反比例函数知识点归纳总结与典型例题(供参考)
(完整版)初中数学反比例函数知识点及经典例
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
反比例函数知识点归纳(重点)
A.第一、二、三象限
B.第一、二、四象限
C.第一、三、四象限
D.第二、三、四象限
〔6〕函数
和
〔k≠0〕,它们在同一坐标系内的图象大致是〔 〕.
-
. word.zl-
..
-
A.
B.
C.
D.
3.函数的增减性
〔1〕在反比例函数
〔 〕.
A.正数
B.负数
的图象上有两点 C.非正数
,
,且
D.非负数
,那么
的值为
PQC 的面积为 .
图1
图2
5.说明:
〔1〕双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个
分支分别讨论,不能一概而论.
〔2〕直线
与双曲线
的关系:
当
时,两图象没有交点;当
时,两图象必有两个交点,且这两个交点关于原点成中心对称.
〔3〕反比例函数与一次函数的联系.
〔四〕实际问题与反比例函数
1.求函数解析式的方法:
y 随 x 的增大而
〔填“增大〞或“减小〞〕.
注意,〔3〕中只有②是符合题意的,而③是在“每一个象限内〞 y 随 x 的增大而减小.
4.解析式确实定
〔1〕假设 与 成反比例, 与 成正比例,那么 y 是 z 的〔 〕.
A.正比例函数
B.反比例函数
C.一次函数
D.不能确定
〔2〕假设正比例函数 y=2x 与反比例函数 们的另一个交点为________.
-
. word.zl-
..
-
4.k 的几何意义
如图1,设点 P〔a,b〕是双曲线
上任意一点,作 PA⊥x 轴于 A 点,PB⊥y 轴于 B 点,那么矩形 PBOA 的面
反比例函数知识点总结典型例题大全
反比例函数知识点总结典型例题大全一、反比例函数的基本概念反比例函数是一种特殊的函数,其函数关系为y=k/x(k≠0)。
其中,k被称为反比例函数的比例常数,x和y分别为自变量和因变量。
反比例函数的图像是一个开口朝下(或者朝上)的双曲线,在直角坐标系中呈现为一组对称性质。
二、反比例函数的特征1. 反比例函数的图像反比例函数的图像是一个以原点为中心对称的双曲线,图像的形状取决于比例常数k的正负和大小。
当k>0时,图像开口朝上;当k<0时,图像开口朝下。
2. 反比例函数的定义域和值域反比例函数的定义域是除去x=0的所有实数集,值域是除去y=0的所有实数集。
3. 反比例函数的性质反比例函数的性质主要包括:随着x的增大,y值逐渐减小;当x趋近于0时,y值趋近于无穷大(或者负无穷大);同理,当x趋近于无穷大时,y值趋近于0。
三、反比例函数的典型例题1. 已知反比例函数y=k/x(k≠0)的图象关于x轴对称,求该反比例函数的解析式。
解:由于函数图象关于x轴对称,所以当x不等于0时,k/x和-k/x的图象关于x轴对称。
由此可得k/x=-k/x,即k=-k。
解得k=0。
所以该反比例函数的解析式为y=0,即y=0。
2. 若y是反比例函数y=k/x的函数,且满足y=2时,x=4。
求k的值。
解:根据反比例函数的定义,y=k/x。
已知y=2,x=4。
将这组值代入反比例函数的定义中,得到2=k/4,解得k=8。
所以k=8。
3. 如果反比例函数y=k/x的图象经过点(2, 6),求k的值。
解:根据反比例函数的定义,点(2, 6)满足y=k/x。
将点(2, 6)代入反比例函数的定义中,得到6=k/2,解得k=12。
所以k=12。
四、反比例函数的应用反比例函数在实际生活中有许多应用。
在电阻和电流的关系中,电阻是和电流成反比例关系的。
又在人口和土地的关系中,人口密度和土地面积也呈现出反比例关系。
五、个人观点和理解反比例函数作为数学中的重要概念,对于学习数学的同学来说是一个非常基础和重要的内容。
初中数学反比例函数知识点及经典例题
初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。
反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。
一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。
一般地,反比例关系式可以表示为:y=k/x,其中k为常数。
二、反比例函数的性质1.反比例函数的定义域是非零实数集。
2.反比例函数的值域是非零实数集。
3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。
4.当自变量等于1时,反比例函数的值等于常数k。
5.反比例函数的平行于y轴的渐近线是x=0。
三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。
当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。
反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。
四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。
例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。
解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。
例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。
