反比例函数经典中考例题解析二
中考数学必考考点专题13反比例函数含解析
专题13 反比例函数1.反比例函数:形如y=xk(k为常数,k≠0)的函数称为反比例函数。
其他形式xy=k、1-=kxy。
2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。
对称中心是:原点。
它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3.性质:(1)当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;(2)当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5.反比例函数解析式的确定由于在反比例函数xky=中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
【例题1】(2019山东枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1 B.C.D.2【答案】A专题知识回顾专题典型题考法及解析【解析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.∵等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1故选:A.的图【例题2】(2019湖南郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.【答案】8【解析】∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,∴S△AOB=S△BOC=S△DOC=S△AOD,的图象上,又∵反比例函数y=4x∴S△AOB=S△BOC=S△DOC=S△AOD=1×4=2,2∴S四边形ABCD=4S△AOB=4×2=8,故答案为:8.【例题3】(2019江苏镇江)如图,点A(2,n)和点D是反比例函数y=mx(m>0,x>0)图像上的两点,一次函数y=kx+3(k≠0)的图像经过点A,与y轴交于点B,与x轴交于点C,过点D作DE ⊥x轴,垂足为E,连接OA、OD.已知△OAB与△ODE的面积满足S△OAB﹕S△ODE=3﹕4.(1)S△OAB=________,m=________;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.【答案】见解析。
初三数学反比例函数经典中考例题
反比例函数经典中考例题解析一一. 填空题1、已知反比例函数xk y =的图象经过点)214(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 2、已知双曲线xk y =经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .3.如图,11POA 、212P A A 是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________.4. 两个反比例函数xy 3=,xy 6=在第一象限内的图象如图所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数xy 6=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作y 轴的平行线,与xy 3=的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2 005= . 二、选择题(每题3分,共30分)第4题 (第3题)1、如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x1 (C )y = x 2 (D) y =1x2、若点(3,4)是反比例函数221m m y x+-=图象上一点,则此函数图象必须经过点( ).(A )(2,6) (B )(2,-6) (C )(4,-3) (D )(3,-4)3、在同一平面直角坐标系中,函数y=k(x -1)与y=)0(<k xk 的大致图象是( )4.已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是( )5、已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上( )(A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2 (D) y 2<y 1<y 3Oxy(第1题)2、(2009·长沙中考)反比例函数21m y x-=的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点.(1)比较1b 与2b 的大小;(2)求m 的取值范围.3、已知正比例函数1y k x =1(0)k ≠与反比例函数22(0)k y k x=≠的图象交于A B 、两点,点A 的坐标为(21),. (1)求正比例函数、反比例函数的表达式; (2)求点B 的坐标. 要点二:反比例函数的应用1、(2010·兰州中考)如图,P 1是反比例函数)0(>k xk y =在第一象限图像上的一点,点A 1 的坐标为(2,0).(1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积 将如何变化? (2)若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,求此反比例函数的解析式及A 2点的坐标.要点三:反比例函数与一次函数的综合应用2、(2010·成都中考)如图,已知反比例函数xky =与一次函数bx y +=的图象在第一象限相交与点A (1,﹣k +4). (1)试确定这两个函数的表达式.(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出反比例函数的值大于一次函数的值的x 的取值范围.3、如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA=.(1)求点D 的坐标; (2)求一次函数与反比例函数的解析式; (3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围.y xPB D AO C4、如图,一次函数y kx b =+(0)k ≠的图象与反比例函数(0)my m x =≠的图象相交于A 、B 两点.(1)根据图象,分别写出点A 、B 的坐标; (2)求出这两个函数的解析式.5.已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.6. 已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 422ABO OB OE ∠===,,. (1)求该反比例函数的解析式;(2)求直线AB 的解析式.7. 如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0=-+xm b kx 的解(请直接写出答案);(4)求不等式0<-+xm b kx 的解集(请直接写出答案).8. 如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P 为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC =x ,四边形OCPD 的面积为S . (1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式;(2)若已知A(a,0),B(0,b),且当x=34时,S有最大值98,求直线AB的解析式;(3)在(2)的条件下,在直线AB上有一点M,且点M到x轴、y 轴的距离相等,点N在过M角三角形,求点N的坐标.【此课件下载可自行编辑修改,供参考,感谢你的支持!】。
《反比例函数》专项练习和中考真题(含答案解析及点睛)
三角形的面积的性质求得△BOD 的面积,依据反比例函数的比例系数 k 的几何意义即可求解.
OA 1 【解析】解:如图作 AC⊥x 轴于点 C,作 BD⊥x 轴于点 D.∵ OB 3OA∴ =
OB 3
1
1
∵点 A 是双曲线 y (x 0) 上∴S△OAC= ∵∠AOB=90°,∴∠AOC+∠BOD=90°,
22
4
1 ﹣S△AOD=S 梯形 ADCE,得到
mm
1
( + )•(m﹣
m)= 3 ,即可求得 k= m2
=2.
2 42
2
2
4
mm
【解析】解:根据题意设 B(m,m),则 A(m,0),∵点 C 为斜边 OB 的中点,∴C( , ),
22
∵反比例函数 y= k (k>0,x>0)的图象过点 C,∴k= m m = m2 ,
(3)设 B'(2m 5, 4) , C'(2m 8,1) 在直线 y k (k 0) 上, x
有 (2m 5) 4 (2m 8) 1, m 2 , B' (1, 4) , C' (4,1) ,代入方程后有 k=-4;
综上所述,k=-6 或 k=-4;故答案为:-6 或-4. 【点睛】本题考查轴对称图形的坐标关系以及反比例函数解析式,其中明确轴对称图形纵坐标相等,横坐标之和为 对称轴横坐标的 2 倍是解题的关键.
x
22 4
∵∠OAB=90°,∴D 的横坐标为 m,
k
m
∵反比例函数 y= (k>0,x>0)的图象过点 D,∴D 的纵坐标为 ,作 CE⊥x 轴于 E,
x
4
3
∵S△COD=S△COE+S 梯形 ADCE﹣S△AOD=S 梯形 ADCE,S△OCD= ,
反比例函数中考真题(含答案解析)
反比例函数中考真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.(2021·西藏·中考真题)如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =kx相交于点C ,且BC △OC =1△2,则k 的值为( )A .﹣3B .﹣94C .3D .922.(2021·黑龙江牡丹江·中考真题)如图,矩形OABC 的面积为36,它的对角线OB 与双曲线y kx=相交于点D ,且OD :OB =2:3,则k 的值为( )A .12B .﹣12C .16D .﹣163.(2021·辽宁营口·中考真题)如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A ,B 两点纵坐标分别为4,2,反比例函数ky x=经过A ,B 两点,若菱形ABCD 面积为8,则k 值为( )A .-B .-C .8-D .-4.(2021·四川内江·中考真题)如图,菱形ABCD 的顶点分别在反比例函数1k y x=和2k y x=的图象上,若60BCD ∠=︒,则12k k 的值为( )AB .23C.D .13-5.(2021·江苏南通·中考真题)平面直角坐标系xOy 中,直线2y x =与双曲线()2ky k x=>相交于A ,B 两点,其中点A 在第一象限.设(),2M m 为双曲线()2ky k x=>上一点,直线AM ,BM 分别交y 轴于C ,D 两点,则OC OD -的值为( ) A .2B .4C .6D .86.(2021·内蒙古·中考真题)如图,在平面直角坐标系中,矩形OABC 的OA 边在x 轴的正半轴上,OC 边在y 轴的正半轴上,点B 的坐标为(4,2),反比例函数2(0)y x x=>的图象与BC 交于点D ,与对角线OB 交于点E ,与AB 交于点F ,连接OD ,DE ,EF ,DF .下列结论:△sin cos DOC BOC ∠=∠;△OE BE =;△DOE BEF S S =△△;△:2:3OD DF =.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题7.(2021·辽宁鞍山·中考真题)如图,ABC 的顶点B 在反比例函数(0)k y x x=>的图象上,顶点C 在x 轴负半轴上,//AB x 轴,AB ,BC 分别交y 轴于点D ,E .若32BE CO CE AD ==,13ABCS =,则k =_____.8.(2021·辽宁锦州·中考真题)如图,在平面直角坐标系中,△OABC 的顶点A ,B 在第一象限内,顶点C 在y 轴上,经过点A 的反比例函数y =kx(x >0)的图象交BC 于点D .若CD =2BD ,△OABC 的面积为15,则k 的值为______.9.(2021·四川巴中·中考真题)如图,平行于y 轴的直线与函数y 1kx=(x >0)和y 22x =(x >0)的图象分别交于A 、B 两点,OA 交双曲线y 22x=于点C ,连接CD ,若OCD 的面积为2,则k =_______.10.(2021·贵州毕节·中考真题)如图,直线AB 与反比例函数()0,0ky k x x=>>的图象交于A ,B 两点,与x 轴交于点C ,且AB BC =,连接OA .已知OAC 的面积为12,则k 的值为_____________.11.(2021·山东潍坊·中考真题)如图,在直角坐标系中,O 为坐标原点a y x =与by x=(a >b >0)在第一象限的图象分别为曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S △AOB =_______.(结果用a ,b 表示)12.(2021·黑龙江绥化·中考真题)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在(0,0)ky k x x=≠<的双曲线上.点O E 、的对应点分别是点C A 、.若点A 为OE 的中点,且1AEF S =△,则k 的值为____.13.(2021·广西柳州·中考真题)如图,一次函数2y x =与反比例数()0ky k x=>的图像交于A ,B 两点,点M 在以()2,0C 为圆心,半径为1的C 上,N 是AM 的中点,已知ON 长的最大值为32,则k 的值是_______.14.(2021·山东菏泽·中考真题)如图,一次函数y x =与反比例函数1y x=(0x >)的图象交于点A ,过点A 作AB OA ⊥,交x 轴于点B ;作1//BA OA ,交反比例函数图象于点1A ;过点1A 作111A B A B ⊥交x 轴于点B ;再作121//B A BA ,交反比例函数图象于点2A ,依次进行下去,……,则点2021A 的横坐标为_______.三、解答题15.(2021·四川绵阳·中考真题)如图,在平面直角坐标系xOy 中,直角ABC 的顶点A ,B 在函数()0,0ky k x x=>>图象上,//AC x 轴,线段AB 的垂直平分线交CB 于点M ,交AC 的延长线于点E ,点A 纵坐标为2,点B 横坐标为1,1CE =.(1)求点C和点E的坐标及k的值;(2)连接BE,求MBE△的面积.参考答案:1.A 【解析】 【分析】过C 作CD △x 轴于D ,可得△DOC △△AOB ,根据相似三角形的性质求出S △DOC ,由反比例函数系数k 的几何意义即可求得k . 【详解】解:过C 作CD △x 轴于D ,△BC OC=12, △OC OB=23, △BA △x 轴, △CD △AB , △△DOC △△AOB , △DOC AOB S S ∆∆=(OC OB )2=(23)2=49, △S △AOB =278, △S △DOC =49S △AOB =49×278=32,△双曲线y =kx 在第二象限,△k =﹣2×32=﹣3,故选:A . 【点睛】本题主要考查了反比例函数系数k 的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S △DOC 是解决问题的关键.2.D 【解析】 【分析】过D 点作DE △OA ,DF △OC ,垂足为E 、F ,由双曲线的解析式可知S 矩形OEDF =|k |,由于D 点在矩形的对角线OB 上,可知矩形OEDF △矩形OABC ,并且相似比为OD :OB =2:3,由相似多边形的面积比等于相似比的平方可求出S 矩形OEDF =16,再根据在反比例函数y k x=图象在第二象限,即可算出k 的值. 【详解】解:过D 点作DE △OA ,DF △OC ,垂足为E 、F ,△D 点在双曲线y kx=上, △S 矩形OEDF =|xy |=|k |,△D 点在矩形的对角线OB 上, △矩形OEDF △矩形OABC , △29()4OEDF OABC OD OB S S ==, △S 矩形OABC =36, △S 矩形OEDF =16, △|k |=16, △双曲线y kx=在第二象限, △k =-16, 故选:D . 【点睛】本题考查了反比例函数的综合运用.关键是过D 点作坐标轴的垂线,构造矩形,再根据相似多边形的面积的性质求出|k |. 3.A【解析】 【分析】过点A 作AE BC ⊥,设,44k A ⎛⎫⎪⎝⎭,,22k B ⎛⎫ ⎪⎝⎭,根据菱形的面积得到AB 的长度,在Rt ABE△中应用勾股定理即可求解. 【详解】解:过点A 作AE BC ⊥,△A ,B 两点纵坐标分别为4,2,反比例函数ky x=经过A ,B 两点, △设,44k A ⎛⎫⎪⎝⎭,,22k B ⎛⎫ ⎪⎝⎭,△2AE =,244k k k BE =-+=-, △菱形ABCD 面积为8, △8BC AE ⋅=,解得4BC =, △4AB BC ==,在Rt ABE △中,222AB AE BE =+,即22242BE =+,解得BE = △k =- 故选:A . 【点睛】本题考查反比例函数图象上点的坐标特征、菱形的性质等内容,根据提示做出辅助线是解题的关键. 4.D 【解析】 【分析】连接AC 、BD ,根据菱形的性质和反比例函数的对称性,即可得出△BOC =90°,△BCO =12△BCD =30°,解直角三角形求得tan 30OB OC ︒==,作 BM △x 轴于M ,CN △x 轴于N ,证得△OMB △△CNO ,得到2()BOMCONS OB S OC∆∆=,根据反比例函数系数 k 的几何意义即可求得结果. 【详解】解:连接AC 、BD ,四边形ABCD 是菱形,AC BD ∴⊥,菱形ABCD 的顶点分别在反比例函数1k y x=和2ky x =的图象上,A ∴与C 、B 与D 关于原点对称,AC ∴、BD 经过点O ,90BOC ∴∠=︒,1302BCO BCD ∠=∠=︒,tan30OB OC ∴︒=作BM x ⊥轴于M ,CN x ⊥轴于N ,90BOM NOC NOC NCO ∠+∠=︒=∠+∠, BOM NCO ∴∠=∠, 90OMB CNO ∠=∠=︒, OMB CNO ∴∆∆∽,∴2()BOM CON S OB S OC∆∆=, ∴12112132k k =-, ∴1213k k =-, 故选:D .【点睛】本题考查反比例函数图象上点的坐标特征,菱形的性质,解直角三角形,三角形相似的判定和性质,反比例函数系数k 的几何意义,解题关键是熟练掌握反比例函数的性质与菱形的性质.5.B【解析】【分析】根据直线2y x =与双曲线()2k y k x=>相交于A ,B 两点,其中点A在第一象限求得A ⎝,B ⎛ ⎝,再根据(),2M m 为双曲线()2k y k x =>上一点求得,22k M ⎛⎫ ⎪⎝⎭;根据点A 与点M 的坐标求得直线AM解析式为y而求得OC =B 与点M 的坐标求得直线BM解析式为2k y -=OD =OC OD -即可. 【详解】 解:△直线2y x =与双曲线()2k y k x =>相交于A ,B 两点, △联立可得:2,,y x k y x =⎧⎪⎨=⎪⎩解得:11x y ⎧=⎪⎨⎪=⎩或22x y ⎧=⎪⎨⎪=⎩ △点A 在第一象限,△A ⎝,B ⎛ ⎝. △(),2M m 为双曲线()2k y k x=>上一点, △2k m =. 解得:2k m =. △,22k M ⎛⎫ ⎪⎝⎭. 设直线AM 的解析式为11y k x b =+,将点A ⎝与点,22k M ⎛⎫ ⎪⎝⎭代入解析式可得:1111,2?,2k b k k b ⎨⎪=+⎪⎩解得:11k b ⎧⎪⎪⎨⎪=⎪⎩△直线AM的解析式为y x . △直线AM 与y 轴交于C 点,△0C x =.△2202C k yk -=+=. △C ⎛⎝.△2k >,△OC == 设直线BM 的解析式为22y k x b =+,将点B ⎛ ⎝与点,22k M ⎛⎫ ⎪⎝⎭代入解析式可得:2222?,2?,2k b k k b ⎧⎛+⎪ ⎪⎝⎭⎨⎪=+⎪⎩解得:22k b ⎧=⎪⎪⎨⎪=⎪⎩△直线BM的解析式为y . △直线BM 与y 轴交于D 点,△0D x =.△2202D k yk -=+ △D ⎛⎝.△2k >,△OD =.△OC OD -k k22842k k k k-=- ()22422k k k k -=-=4.故选:B .【点睛】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.6.A【解析】【分析】 根据题意,图中各点的坐标均可以求出来,sin CD DOC OD ∠=,cos =OC BOC OB∠,只需证明CD OC OD OB=即可证明结论△;先求出直线OB 的解析式,然后求直线OB 与反比例函数2(0)y x x =>的交点坐标,即可证明结论△;分别求出DOE S △和BEF S ,进行比较即可证明结论△;只需证明OCD DBF ∽,即可求证结论△.【详解】解:△OABC 为矩形,点B 的坐标为(4,2),△A 点坐标为(4,0),C 点坐标为(0,2), 根据反比例函数2(0)y x x=>, 当2y =时,1x =,即D 点坐标为(1,2),当4x =时,12y =,即F 点坐标为(4,12), △21OC CD ==,,△OD△24OC CB ==,,△OB△sinCD DOC OD ∠=,cos =OC BOC OB ∠, △sin cos DOC BOC ∠=∠,故结论△正确;设直线OB 的函数解析式为:y kx =,点B 代入则有:2=4k ,解得:12k =, 故直线OB 的函数解析式为:12y x =, 当122x x =时,1222x x ==-;(舍)即2x =时,1y =,△点E 的坐标为(2,1),△点E 为OB 的中点,△OE BE =,故结论△正确; △112CD AF ==,, △332BD BF ==,, 由△得:13122DOE DBE SS BD ==⨯⨯=, 13222BEF S BF =⨯⨯=, △DOE BEF S S =△△, 故结论△正确;在Rt OCD △和Rt DBF 中,32232OC DB CD BF ===,, △OCD DBF ∽,△::2:3OD DF OC DB ==,故结论△正确,综上:△△△△均正确,故选:A .【点睛】本题主要考查矩形的性质,相似三角形判定与性质,锐角三角函数,反比例函数与几何综合,结合题意求出图中各点坐标是解决本题的关键.7.18【解析】【分析】过点B 作BF x ⊥轴于点F ,通过设参数表示出△ABC 的面积,从而求出参数的值,再利用△ABC 与矩形ODBF 的关系求出矩形面积,即可求得 k 的值.【详解】解:如图,过点B 作BF x ⊥轴于点F .