+ 4 i>CbA O H —I —4=0,即%—久1=4, 化数列为等差数列,"差d=4.丁尸<«> +2)又a» = S* =-------- g ----- »A a. -2»•:%=2十4(川一1〉=如一2・一二、等差数列及其前n项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,a n a n 1 d(常数)(n 2),第二种是利用等差中项,即2a.务1 %i(n 2)。
2、解选择题、填空题时,亦可用通项或前n项和直接判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 、等差数列知识点及经典例题 一、数列由n a 与n S 的关系求n a由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩。
〖例〗根据下列条件,确定数列{}n a 的通项公式。
分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用n a 与n S 的关系求解。
解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和 (一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。
2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2n n n n S S S S n a ---+=≥=g (1)求证:{1nS }是等差数列; (2)求n a 的表达式。
分析:(1)1120n n n n S S S S ---+=g →1n S 与11n S -的关系→结论; (2)由1nS 的关系式→n S 的关系式→n a解答:(1)等式两边同除以1n n S S -g 得11n S --1nS +2=0,即1n S -11n S -=2(n ≥2).∴{1n S }是以11S =11a =2为首项,以2为公差的等差数列。
(2)由(1)知1n S =11S +(n-1)d=2+(n-1)×2=2n,∴n S =12n,当n ≥2时,n a =2n S ·1n S -=12(1)n n -。
又∵112a =,不适合上式,故1(1)21(2)2(1)n n a n n n ⎧=⎪⎪=⎨⎪≥-⎪⎩。
【例】已知数列{a n }的各项均为正数,a 1=1.其前n 项和S n 满足2S n =2pa 2n +a n -p (p ∈R),则{a n}的通项公式为________. ∵a 1=1,∴2a 1=2pa 21+a 1-p , 即2=2p +1-p ,得p =1. 于是2S n =2a 2n +a n -1.当n ≥2时,有2S n -1=2a 2n -1+a n -1-1,两式相减,得2a n =2a 2n -2a 2n -1+a n -a n -1,整理,得2(a n +a n -1)·(a n -a n -1-12)=0.又∵a n >0,∴a n -a n -1=12,于是{a n }是等差数列,故a n =1+(n -1)·12=n +12.(二)等差数列的基本运算1、等差数列的通项公式n a =1a +(n-1)d 及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1a ,n a ,d,n, n S ,“知三求二”,体现了用方程的思想解决问题;2、数列的通项公式和前n 项和公式在解题中起到变量代换作用,而1a 和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法。
注:因为11(1)222n S d d dn a a n n =+-=+-,故数列{n S n }是等差数列。
〖例〗已知数列{n x }的首项1x =3,通项2(,,)n n x p nq n N p q *=+∈为常数,且1x ,4x ,5x 成等差数列。
求:(1),p q 的值;(2)数列{n x }的前n 项和n S 的公式。
分析:(1)由1x =3与1x ,4x ,5x 成等差数列列出方程组即可求出,p q ;(2)通过n x 利用条件分成两个可求和的数列分别求和。
解答:(1)由1x =3得23p q +=……………………………………①又454515424,25,2x p q x p q x x x =+=++=且,得5532528p q p q ++=+…………………②由①②联立得1,1p q ==。
(2)由(1)得,n x nn +=2(三)等差数列的性质 1、等差数列的单调性:等差数列公差为d ,若d>0,则数列递增;若d<0,则数列递减;若d=0,则数列为常数列。
★2、等差数列的简单性质:略典型例题1.等差数列{}n a 中, 若100,252==n n S S ,则=n S 3225;2.(厦门)在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于 ( A ) A .18 B 27 C 36 D 93、(全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 244、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( C ) (A)130 (B)170 (C)210 (D)160 5.(湖北卷)已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n n ab 为整数的正整数n 的个数是( D )A .2B .3C .4D .56、在数列{a n }中,若a 1=1,a n +1=2a n +3(n ≥1),则该数列的通项a n =________.由a n +1=2a n +3,则有a n +1+3=2(a n +3),即a n +1+3a n +3=2. 所以数列{a n +3}是以a 1+3为首项、公比为2的等比数列,即a n +3=4·2n -1=2n +1,所以a n =2n +1-3.7、已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |的值等于________.如图所示,易知抛物线y =x 2-2x +m 与y =x 2-2x +n 有相同的对称轴x =1,它们与x 轴的四个交点依次为A 、B 、C 、D .因为x A =14,则x D =74.又|AB |=|BC |=|CD |,所以x B =34,x C =54. 故|m -n |=|14×74-34×54|=12.8、在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________. 设公差为d ,则11(-3+4d )=5(-3+7d )-13,∴d =59.∴数列{a n }为递增数列.令a n ≤0,∴-3+(n -1)·59≤0,∴n ≤325, ∵n ∈N *.∴前6项均为负值,∴S n 的最小值为S 6=-293.6.若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,则88a b = 6 . 7.(北京卷)(16)(本小题共13分)已知{}n a 为等差数列,且36a =-,60a =。