例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。
总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
九年级数学反比例函数知识点归纳和典型例题(附答案解析)
九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
反比例函数知识点归纳和典型例题
反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
(完整版)中考——反比例函数知识点【经典】总结
反比例函数一、基础知识1.定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成xk y =k o k ≠x ky =kxy =1-2.反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分y k k 母中含有自变量,且指数为1.x ⑵比例系数0≠k ⑶自变量的取值为一切非零实数。
x ⑷函数的取值是一切非零实数。
y 3.反比例函数的图像⑴图像的画法:描点法①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所xky =k 0≠k 0≠x 0≠y 以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是或)。
x y =x y -=⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引x k y =0≠k k xky =0≠k 轴轴的垂线,所得矩形面积为。
x y k 4.反比例函数性质如下表:的取值k 图像所在象限函数的增减性ok >一、三象限在每个象限内,值随的增大而减小y xo k <二、四象限在每个象限内,值随的增大而增大y x 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)k 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
xky =7. 反比例函数的应用题型总结:一.反比例函数的图象与性质【例1】对与反比例函数,下列说法不正确的是( )xy 2=A .点()在它的图像上 1,2--B .它的图像在第一、三象限C .当时,0>x 的增大而增大随x yD .当时,0<x 的增大而减小随x y 【例2】已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( ()0ky k x=≠)A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)【例3】在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系x k y 1=xk y 2=1k 2k 一定是( )A. +=0B. ·<0C. ·>0D.=1k 2k 1k 2k 1k 2k 1k 2k 【例4 】已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点3=b xby +=1y x 在双曲线上,求a 是多少?()3,a xb y +=1【例5】两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示, 点P 在y=kx的图像上,PC⊥x 轴于点C ,交y=1x 的图像于点A ,PD⊥y 轴于点D ,交y=1x的图像于点B , 当点P 在y=kx的图像上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上, 少填或错填不给分).二.反比例函数的判定l t y ABC【例1】若与成反比例,与成正比例,则是的( )y x x z y z A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定【例2】如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数图象大致为( )y x 三.反比例函数的解析式特征(的指数,值与图像分布关系):x k 【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?222-+=k k kxy 【例2】如果函数22(1)my m x -=-为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1四.比较反比例函数图象上点的横纵坐标大小关系:【例1】在反比例函数的图像上有三点,,,,,。
初中数学反比例函数知识点及经典例题
反比例函数一、基础知识1. 定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成2. 反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
3. 反比例函数的图像⑴图像的画法:描点法1 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)2 描点(有小到大的顺序)3 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是或)。
⑷反比例函数()中比例系数的几何意义是:过双曲线()上任意引轴轴的垂线,所得矩形面积为。