//AB x 轴,DBE COE ∴∽,DB BE DE CO CE EO∴==, 32BE CO CE AD ==, 32DB DE BE CO CO EO CE AD ∴====, 设3CO a =,3DE b =,则2AD a =,2OE b =,332DB a ∴=,5OD b =, 92a BD ∴=, 132a AB AD DB ∴=+=, 1113513222ABC a S AB OD b =⋅⋅=⨯⨯=, 45ab ∴=, 94551822ODBF a ab S BD OD b ⋅=⋅===矩形, 又反比例函数图象在第一象限,18k ∴=,故答案为18.【点睛】此题考查反比例函数知识,涉及三角形相似及利用相似求长度,矩形面积公式等,难度一般.8.18【解析】【分析】过点D 作DN △y 轴于N ,过点B 作BM △y 轴于M ,可得2CN MN =,设OC =a ,CN =2b ,则MN =b ,根据△OABC 的面积为15表示出BM 的长度,根据CD =2BD 求出ND 的长,进而表示出A ,D 两点的坐标,根据反比例函数系数k 的几何意义即可求出.【详解】解:过点D 作DN △y 轴于N ,过点B 作BM △y 轴于M ,△//DN BM , △CN CD MN BD= , △CD =2BD , △2CN CD MN BD==,即2CN MN = , 设OC =a ,CN =2b ,则MN =b ,△△OABC 的面积为15,△BM =15a, △//DN BM ,△CDN CBM , △DN CD BM CB= , △CD =2BD , △23CD CB = ,△ND =23BM =10a, △A ,D 点坐标分别为(15a ,3b ),(10a ,a +2b ), △15a •3b =10a(a +2b ), △b =25a , △k =15a •3b =15a •3×25a =18, 故答案为:18.【点睛】本题主要考查了平行四边形的性质和反比例函数的几何意义,相似三角形的性质和判定,利用数形结合思想是解题的关键.9.8【解析】【分析】设A (m ,k m ),则B (m ,2m),D (m ,0),C (n ,k n ),由112=222OCD C m S OD y m n n ===△得出12n m =,再根据()1122OCD OAD ACD k S S S k m n m=-=--△△△求解即可得到答案. 【详解】解:设A (m ,k m ),则B (m ,2m ),D (m ,0),C (n ,k n ), △112=222OCD C m S OD y m n n ===△, △12n m =, 又△()1122OCD OAD ACD k S S S k m n m=-=--△△△ 112m n k m -⎛⎫=- ⎪⎝⎭ 12n k m =14k = △124k =解得8k故答案为:8.【点睛】本题主要考查了反比例函数与一次函数的交点问题,反比例函数比例系数的几何意义,函数图像上点的坐标特征,三角形的面积,解题的关键在于能够熟练掌握相关知识进行求解. 10.8.【解析】【分析】过点A作AE△x交x轴于E,过点B作BF△x交x轴于F,根据AB=BC,可以得到EF=FC,再根据三角形面积公式即可求解.【详解】解:如图所示,过点A作AE△x轴交x轴于E,过点B作BF△x轴交x轴于F△AE△x轴,BF△x轴,AB=BC△EF=FC,AE=2BF(中位线定理)设A点坐标为(a,ka),则B点坐标为(2a,2ka)△OC=OE+EF+FC△OC=OE+EF+FC=3a△11=31222OACkS OC AE aa==△解得8k故答案为:8.【点睛】本题主要考查了中位线定理,反比例函数的性质和三角形面积公式,解题的关键在于能够熟练运用相关知识进行求解.11.12a 22b a- 【解析】【分析】设B (m ,b m ),A (b n,n ),则P (m ,n ),阴影部分的面积S △AOB =矩形的面积﹣三个直角三角形的面积可得结论.【详解】解:设B (m ,b m ),A (b n,n ),则P (m ,n ), △点P 为曲线C 1上的任意一点,△mn =a ,△阴影部分的面积S △AOB =mn 12-b 12-b 12-(m b n -)(n b m-) =mn ﹣b 12-(mn ﹣b ﹣b 2b mn+) =mn ﹣b 12-mn +b 22b mn- 12=a 22b a-. 故答案为:12a 22b a-. 【点睛】本题考查了反比例函数的系数k 的几何意义,矩形的面积,反比例函数图象上点的坐标特征等知识,本题利用参数表示三角形和矩形的面积并结合mn =a 可解决问题.12.24-【解析】【分析】先利用轴对称和中点的定义,确定EG 和EO 之间的关系,再利用平行线分线段成比例定理及推论,得到FG 和OD 之间的关系,设EG =x ,FG =y ,用它们表示出D 点坐标,接着得到B 点坐标,利用1AEF S =△,得到1xy =,再利用反比例函数的定义,计算出B 点横纵坐标的积,即为所求k 的值.【详解】解:如图所示,由轴对称的性质可知:GE =GA ,CG =OG ,BC =OD ,△点A 为OE 的中点,△AE =OA , △1244EG EG EG OE AE EG ===, △MN △y 轴, △14FG EG OD EO ==, △=4OD FG ,△1AEF S =△, △112AE FG ⋅=, △1212EG FG ⨯⋅=, △1EG FG ⋅=,设EG =x ,FG =y ,则OG =3x ,OD =4y ,△()0,4D y ,因为D 点和B 点关于MN 对称,△()6,4B x y -△1EG FG ⋅=,△1xy =△6424x y -⋅=-,△点B 恰好落在(0,0)k y k x x=≠<的双曲线上, △24k =-,故答案为:24-.【点睛】本题考查了轴对称的性质、中点的定义、平行线分线段成比例定理的推论、反比例函数的定义等内容,解决本题的关键是牢记相关定义与性质,能根据题意在图形中找到对应关系,能挖掘图形中的隐含信息等,本题蕴含了数形结合的思想方法等.13.32 25【解析】【分析】根据题意得出ON是ABM的中位线,所以ON取到最大值时,BM也取到最大值,就转化为研究BM也取到最大值时k的值,根据,,B C M三点共线时,BM取得最大值,解出B的坐标代入反比例函数即可求解.【详解】解:连接BM,如下图:在ABM 中,,O N 分别是,AB AM 的中点,ON ∴是ABM 的中位线,12ON BM ∴=, 已知ON 长的最大值为32, 此时的3BM =,显然当,,B C M 三点共线时,取到最大值:3BM =,13BM BC CM BC =+=+=,2BC ∴=,设(,2)B t t ,由两点间的距离公式:2BC ==,22(2)44t t ∴-+=, 解得:124,05t t ==(取舍), 48(,)55B ∴, 将48(,)55B 代入()0k y k x=>, 解得:3225k =, 故答案是:3225. 【点睛】 本题考查了一次函数、反比例函数、三角形的中位线、圆,研究动点问题中线段最大值问题,解题的关键是:根据中位线的性质,利用转化思想,研究BM 取最大值时k 的值.14【解析】【分析】由点A 是直线y x =与双曲线1y x=的交点,即可求出点A 的坐标,且可知45AOB ∠=︒,又AB AO ⊥可知AOB ∆是等腰直角三角形,再结合1BA OA //可知11BA B ∆是等腰直角三角形,同理可知图中所有三角形都是等腰直角三角形,由求2021A 的坐标,即n A 的坐标(n=1,2,3……),故想到过点2021A 作20212021A C x ⊥轴,即过n A 作n n A C x ⊥轴.设1A 的纵坐标为()10m m >,则1A 的横坐标为2m +,再利用点1A 在双曲线上即可求解1A 坐标,同理可得2021A 的坐标.【详解】解:过n A 作n n A C x ⊥轴于点n C点A 是直线y x =与双曲线1y x=的交点1y x y x =⎧⎪∴⎨=⎪⎩解得11x y =⎧⎨=⎩ ()1,1A ∴1,45OC AC AOC ∴==∠=︒AB AO ⊥∴AOB ∆是等腰直角三角形∴22OB AC ==1BA OA //∴11BA B ∆是等腰直角三角形∴111AC BC =设1A 的纵坐标为()10m m >,则1A 的横坐标为12m +点1A 在双曲线上∴()1121m m +=解得11m设2A 的纵坐标为()20m m >,则2A的横坐标为12222m m m ++=∴()221m m =解得2m同理可得3m由以上规律知:n m2021m ∴2021A∴2021A =【点睛】本题考察一次函数、反比例函数、交点坐标的求法、等腰直角三角形的性质、一元二次方程的应用和规律探究,属于综合几何题型,难度偏大.解题的关键是结合等腰直角三角形的性质做出辅助线,并在计算过程中找到规律.15.(1)()1,2,()2,2,23k =;(2)512 【解析】【分析】(1)由点A 的纵坐标为2,点B 的横坐标为1,可以用k 表示出A ,B 两点坐标,又//AC x 轴,ABC 为直角三角形,所以可以得到点C 的纵坐标为2,点C 的横坐标为1,由此得到C 点坐标,又由于1CE =,可以得到E 点坐标,因为EM 垂直平分AB ,所以AE BE =,根据此等式列出关于k 的方程,即可求解;(2)由(1)中的k 值,可以求出A ,B 的坐标,利用勾股定理,求出线段AB 的长度,从而得到BD 的长度,先证明BDM BCA △∽△,利用相似三角形对应边成比例,求出BM 的长度,即可求出MBE △的面积.【详解】解:(1)如图,连接BE ,由题意得点A 的坐标为(2k ,2),点B 的坐标为(1,)k , 又//AC x 轴,且ACB △为直角三角形,∴点C 的坐标为(1,2),又△1CE =,∴点E 的坐标为(2,2),点E 在线段AB 的垂直平分线上,EA EB ∴=,在Rt BCE 中,222EB BC CE =+,221(2)(2)2k k ∴+-=-, 2k ∴=或23,当2k =时,点A ,B ,C 三点重合,不能构成三角形,故舍去,23k ∴=, (1,2)C ∴,(2,2)E ,23k =; (2)由(1)可得,23AC =,43BC =,1CE =, 设AB 的中点为D ,AB =12BD AB ==, ABC MBD ∠=∠,90BDM BCA ∠=∠=︒,BDM BCA ∴△∽△, ∴BM BD BA BC=,53463BM ∴=, 1155122612MBE S BM CE ∆∴=⨯=⨯⨯=.【点睛】本题是一道反比例函数的综合题,考查了反比例函数的图象性质,垂直平分线的性质,勾股定理,相似三角形的判定与性质等相关知识,熟知平行于坐标轴的直线上的点的坐标特征,是解决此题的关键.。
中考《反比例函数》经典例题及解析
一、反比例函数的概念1.反比例函数的概念:一般地,函数成1y kx -=的形式.自变量x 的取值范围2.反比例函数ky x=(k 是常数,k 自变量x 和函数值y 的取值范围都是不等于二、反比例函数的图象和性质 1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线于反比例函数中自变量x ≠0,函数y ≠0,标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分当k <0时,函数图象的两个分支分别在第二2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中3.注意(1)画反比例函数图象应多取一些点,(2)随着|x |的增大,双曲线逐渐向坐标轴(3)反比例函数的图象不是连续的,因此时,在每一象限(第一、三象限)内y 当k <0时,也不能笼统地说y 随x 的增大而三、反比例函数解析式的确定反比例函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比值范围是x ≠0的一切实数,函数的取值范围也是一切非≠0)中x ,y 的取值范围 不等于0的任意实数. 曲线,它有两个分支,这两个分支分别位于第一、三象,所以,它的图象与x 轴、y 轴都没有交点,即双曲两个分支分别在第一、三象限,在每个象限内,y 随在第二、四象限,在每个象限内,y 随x 的增大而增又是中心对称图形,其对称轴为直线y =x 和y =-x ,,描点越多,图象越准确,连线时,要注意用平滑的坐标轴靠近,但永不与坐标轴相交,因为反比例函数因此在谈到反比例函数的增减性时,都是在各自象随x 的增大而减小,但不能笼统地说当k >0时,y 增大而增大. 反比例函数的解析式也可以写一切非零实数. 三象限,或第二、四象限.由即双曲线的两个分支无限接近坐x 的增大而减小. 大而增大.,对称中心为原点. 平滑的曲线连接各点. 函数ky x=中x ≠0且y ≠0. 各自象限内的增减情况.当k >0随x 的增大而减小.同样,1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数ky x=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式. 2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x ,y 的值代入解析式,得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式. 四、反比例函数中|k|的几何意义 1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数12y y >时自变量x 的取值范围,只需观察下图,当12y y >时,x 的取值范围为x .2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数①k 值同号,两个函数必有两个交点;②(2)从计算上看,一次函数与反比例函数六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数.1.下列函数:①y =2x ﹣1;②;▲ (填序号) 【答案】②⑤.【解析】反比例函数的定义.【分析】根据反比例函数的定义逐一作出判③y=x 2+8x ﹣2是二次函数,不是反比例函时,是反比例函数,没有此条件则不是反比2.已知电压U 、电流I 、电阻R 三者之间的因此会有不同的可能图象,图象不可能是A . B .【答案】A【分析】在实际生活中,电压U、电流5y=x-22k y x=相交时,联立两个解析式,构造方程组,需观察一次函数的图象高于反比例函数图象的部分所对A x >或0B x x <<;同理,当12y y <时,x 的取值范坐标例函数的交点由k 值的符号来决定.②k 值异号,两个函数可无交点,可有一个交点,例函数的交点主要取决于两函数所组成的方程组的解的定函数解析式,再利用图象找出解决问题的方案,经典例题 反比例函数的定义;③y =x 2+8x ﹣2;④;⑤;⑥中作出判断:①y=2x ﹣1是一次函数,不是反比例函数比例函数;④不是反比例函数;⑤是反比是反比例函数.故答案为②⑤. 之间的关系式为:(或者),实际生活中能是( )C .D .流I 、电阻R 三者之中任何一个不能为负,依此可得22y=x1y=2x a y=x 22y=x 1y=2x U IR =U I R=,然后求出交点坐标.针对分所对应的x 的范围.例如,如取值范围为0A x x<<或B x x <,可有两个交点; 的解的情况. ,特别注意自变量的取值范围中,y 是x 的反比例函数的有函数;②是反比例函数;是反比例函数;⑥中,a≠0生活中,由于给定已知量不同,此可得结果.5y=x-ay=x【解析】A 图象反映的是,但自变量选:A .【点睛】此题主要考查了现实生活中函数图1. 2019年10月,《长沙晚报》对外发布长开的美丽姿态,该高铁站建设初期需要运送运输公司平均运送土石方的速度(单位是( )A .B .【答案】A【分析】由总量=vt ,求出v 即可.【解析】解(1)∵vt=106,∴v=,【点睛】本题考查了反比例函数的应用,经典1.从,,,这四个数中任取两例函数中,其图象在二、四象限的概率是【答案】【分析】从,,,中任取两个数础事件数,按照概率公式求解即可.【解析】从,,,中任取两个数其中积为负值的共有:8种, ∴其概率为【点睛】本题结合反比例函数图象的性质件数,是解题的关键.2.一次函数与反比例函数UI R=v 610v t=610v =610t1-23-4231-23-41-23-4y ax a =-自变量R 的取值为负值,故选项A 错误;B 、C 、D 函数图象的确立,注意自变量取值不能为负是解答此外发布长沙高铁两站设计方案,该方案以三湘四水,要运送大量的土石方,某运输公司承担了运送总量为单位:天)与完成运送任务所需的时间t (单位C . D .,故选:A . ,熟练掌握反比例函数的性质是解题的关键. 经典例题反比例函数的图象和性质 任取两个不同的数分别作为,的值,得到反比例函率是______. 两个数值作为,的值,表示出基本事件的总数两个数值作为,的值,其基本事件总数有:共计12种;概率为:故答案为:. 性质,考查了概率的计算,能准确写出基本事件的总在同一坐标系中的图象可能是( 3/m 26110v t =6210v t =a b a b a b 82123=23(0)ay a x=≠选项正确,不符合题意.故解答此题的关键.,杜鹃花开 ,塑造出杜鹃花总量为土石方的任务,该单位:天)之间的函数关系式比例函数,则这些反比总数,再表示出其积为负值的基件的总数,和满足条件的基本事) 6310m aby x=A .B .【答案】D【分析】根据一次函数与反比例函数图象的【解析】当时,,则一次函数三象限,故排除A ,C 选项;当时,,则一次函数排除B 选项,故选:D .【点睛】本题主要考查了一次函数与反比例键.3.已知点(-2,a ),(2,b ),(3,c )A .a <b <c B .b <a <c【答案】C【分析】根据反比例函数的性质得到函数减小,则,. 【解析】解:,函数,,【点睛】本题考查了反比例函数图象上点的1.反比例函数经过点,则下列A .C .当时,随的增大而增大【答案】C 【解析】【分析】将点(2,1)代入中求出0a >0a -<0a <0a ->y 0b c >>0a <0k >Q ∴ky =2023-<<<Q 0b c ∴>>0a <ky x=(2,1)2k =0x >y x ky x=C .D .图象的性质进行判断即可得解.次函数经过一、三、四象限,反比例函数经过一、二、四象限,反比例函数反比例函数图像的性质,熟练掌握相关性质与函数图在函数的图象上,则下列判断正确的是C .a <c <bD .c <b <a函数的图象分布在第一、三象限,在每的图象分布在第一、三象限,在每一象限,.故选:.上点的坐标特征,熟练掌握反比例函数的性质是解题则下列说法错误..的是( ) B .函数图象分布在第一、三象限 D .当时,随的增大而减小求出k 值,再根据反比例函数的性质对四个选项逐一分y ax a =-ax a =-ay =()0ky k x=>(0)ky k x=>(0)k x>a c b ∴<<C 0x >y x例函数经过一 、经过二、四象限,故函数图像的关系是解决本题的关确的是( ) 在每一象限,随的增大而象限,随的增大而减小, 是解题的关键.逐一分析即可. (0)ay a x=≠(0)a x≠y x y x【解析】将点(2,1)代入中,解得B .k=2﹥0,反比例函数图象分布在第一、C .k=2﹥0且x ﹥0,函数图象位于第一象D .k=2﹥0且x ﹥0,函数图象位于第一象【点睛】本题考查了反比例函数的性质,的关键.2.若点,在反比A .B .【答案】B【分析】由反比例函数,三种情况①若点A 、点B 在同在第二或第且点B 在第二象限讨论即可. 【解析】解:∵反比例函数①若点A 、点B 同在第二或第四象限,②若点A 在第二象限且点B 在第四象限③由y 1>y 2,可知点A 在第四象限且点综上,的取值范围是.故选【点睛】本题考查反比例函数的图象和性质不要遗漏. 3.反比例函数y =(x <0)的图象如图的增大而增大;③该函数图象关于直线也在该函数的图象上.其中正确结论的个数【答案】3【分析】观察反比例函数y =(x <0)性质即可进行判断.ky x=()11,A a y -()21,B a y +1a <-11a -<<(0)ky k x=<(ky k x=a 11a -<<kxkx解得:k=2,A .k=2,此说法正确,不符合题意;、三象限,此书说法正确,不符合题意;第一象限,且y 随x 的增大而减小,此说法错误,符第一象限,且y 随x 的增大而减小,此说法正确,不符,熟练掌握反比例函数的性质,理解函数图象上的在反比例函数的图象上,且,C .D .或,可知图象经过第二、四象限,在每个象限内,y 二或第四象限;②若点A 在第二象限且点B 在第四象,∴图象经过第二、四象限,在每个象限内,,∵,∴a-1>a+1,此不等式无解;象限,∵,∴,解得:且点B 在第二象限这种情况不可能. 故选:B .和性质,熟练掌握反比例函数的图象和性质是解题的关象如图所示,下列关于该函数图象的四个结论:①k 线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图的个数有_____个.)的图象可得,图象过第二象限,可得k <0,然后(0)ky k x=<12y y >1a >1a <-1a >0)<12y y >12y y >1010a a -⎧⎨+⎩<>1a -<; 符合题意;不符合题意;故选:C . 象上的点与解析式的关系是解答,则的取值范围是( ) 随x 的增大而增大,由此分四象限;③若点A 在第四象限,y 随x 的增大而增大, ; 题的关键,注意要分情况讨论,>0;②当x <0时,y 随x 函数图象上,则点(﹣1,6)然后根据反比例函数的图象和a 1<【解析】观察反比例函数y =(x <0)的图象可知:图象过第二象限,∴k <0,所以①错误; 因为当x <0时,y 随x 的增大而增大,所以②正确;因为该函数图象关于直线y =﹣x 对称,所以③正确; 因为点(﹣2,3)在该反比例函数图象上,所以k =﹣6,则点(﹣1,6)也在该函数的图象上,所以④正确.所以其中正确结论的个数为3个.故答案为:3.【分析】本题考查了反比例函数的图象和性质,熟练掌握图象和性质是解题的关键.经典例题 反比例函数解析式的确定1.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =(k ≠0)的图象经过其中两点,则m 的值为_____. 【答案】-1.【分析】根据已知条件得到点在第二象限,求得点一定在第三象限,由于反比例函数的图象经过其中两点,于是得到反比例函数的图象经过,,于是得到结论. 【解析】解:点,,分别在三个不同的象限,点在第二象限,点一定在第三象限,在第一象限,反比例函数的图象经过其中两点, 反比例函数的图象经过,, ,,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.2.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________. 【答案】 【分析】利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式中求出k 即可得到答案.