(Ⅰ)求{}n a 的通项公式;(Ⅱ)若等差数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式 解:(Ⅰ)设等差数列{}n a 的公差d 。
因为366,0a a =-= 所以112650a d a d +=-⎧⎨+=⎩ 解得110,2a d =-=所以10(1)2212n a n n =-+-⋅=-(Ⅱ)设等比数列{}n b 的公比为q 因为212324,8b a a a b =++=-=-所以824q -=- 即q =3所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==-- ★等差数列的最值:若{}n a 是等差数列,求前n 项和的最值时, (1)若a 1>0,d>0,且满足10n n a a +≥⎧⎨≤⎩,前n 项和n S 最大;(2)若a 1<0,d>0,且满足10n n a a +≤⎧⎨≥⎩,前n 项和n S 最小;(3)除上面方法外,还可将{}n a 的前n 项和的最值问题看作n S 关于n 的二次函数最值问题,利用二次函数的图象或配方法求解,注意n N *∈。
〖例〗已知数列{}n a 是等差数列。
(1)若,(),;m n m n a n a m m n a +==≠求 (2)若,(),.m n m n S n S m m n S +==>求 解答:设首项为1a ,公差为d , (1)由,m n a n a m ==,1n md m n-==-- ∴()(1)0.m n m a a m n m d n n +=++-=+⨯-=(2)由已知可得11(1)2,(1)2n n m na d m m n ma d -⎧=+⎪⎪⎨-⎪=+⎪⎩解得221.2()n m mn m n a mn m n d mn ⎧++--=⎪⎪⎨-+⎪=⎪⎩1()(1)()()2m n m n m n S m n a d m n +++-∴=++=-+【例】已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正整数n ,总有T n <1.(1)解 ①当n =1时,由2S n =3a n -3得,2a 1=3a 1-3, ∴a 1=3.②当n ≥2时,由2S n =3a n -3得, 2S n -1=3a n -1-3.两式相减得:2(S n -S n -1)=3a n -3a n -1,即2a n =3a n -3a n -1, ∴a n =3a n -1,又∵a 1=3≠0,∴{a n }是等比数列,∴a n =3n . 验证:当n =1时,a 1=3也适合a n =3n . ∴{a n }的通项公式为a n =3n .(2)证明 ∵b n =1log 3a n ·log 3a n +1=1log 33n·log 33n +1 =1(n +1)n =1n -1n +1,∴T n =b 1+b 2+…+b n=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.等差数列习题1. 设{a n }为等差数列,S n 为{a n }的前n 项和,S 7=7,S 15=75,已知T n 为数列{S nn }的前n 项数,求T n . 2.已知数列{}n a 是等差数列,其前n 项和为n S ,12,633==S a . (1)求数列{}n a 的通项公式;(2)求nS S S 11121+++Λ. 12.解:设数列{a n }的公差为d ,则S n =na 1+12 n (n -1)d .∵S 7=7,S 15=75,∴⎩⎨⎧7a 1+21d =7 15a 1+105d =75, ∴⎩⎨⎧a 1=-2d =1∴S n n =a 1+12 ·(n -1)d =-2+12 ·(n -1)∴S n +1n +1-S n n =12 ∴数列{S n n }是等差数列,其首项为-2,公差为12 , ∴T n =n ·(-2)+n (n -1)2 ·12 =14 n 2-94 n .14.解:(1)设数列{}n a 的公差为d,由题意得方程组⎪⎩⎪⎨⎧=⨯+=+1222336211d a d a ,解得 ⎩⎨⎧==221d a ,∴数列{}n a 的通项公式为n d n a a n 2)1(1=-+=,即n a n 2=. (2)∵n a n 2=,∴)1(2)(1+=+=n n a a n S n n . ∴n S S S 11121+++Λ)1(1321211+++⨯+⨯=n n Λ 111)111()3121()2111(+-=+-++-+-=n n n Λ. B 、等比数列知识点及练习题等比数列及其前n 项和 (一)等比数列的判定 判定方法有: (1)定义法:若11()()n n n n a aq q q q a a +-==≥为非零常数或为非零常数且n 2,则{}n a 是等比数列; (2)中项公式法:若数列{}n a 中,2120()n n n n a a a a n N *++≠=∈g 且,则数列{}n a 是等比数列; (3)通项公式法:若数列通项公式可写成(,0)n n a cq c q n N *=∈均为不为的常数,,则数列{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,0,1)n n S k q k k k q =-≠≠g为常数且,则数列{}n a 是等比数列;注:(1)前两种方法是判定等比数列的常用方法,而后两种方法常用于选择、填空中的判定;(2)若要判定一个数列不是等比数列,则只需判定其任意的连续三项不成等比数列即可。