4.反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
7. 反比例函数的应用二、例题【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数,()即()又在第二,四象限内,则可以求出的值【答案】由反比例函数的定义,得:解得时函数为【例2】在反比例函数的图像上有三点,,,,,。
若则下列各式正确的是()A. B. C. D.【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。
解法一:由题意得,,,所以选A解法二:用图像法,在直角坐标系中作出的图像描出三个点,满足观察图像直接得到选A解法三:用特殊值法【例3】如果一次函数相交于点(),那么该直线与双曲线的另一个交点为()【解析】【例4】如图,在中,点是直线与双曲线在第一象限的交点,且,则的值是_____.图解:因为直线与双曲线过点,设点的坐标为.则有.所以.又点在第一象限,所以.所以.而已知.所以.。
(word完整版)初中数学反比例函数知识点及经典例题,文档
反比率函数一、基础知识1. 定义:一般地,形如 yk〔 k 为常数, k o 〕的函数称为反比率函数。
ykxx还可以够写成 y kx 12. 反比率函数剖析式的特色:⑴等号左边是函数 y ,等号右边是一个分式。
分子是不为零的常数 k 〔也叫做比率系数 k 〕,分母中含有自变量 x ,且指数为 1. ⑵比率系数 k 0⑶自变量 x 的取值为所有非零实数。
⑷函数 y 的取值是所有非零实数。
3. 反比率函数的图像⑴图像的画法:描点法① 列表〔应以 O 为中心,沿 O 的两边分别取三对或以上互为相反的数〕 ② 描点〔有小到大的序次〕③ 连线〔从左到右圆滑的曲线〕 ⑵反比率函数的图像是双曲线,yk〔 k 为常数, k 0 〕中自变量 x 0 ,x函数值 y0 ,所以双曲线是不经过原点, 断开的两个分支, 延伸局部逐渐凑近坐标轴,但是永远不与坐标轴订交。
⑶反比率函数的图像是是轴对称图形〔对称轴是y x 或 y x 〕。
⑷反比率函数 yk〔 k 0 〕中比率系数 k 的几何意义是:过双曲线 ykxx〔 k 0 〕上任意引 x 轴 y 轴的垂线,所得矩形面积为 k 。
4.反比率函数性质以下表:k 的取值 图像所在象限函数的增减性ko 一、三象限在每个象限内, y 值随 x 的增大而减小ko二、四象限在每个象限内, y 值随 x 的增大而增大5. 反比率函数剖析式确实定:利用待定系数法〔只需一对对应值或图像上一个点的坐标即可求出 k 〕6.“反比率关系〞与“反比率函数〞 :成反比率的关系式不用然是反比率函数 ,但是反比率函数 y k中的两个变量必成反比率关系。
x7. 反比率函数的应用二、例题【例 1】若是函数 y kx2k2k 2的图像是双曲线,且在第二,四象限内,那么的值是多少?【剖析】有函数图像为双曲线那么此函数为反比率函数y k,〔 k0〕即y kx1 x(k 0 〕又在第二,四象限内,那么 k 0能够求出的值【答案】由反比率函数的定义,得:2k 2k21解得 k1或 k12 k0k0k1k1时函数 y kx2 k2k 2为 y1x【例 2】在反比率函数 y 1 的图像上有三点x1, y1, x2, y2, x3, y3。
初中数学反比例函数知识点及经典例题
初中数学反比例函数知识点及经典例题一、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是一个非零常数,x和y 是实数。
二、反比例函数的图像特征1.当x=0时,反比例函数无定义;2.当x≠0时,随着x的增大,函数值y逐渐减小;3.反比例函数的图像通常是一条平面上的双曲线。
三、反比例函数的性质1. 对于反比例函数 y = k/x,k 是一个非零常数,任意给定的 x 和y,都有 xy = k 成立;2.如果反比例函数过点(x1,y1),则对于任意其它点(x2,y2),都有x1y1=x2y2成立;3.反比例函数的图像关于原点对称;4.反比例函数的导数为负。
四、反比例函数的应用反比例函数在实际生活中有很多应用,例如:1.工程中的消耗问题:项工程需要的材料数量与施工时间成反比;2.速度和时间的关系:当物体行驶的速度越快时,到达目的地所需时间越短;3.汽车的油耗问题:汽车行驶的路程与每升汽油的价格呈反比;4.人口增长与资源消耗:人口越多,资源消耗越快。
五、经典例题1.小明开车从A地到B地,全程360公里。
如果他保持每小时60公里的速度,需要多长时间到达目的地?解答:根据题意可知,小明的速度和到达目的地所需的时间成反比。
设到达目的地所需的时间为t,则有60t=360,解得t=6、所以小明需要6小时到达目的地。
2.水龙头4分钟可以装满一个水箱,水箱在3分钟内漏掉了60%的水,那么继续放水多少分钟可以装满这个水箱?解答:设继续放水的时间为t。
根据题意可知,放水的时间t和装满水箱的时间成反比。
所以有4×(1-60%)=(3+t)×100%,化简得到t=1.2、所以继续放水1.2分钟可以装满水箱。
3.假设一个圆的周长和面积的比值为k,如果圆的半径扩大3倍,求此时新圆的周长和面积的比值。
解答:设新圆的半径为r,则原圆的半径为(1/3)r。
原圆的周长和面积的比值为k,即2π(1/3)r/π((1/3)r)²=k。
中考一轮复习反比例函数(知识点梳理+典型例题 )