【解析】令y=2x 中y=2,得到2x=2,解得x=1,∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2),设反比例函数解析式为,将点(1,2)代入,得, kxkx(2,1)A -(6,)C m -(0)ky k x=≠(0)ky k x=≠(3,2)B (6,)C m -Q (2,1)A -(3,2)B (6,)C m -(2,1)A -∴(6,)C m -(3,2)B Q (0)ky k x=≠∴(0)ky k x=≠(3,2)B (6,)C m -326m ∴⨯=-1m ∴=-1-2y x =2y x=ky x=2y x =ky x=122k =⨯=∴反比例函数的解析式为,故答案为【点睛】此题考查函数图象上点的坐标,问题.1.已知反比例函数的图象经过点(2A .y=B .y =﹣【答案】D【分析】设解析式y =,代入点(2,-4)【解析】设反比例函数解析式为y =,解得:k =-8,所以这个反比例函数解析式为【点睛】本题主要考查待定系数法求反比例2.已知反比例函数的图像经过点【答案】﹣12【分析】直接将点代入反比例函数【解析】依题意,将点代入【点睛】本题主要考查反比例函数图象上的经典例1.如图,将一把矩形直尺ABCD 和一块含A 重合,点F 在AD 上,三角板的直角边直尺的宽CD =3,三角板的斜边FG =【答案】2y x =2x2xkxk x ky x=()3,4-()3,4-答案为:. ,函数图象的交点坐标,待定系数法求反比例函数,﹣4),那么这个反比例函数的解析式是( ) C .y =D .y =﹣求出即可. ,将(2,-4)代入,得:-4=,析式为y =-.故选:D .反比例函数解析式,求反比例函数解析式只需要知道其过点,则的值是_________. 例函数解析式中,解之即可. ,得:,解得:=﹣12,故答案为:﹣象上的点的坐标特征,熟练掌握图象上的坐标与解析经典例题 反比例函数与平面几何综合 一块含30°角的三角板EFG 摆放在平面直角坐标系中角边EF 交BC 于点M ,反比例函数y =(x >0)的图,则k =_____.2y x=8x8xk 2k8x()3,4-k k y x=43k =-k kx例函数的解析式,正确计算解答 知道其图像上一点的坐标即可. :﹣12.与解析式的关系是解答的关键.系中,AB 在x 轴上,点G 与点的图象恰好经过点F ,M .若【分析】通过作辅助线,构造直角三角形比例函数k 的意义,确定点F 的坐标,进而【解析】解:过点M 作MN ⊥AD ,垂足为在Rt △FMN 中,∠MFN =30°,∴FN设OA =x,则OB =x +3,∴F(x ,解得,x =5,∴F(5,,∴k【点睛】考查反比例函数的图象上点的坐标2.如图,平行四边形的顶点的图像经过、A .B .【答案】B【分析】根据题意求出反比例函数解析式示求出OA ,再利用平行四边形的面【解析】解:如图,分别过点D 、B∵四边形是平行四边形∴易得CH=OABC A ()0,0k y k x x =>>C 84,3⎛⎫ ⎪⎝⎭9,32⎛⎫ ⎪⎝⎭OABC OABC 角形,求出MN ,FN ,进而求出AN 、MB ,表示出点进而确定k 的值即可. 垂足为N ,则MN =AD =3,MN AN =MB =83,M (x +3,,∴=(x +3)=40的坐标特征,把点的坐标代入函数关系式是常用的方在轴的正半轴上,点在对角线上两点.已知平行四边形的面积是,则点C .D . 析式,设出点C 坐标,得到点B 纵坐标,利用的面积是构造方程求即可. 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交CH=AFx ()3,2D OB D OABC 152105,3⎛⎫⎪⎝⎭2416,55⎛⎫⎪⎝⎭6,a a ⎛⎫⎪⎝⎭152a 示出点F 、点M 的坐标,利用反用的方法. 上,反比例函数则点的坐标为( ) 利用相似三角形性质,用表y 轴于点HB a∵点在对角线上,反比例函数∴ 即反比例函数解析式为∵ ∴∴∴∵平行四边形的面积是∴∴点B 坐标为故应选:B 【点睛】本题是反比例函数与几何图形的综根据题意构造方程求解.1.如图,在平面直角坐标系中,直线的圆上一动点,连结,为的中A .B . 【答案】A【分析】连接BP ,证得OQ 是△ABP 的中标为(x ,-x ),根据点,可利用勾股【解析】解:连接BP , ∵直线与双曲线的图形均关∵点Q 是AP 的中点,点O 是AB 的中点()3,2D OB 236k =⨯=DE BF P ODE OBF :△△DE 9OA OF AF OF HC a =-=-=OABC 1529,32⎛⎫⎪⎝⎭AP Q AP 12-32-(2,2)C y x =-ky x=例函数的图像经过、两点式为∴设点C 坐标为 ∴∴ ,点B 坐标为 解得(舍去) 形的综合问题,涉及到相似三角形的的性质、反比例与双曲线交于、两点,是以点的中点.若线段长度的最大值为,则的值为C .D . 的中位线,当P 、C 、B 三点共线时PB 长度最大,用勾股定理求出B 点坐标,代入反比例函数关系式即形均关于直线y=x 对称,∴OA=OB , 中点∴OQ 是△ABP 的中位线,()0,0ky k x x=>>C D 6y x =6,a a ⎛⎫ ⎪⎝⎭OE BF OF=236OF a=6392a OF a ⨯==a -96,a a ⎛⎫⎪⎝⎭96152a a a ⎛⎫-⋅= ⎪⎝⎭122,2a a ==-y x =-ky x=A B P OQ 2k 2-14-两点 反比例函数的性质,解答关键是为圆心,半径长的值为( ),PB=2OQ=4,设 B 点的坐系式即可求出k 的值. (2,2)C 1当OQ 的长度最大时,即PB 的长度最大∵PB≤PC+BC ,当三点共线时PB 长度最大∵PC=1,∴BC=3,设B 点的坐标为(解得代入中可得:,故答案为【点睛】本题考查三角形中位线的应用和正2.如图,在平面直角坐标系中,矩形ABC AD 平分,反比例函数18,则k 的值为()A .6B .12 【答案】B【分析】先证明OB ∥AE ,得出S △ABE △OAE=×3a ×=18,求解即可. 【解析】解:如图,连接BD ,∵四边形又∵AD 为∠DAE 的平分线,∴∠OAD=∵S △ABE =18,∴S △OAE =18,设A 的坐标为12x x ==k y x=12k =-OAE ∠(ky x=12k a最大,度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,x ,-x ),则,B 点坐标为, 案为:A .用和正比例函数、反比例函数的性质,结合题意作出ABCD 的对角线AC 的中点与坐标原点重合,点E 的图象经过AE 上的两点A ,F ,且C .18 D .24=S △OAE =18,设A 的坐标为(a ,),求出F 点的坐边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠AD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE , 坐标为(a ,), 3=⎝⎭0,0)k x >>k aka意作出辅助线是解题的关键. 是x 轴上一点,连接AE .若,的面积为点的坐标和E 点的坐标,可得S ∴∠ODA=∠OAD , AF EF =ABE △∵AF=EF ,∴F 点的纵坐标为,代入反∴E 点的坐标为(3a,0),S △OAE =【点睛】本题考查了反比例函数和几何综合经典例1.如图,点,点都在反比点,.连接,,.若四A .B .【答案】C【分析】过点P 分别向x 轴、y 轴作垂线−2),根据反比例函数系数k 的几何意义求S 2=4:3.【解析】解:点P (m ,1),点Q (−2∴m×1=−2n =4,∴m =4,n =−2,∵P (4,1),Q (−2,−2),∵过点P 分别作QK ⊥PN ,交PN 的延长线于K ,则2k a 12(,1)P m (-2,)Q n M N OP OQ PQ 12:2:3S S =12:S S =代入反比例函数解析式可得F 点的坐标为(2a ,×3a ×=18,解得k=12,故选:B . 何综合,矩形的性质,平行线的判定,得出S △ABE 经典例题 反比例函数中k 的几何意义在反比例函数的图象上,过点分别向轴、若四边形的面积记作,的面积记 C . D .垂线,垂足分别为点M ,N ,根据图象上点的坐标特征意义求得S 1=4,然后根据S 2=S △PQK −S △PON −S 梯形ONKQ ,n )都在反比例函数y =的图象上, 分别向x 轴、y 轴作垂线,垂足分别为点M ,N ,PN =4,ON =1,PK =6,KQ =3,k a4y x=P x OMPN 1S POQ △1:112:4:3S S =12:5:3S S =4x), BE =S △OAE =18是解题关键.意义、轴作垂线,垂足分别为面积记作,则( )标特征得到P (4,1),Q (−2,NKQ 求得S 2=3,即可求得S 1:,∴S 1=4,2k ay 2S∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−【点睛】本题考查了反比例函数图象上点的的关键.2.如图,在平面直角坐标系中,▱ABCD =(k <0,x <0)与▱ABCD 的边AB 所在直线翻折,使原点O 落在点G 处,【答案】【分析】将点F 坐标代入解析式,可求双曲股定理可求EG 的长,由勾股定理可求【解析】解:∵双曲线 y =(k <0,∵▱ABCD 的顶点A 的纵坐标为10,∴∴点E 的横坐标为﹣6,即BE =6.∵△BOC 和△BGC 关于BC 对称,∴∵EG ∥y 轴,在Rt △BEG 中,BE =6,延长EG 交x 轴于点H ,∵EG ∥y 轴,∴∠GHC 是直角,在Rt 则有CH =OH ﹣OC =BE ﹣GC =6﹣m ∴m=,∴GC ==OC ,∴S △BOC【点睛】本题考查反比例函数系数k 的几何12kx503k x 1031036×3−×4×1−(1+3)×2=3,∴S 1:S 2=4:3,上点的坐标特征,反比例函数系数k 的几何意义,CD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣,连接EG ,若EG ∥y 轴,则△BOC 的面积是_____求双曲线解析式为y =−,由平行四边形的性质可CO 的长,即可求解.x <0)经过点F (﹣12,5),∴k =﹣60,∴双曲线BO =10,点E 的纵坐标为10,且在双曲线y =BG =BO =10,GC =OC .BG =10,∴EG =8. △GHC 中,设GC =m ,,GH =EH ﹣EG =10﹣8=2,则有m 2=22+(6﹣=××10=,故答案为:.的几何意义,折叠的性质,平行四边形的性质,正确的121260x12103503503,故选:C . ,分别求得S 1、S 2的值是解题x 轴的负半轴上,双曲线y 12,5),把△BOC 沿着BC .性质可得OB=10,BE=6,由勾双曲线解析式为 y =. 上,m )2,正确的作出辅助线是解题关键.60x-60x-1.如图,已知在平面直角坐标系xOy 中数y =(x >0)的图象经过OA 的中点【答案】【分析】作辅助线,构建直角三角形,利用利用△OCE ∽△OAB 得到面积比为1【解析】解:连接OD ,过C 作CE ∥∵∠ABO =90°,反比例函数y =(x ∴S △COE =S △BOD =,S △ACD =S △OCD ∵CE ∥AB ,∴△OCE ∽△OAB ,∴∴4×k =2+2+k ,∴k =,故答案为【点睛】本题考查了反比例函数比例系数和y 轴分别作垂线,与坐标轴围成的矩形的一点和垂足以及坐标原点所构成的三角形的2.(2020·内蒙古赤峰·中考真题)如图,()的图象上,且轴,A .3B .4 kx83kx12k OCS △1212830x >//BC y 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点中点C .交AB 于点D ,连结CD .若△ACD 的面积是利用反比例函数k 的几何意义得到S △OCE =S △OBD :4,代入可得结论. AB ,交x 轴于E ,>0)的图象经过OA 的中点C , =2, ,∴4S △OCE =S △OAB , 答案为:. 系数k 的几何意义:在反比例函数y=图象中任取一矩形的面积是定值|k|.在反比例函数的图象上任意一角形的面积是|k|,且保持不变.也考查了相似三,点B 在反比例函数()的图象上,,垂足为点C ,交y 轴于点A ,则C .5 D .614OCE S =△△OAB 83kx126y x =0x >AC BC ⊥V 点A 在第一象限,反比例函面积是2,则k 的值是_____. BD =k ,根据OA 的中点C ,任取一点,过这一个点向x 轴任意一点向坐标轴作垂线,这相似三角形的判定与性质. ,点C 在反比例函数的面积为 ( )122y x=-ABC【答案】B【分析】作BD ⊥BC 交y 轴于D ,可证四积,进而由矩形的性质可求的面积【解析】作BD ⊥BC 交y 轴于D ,∵∴S 矩形ACBD =6+2=8,∴的面积为【点睛】本题考查了反比例函数比例系数的点P ,向x 轴和y 轴作垂线你,以点P P 的一个垂足和坐标原点为顶点的三角形的经典例1.如图,函数与函数的图A .或B .或【答案】D【分析】根据图象可知函数数图象之上的x 的取值范围.【解析】解:如图所示,直线图象在反比例故本题答案为:或.故选ABC V ABC V 1y x=+22y x=2x <-01x <<2x <-1y x =+20x -<<1x >可证四边形ACBD 是矩形,根据反比例函数k 的几何意的面积.轴,,∴四边形ACBD 是矩形,积为4.故选B .系数的几何意义,一般的,从反比例函数(及点P 的两个垂足和坐标原点为顶点的矩形的面积等角形的面积等于.也考查了矩形的性质. 经典例题 反比例函数与一次函数的综合的图象相交于点.若, C .或 D .与函数的图象相交于点M 、N ,若,反比例函数图象之上的x 的取值范围为故选:D//BC y AC BC ⊥ky x=12k ()()1,,2,M m N n -12y y >1x >20x -<<01x <<2-22y x=12y y >2x -<几何意义求出矩形ACBD 的面, k 为常数,k ≠0)图象上任一的面积等于常数,以点P 及点综合,则x 的取值范围是( )或 ,即观察直线图象在反比例函或, k 0x <<1x >0<1x >【点睛】本题主要考查了反比例函数图象与题的关键.2.如图,在平面直角坐标系中,直线y 平移b 个单位长度,交y 轴于点B ,交反比A .1B .2 【答案】C【分析】解析式联立,解方程求得的横坐的坐标,代入即可求得的值【解析】解:直线与反比例函数解求得,的横坐标为OA//BC ,∴,∴,∴,∴把代入得,,将直线沿轴向上平移个单位长把的坐标代入得,求得【点睛】本题考查了反比例函数与一次函数式等知识,求得交点坐标是解题的关键.3.如图,直线与反比例函数8.(1)填空:反比例函数的关系式为____A C y x b =+b Q y x =∴4x x=2x =±A ∴Q CBG AOH ∠=∠2OA BC =Q 2OA AH BC GC ==1x =4y x=4y =C ∴Q y x =y b ∴C 41b =+AB ky =图象与一次函数图象的交点问题,能利用数形结合求=x 与反比例函数y =(x >0)的图象交于点交反比例函数图象于点C .若OA =2BC ,则b 的值为C .3 D .4的横坐标,根据定义求得的横坐标,把横坐标代入的值. 函数的图象交于点, 坐标为2,如图,过C 点、A 点作y 轴垂线, ,,解得=1,的横坐标为1,, 单位长度,得到直线, ,故选:.次函数的综合问题,涉及函数的交点、一次函数平移. 的图象交于A ,B 两点,已知点A 的坐标为_________________;(2)求直线的函数关系式4xC 4(0)y x x=>A OHA BGC ~V V 22BC BC GC=GC C ∴(1,4)y x b =+3b =C (0)x x>AB 结合求出不等式的解集是解答此于点A ,将直线y =x 沿y 轴向上的值为( )标代入反比例函数的解析式求得, 数平移、待定系数法求函数解析坐标为,的面积为关系式;(3)动点P 在y 轴上运()6,1AOB V动,当线段与之差最大时,求点【答案】(1);(2)【分析】(1)把点代入解析式,即可(2)过点A 作轴于点C ,过点点B 的坐标为,表示出△ABE 的面积到解析式;(3)根据“三角形两边之差小于,代入即可求值.【解析】解:(1)把点代入(2)如图,过点A 作轴于点形.设点B 的坐标为,∴∵点A 的坐标为,∴∴∵A ,B 两点均在双曲线上∴∵的面积为8,∴,∴.解得设直线的函数关系式为∴直线的函数关系式为PAPB 6y x =12y =-()6,1AC x ⊥(),m n AB ()6,1A AC x ⊥(),m n mn ()6,1BE DE=11(1)(622ABE S AE BE n =⋅=-V 6(0)y x x =>AOB AOC BOD OCED S S S S =--V V V 矩形AOB V 132n m -23830n n --=123,n n =AB (y kx =+AB 12y =-求点P 的坐标.;(3) 即可得到结果;过点B 作轴于点D ,交于点E ,则四的面积,根据△AOB 得面积可得,得到点差小于第三边”可知,当点P 为直线与y 轴的交点可得,∴反比例函数的解析式为C ,过点B 作轴于点D ,交于点.. . 上,∴. ,整理得.(舍去).∴.∴点B 的坐标为.,则.解得.. 4x +()0,4BD y ⊥,CA DB 616m n =-AB (0)ky x x =>6k =BD y ⊥,CA DB 6=6,1E BD m AE CE AC n -=-=-=-)m -16132BOD AOC S S ==⨯⨯=V V ABE S -V 1633(1)(6)32n n m n =-----=-8=616m n =-13=-2m =(2,3)0)b k ≠6123k b k b +=⎧⎨+=⎩124k b =-=⎧⎪⎨⎪⎩4x +则四边形为矩形,设得到点B 的坐标,代入即可的的交点时,有最大值为; 于点E ,则四边形为矩.OCED PA PB -6y x=OCED 12m(3)如上图,根据“三角形两边之差小于第当点P 为直线与y 轴的交点时,∴点P 的坐标为.【点睛】本题主要考查了反比例函数与一次1.如图,在平面直角坐标系中,一次是第一象限内反比例函数图象上一点,且【答案】2.【分析】联立方程组求出A 过A 作轴,交BF 于F 点,交根据的面积是的面积的【解析】联立方程组,解得,轴,过B 作轴,过AAB ()0,4xOy 12y x y x =+⎧⎪⎨=⎪⎩//AE x ABP △AOB V 12y x y x =+⎧⎪⎨=⎪⎩PE x ⊥BF x ⊥小于第三边”可知,有最大值为,把代入与一次函数的综合,准确分析题意是解题的关键.一次函数的图象与反比例函数的图象且的面积是的面积的2倍,则点,B 两点坐标,设,过P 作PE 于点E ,分别求出梯形BFEP 、△APE 、△ABF 的2倍列方程求解即可.,,,, 作轴,交BF 于F 点,交PE 于点E ,如图PA PB -AB 0x =1y =-1y x =+2y x=ABP △AOB V 2,(0)P x x x ⎛⎫⎪⎝⎭>PE1112x y =⎧⎨=⎩2221x y =-⎧⎨=-⎩(2,1)A ∴--(1,2)B //AE x ,得. .的图象交于A ,B 两点,若点P 则点P 的横坐标...为________. 轴,过B 作轴,、△AOB 、△ABP 的面积,设,过P 作如图, 42x +4y =E x ⊥BF x ⊥2,(0)P x x x ⎛⎫⎪⎝⎭>。
2023年中考数学一轮专题练习 ——反比例函数(含解析)
2023年中考数学一轮专题练习 ——反比例函数2一、单选题(本大题共10小题)1. (湖北省武汉市2022年)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是( ) A .120y y +<B .120y y +>C .12y y <D .12y y >2. (湖北省宜昌市2022年)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为( )A .a b >B .a b ≥C .a b <D .a b ≤3. (湖北省十堰市2022年)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .94. (江苏省泰州市2022年)已知点在下列某一函数图像上,且那么这个函数是( )A .B .C .D .5. (湖北省荆州市2022年)如图是同一直角坐标系中函数和的图象.观察图象可得不等式的解集为( ) ()()()1233,,1,,1,y y y --312y y y <<3y x =23y x =3y x=3y x=-12y x =22y x=22x x>A .B .或C .或D .或6. (四川省内江市2022年)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣227. (黑龙江省绥化市2022年)已知二次函数2y ax bx c =++的部分函数图象如图所示,则一次函数24y ax b ac =+-与反比例函数42a b cy x++=在同一平面直角坐标系中的图象大致是( )11x -<<1x <-1x >1x <-01x <<10x -<<1x>A .B .C .D .8. (湖北省省直辖县级行政单位潜江市2022年)如图,点A 在双曲线4y x=上,点B 在双曲线12y x=上,且AB//x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .4B .6C .8D .129. (江苏省宿迁市2022年)如图,点A 在反比例函数()20=>y x x的图像上,以OA 为一边作等腰直角三角形OAB ,其中∠OAB =90°,AO AB =,则线段OB 长的最小值是( )A .1B .C .D .410. (山东省滨州市2022年)在同一平面直角坐标系中,函数1y kx =+与ky x=- (k 为常数且0k ≠)的图象大致是( )A .B .C .D .二、填空题(本大题共6小题)11. (四川省成都市2022年)关于x 的反比例函数2m y x-=的图像位于第二、四象限,则m 的取值范围是 .12. (四川省广元市2022年)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是 .13. (湖北省鄂州市2022年)如图,已知直线y =2x 与双曲线ky x=(k 为大于零的常数,且x >0)交于点A ,若OA k 的值为 .14. (四川省凉山州2022年)如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB 的面积为3,则k = .15. (四川省内江市2022年)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是 .16. (2022年四川省乐山市)如图,平行四边形ABCD的顶点A在x轴上,点D在y=k x(k>0)上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=32,则k= .三、解答题(本大题共10小题)17. (吉林省2022年)密闭容器内有一定质量的气体,当容器的体积V(单位:3m)变化时,气体的密度ρ(单位:3kg/m)随之变化.已知密度ρ与体积V是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V的函数解析式;(2)当3m10V=时,求该气体的密度ρ.18. (湖南省岳阳市2022年)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集. 19. (湖北省恩施州2022年)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围. 20. (湖南省衡阳市2022年)如图,反比例函数my x=的图象与一次函数y kx b =+的图象相交于()3,1A ,()1,B n -两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB 交y 轴于点C ,点M ,N 分别在反比例函数和一次函数图象上,若四边形OCNM 是平行四边形,求点M 的坐标.21. (四川省遂宁市2022年)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如()1,1-,()2022,2022-都是“黎点”. (1)求双曲线9y x-=上的“黎点”; (2)若抛物线27y ax x c =-+(a 、c 为常数)上有且只有一个“黎点”,当1a >时,求c 的取值范围.22. (四川省遂宁市2022年)已知一次函数11y ax =-(a 为常数)与x 轴交于点A ,与反比例函数26y x=交于B 、C 两点,B 点的横坐标为2-.(1)求出一次函数的解析式并在图中画出它的图象;(2)求出点C 的坐标,并根据图象写出当12y y <时对应自变量x 的取值范围; (3)若点B 与点D 关于原点成中心对称,求出△ACD 的面积.23. (四川省自贡市2022年)如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数ny x=的图象交于()()1,2,,1A B m -- 两点.(1)求反比例函数和一次函数的解析式;(2)过点B作直线l∥y轴,过点A作直线AD l⊥于D,点C是直线l上一动点,若2DC DA=,求点C的坐标.24. (湖北省咸宁市2022年)如图,已知一次函数y1=kx+b的图像与函数y2=mx(x>0)的图像交于A(6,-12),B(12,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图像,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.25. (四川省南充市2022年)如图,直线AB与双曲线交于(1,6),(,2)A B m-两点,直线BO 与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求ABC的面积.26. (四川省眉山市2022年)已知直线y x =与反比例函数ky x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与ky x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.参考答案1. 【答案】C 【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系. 【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点, ∴11226x y x y ==. ∵120x x <<, ∴120y y <<. 故选:C . 2. 【答案】A 【分析】根据电流I 与电路的电阻R 是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断 【详解】∵电流I 与电路的电阻R 是反比例函数关系 由表格:5,20I R ==;1,100I R == ∴在第一象限内,I 随R 的增大而减小 ∵204080100<<< ∴51a b >>> 故选:A 3. 【答案】B 【分析】设PA =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k+t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论. 【详解】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0). ∴点D 的坐标为(3,23k ), ∴点C 的坐标为(3-t ,23k +t ). ∵点C 在反比例函数y =2k x的图象上, ∴(3-t )(23k +t )=k2,化简得:t =3-23k , ∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k, ∴点B 的坐标为(3,6-23k ), ∴3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B . 4. 【答案】D 【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案. 【详解】解:A .把点代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件不符,故选项错误,不符合题意;B .把点代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件不符,故选项错误,不符合题意;C . 把点代入y =,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件不符,故选项错误,不符合题意; D . 把点代入y =-,解得y 1=1,y 2=3,y 3=-3,所以,这与已知条件相符,故选项正确,符合题意;()()()1233,,1,,1,y y y --312y y y <<()()()1233,,1,,1,y y y --312y y y <<()()()1233,,1,,1,y y y --3x312y y y <<()()()1233,,1,,1,y y y --3x312y y y <<312y y y <<5. 【答案】D 【分析】根据图象进行分析即可得结果; 【详解】 解:∵ ∴由图象可知,函数和分别在一、三象限有一个交点,交点的横坐标分别为, 由图象可以看出当或时,函数在22y x=上方,即12y y >, 故选:D . 6. 【答案】D 【分析】设点P (a ,b ),Q (a ,),则OM =a ,PM =b ,MQ =,则PQ =PM +MQ =,再根据ab =8,S △POQ =15,列出式子求解即可. 【详解】解:设点P (a ,b ),Q (a ,),则OM =a ,PM =b ,MQ =, ∴PQ =PM +MQ =. ∵点P 在反比例函数y =的图象上, ∴ab =8. ∵S △POQ =15, ∴PQ •OM =15, ∴a (b ﹣)=15. ∴ab ﹣k =30. ∴8﹣k =30, 解得:k =﹣22. 故选:D . 7. 【答案】B 【分析】根据2y ax bx c =++的函数图象可知,0a >,240b ac ->,即可确定一次函数图象,根据2x =时,420y a b c =++>,即可判断反比例函数图象,即可求解.22x x>12y y >12y x =22y x=11x x ==-,10x -<<1x >12y x =k a ka-kb a-k a k a-kb a-8x1212ka解:∵二次函数2y ax bx c =++的图象开口向上,则,与轴存在2个交点,则240b ac ->,∴一次函数24y ax b ac =+-图象经过一、二、三象限,二次函数2y ax bx c =++的图象,当2x =时,420y a b c =++>,∴反比例函数42a b cy x++=图象经过一、三象限 结合选项,一次函数24y ax b ac =+-与反比例函数42a b cy x++=在同一平面直角坐标系中的图象大致是B 选项 故选B 8. 【答案】C 【分析】过点A 作AE ⊥y 轴于点E ,利用反比例函数系数k 的几何意义,分别得到四边形AEOD 的面积为4,四边形BEOC 的面积为12,即可得到矩形ABCD 的面积. 【详解】过点A 作AE ⊥y 轴于点E , ∵点A 在双曲线4y x=上, ∴四边形AEOD 的面积为4, ∵点B 在双曲线12y x=上,且AB//x 轴, ∴四边形BEOC 的面积为12, ∴矩形ABCD 的面积为12-4=8, 故选:C .9. 【答案】C 【分析】如图,过A 作AM x ∥轴,交y 轴于M ,过B 作BD x ⊥轴,垂足为D ,交MA 于H ,则90,OMA AHB 证明,AOM BAH ≌ 可得,,OM AH AM BH 设2,,A mm则0a >x222,,,,AM m OMMH mBD m mm m可得 22,,B mm m m 再利用勾股定理建立函数关系式,结合完全平方公式的变形可得答案. 【详解】解:如图,过A 作AM x ∥轴,交y 轴于M ,过B 作BD x ⊥轴,垂足为D ,交MA 于H ,则90,OMAAHB 90,MOA MAO,,AO AB AO AB 90,MAO BAH设2,,A m m则222,,,,AM m OMMH mBD m mmm∴ 22,,B mm m m22222282,OBmm m mmm 0,m > 而当0,0a b >>时,则a b +≥ 2222882228,m m m m∴2282m m 的最小值是8, ∴OB故选:C .10. 【答案】A 【分析】根据题意中的函数解析式和函数图象的特点,可以判断哪个选项中的图象是正确的. 【详解】解:根据函数可得,该函数图象与y 轴的交点在x 轴上方,排除B 、D 选项,,MOA BAH ,AOM BAH ≌,,OMAH AMBH =1y kx =+当k >0时,函数的图象在第一、二、三象限,函数在第二、四象限,故选项A 正确, 故选:A . 11. 【答案】2m < 【分析】根据反比例函数的性质即可确定m-2的符号,从而求解. 【详解】根据题意得:m-2<0, 解得:m <2. 故答案为:m <2. 12. 【答案】4 【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解. 【详解】解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数ky x=的图象上, ∴设. ∵的面积为6, ∴, ∴.∵点C 是AB 的中点, ∴. ∵点C 在反比例函数的图象上, 1y kx =+ky x =-B m n (,)OAB 12OA n=12,0A n ⎛⎫ ⎪⎝⎭12,22mn n C n+⎛⎫⎪⎝⎭ky x=∴, ∴, ∴. 故答案为:4. 13. 【答案】2 【分析】设点A 的坐标为(m ,2m ),根据OA 的长度,利用勾股定理求出m 的值即可得到点A 的坐标,由此即可求出k . 【详解】解:设点A 的坐标为(m ,2m ), ∴, ∴或(舍去), ∴点A 的坐标为(1,2), ∴, 故答案为:2. 14. 【答案】6 【分析】设点A 的坐标为(,)(0,0)A a b a b >>,则,OB a AB b ==,先利用三角形的面积公式可得6ab =,再将点(,)A a b 代入反比例函数的解析式即可得.【详解】解:由题意,设点A 的坐标为(,)(0,0)A a b a b >>,AB x ⊥轴于点B ,,OB a AB b ∴==,OAB 的面积为3,, 解得, 将点(,)A a b 代入ky x=得:, 故答案为:6. 15. 【答案】 【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围. 【详解】当PQ 平行于x 轴时,点Q 的坐标为,代入中,可得; 当PQ 平行于y 轴时,点Q 的坐标为,可得;1222mn nmn n +⋅=4mn =4k=OA =1m =1m =-122k =⨯=11322OB AB ab ∴⋅==6ab =6k ab ==223m <<(),3m 2y x =23m =()2,n 2m =∵一次函数随的增大而增大, ∴的取值范围是, 故答案为:. 16. 【答案】3 【分析】连接OD 、DE ,利用同底等高的两个三角形面积相等得到S △ADE = S △ABE =32,以及S △ADE =S △ADO =32,再利用反比例函数的比例系数k 的几何意义求解即可.【详解】解:连接OD 、DE ,∵四边形ABCD 是平行四边形, ∴点B 、点D 到对角线AC 的距离相等, ∴S △ADE = S △ABE =32,∵AD ⊥x 轴, ∴AD ∥OE ,∴S △ADE =S △ADO =32,设点D (x ,y ) ,∴S △ADO =12OA ×AD =12xy =32,∴k =xy =3. 故答案为:3. 17. 【答案】(1)()100V Vρ=> (2)13kg/m 【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.y x m 223m <<223m <<(1)设密度ρ关于体积V 的函数解析式为()0,0kV k Vρ=>≠, 把点A 的坐标代入上式中得: 2.54k=, 解得:k =10, ∴. (2)当时,(). 即此时该气体的密度为1. 18. 【答案】(1)2y x=-(2)4(3)1x <-或01x << 【分析】(1)把点()1,2A -代入()0ky k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式kmx x<的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∴2k =-,∴反比例函数的解析式为2y x=-;(2)∵反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∴()1,2B -,∵点C 是点A 关于y 轴的对称点, ∴()1,2C , ∴2CD =,∴()122242ABC S =⨯⨯+=△.(3)根据图象得:不等式kmx x<的解集为1x <-或01x <<. ()100V Vρ=>3m 10V =10110ρ==3kg/m 3kg/m19. 【答案】(1)反比例函数的解析式为y 1=24x; (2)当12y y >时,0<x <4或x <-6. 【分析】(1)利用等腰直角三角形的性质以及S △ABC =3S △ADC ,求得DC =2,得到D (6,4),利用待定系数法即可求解;(2)利用待定系数法求得直线AB 的解析式,解方程x +2=24x,求得直线y 2= x +2与反比例函数y 1=24x的图象的两个交点,再利用数形结合思想即可求解. (1)解:∵A (0,2),C (6,2), ∴AC =6,∵△ABC 是等腰直角三角形, ∴AC =BC =6, ∵S △ABC =3S △ADC , ∴BC =3DC , ∴DC =2, ∴D (6,4),∵反比例函数y 1=kx(k ≠0)的图象经过点D ,∴k =6×4=24,∴反比例函数的解析式为y 1=24x; (2)∵C (6,2),BC =6, ∴B (6,8),把点B 、A 的坐标分别代入2y ax b =+中,得682a b b +=⎧⎨=⎩,解得:12a b =⎧⎨=⎩,∴直线AB 的解析式为22y x =+, 解方程x +2=24x, 整理得:x 2+2x -24=0, 解得:x =4或x =-6,∴直线y 2= x +2与反比例函数y 1=24x的图象的交点为(4,6)和(-6,-4), ∴当12y y >时,0<x <4或x <-6.20. 【答案】(1)反比例函数解析式为3y x =,一次函数解析式为2y x =-(2)M或( 【分析】(1)分别将(3,1)A ,(1,)B n -代入反比例函数解析式,即可求得m ,n 的值,再将A ,B 两点坐标代入一次函数解析式,求得k ,b 的值;(2)若四边形OCNM 是平行四边形,则//MN OC ,且MN OC =,即M N y y OC -=,由此进行求解.(1)解:将点(3,1)A ,代入, 得,解得, 点,反比例函数的解析式为;将点,代入, 得,解得, 一次函数的解析式为.(2)解:将代入,得,,.若四边形是平行四边形,则,且,设,, 则, 解得或.21. 【答案】(1)9y x-=上的“黎点”为()3,3-,()3,3- (2)09c <<【分析】(1)设双曲线9y x -=上的“黎点”为(),m m -,构建方程求解即可; (1,)B n -m y x=131m m n ⎧=⎪⎪⎨⎪=⎪-⎩33m n =⎧⎨=-⎩∴(1,3)B --3y x=(3,1)A (1,3)B --y kx b =+133k b k b =+⎧⎨-=-+⎩12k b =⎧⎨=-⎩∴2y x =-0x =2y x =-2y =-∴(0,2)C -∴2OC =OCNM //MN OC 2MN OC ==3(,)M t t(,2)N t t -3(2)2M N MN y y t t=-=--=t =∴M ((2)抛物线27y ax x c =-+(a 、c 为常数)上有且只有一个“黎点”,推出方程()270ax x c x a -+=-≠有且只有一个解,3640ac ∆=-=,可得结论.(1) 设双曲线9y x -=上的“黎点”为(),m m -, 则有9m m --=,解得3m =±, ∴9y x-=上的“黎点”为()3,3-,()3,3-. (2)∵抛物线27y ax x c =-+上有且只有一个“黎点”,∴方程()270ax x c x a -+=-≠有且只有一个解, 即260ax x c +=-,3640ac ∆=-=,9ac =, ∴9a c=. ∵1a >,∴.22. 【答案】(1)11y x =-,画图象见解析(2)点C 的坐标为(3,2);当12y y <时,2x <-或03x <<(3)2ACD S =△【分析】(1)根据B 点的横坐标为-2且在反比例函数y 2=6x的图象上,可以求得点B 的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可; (2)将两个函数解析式联立方程组,即可求得点C 的坐标,然后再观察图象,即可写出当y 1<y 2时对应自变量x 的取值范围;(3)根据点B 与点D 关于原点成中心对称,可以写出点D 的坐标,然后点A 、D 、C 的坐标,即可计算出△ACD 的面积.(1)解:∵B 点的横坐标为-2且在反比例函数y 2=6x的图象上, ∴y 2=62-=-3, ∴点B 的坐标为(-2,-3),∵点B (-2,-3)在一次函数y 1=ax -1的图象上,∴-3=a ×(-2)-1,解得a =1,∴一次函数的解析式为y =x -1,∵y =x -1,09c <<∴x=0时,y=-1;x=1时,y=0;∴图象过点(0,-1),(1,0),函数图象如图所示;;(2)解:解方程组16y xyx=-⎧⎪⎨=⎪⎩,解得32xy=⎧⎨=⎩或23xy=-⎧⎨=-⎩,∵一次函数y1=ax-1(a为常数)与反比例函数y2=6x交于B、C两点,B点的横坐标为-2,∴点C的坐标为(3,2),由图象可得,当y1<y2时对应自变量x的取值范围是x<-2或0<x<3;(3)解:∵点B(-2,-3)与点D关于原点成中心对称,∴点D(2,3),作DE⊥x轴交AC于点E,将x=2代入y=x-1,得y=1,∴S△ACD=S△ADE+S△DEC= (31)(21)(31)(32)22-⨯--⨯-+=2,即△ACD的面积是2.23. 【答案】(1)y=2x-,y=﹣x+1;(2)(2,8)或(2,﹣4)【分析】(1)把点A (﹣1,2)代入n y x=求出n 的值,即可得到反比例函数的解析式,把B (m ,﹣1)代入求得的反比例函数的解析式得到m 的值,把A 、B 两点的坐标代入一次函数y kx b =+,求出k ,b 的值,即可得出一次函数的解析式;(2)根据已知条件确定AD 的长及点D 的坐标,由DC =2AD 得到DC =6,从而求得点C 的坐标.(1)解:把点A (﹣1,2)代入ny x =得,2=1n-,解得n =﹣2,∴反比例函数的解析式是y =2x -,把B (m ,﹣1)代入y =2x -得,﹣1=2m ,解得m =2,∴ 点B 的坐标是(2,﹣1),把A (﹣1,2),B (2,﹣1)代入y kx b =+得,221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,∴一次函数的解析式为y =﹣x +1;(2)解:∵直线l y 轴,AD ⊥l ,点A 的坐标是(﹣1,2),点B 的坐标是(2,﹣1),∴ 点D 的坐标是(2,2),∴ AD =2-(﹣1)=3,∵ DC =2DA ,∴ DC =6,设点C 的坐标为(2,m ),则|m -2|=6,∴ m -2=6或m -2=﹣6,解得m =8或﹣4,∴ 点C 的坐标是(2,8)或(2,﹣4)24. 【答案】(1)1132y x -=,23(0)y x x =->;(2)162x <<; (3)2.【分析】(1)将两函数A 、B 的坐标值分别代入两个函数解析式求出未知系数即可; (2)由图像可知当x 在A 、B 两点之间时y 1<y 2,,所以x 取值在A 、B 两点横坐标之间;(3)根据平移性质可知DE AB ∥,CF =t ,求出两直线之间的距离即为△ACD 的高CG ,通过A 、C 坐标求出线段AC 长,列出△ACD 面积=1·2AC CG 的代数式求解即可.(1)∵一次函数y 1=kx +b 的图像与函数y 2=m x(x >0)的图像交于A (6,-12),B (12,n )两点, ∴16212k b k b n ⎧+=-⎪⎪⎨⎪+=⎪⎩, 1262m n m ⎧-=⎪⎨⎪=⎩, 解得:1132k b =⎧⎪⎨=-⎪⎩, 36m n =-⎧⎨=-⎩, ∴y 1、y 2的解析式为:1132y x -=,23(0)y x x=->; (2) 从图像上可以看出,当x 在AB 两点之间时,y 1<y 2,∴x 的取值范围为:162x <<; (3)作CG ⊥DE 于G ,如图,∵直线DE 是直线AB 沿y 轴向上平移t 个单位长度得到,∴DE AB ∥,CF =t ,∵直线AB 的解析式为1132y x -=, ∴直线AB 与y 轴的交点为C 130,2⎛⎫- ⎪⎝⎭,与x 轴的交点为13,02⎛⎫ ⎪⎝⎭, 即直线AB 与x 、y 坐标轴的交点到原点O 的距离相等,∴∠FCA =45°,∵CG ⊥DE , DE AB ∥,∴CG ⊥AC ,CG 等于平行线AB 、DE 之间的距离,∴∠GCF =∠GFC =45°,∴CG==, ∵A 、C 两点坐标为:A (6,-12),C 130,2⎛⎫-⎪⎝⎭, ∴线段AC∴11322ACD S AC CG t =⋅=⨯=, ∵△ACD 的面积为6,∴3t =6,解得:t =2.25. 【答案】(1)直线AB 的解析式为y =2x +4;双曲线解析式为6y x=;(2)16【分析】(1)根据点A 的坐标求出双曲线的解析式,求出点B 的坐标,再利用待定系数法求出直线AB 的解析式;(2)求出直线OB 的解析式为y =x ,得到点C 的坐标,过点B 作BE ∥x 轴,交AC 的延长线于E ,求出直线AC 的解析式,进而得到点E 的坐标,根据的面积=S △ABE -S △BCE 求出答案.(1)解:设双曲线的解析式为,将点A (1,6)代入, 得,∴双曲线解析式为, ∵双曲线过点B (m ,-2),∴-2m =6,解得m =-3,∴B (-3,-2),设直线AB 的解析式为y =nx +b ,23ABC k y x=166k =⨯=6y x =得,解得, ∴直线AB 的解析式为y =2x +4;(2)设直线OB 的解析式为y =ax ,得-3a =-2,解得a =, ∴直线OB 的解析式为y =x , 当时,解得x =3或x =-3(舍去), ∴y =2,∴C (3,2),过点B 作BE ∥x 轴,交AC 的延长线于E ,∵直线AC 的解析式为y =-2x +8,∴当y =-2时,得-2x +8=-2,解得x =5,∴E (5,-2),BE =8,∴的面积=S △ABE -S △BCE==16.26. 【答案】(1)4y x=(2)3b =(3)见解析【分析】 (1)先根据一次函数求出M 点坐标,再代入反比例函数计算即可; (2)先求出A 的点坐标,再代入平移后的一次函数解析式计算即可; (3)过点A 作AE y ⊥轴于点E ,过B 点作BF x ⊥轴于点F ,即可根据A 、B 坐标证明()AOE BOF SAS △≌△,得到AOE BOF ∠=∠,OA OB =,再求出C 、D 坐标即可得到OC =OD ,即可证明AOD BOC ≌△△.632n b n b +=⎧⎨-+=-⎩24n b =⎧⎨=⎩2323263x x=ABC 11888422⨯⨯-⨯⨯(1)∵直线y x =过点(2,)M a ,∴2a =∴将(2,2)M 代入k y x=中,得4k =, ∴反比例函数的表达式为4y x =(2)∵点(1,)A m 在4y x=的图象上, ∴4m =,∴(1,4)A 设平移后直线AB 的解析式为y x b =+,将(1,4)A 代入y x b =+中,得4=1+b ,解得3b =.(3)如图,过点A 作AE y ⊥轴于点E ,过B 点作BF x ⊥轴于点F .∵(,1)B n -在反比例函数4y x=的图象上, ∴n =-4,∴B (-4,-1)又∵(1,4)A ,∴AE BF =,OE OF =,∴AEO BFO ∠=∠∴()AOE BOF SAS △≌△, ∴AOE BOF ∠=∠,OA OB =又∵直线3y x 与x 轴、y 轴分别交于点C ,D , ∴(3,0)C -,(0,3)D ,∴OC OD =在AOD △和BOC 中,OA OB AOE BOF OD OC =⎧⎪∠=∠⎨⎪=⎩ ∴()AOD BOC SAS △≌△.。