反比例函数一、反比例函数的概念:一般地,形如 y = xk ( k 是常数, k≠0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:① y = xk (k ≠ 0) , ② 指数形式:1(0)y kx k -=≠; ③ 乘积形式:(0)xy k k =≠ ※反比例函数解析式可写成xy= k (k≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于常数k(3)自变量x 的取值范围是0x ≠,函数y 的取值范围是0y ≠。
例:点A (-1,1)是反比例函数m y x=的图象上一点,则m 的值为( ) A. 0 B. -2 C. -1 D. 1二、反比例函数的图象(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴(坐标轴又称为双曲线的渐近线)。
三、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反之也成立。
※注:① 在利用反比例函数的增减性比较坐标大小时,一定通过画图解决,这是一个易错点);② 在反比例函数y 随x 的变化情况中一定注明在每一个象限内例1 已知反比例函数x y 2-=,下列结论不正确的是( )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2例2 若ab >0,则一次函数y=ax+b 与反比例函数y=ab x在同一坐标系数中的大致图象是( ) A .B .C . D .例3 若点(﹣3,y 1),(﹣2,y 2),(﹣1,y 3)在反比例函数y=﹣图象上,则下列结论正确的是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1变式训练:1.正比例函数y=kx 和反比例函数21k y x+=-(k 是常数且k≠0)在同一平面直角坐标系中的图象可能是( ) A .B .C .D . 2.反比例函数y=m x的图象如图所示,以下结论: ①常数m <-1; ②在每个象限内,y 随x 的增大而增大; ③若A (-1,h ),B (2,k )在图象上,则h <k ; ④若P (x ,y )在图象上,则P′(-x ,-y )也在图象上.其中正确的是( )A .①②B .②③C .③④D .①④3.已知点A (1,m ),B (2,n )在反比例函数(0)k y k x=<的图象上,则( ) A. 0m n << B. 0n m << C. 0m n >> D. 0n m >>(4)k 的几何意义:如图,设点P (a ,b )是反比例函数y=xk 上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值)例1 如图,点A 是反比例函数(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为______.例2 反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ; ②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3变式训练:1、如图,点A 是反比例函数y=k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为( )A. 6B. 3C. ﹣6D. ﹣32、如图,直线(0)x t t =>与反比例函数k y x =(x >0)、1y x-=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A. 2B. 3C. 4D. 53、如图,已知双曲线y =k x(k>0)与直角三角形OAB 的直角边AB 相交于点C ,且BC =3AC ,若△OBC 的面积为3,则k =_________.4.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=的图象上,则k 的值为 .四、直线与双曲线相交(1)交点坐标即为直线关系式和双曲线关系式联立所得方程组的解。
(完整word版)反比例函数知识点及经典例题
反比率函数一、基础知识1. 定义:一般地,形如yk ( k 为常数, ko )的函数称为反比率函数。
x( 自变量x 的取值 :xo )2. 反比率函数的等价形式: ① y k( k o ) ② y kx 1 ( k o) ③xy=k( ko)x3. 反比率函数的图像⑴图像的画法:描点法① 列表(应以 O 为中心,沿 O 的两边分别取三对或以上互为相反的数)② 描点(有小到大的次序) ③ 连线(从左到右圆滑的曲线) ⑵反比率函数的图像 :①反比率函数的图像是双曲线,由两条曲线构成。
②双曲线永久不与坐标轴订交,但无穷凑近坐标轴。
③反比率函数的图像是轴对称图形 (对称轴是 y x 或 y x ),也是中心对称图形(原点)。
4.反比率函数性质以下表:k 的取值 图像所在象限函数的增减性ko 一、三象限在每个象限内 , y 值随 x 的增大而减小ko二、四象限在每个象限内 , y 值随 x 的增大而增大5. 反比率函数分析式确实定:① 利用待定系数法(只要一对对应值或图像上一个点的坐标即可求出 k )② k 的几何意义。
6.反比率函数 yk( k0 )中比率系数 k 的几何意义是: 过双曲线 ykxx( k 0)上随意引 x 轴 y 轴的垂线,所得矩形面积为 k 。