中考数学反比例函数-经典压轴题附答案解析
中考数学反比例函数 -经典压轴题附答案解析一、反比例函数1.如图,矩形 OABC 的顶点 A 、 C 分别在 x 、y 轴的正半轴上,点 D 为 BC 边上的点,反比2)将矩形 OABC 的进行折叠,使点 O 于点 D 重合,折痕分别与 x 轴、 y 轴正半轴交于点 F ,G ,求折痕 FG 所在直线的函数关系式. 【答案】 (1)∵反比例函数 y= (k ≠0)在第一象限内的图象经过点E (3, ), ∴反比例函数的表达式为 y= .又∵点 D (m ,2)在反比例函数 y= 的图象上, ∴2m=2 ,解得: m=1(2)解:设 OG=x ,则 CG=OC ﹣OG=2﹣x ,∵点 D ( 1, 2), ∴CD=1.在 Rt △CDG 中,∠DCG=9°0,CG=2﹣x ,CD=1,DG=OG=x , ∴CD 2+CG 2=DG 2 ,即 1+( 2﹣ x ) 2=x 2 ,解得: x= ,∴点 G (0, ).过点 F 作 FH ⊥ CB 于点 H ,如图所示.D (m ,2)和 AB 边上的点E (3,由折叠的特性可知: ∠GDF=∠GOF=9°0 ,OG=DG ,OF=DF . ∵∠ CGD+∠CDG=90 ,°∠CDG+∠ HDF=90 ,° ∴∠ CGD=∠HDF ,∵∠ DCG=∠ FHD=90 ,°∴△ GCD ∽△DHF ,∴ =2 ,∴DF=2GD= ,∴点 F 的坐标为( ,0).设折痕 FG 所在直线的函数关系式为 y=ax+b ,∴折痕 FG 所在直线的函数关系式为 y=﹣ x+【解析】 【分析】( 1)由点 E 的坐标利用反比例函数图象上点的坐标特征即可求出 k 值, 再由点 B 在反比例函数图象上,代入即可求出 m 值;( 2)设 OG=x ,利用勾股定理即可得 出关于 x 的一元二次方程,解方程即可求出 x 值,从而得出点 G 的坐标.再过点 F 作 FH ⊥CB 于点 H ,由此可得出 △GCD ∽△DHF ,根据相似三角形的性质即可求出线段 DF 的长 度,从而得出点 F 的坐标,结合点 G 、 F 的坐标利用待定系数法即可求出结论.∴有 ,解得:2.如图,一次函数y=kx+b 的图象交反比例函数y= (x> 0)的图象于A(4,-8)、 B (m,-2)两点,交x 轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P 的坐标.【答案】(1)解:∵反比例函数y= (x>0)的图象于A(4,-8),∴k=4 ×(-8)=-32.∵双曲线y= 过点B(m,-2),∴m=16 .由直线y=kx+b 过点 A , B 得:,解得,反比例函数关系式为,一次函数关系式为(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵ O(0,0),A(4,-8)、B(16,-2),分三种情况:① 若OB∥AP,OA∥ BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移 4 个单位,向下平移8 个单位得到P 点坐标为(20,-10);② 若OP∥ AB,OA∥ BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12 个单位,向上平移 6 个单位得到P 点坐标为(12,6);③ 若OB∥ AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12 个单位,向下平移 6 个单位得到P 点坐标为(- 12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)【解析】【分析】(1)将点A(4,-8),B(m ,-2)代入反比例函数y= (x> 0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b 中,列方程组求k、b 即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x 的范围;(3)根据平行四边形的性质,即可直接写出.3.如图,已知A(3,m),B(﹣2,﹣3)是直线AB 和某反比例函数的图象的两个交点.(1)求直线AB 和反比例函数的解析式;(2)观察图象,直接写出当x 满足什么范围时,直线AB 在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC 的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点 C 的坐标.【答案】(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣ 3 )=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2 ,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO 交双曲线于点C1 ,∵点 A 与点C1 关于原点对称,∴AO=C1O,∴△ OBC1的面积等于△ OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2 ,则△OBC2的面积等于△ OBC1的面积,∴△ OBC2的面积等于△ OAB的面积,由B(﹣2,﹣3)可得OB 的解析式为y= x ,可设直线C1C2 的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2 的解析式为y= x+ ,解方程组,可得C2();如图,过 A 作OB的平行线,交双曲线于点C3 ,则△OBC3 的面积等于△ OBA的面积,设直线AC3 的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得=﹣,∴直线AC3 的解析式为y= x﹣,解方程组,可得C3();综上所述,点C的坐标为(﹣3,﹣2),(()).【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B 的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线AB 在双曲线的交点坐标为A,B,X 取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点 C 的坐标。
中考数学反比例函数-经典压轴题附答案解析
中考数学反比例函数 -经典压轴题附答案解析一、反比例函数1.如图,矩形 OABC 的顶点 A 、 C 分别在 x 、y 轴的正半轴上,点 D 为 BC 边上的点,反比2)将矩形 OABC 的进行折叠,使点 O 于点 D 重合,折痕分别与 x 轴、 y 轴正半轴交于点 F ,G ,求折痕 FG 所在直线的函数关系式. 【答案】 (1)∵反比例函数 y= (k ≠0)在第一象限内的图象经过点E (3, ), ∴反比例函数的表达式为 y= .又∵点 D (m ,2)在反比例函数 y= 的图象上, ∴2m=2 ,解得: m=1(2)解:设 OG=x ,则 CG=OC ﹣OG=2﹣x ,∵点 D ( 1, 2), ∴CD=1.在 Rt △CDG 中,∠DCG=9°0,CG=2﹣x ,CD=1,DG=OG=x , ∴CD 2+CG 2=DG 2 ,即 1+( 2﹣ x ) 2=x 2 ,解得: x= ,∴点 G (0, ).过点 F 作 FH ⊥ CB 于点 H ,如图所示.D (m ,2)和 AB 边上的点E (3,由折叠的特性可知: ∠GDF=∠GOF=9°0 ,OG=DG ,OF=DF . ∵∠ CGD+∠CDG=90 ,°∠CDG+∠ HDF=90 ,° ∴∠ CGD=∠HDF ,∵∠ DCG=∠ FHD=90 ,°∴△ GCD ∽△DHF ,∴ =2 ,∴DF=2GD= ,∴点 F 的坐标为( ,0).设折痕 FG 所在直线的函数关系式为 y=ax+b ,∴折痕 FG 所在直线的函数关系式为 y=﹣ x+【解析】 【分析】( 1)由点 E 的坐标利用反比例函数图象上点的坐标特征即可求出 k 值, 再由点 B 在反比例函数图象上,代入即可求出 m 值;( 2)设 OG=x ,利用勾股定理即可得 出关于 x 的一元二次方程,解方程即可求出 x 值,从而得出点 G 的坐标.再过点 F 作 FH ⊥CB 于点 H ,由此可得出 △GCD ∽△DHF ,根据相似三角形的性质即可求出线段 DF 的长 度,从而得出点 F 的坐标,结合点 G 、 F 的坐标利用待定系数法即可求出结论.∴有 ,解得:2.如图,一次函数y=kx+b 的图象交反比例函数y= (x> 0)的图象于A(4,-8)、 B (m,-2)两点,交x 轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P 的坐标.【答案】(1)解:∵反比例函数y= (x>0)的图象于A(4,-8),∴k=4 ×(-8)=-32.∵双曲线y= 过点B(m,-2),∴m=16 .由直线y=kx+b 过点 A , B 得:,解得,反比例函数关系式为,一次函数关系式为(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵ O(0,0),A(4,-8)、B(16,-2),分三种情况:① 若OB∥AP,OA∥ BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移 4 个单位,向下平移8 个单位得到P 点坐标为(20,-10);② 若OP∥ AB,OA∥ BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12 个单位,向上平移 6 个单位得到P 点坐标为(12,6);③ 若OB∥ AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12 个单位,向下平移 6 个单位得到P 点坐标为(- 12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)【解析】【分析】(1)将点A(4,-8),B(m ,-2)代入反比例函数y= (x> 0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b 中,列方程组求k、b 即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x 的范围;(3)根据平行四边形的性质,即可直接写出.3.如图,已知A(3,m),B(﹣2,﹣3)是直线AB 和某反比例函数的图象的两个交点.(1)求直线AB 和反比例函数的解析式;(2)观察图象,直接写出当x 满足什么范围时,直线AB 在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC 的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点 C 的坐标.【答案】(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣ 3 )=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2 ,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO 交双曲线于点C1 ,∵点 A 与点C1 关于原点对称,∴AO=C1O,∴△ OBC1的面积等于△ OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2 ,则△OBC2的面积等于△ OBC1的面积,∴△ OBC2的面积等于△ OAB的面积,由B(﹣2,﹣3)可得OB 的解析式为y= x ,可设直线C1C2 的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2 的解析式为y= x+ ,解方程组,可得C2();如图,过 A 作OB的平行线,交双曲线于点C3 ,则△OBC3 的面积等于△ OBA的面积,设直线AC3 的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得=﹣,∴直线AC3 的解析式为y= x﹣,解方程组,可得C3();综上所述,点C的坐标为(﹣3,﹣2),(()).【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B 的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线AB 在双曲线的交点坐标为A,B,X 取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点 C 的坐标。
反比例函数经典例题(含详细解答)
反比例函数难题x(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y= 1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD ⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt △ADO 中,∵sin ∠AOE =AD AO =AD 5= 45, ∴AD =4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m =-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n =-126=-2,点B 的坐标为(6,-2),∵一次函数y =kx +b(k ≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S △AOC =12×OC ×AD =12×3×4=6,所以△AOC 的面积为6.xm练习1.已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin ∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D,且矩形ABOD的面积为3.(1)求两函数的解析式.(2)求两函数的交点A、C的坐标.(3)若点P是y轴上一动点,且,求点P的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A、C的坐标分别为(,3),(3,)(3)设点P的坐标为(0,m)直线与y轴的交点坐标为M(0,2)∵∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN 与EF是否平行。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
反比例函数(含中考真题解析)
反比例函数☞2年中考【2015年题组】1.(2015崇左)若反比例函数kyx=的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3 【答案】A.【解析】试题分析:∵反比例函数kyx=的图象经过点(2,﹣6),∴2(6)12k=⨯-=-,解得k=﹣12.故选A.考点:反比例函数图象上点的坐标特征.2.(2015苏州)若点A(a,b)在反比例函数2yx=的图象上,则代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣6 【答案】B.【解析】试题分析:∵点(a,b)反比例函数2yx=上,∴2ba=,即ab=2,∴原式=2﹣4=﹣2.故选B.考点:反比例函数图象上点的坐标特征.3.(2015来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A .B .C .D .【答案】C .考点:1.反比例函数的应用;2.反比例函数的图象.4.(2015河池)反比例函数1my x =(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >2 【答案】B . 【解析】试题分析:根据双曲线关于直线y=x 对称易求B (2,1).依题意得:如图所示,当1<x <2时,21y y >.故选B .考点:反比例函数与一次函数的交点问题.5.(2015贺州)已知120k k <<,则函数1k y x =和21y k x =-的图象大致是( )A .B .C .D .【答案】C .考点:1.反比例函数的图象;2.一次函数的图象. 6.(2015宿迁)在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数x y 2=的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )A .2个B .4个C .5个D .6个【答案】D . 【解析】试题分析:①当∠PAB=90°时,P 点的横坐标为﹣3,把x=﹣3代入x y 2=得23y =-,所以此时P 点有1个;②当∠APB=90°,设P (x ,2x ),2PA =222(3)()x x ++,2PB =222(3)()x x -+,2AB =2(33)+=36,因为222PA PB AB +=,所以222222(3)()(3)()x x x x +++-+=36,整理得42940x x -+=,所以29652x +=,或29652x -=,所以此时P 点有4个;③当∠PBA=90°时,P 点的横坐标为3,把x=3代入x y 2=得23y =,所以此时P 点有1个;综上所述,满足条件的P 点有6个.故选D .考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2015自贡)若点(1x ,1y ),(2x ,2y ),(3x ,3y ),都是反比例函数x y 1-=图象上的点,并且1230y y y <<<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x <<【答案】D . 【解析】试题分析:由题意得,点(1x ,1y ),(2x ,2y ),(3x ,3y )都是反比例函数x y 1-=上的点, 且1230y y y <<<,则(2x ,2y ),(3x ,3y )位于第三象限,y 随x 的增大而增大,23x x <,(1x ,1y )位于第一象限,1x 最大,故1x 、2x 、3x 的大小关系是231x x x <<.故选D .考点:反比例函数图象上点的坐标特征.8.(2015凉山州)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线3y x =经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .13 【答案】C .考点:反比例函数系数k 的几何意义.9.(2015眉山)如图,A 、B 是双曲线x ky =上的两点,过A 点作AC ⊥x 轴,交OB 于D点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .4【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质.10.(2015内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线kyx=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kyx=经过点(1,1)时,k=1;当双曲线kyx=经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.11.(2015孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数1yx=的图象上.若点B 在反比例函数kyx=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.12.(2015宜昌)如图,市煤气公司计划在地下修建一个容积为410m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A .B .C .D .【答案】A .考点:1.反比例函数的应用;2.反比例函数的图象.13.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B的坐标为(m ,2m ),又∵22n m mn =,∴22mn m n =⋅,∴224m n =,又∵m <0,n >0,∴2mn=-,∴2nm=-,故选B.考点:反比例函数图象上点的坐标特征.14.