7.反比率函数的应用二、例题【例 1】假如函数 y kx2k2k 2的图像是双曲线,且在第二,四象限内,那么的值是多少?【分析】有函数图像为双曲线则此函数为反比率函数y k,( k0)即y kx1 x(k 0 )又在第二,四象限内,则 k 0能够求出的值【答案】由反比率函数的定义,得:2k 2k21解得 k1或 k12 k 0k0k1k1时函数 y kx2 k2k 2为 y1x【例 2】在反比率函数 y 1 的图像上有三点x1, y1, x2, y2, x3, y3。
x若 x1x20x3则以下各式正确的选项是()A.y3y1y2B. y3y2y1C. y1 y2 y3 D .y1y3y2【分析】可直接以数的角度比较大小,也可用图像法,还可取特别值法。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
(完整版)反比例函数知识点归纳总结与典型例题
反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。
x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。
a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。
x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。
反比例函数知识点及经典例题
C、 y1 y2 y3
D、 y1 y3 y2
知识点五:反比例函数 y 在反比例函数 y
k ( k 为常数, k o )中 k 的几何意义 x
k ( k o )的图象上任取一点,过这一点分别作 x 轴、y x
轴的平行线,与坐标轴围成的矩形面积总是等于常量 k
2
反比例函数知识点总结及典型练习
7. 如图所示,一次函数 y=ax+b 的图象与反比例函数 y= 的图象交于 A、B 1 两点,与 x 轴交于点 C.已知点 A 的坐标为(-2,1) ,点 B 的坐标为( ,m) . 2 (1)求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的 x 的取值范围.
的图象交 A、B 两
C.k =2,m =2
D.k =1,m =1
3
反比例函数知识点总结及典型练习
练习题
2 1.反比例函数 y 的图像位于( ) x A.第一、二象限 B.第一、三象限 C.第二、三象限
D.第二、四象限 ) D、不能确定
2.若 y 与 x 成反比例, x 与 z 成正比例,则 y 是 z 的( A、正比例函数 B、反比例函数 C、一次函数
1 m 的图象如图,则 m 的取值范围是___________. x
3 的图象上有三点 x1 , y1 , x2 , y2 , x3 , y3 ,若x1 x2 0 x3 , x 则下列各式正确的是( )
例 6: 在反比例函数 y
A、 y3 y1 y2
B、 y3 y2 y1
2
m1
是关于 x 的反比例函数?并求其表达
知识点二:反比例函数表达式的确定 求反比例函数表达式可用待定系数法,由于只有一个参数 k,因此只需要利 用一组对应值,就可以求出 k 的值。 k 例 3:已知反比例函数 y 的图象经过点(2,-2) ,求 k 的值。 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点归纳总结与典型例题
(一)反比例函数的概念: 知识要点:
1、一般地,形如 y =
x
k
( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;
(2)解析式有三种常见的表达形式:
(A )y =
x
k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1
(k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+=
x y ③21x y = ④.x y 21
-=⑤2
x y =-⑥13y x = ;其中是y 关
于x 的反比例函数的有:_________________。
(2)函数2
2)2(--=a x
a y 是反比例函数,则a 的值是( )
A .-1
B .-2
C .2
D .2或-2 (3)若函数1
1-=
m x y (m 是常数)是反比例函数,则m =________,解析式为________.
(4)反比例函数(0k
y k x
=
≠)
的图象经过(—2,52, n ), 求1)n 的值; 2)判断点B (24,2-
(二)反比例函数的图象和性质: 知识要点:
1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。
3、增减性:(1)当k>0时,_________________,y 随x 的增大而________;
(2)当k<0时,_________________,y 随x 的增大而______。
4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交
5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x
6
-)来说,它们是关于x 轴,y 轴___________。
例题讲解:
反比例函数的图象和性质:
(1)写出一个反比例函数,使它的图象经过第二、四象限 .
(2)若反比例函数
2
2
)12(--=m
x m y 的图象在第二、四象限,则m 的值是( )
A 、 -1或1;
B 、小于
1
2
的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4
y x
=-
D .12y x =.