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12 yx =图象上的概率是()A.12B.13C.14D.16【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.15.(2015乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,3 4OA OB =.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kyx=的图象过点C.当以CD为边的正方形的面积为27时,k的值是()A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.16.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.22D.2【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3 yx =的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=42D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2015临沂)在平面直角坐标系中,直线2y x=-+与反比例函数1yx=的图象有唯一公共点,若直线y x b=-+与反比例函数1yx=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2【答案】C.考点:反比例函数与一次函数的交点问题.18.(2015滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A .逐渐变小B .逐渐变大C .时大时小D .保持不变 【答案】D .考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2015扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是 . 【答案】(﹣1,﹣3). 【解析】 试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).考点:反比例函数图象的对称性.20.(2015泰州)点(a ﹣1,1y )、(a+1,2y)在反比例函数()0>=k x ky 的图象上,若21y y <,则a的范围是.【答案】﹣1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.21.(2015南宁)如图,点A在双曲线23yx=(0x>)上,点B在双曲线kyx=(0x>)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63【解析】试题分析:因为点A在双曲线23yx=x>)上,设A点坐标为(a23a,因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a 23a),可得:k=233aa63,故答案为:63考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.22.(2015桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数kyx=的图象交BC于D,连接AD,则四边形AOCD的面积是.【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题.23.(2015贵港)如图,已知点A1,A2,…,An均在直线1y x=-上,点B1,B2,…,Bn均在双曲线1yx=-上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若11a=-,则a2015= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2015南京)如图,过原点O 的直线与反比例函数1y ,2y 的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数11y x =,则2y 与x 的函数表达式是 .【答案】24y x =.【解析】试题分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 在反比例函数11y x =上,∴设A (a ,1a ),∴OC=a ,AC=1a ,∵AC ⊥x 轴,BD ⊥x 轴,∴AC ∥BD ,∴△OAC ∽△OBD ,∴AC OC OA BD OD OB ==,∵A 为OB 的中点,∴12AC OC OA BD OD OB ===,∴BD=2AC=2a ,OD=2OC=2a ,∴B (2a ,2a ),设2k y x =,∴k=224a a ⋅=,∴2y 与x 的函数表达式是:24y x =.故答案为:24y x =.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.25.(2015攀枝花)如图,若双曲线ky x =(0k >)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC=2BD ,则k 的值为 .【答案】36325.考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.26.(2015荆门)如图,点1A ,2A 依次在93(0)y x x >的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为 .【答案】(62,0).考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题.27.(2015南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数3yx=(0x>)的图象上,则△OAB的面积等于.【答案】9 2.考点:1.反比例函数系数k的几何意义;2.综合题.28.(2015烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数kyx=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.【答案】15 4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题.29.(2015玉林防城港)已知:一次函数210y x=-+的图象与反比例函数kyx=(0k>)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若52BCBD=,求△ABC的面积.【答案】(1)8yx=,B(1,8);(2)(﹣4,﹣2)、(﹣16,12-);(3)10.【解析】试题分析:(1)把点A 的坐标代入ky x =,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B 的坐标;(2)①若∠BAP=90°,过点A 作AH ⊥OE 于H ,设AP 与x 轴的交点为M ,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E (5,0),OE=5.∵A (4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH ⊥OE ,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM ,∴△AHM ∽△EHA ,∴AH MH EH AH =,∴212MH=,∴MH=4,∴M (0,0),可设直线AP 的解析式为y mx =,则有42m =,解得m=12,∴直线AP 的解析式为12y x=,解方程组128y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得:42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩,∴点P 的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P 的坐标为(﹣16,12-).综上所述:符合条件的点P的坐标为(﹣4,﹣2)、(﹣16,12-);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴CD CTBD BS=.∵52BCBD=,∴32CT CDBS BD==.∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2014年题组】1. (2014年湖南湘潭)如图,A、B两点在双曲线4yx=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A. 3B. 4C. 5D. 6【答案】D.【解析】试题分析:∵点A、B是双曲线4yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,∴根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∵S阴影=1,∴S1+S2=4+4﹣1×2=6.故选D.考点:反比例函数系数k的几何意义.2. (2014年吉林长春)如图,在平面直角坐标系中,点A、B均在函数kyx=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A. (2,2)B. (2,3)C. (3,2)D.3 4,2⎛⎫ ⎪⎝⎭【答案】C.考点:1.切线的性质;2.曲线上点的坐标与方程的关系.3. (2014年江苏连云港)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数ky x =在第一象限内的图像与△ABC 有交点,则k 的取值范围是( )A. 2≤k ≤449B. 6≤k ≤10C. 2≤k ≤6D. 2≤k ≤225【答案】A . .考点:1.反比例函数图象上点的坐标特征;2.待定系数法的应用;23.曲线上点的坐标与方程的关系;一元二次方程根的判别式.4. (2014年江苏盐城)如图,反比例函数ky x =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B′在此反比例函数的图象上,则t 的值是( )152+ B.32 C.43 D. 152-+【答案】A .【解析】考点:1.反比例函数的综合题;2.曲线上点的坐标与方程的关系;3.等腰直角三角形的性质;4.轴对称的性质;5.方程思想的应用.5. (2014年重庆市B卷)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数ky(k0)x=≠在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是()A、5(,0)4B、7(,0)4C、9(,0)4D、11(,0)4【答案】C.【解析】试题分析:∵A (m ,2),∴正方形ABCD 的边长为2.∵E (n ,23),∴n m 2=+.∵反比例函数ky (k 0)x=≠在第一象限的图象经过A ,E ,∴k 2k 2m 22m m m 12k 3m 23m 2⎧=⇒=⎪⎪−−−−→=⇒=⎨+⎪=⎪+⎩把①代入②① ②.∴n m 23=+=,即点E 的坐标为(3,23).设直线EG 的解析式为y ax b =+,∵G (0,-2),∴283a b a 39b 2b 2⎧⎧+==⎪⎪⇒⎨⎨⎪⎪=-=-⎩⎩.∴直线EG 的解析式为8y x 29=-.令y=0得89x 20x 94-=⇒=.∴点F 的坐标是9,04⎛⎫ ⎪⎝⎭ .故选C . 考点:1.反比例函数和一次函数交点问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的性质.6. (2014年广西北海)如图,反比例函数ky x =(x >0)的图象交Rt △OAB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,AD :OD=1:2,则k 的值为【答案】20.考点:1.反比例函数系数k 的几何意义;2.相似三角形的判定和性质. 7. (2014年广西崇左)如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为 .【答案】3y x =-.考点:1.平行四边形的性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系.8. (2014年广西玉林、防城港)如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x =和2ky x =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12k AM CN k =;②阴影部分面积是()121k k 2+;③当∠AOC=90°时12k k =;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.9. (2014年湖北荆州)如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.【答案】﹣6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.10. (2014年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数kyx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,.考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.☞考点归纳归纳 1:反比例函数的概念基础知识归纳: 一般地,函数(k 是常数,k0)叫做反比例函数。
2024年中考数学《反比例函数及其应用》真题含解析
专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。
中考数学反比例函数(大题培优 易错 难题)含答案解析
中考数学反比例函数(大题培优易错难题)含答案解析一、反比例函数1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣1).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.8.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.11.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
中考数学反比例函数-经典压轴题及答案解析
中考数学反比例函数-经典压轴题及答案解析一、反比例函数1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【答案】(1)解:当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y= 中,3= ,解得:k=﹣3,∴反比例函数的表达式为y=﹣(2)解:当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0)(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.3.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.4.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,∴y= ,∵B(3,y2)在反比例函数的图象上,∴y2= =1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O)(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴= ,= = ,∵b=y1+1,AB=BP,∴= ,= = ,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1= • y1,解得x1=2,代入= ,解得y1=2,∴A(2,2),B(4,1)(3)解:根据(1),(2)中的结果,猜想:x1, x2, x0之间的关系为x1+x2=x0【解析】【分析】(1)先把A(1,3)),B(3,y2)代入y= 求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出 = , = = ,根据题意得出 = , = = ,从而求得B(, y1),然后根据k=xy得出x1•y1= • y1,求得x1=2,代入 = ,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.5.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。
反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)
反比例函数及其应用(35道)一、单选题A .1B .2C .3D .4【答案】B【分析】延长BA 交y 轴于点D ,根据反比例函数k 值的几何意义得到1212ADO S =⨯=△,3OCBD S =矩形,根据四边形ABCO 的面积等于ADOOCBD S S−矩形,即可得解.【详解】解:延长BA 交y 轴于点D ,∵AB x ∥轴, ∴DA y ⊥轴,∵点A 在函数2(0)y x x =>的图象上,∴1212ADO S =⨯=△,∵BC x ⊥轴于点C ,DB y ⊥轴,点B 在函数3(0)y x x =>的图象上,∴3OCBD S =矩形,∴四边形ABCO 的面积等于312ADOOCBD S S−=−=矩形;故选B .【点睛】本题考查反比例函数与几何图形的综合应用.熟练掌握反比例函数中k 的几何意义,是解题的关键.A .321y y y <<B .132y y y <<C .312y y y <<D .231y y y <<【答案】C【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:在反比例函数(0)ky k x =<中,0k <,∴此函数图象在二、四象限,420−<−<,∴点()14,A y −,2(2,)B y −在第二象限,10y ∴>,20y >,函数图象在第二象限内为增函数,420−<−<, 120y y ∴<<.30>,3(3,)C y ∴点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y <<.故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.A .当3x >时,12y y <B .当1x <−时,12y y <C .当03x <<时,12y y >D .当10x −<<时,12y y <【答案】B【分析】结合一次函数与反比例函数的图象,逐项判断即可得. 【详解】解:A 、当3x >时,12y y >,则此项错误,不符合题意; B 、当1x <−时,12y y <,则此项正确,符合题意; C 、当03x <<时,12y y <,则此项错误,不符合题意; D 、当10x −<<时,12y y >,则此项错误,不符合题意;故选:B .【点睛】本题考查了一次函数与反比例函数的图象,熟练掌握函数图象法是解题关键.A .123y y y <<B .312 y y y <<C .213y y y <<D .321y y y <<【答案】C【分析】根据反比例函数的图象与性质解答即可. 【详解】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小, ∵2101−<−<<, ∴2130y y y <<<.故选:C .【点睛】本题考查了反比例函数的图象与性质,反比例函数ky x =(k 是常数,0k ≠)的图象是双曲线,当0k >,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 0k <,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.【答案】A【分析】连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示,根据函数图像交点的对称性判断四边形ABCD 是平行四边形,由平行四边形性质及平面直角坐标系中三角形面积求法,确定()11142四边形△ABC COD D S S OM DE CF ===⋅+,再求出直线1y x =−与x 轴交于点()1,0M ,通过联立1y x k y x =−⎧⎪⎨=⎪⎩求出C D 、纵坐标,代入方程求解即可得到答案. 【详解】解:连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示:根据直线1y x =+、1y x =−与双曲线()0ky k x =>交点的对称性可得四边形ABCD 是平行四边形,()11142四边形△ABC O D C D S S OM DE CF ∴===⋅+, 直线1y x =−与x 轴交于点M , ∴当0y =时,1x =,即()1,0M ,1y x =−与双曲线()0ky k x =>分别相交于点C D 、,∴联立1y x k y x =−⎧⎪⎨=⎪⎩,即1k y y =−,则20y y k +−=,由0k >,解得y =,∴1112⎤⨯⨯−=⎥⎢⎥⎝⎭⎣⎦2=,解得34k =,故选:A .【点睛】本题考查一次函数与反比例函数综合,涉及平行四边形的判定与性质,熟练掌握平面直角坐标系中三角形面积求法是解决问题的关键.A .2:3:6B .6:3:2C .1:2:3D .3:2:1【答案】A【分析】首先根据长方体的性质,得出相对面的面积相等,再根据物体的压力不变,结合反比例函数的性质进行分析,即可得出答案.【详解】解:∵长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1, ∴长方体物体的A 、B 、C 三面所对的与水平地面接触的面积比也为3:2:1, ∵FP S =,0F >,且F 一定,∴P 随S 的增大而减小, ∴111::::2:3:6321A B C P P P ==.故选:A .【点睛】本题考查了反比例函数的性质,解本题的关键在熟练掌握反比例函数的性质.A .B .C .D .【答案】D【分析】先根据一次函数图象确定a 、b 的符号,进而求出ab 的符号,由此可以确定反比例函数图象所在的象限,看是否一致即可.【详解】解:A 、∵一次函数图象经过第一、二、三象限, ∴00a b >>,, ∴0ab >,∴反比例函数aby x =的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 、∵一次函数图象经过第一、三、四象限, ∴00a b ><,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .【点睛】本题主要考查了一次函数与反比例函数图象和性质,熟练掌握相关性质与函数图象的关系是解决本题的关键.A .B .C .D .【答案】B 【分析】根据题意11FL F L =代入数据求得245F L =,即可求解.【详解】解:∵11FL F L =,125cm L =,19.8NF =,∴259.8245FL =⨯=, ∴245F L =,函数为反比例函数,当35cm L =时,245735F ==,即245F L =函数图象经过点()35,7. 故选:B .【点睛】本题考查了反比例函数的应用以及函数图象,根据题意求出函数关系式是解题的关键.A .3B .4C .5D .6【答案】B【分析】由正方形的性质得2BC AB ==,可设2,2k C ⎛⎫ ⎪⎝⎭,1,22k E ⎛⎫+ ⎪⎝⎭,根据21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭可求出k 的值. 【详解】解:∵四边形ABCD 是正方形, ∵2,AB BC CD AD ==== ∵点E 为AD 的中点, ∴11,2AE AD ==设点C 的坐标为2,2k ⎛⎫ ⎪⎝⎭,则,222k kBO AO AB BO ==+=+, ∴1,22k E ⎛⎫+ ⎪⎝⎭, ∵点C ,E 在反比例函数ky x =的图象上,∴21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭,解得,4k =, 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x =(k 为常数,0k ≠)的图象是双曲线,图象上的点()x y ,的横纵坐标的积是定值k ,即xy k =.为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结【答案】C【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =−=−,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k∴()1,1C ,则1,1AC k BC k =−=−,又∵90ACB ∠=︒,AB =∴()()(22211k k −+−=∴13k −=(负值已舍去) 解得:4k =, 故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键. 统考中考真题)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为与OAB 关于直线 A .23 【答案】A【分析】过点B 作BD x ⊥轴,根据题意得出1,BD OD ==和性质得出2OB AB ==,30BOA BAO ∠∠==︒,利用各角之间的关系180OBA OBD '∠+∠=︒,确定A ',B ,D 三点共线,结合图形确定)2C,然后代入反比例函数解析式即可.【详解】解:如图所示,过点B 作BD x ⊥轴,∵(0,0),O A B ,∴1,BD OD ==∴AD OD =tan BD BOA OD ∠==,∴2OB AB ==,30BOA BAO ∠∠==︒,∴60OBD ABD ∠∠==︒,120OBA ∠=︒, ∵OA B '与OAB 关于直线OB 对称, ∴120OBA '∠=︒, ∴180OBA OBD '∠+∠=︒, ∴A ',B ,D 三点共线, ∴2A B AB '==, ∵A C BC '=, ∴1BC =, ∴2CD =,∴)2C,将其代入(0,0)ky k x x =>>得:k =故选:A .【点睛】题目主要考查等腰三角形的判定和性质,特殊角的三角函数及反比例函数的确定,理解题意,综合运用这些知识点是解题关键.A .2B .2−C .1D .1−【答案】A【分析】证明四边形ANOM 是矩形,根据反比例函数的k 值的几何意义,即可解答. 【详解】解:AM x ⊥轴于点M ,AN y ⊥轴于直N ,90MON ∠=︒,∴四边形AMON 是矩形,四边形AMON 的面积为2, 2k ∴=,反比例函数在第一、三象限,2k ∴=,故选:A .【点睛】本题考查了矩形的判定,反比例函数的k 值的几何意义,熟知在一个反比例函数图像上任取一点,过点分别作x 轴,y 轴的垂线段,与坐标轴围成的矩形面积为k是解题的关键.二、填空题【答案】63y x =−【分析】函数图象的平移规则为:上加下减,左加右减,根据平移规则可得答案. 【详解】解:将反比例函数6y x =的图象向下平移3个单位可得平移后的解析式为:63y x =−,故答案为:63y x =−.【点睛】本题考查的是函数图象的平移,解题的关键是理解并熟记函数图象的平移规则为:上加下减,左加右减.14.(2023·陕西·统考中考真题)如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是 .【答案】18y x =【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m⨯=+,得到3m =,推出18y x =.【详解】解:∵四边形OABC 是矩形, ∴3OC AB ==,设正方形CDEF 的边长为m , ∴CD CF EF m ===, ∵2BC CD =, ∴2BC m =, ∴()3,2B m ,()3,E m m +, 设反比例函数的表达式为ky x =,∴()323m m m⨯=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,∴3618=⨯=k ,∴这个反比例函数的表达式是18y x =,故答案为:18y x =.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.统考中考真题)如图,在平面直角坐标系中,AOC 的边两点.若AOC 的面积是 【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC 的面积是6,列式计算即可求解.【详解】解:过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,∴BD CE ∥, ∴ABD ACE ∽,∴BD ABCE AC =,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =, ∵点B 为AC 的中点, ∴12BD AB CE AC ==, ∴22CE BD m ==,∴C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,, 设直线BC 的解析式为y ax b =+, ∴22k ma b mk ma b m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2232k a m k b m ⎧=−⎪⎪⎨⎪=⎪⎩, ∴直线BC 的解析式为2322k k y x m m =−+, 当0x =时,32ky m =,∴A 点坐标为302k m ⎛⎫ ⎪⎝⎭,, 根据题意得132622k m m ⋅⋅=,解得4k =, 故答案为:4.【点睛】本题考查了反比例函数的性质、相似三角形的判定及性质、求一次函数解析式、坐标与图形,解题关键是熟练掌握反比例函数的性质及相似三角形的性质.【答案】33【分析】过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒,在Rt ABC 中求出BC 、AC 的长,即可得出点B 的坐标,代入反比例函数解析式即可求出k 的值.【详解】解∶过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒, ∵点A 的坐标为(0,2), ∴2AO AB ==, ∵120OAB ∠=︒,∴180********BAC OAB ∠∠=︒−=︒−︒=︒, ∴9030ABC BAC ∠∠=︒−=︒, ∴AC =12AB =1221⨯=,由勾股定理得BC ==∴213OC AO AC =+=+=,∴点B 的坐标为(3), ∵点B 恰好落在反比例函数ky x =的图象上,∴3k =故答案为∶3【点睛】本题考查了反比例函数图象上点的坐标特征,坐标与图形的变化之旋转,解答本题的关键是求出点B 的坐标.【答案】>【分析】把2x =−和=1x −分别代入反比例函数2y x =中计算y 的值,即可做出判断.【详解】解:∵点()12,A y −和点()21,B y −都在反比例函数2y x =的图象上,∴令2x =−,则1212y ==−−;令=1x −,则2221y ==−−,12−>−,12y y ∴>,故答案为:>.【点睛】本题考查了反比例函数图像上点的坐标特征,计算y 的值是解题的关键. 若OAB 的面积为【答案】196/136【分析】由k 的几何意义可得19212k =,从而可求出k 的值. 【详解】解:AOB 的面积为||192212k k ==, 所以k =196. 故答案为:196.【点睛】本题主要考查了k 的几何意义.用k 表示三角形AOB 的面积是本题的解题关键.【答案】3【分析】先把点A 坐标代入求出反比例函数解析式,再把点B 代入即可求出m 的值. 【详解】解:∵函数()0ky k x =≠的图象经过点()3,2A −和(),2B m −∴把点()3,2A −代入得326k =−⨯=−,∴反比例函数解析式为6y x −=, 把点(),2B m −代入得:62m −−=,解得:3m =, 故答案为:3.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定满足函数解析式是解题的关键.【答案】1.5(满足12k <<都可以)【分析】先判断出一次函数7y x b =−+的图象必定经过第二、四象限,再根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限,从而可以得到反比例函数的图象经过第二、四象限,即630k −<,最终选取一个满足条件的值即可. 【详解】解:70−<,∴一次函数7y x b =−+的图象必定经过第二、四象限,120x x ⋅>,∴反比例函数图象和一次函数图象的两个交点在同一象限, ∴反比例函数63ky x −=(1k >且2k ≠)的函数图象经过第一、三象限,∴630k −>,∴2k <, ∵1k >, ∴12k <<,∴满足条件的k 值可以为1.5, 故答案为:1.5(满足12k <<都可以).【点睛】本题考查一次函数和反比例函数的图形性质,解题的关键是根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限.的正ABC 的顶点,现将ABC 绕原点【答案】6【分析】画出变换后的图像即可(画AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据ABC 为等边三角形且AO BC ⊥,可得OB OA=A 、B 分别作x 轴垂线构造相似,则BFO OEA ∽,根据相似三角形的性质得出3AOE S =△,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan30BAO ∠=︒=OB OA=, 如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒−∠=∠, ∴BFO OEA ∽,∴213BFO AOES OB S OA ⎛⎫== ⎪⎝⎭, ∴212BFOS−==,∴3AOE S =△, ∴6k =.【点睛】本题考查了反比例函数的性质,k 的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.【答案】2/2−+【分析】过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,证明DAO CBA ≌,进而根据全等三角形的性质得出,DA CB AC OD ==,根据点(),2A m ,进而得出()2,2B m m +−,根据点,A B 在反比例函数(0)ky x x =>的图象上.列出方程,求得m 的值,进而即可求解.【详解】解:如图所示,过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,∴90C CDO ∠=∠=︒, ∵,90OA AB OAB =∠=︒, ∴90DAO CAB CBA ∠=︒−∠=∠ ∴DAO CBA ≌ ∴,DA CB AC OD == ∵点A 的坐标为()m,2.∴2AC OD ==,AD BC m == ∴()2,2B m m +−∵,A B 在反比例函数(0)ky x x =>的图象上,∴()()222m m m =+−解得:1m =或1m =(舍去)∴22k m ==故答案为:2.【点睛】本题考查了反比例函数的图象和性质,全等三角形的判定和性质,求得点B 的坐标是解题的关键.【答案】4【分析】根据题意可设点P 的坐标为()22m m ,,则()2D m m ,,把()2D m m ,代入一次函数解析式中求出m 的值进而求出点P 的坐标,再求出k 的值即可.【详解】解:∵PA x ⊥轴于点,A PB y ⊥轴于点,B PA PB =, ∴点P 的横纵坐标相同, ∴可设点P 的坐标为()22m m ,,∵D 为PB 的中点, ∴()2D m m ,,∵()2D m m ,在直线1y x =+上,∴12m m +=, ∴1m =, ∴()22P ,,∵点P 在反比例函数()0ky k x =>的图象上,∴224k =⨯=, 故答案为:4.【点睛】本题主要考查了一次函数与反比例函数综合,正确求出点P 的坐标是解题的关键.【答案】6【分析】延长CD 交x 轴于点F ,设,k D a a ⎛⎫ ⎪⎝⎭,利用相似三角形的判定与性质可求得矩形的长与宽,再由矩形的面积即可求和k 的值.【详解】解:延长CD 交x 轴于点F ,如图,由点D 在反比例函数()0k y x x =>的图象上,则设,k D a a ⎛⎫ ⎪⎝⎭,∵矩形ABCD 的边AB 平行于x 轴,AB CD ∥,AD CD ⊥, ∴CD y ⊥轴,AD OF ∥, 则kDF a OF a ==,,∵AD OF ∥, ∴CDA CFO △∽△, ∴CD AD ACCF OF OC ==, ∵2AC AO =,∴23AC OC =, ∴2223CD CF DF a ===,2233k AD OF a ==, ∵8AD CD ⋅=,即2283k a a ⨯=,∴6k =, 故答案为:6.【点睛】本题考查了相似三角形的判定与性质,反比例函数图象上点的坐标特征,其中相似三角形的判定与性质是关键.则ABP 的面积是 【答案】152【分析】把()2,3A −代入到22k y x =可求得2k 的值,再把(),2Bm −代入双曲线函数的表达式中,可求得m 的值,进而利用三角形的面积公式进行求解即可. 【详解】∵直线11y k x b =+与双曲线22k y x =(其中120k k ⋅≠)相交于()2,3A−,(),2B m −两点,∴2232k m =−⨯=−∴263k m =−=,,∴双曲线的表达式为:26y x =−,()3,2B −,∵过点B 作BP x ∥轴,交y 轴于点P , ∴3BP =, ∴1153(32)22ABPS=⨯⨯+=,故答案为152.【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求反比例函数,反比例函数图象上点的坐标特征,三角形的面积,数形结合是解答此题的关键. 三、解答题26.(2023·四川绵阳·统考中考真题)如图,设反比例函数的解析式为(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx+b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为时,求直线l 的解析式.【答案】(1);(2).【详解】试题分析:(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•23k+•2k=,解方程即可解决问题;试题解析:(1)由题意A(1,2),把A(1,2)代入,得到3k=2,∴.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴×2×3k+•2k=,解得k=,∴直线l 的解析式为.考点:反比例函数与一次函数的交点问题.(1)2m =,4a =,求函数3y 的表达式及(2)当a 、m 在满足0a m >>的条件下任意变化时,(3)试判断直线PH 与BC 边的交点是否在函数【答案】(1)函数3y 的表达式为325y x =−+,PGH △的面积为12(2)不变,理由见解析 (3)在,理由见解析【分析】(1)由2m =,4a =,可得(20)A ,,()20B −,,12y x=,22y x −=,则4AB =,当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,;当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,;待定系数法求一次函数3y 的解析式为325y x =−+,当0x =,35y =,则()05P ,,根据()11154222PGH S ⎡⎤⎛⎫=⨯−−⨯− ⎪⎢⎥⎝⎭⎣⎦△,计算求解即可;(2)求解过程同(1);(3)设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b am a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩,即1a x a a m y +−=+,当x m a =−,()11y a m a a a m ⨯+=−+=−,则直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,进而可得结论.【详解】(1)解:∵2m =,4a =,∴(20)A ,,()20B −,,12y x=,22y x −=,∴4AB =, 当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,; 当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,; 设一次函数3y 的解析式为3y kx b =+,将()21E ,,142G ⎛⎫⎪⎝⎭,,代入3y kx b =+得,21142k b k b +=⎧⎪⎨+=⎪⎩,解得25k b =−⎧⎨=⎩,∴325y x =−+, 当0x =,35y =,则()05P ,,∴()1111542222PGH S ⎡⎤⎛⎫=⨯−−⨯−=⎪⎢⎥⎝⎭⎣⎦△; ∴函数3y 的表达式为325y x =−+,PGH △的面积为12;(2)解:PGH △的面积不变,理由如下:∵(0)A m ,,(0)B m a −,,1m y x =,2m ay x −=,∴AB a =,当x m =,11m y m ==,则()1E m ,;当1y a =,m a x =,解得m x a =,则m G a a ⎛⎫⎪⎝⎭,; 当2y a =,m a a x −=,解得m a x a −=,则m a H a a−⎛⎫ ⎪⎝⎭,; 设一次函数3y 的解析式为113k x b y =+,将()1E m ,,m G a a ⎛⎫ ⎪⎝⎭,,代入113k x b y =+得,11111mk b m k b a a +=⎧⎪⎨+=⎪⎩,解得111a k m b a ⎧=−⎪⎨⎪=+⎩,∴31ax a m y =−++,当0x =,31y a =+,则()01P a +,,∴()11122PGH m m a S a a a a ⎡−⎤⎛⎫=⨯−⨯+−= ⎪⎢⎥⎝⎭⎣⎦△; ∴PGH △的面积不变;(3)解:直线PH 与BC 边的交点在函数2y 的图像上,理由如下:设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b a m a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩, ∴1ax a a m y +−=+,当x m a =−,()11y am a a a m ⨯+=−+=−,∴直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,∴直线PH 与BC 边的交点在函数2y 的图像上.【点睛】本题考查了正方形的性质,一次函数解析式,反比例函数解析式,交点坐标.解题的关键在于对知识的熟练掌握与灵活运用.(1)求一次函数和反比例函数的表达式; (2)求OAB 的面积;(3)过动点()0T t ,作x 轴的垂线l ,l 与一次函数y x m =−+和反比例函数ky x=的图象分别交于当M 在N 的上方时,请直接写出t 的取值范围.【答案】(1)一次函数的解析式为3y x =−+,反比例函数的解析式为2y x =(2)32(3)0t <或12t << 【分析】(1)把()1,2A 分别代入一次函数和反比例函数求出m k 、的值即可得到答案;(2)联立32y x y x =−+⎧⎪⎨=⎪⎩求出点B 的坐标,令直线AB 与x 交于点C ,由直线AB 求出点C 的坐标,最后由1122AOBAOCBOCA B SSSOC y OC y =−=⋅⋅−⋅⋅,进行计算即可得到答案;(3)直接由函数图象即可得到答案. 【详解】(1)解:把()1,2A 代入一次函数y x m =−+,得12m −+=, 解得:3m =,∴一次函数的解析式为:3y x =−+,把()1,2A 代入反比例函数ky x =,得21k =,解得:2k =,∴反比例函数的解析式为:2y x =;(2)解:联立32y x y x =−+⎧⎪⎨=⎪⎩,解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,()21B ∴,,令直线AB 与x 交于点C ,如图,,当0y =时,30x −+=, 解得:3x =, ()30C ∴,,11113323122222AOBAOCBOCA B SS SOC y OC y ∴=−=⋅⋅−⋅⋅=⨯⨯−⨯⨯=(3)解:由图象可得:,当M 在N 的上方时,t 的取值范围为:0t <或12x <<.【点睛】本题考查了求反比例函数的解析式、求一次函数的解析式、反比例函数与一次函数的交点问题,熟练掌握反比例函数和一次函数的图象与性质,是解题的关键.(1)当气球内的气压超过150KPa 少时气球不会爆炸(球体的体积公式(2)请你利用p 与V 的关系试解释为什么超载的车辆容易爆胎.【答案】(1)气球的半径至少为0.2m 时,气球不会爆炸; (2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎 【分析】(1)设函数关系式为k p =,用待定系数法可得 4.8p V =,即可得当150p =时, 4.80.032150V ==,从而求出0.2r =;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎. 