(4)已知反比例函数2
y x
-=
的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <, 则12y y -的值是( )
A .正数
B .负数
C .非正数
D .不能确定 (5)若点(1x ,1y )、(2x ,2y )和(3x ,3y )分别在反比例函数2
y x
=- 的图象上,且 1230x x x <<<,则下列判断中正确的是( )
A .123y y y <<
B .312y y y <<
C .231y y y <<
D .321y y y << (6)在反比例函数x
k y 1
+=
的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>,则k 的取值范围是 .
(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:
甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: . (三)反比例函数与面积结合题型。
知识要点:
1、反比例函数与矩形面积: 若P (x ,y )为反比例函数x
k
y =(k≠0)图像上的任意一点如图1所示,过P 作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,求矩形PMON 的面积.
分析:S 矩形PMON =xy x y PN PM =⋅=⋅
∵x
k
y =, ∴ xy=k, ∴ S =k .
2、反比例函数与矩形面积: 若Q (x ,y )为反比例函数x
k
y =
(k≠0)图像上的任意一点如图2所示,过Q 作QA ⊥x 轴于A (或作QB ⊥y 轴于B ),连结QO ,则所得三角形的面积为:S △QOA =2
k (或S △QOB =
2
k ).说明:以上结论与点在反比例函数图像上
的位置无关.
(1)如图3,在反比例函数x
y 6
-
=(x <0)的图象上任取一点P ,过P 点分别作x 轴、y 轴的垂线,垂足分别为M 、N ,那么四边形PMON 的面积为 .
P y
x
O
M N
图1
O B
y
x
A
Q
图
P
y M x 0
N
M
y
N x
O
图4
(2)反比例函数
x
k
y=的图象如图4所示,点M是该函数图象上一点,MN⊥x轴,垂足为N.如果S△MON=2,这个反比例函数的解析式为______________
(3)如图5,正比例函数(0)
y kx k
=>与反比例函数
2
y
x
=的图象相交于A、C两点,过点A作AB⊥x轴于点B,连结BC.则ΔABC的面积等于()
A.1B.2C.4D.随k的取值改变而改变.
(4)如图6,A、B是函数
2
y
x
=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()
A.2
S=B.4
S=C.24
S
<<D.4
S>
(5)如图7,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数
x
y
x
y
2
4
=
-
=和的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为()
(四)一次函数与反比例函数
(1)一次函数y=﹣2x+1和反比例函数y=的大致图象是()
A B C D
(2)一次函数)0
(≠
+
=k
k
kx
y和反比例函数)0
(≠
=k
x
k
y在同一直角坐标系中的图象大致是( )
y
x
O
A
C
B
图6
图5 图7
(k1∙k2≠0)的图象如图所示,若y1>y2,则x的(3)一次函数y1=k1x+b和反比例函数y2=
取值范围是()
A、﹣2<x<0或x>1
B、﹣2<x<1
C、x<﹣2或x>1
D、x<﹣2或0<x<1
(4)正比例函数
2
x
y=和反比例函数
2
y
x
=的图象有个交点.
(5)正比例函数y=k1x(k1≠0)和反比例函数y=2
k
x
(k2≠0)的一个交点为(m,n),则另一个交点为_________. (6)设函数y=与y=x﹣1的图象的交点坐标为(a,B),则的值为
(7)如图,RtΔABO的顶点A是双曲线
k
y
x
=与直线y x m
=-+•在第二象限的交点,AB垂直x轴于B,且S △ABO
=
3
2
,则反比例函数的解析式.
(8)若反比例函数
x
k
y=与一次函数y=3x+b都经过点(1,4),则kb=________.
(9)如图,已知A (4,a),B (-2,-4)是一次函数y=kx+b的图象和反比例函数
y=-
x
m
的图象的交点.
(1)求反比例函数和一次函数的解祈式;
(2)求△A0B的面积.
(第(7)题)
2
k
x
(10)如图,在平面直角坐标系中,直线2
k y x =+
与双曲线k
y x =在第一象限交于点A ,与x 轴交于点C ,AB ⊥x
轴,垂足为B ,且AOB S Λ=1.求:(1)求两个函数解析式; (2)求△ABC 的面积.
(11)平面直角坐标系中,直线AB 交x 轴于点A ,交y 轴于点B 且与反比例函数图象分别交于C 、D 两点,过点C 作CM ⊥x 轴于M ,AO=6,BO=3,CM=5.求直线AB 的解析式和反比例函数解析式.。