【详解】(1)设函数关系式为kp V =, 根据图象可得:1200.04 4.8k pV ==⨯=, ∴4.8p V =,∴当150p =时,4.80.032150V ==,∴3430.0323r ⨯=,解得:0.2r =,4.80k =>,p ∴随V 的增大而减小,∴要使气球不会爆炸,0.032V ≥,此时0.2r ≥, ∴气球的半径至少为0.2m 时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.【点睛】本题考查反比例函数的应用,涉及立方根等知识,解题的关键是读懂题意,掌握待定系数法求出反比例函数的解析式.轴的对称点,OAC 的面积是【答案】(1)y x =(2)(2P −++或(2P −−−【分析】(1)设,k A m m ⎛⎫ ⎪⎝⎭,可得,k C m m ⎛⎫− ⎪⎝⎭,结合OAC 的面积是8.可得()182k m m m +=,从而可得答案;(2)先求解()2,4A ,()2,4C −,可得直线为28y x =+,联立828y x y x ⎧=⎪⎨⎪=+⎩,再解方程组即可.【详解】(1)解:∵点A 在反比例函数(0)ky k x =≠的图象上,∴设,k A m m ⎛⎫⎪⎝⎭,∵点C 是点A 关于y 轴的对称点,∴,k C m m ⎛⎫− ⎪⎝⎭, ∵OAC 的面积是8.∴()182k m m m +=,解得:8k =;∴反比例函数解析式为:8y x =;(2)∵点A 的横坐标为2时, ∴842A y ==,即()2,4A ,则()2,4C −,∵直线2y x b =+过点C , ∴44b −+=, ∴8b =,∴直线为28y x =+, ∴828y x y x ⎧=⎪⎨⎪=+⎩,解得:24x y ⎧=−+⎪⎨=+⎪⎩或24x y ⎧=−−⎪⎨=−⎪⎩,经检验,符合题意;∴(2P −++或(2P −−−.【点睛】本题考查的是一次函数与反比例函数的综合应用,轴对称的性质,一元二次方程的解法,熟练的利用图形面积建立方程求解是解本题的关键.(1)求反比例函数的表达式;(2)点D 在反比例函数图象上,且横坐标大于3OBDS=【答案】(1)4y x =(2)132y x =−+【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标,代入ky x =求出k ;(2)设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,根据OBD OBH BHD ODH S S S S =+−V V V V 面积列方程,求出点D 坐标,再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形, ∴4OABC S xy ==正方形, ∴4k =;即反比例函数的表达式为4y x =.(2)解:设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,点()2,2B ,4,D a a ⎛⎫ ⎪⎝⎭,(),0H a ,∴12OBH S OH AB a=⋅=V 1144(2)(2)222BHD a S DH AH a a a −=⋅=⋅⋅−=V ,122ODH S OH DH =⋅=V3OBD OBH BHD ODH S S S S =+−=V V V V∴4(2)232a a a −+−=,解得:14a =,21a =−,经检验4a =,是符合题意的根,即点()4,1D ,设直线BD 的函数解析式为y kx b =+,得∶ 2241k b k b +=⎧⎨+=⎩,解得:123k b ⎧=−⎪⎨⎪=⎩,即:直线BD 的函数解析式为132y x =−+.【点睛】本题考查了反比例函数的几何意义和待定系数法求一次函数解析式,反比例函数ky x =图象上任意一点做x 轴、y 轴的垂线,组成的长方形的面积等于k,灵活运用几何意义是解题关键.2(1)求反比例函数的解析式;(2)点C 在这个反比例函数图象上,连接【答案】(1)8y x =(2)()4,2C【分析】(1)利用正切值,求出4OB =,进而得到()2,4A ,即可求出反比例函数的解析式;(2)过点A 作AE x ⊥轴于点E ,易证四边形ABOE 是矩形,得到2OE =,4AE =,再证明AED △是等腰直角三角形,得到4DE =,进而得到()6,0D ,然后利用待定系数法求出直线AD 的解析式为6y x =−+,联立反比例函数和一次函数,即可求出点C 的坐标. 【详解】(1)解:AB y ⊥轴,90ABO ∴∠=︒,1tan 2AOB =∠,12AB OB ∴=,2AB =,4OB ∴=,()2,4A ∴,点A 在反比例函数()0ky x x =>的图象上,248k ∴=⨯=,∴反比例函数的解析式为8y x =;(2)解:如图,过点A 作AE x ⊥轴于点E ,90ABO BOE AEO ∠=∠=∠=︒,∴四边形ABOE 是矩形,2OE AB ∴==,4OB AE ==,45ADO ∠=︒,AED ∴是等腰直角三角形, 4DE AE ∴==,246OD OE DE ∴=+=+=,()6,0D ∴,设直线AD 的解析式为y kx b =+,2460k b k b +=⎧∴⎨+=⎩,解得:16k b =−⎧⎨=⎩, ∴直线AD 的解析式为6y x =−+,点A 、C 是反比例函数8y x =和一次函数6y x =−+的交点,联立86y x y x ⎧=⎪⎨⎪=−+⎩,解得:24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,()2,4A , ()4,2C ∴.【点睛】本题是反比例函数综合题,考查了锐角三角函数值,矩形的判定和性质,待定系数法求函数解析式,反比例函数和一次函数交点问题等知识,求出直线AD 的解析式是解题关键.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数的部分时(点M 可与点,D E 重合)【答案】(1)反比例函数解析式为y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案. 【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点, ∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0ky x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =, ∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合), ∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.【答案】(1)反比例函数的表达式为y x =−;一次函数的表达式为22y x =−+(2)142BC =【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的表达式为1y =,再分别求得B C 、的坐标,据此即可求解.【详解】(1)解:∵反比例函数()0ky x x =<的图象经过点()1,4A −,∴144k =−⨯=−, ∴反比例函数的表达式为4y x =−;∵一次函数2y x m =−+的图象经过点()1,4A −,∴()421m=−⨯−+,∴2m =,∴一次函数的表达式为22y x =−+; (2)解:∵1OD =, ∴()01D ,,∴直线BC 的表达式为1y =, ∵1y =时,14x =−,解得4x =−,则()41B −,,∵1y =时,122x =−+,解得12x =,则112C ⎛⎫ ⎪⎝⎭,,∴()114422BC =−−=.【点睛】本题考查一次函数、反比例函数图象上点的坐标特征,待定系数法是求函数解析式的基本方法.(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积; (3)请根据图象直接写出不等式【答案】(1)12y x =−,32y x =−+(2)9(3)<2x −或04x <<【分析】(1)把点B 代入反比例函数()0ky k x =≠,即可得到反比例函数的解析式;把点A 代入反比例函数,即可求得点A 的坐标;把点A 、B 的坐标代入一次函数一次函数()0y ax b a =+<即可求得a 、b 的值,从而得到一次函数的解析式;(2)AOB 的面积是AOC 和BOC 的面积之和,利用面积公式求解即可;(3)利用图象,找到反比例函数图象在一次函数图象下方所对应的x 的范围,直接得出结论. 【详解】(1)∵点()4,3B −在反比例函数ky x =的图象上,∴34k −=, 解得:12k =− ∴反比例函数的表达式为12y x =−.∵(),3A m m −在反比例函数12y x =−的图象上,∴123m m =−−,解得12m =,22m =−(舍去).∴点A 的坐标为()2,6−.∵点A ,B 在一次函数y ax b =+的图象上,把点()2,6A −,()4,3B −分别代入,得2643a b a b −+=⎧⎨+=−⎩,解得323a b ⎧=−⎪⎨⎪=⎩,∴一次函数的表达式为332y x =−+; (2)∵点C 为直线AB 与y 轴的交点,∴把0x =代入函数332y x =−+,得3y = ∴点C 的坐标为()0,3 ∴3OC =,∴AOB AOC BOC SS S =+ 1122A B OC x OC x =⋅⋅+⋅⋅11323422=⨯⨯+⨯⨯9=.(3)由图象可得,不等式k ax b x <+的解集是<2x −或04x <<.【点睛】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积,函数与不等式的关系,求出两个函数解析式是解本题的关键.。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
中考数学《反比例函数》专项练习(附答案解析)
中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。
2022年反比例中考解答题及解析
2022年反比例中考解答题1.(2022年广州市中考)某燃气公司计划在地下修建一个容积为V (V 为定值,単位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2) 与其深度d (单位:m )是反比例函数关系,它的图象如图10所示。
(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d ≤25,求储存室的底面积S 的取值范围。
2.(2022年百色市中考)已知:点 A (1,3)是反比例函数1ky x=上 (k ≠0)的图象与直线 2y mx = ( m ≠0)的一个交点. (1)求 k 、 m 的值:(2)在第一象限内,当 21>y y 时,请直接写出x 的取值范围3.(2022年广西柳州市中考)如图,在平面直角坐标系中,一次函数y =k 1x +b (k 1≠0)的图象与反比例函数(k 2≠0)的图象相交于A (3,4),B (﹣4,m )两点.(1)求一次函数和反比例函数的解析式;(2)若点D 在x 轴上,位于原点右侧,且OA =OD ,求△AOD 的面积.4.(贵阳市2022年中考)一次函数3--=x y 的图象与反比例函数xky =的图象相交于 A (-4,m ),B (m ,-4)两点。
(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x 的取值范围。
5.(2022年湖北省仙桃市中考)如图,OA=OB,∠AOB=90°,点A,B分别在函数y=(x>0)和y=(x>0)的图象上,且点A的坐标为(1,4).(1)求k1,k2的值;(2)若点C,D分别在函数y=(x>0)和y=(x>0)的图象上,且不与点A,B重合,是否存在点C,D,使得△COD≌△AOB.若存在,请直接写出点C,D的坐标;若不存在,请说明理由.6.(2022年衡阳市中考)如图,反比例函数myx=的图象与一次函数y kx b=+的图象相交于A(3,1),B(1-,n)两点.(1)求反比例函数和一次函数的关系式:(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.7.(2022年苏州市中考)如图,一次函数y =kx +2(k ≠0)的图像与反比例函数y =mx(k ≠0,x >0)的图像交于点A (2,n ),与y 轴交于点B ,与x 轴交于点C (-4,0). (1)求k 与m 的值;(2)P (a ,0)为x 轴上的一动点,当△APB 的面积为72时,求a 的值.8.(2022年江西省中考)如图,点(,4)A m 在反比例函数(0)k y x x=>的图象上,点B 在y轴上,2OB =,将线段AB 向右下方平移,得到线段CD ,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且1OD =.(1)点B 的坐标为 ,点D 的坐标为 ,点C 的坐标为 (用含m 的式子表示); (2)求k 的值和直线AC 的表达式.9.(2022年赤峰市中考)阅读下列材料定义运算:min ,a b ,当a b ≥时,min ,a b b =;当a b <时,min ,a b a =. 例如:min 1,31-=-;min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________②min 4-=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,()()2min,213kx b x x x x-+=+--.求这两个函数的解析式.10.(2022年山东省聊城市中考)如图,直线y =px +3(p ≠0)与反比例函数y =(k >0)在第一象限内的图象交于点A (2,q ),与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线y =px +3于点E ,且S △AOB :S △COD =3:4. (1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.11.(2022年山东省泰安市中考)如图,点A 在第一象限,AC ⊥x 轴,垂足为C ,OA =2√5,tanA =12,反比例函数y =kx 的图象经过OA 的中点B ,与AC 交于点D .(1)求k 值;(2)求△OBD 的面积.12.(2022年上海市中考)一个一次函数的截距为-l ,且经过点A (2,3).(1)求这个一次函数的解析式;(2)点A ,B 在某个反比例函数上,点B 横坐标为6,将点B 向上平移2个单位得到点C ,求cos ∠ABC 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数经典中考例题解析二
一、选择题(每小题3分,共30分)
1、反比例函数y =
x
n 5
图象经过点(2,3),则n 的值是( ).
A 、-2
B 、-1
C 、0
D 、1
2、若反比例函数y =
x
k
(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).
A 、(2,-1)
B 、(-
2
1
,2) C 、(-2,-1) D 、(
2
1
,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )
4、若y 与x 成正比例,x 与z 成反比例,则y 与
z 之间的关系是( ).
A 、成正比例
B 、成反比例
C 、不成正比例也不成反比例
D 、无法确定
5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =
x
k
满足( ).
A 、当x >0时,y >0
B 、在每个象限内,y 随x 的增大而减小
C 、图象分布在第一、三象限
D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂
线PQ 交双曲线y =
x
1
于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).
A 、逐渐增大
B 、逐渐减小
C 、保持不变
D 、无法确定
A .
B .
C .
.
7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.
ρ与V 在一定范围内满足ρ=
V
m ,它的图象如图所示,则该
气体的质量m 为( ).
A 、1.4kg
B 、5kg
C 、6.4kg
D 、7kg
8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x
1
的图象上,则y 1,y 2,y 3的大小关系是( ).
A 、y 1>y 2>y 3
B 、y 1<y 2<y 3
C 、y 1=y 2=y 3
D 、y 1<y 3<y 2
9、已知反比例函数y =
x
m
21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).
A 、m <0
B 、m >0
C 、m <2
1 D 、m >
2
1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).
A 、x <-1
B 、x >2
C 、-1<x <0或x >2
D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)
11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式
为 .
12、已知反比例函数
x
k
y =
的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).
13、若反比例函数y =x
b 3
-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .
14、反比例函数y =(m +2)x m
2
-
10的图象分布在第二、四象限内,则m 的值为 .
15、有一面积为S 的梯形,其上底是下底长的3
1
,若下底长为x ,高为y ,则y 与x 的函数关系是 .
16、如图,点M 是反比例函数y =
x
a
(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .
17、使函数y =(2m 2-7m -9)x m
2
-
9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则
可列方程(不等式组)为 .
18、过双曲线y =
x
k
(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线
x
y 4
交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.
20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、
y 轴上,点B 的坐标为B (-
3
20
,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .
三、解答题(共60分)
21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.
23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =
x
k
在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+
1
y k ;(2)过B 作BC ⊥x 轴于C ,当m =4时,
求△BOC 的面积.
24、(10分)如图,已知反比例函数y =-
x
8
与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的
纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.
25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =x
k
的图象交于M 、N 两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.
26、(12分)如图, 已知反比例函数y =
x
k
的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式;(2)求△MON 的面积; (3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.
参考答案
一、选择题
1、D ;
2、A ;
3、C ;
4、B ;
5、D ;
6、C
7、D ;
8、B ;
9、D ; 10、D . 二、填空题
11、y =
x
1000
; 12、减小; 13、5 ; 14、-3 ;15、y =
x
s 23 ; 16、y =-
x
5
; 17、⎩⎨⎧---=+-0
97211992
2>m m m m ; 18、|k|; 19、 20; 20、y =-x 12
.
三、解答题
21、y =-
x
6
. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =
x
2
(x >0). 23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =
x
k
上,故x 1=1
y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+
1
y k ; (2)△BOC 的面积为2.
24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;
(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =
21|OM|·|y A |+2
1|OM|·|y B |=21
×2×4+21×2×2=6.
25、(1)将N (-1,-4)代入y =
x
k ,得k =4.∴反比例函数的解析式为y =x 4
.将M (2,m )代
入y =x 4
,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨
⎧-==.
b ,a 22∴一次函数的解析式为y =2x -2.
(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.
26、解(1)由已知,得-4=
1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =2
4
=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22
⎩
⎨⎧-==b a ∴y =2x -2.
(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =2
1
OA ·MC +
21OA ·ND =21×1×2+2
1
×1×4=3. (3)将点P (4,1)的坐标代入y =
x
4
,知两边相等,∴P 点在反比例函数图象上。