2012年临沂市中考数学试卷及答案-(word整理版)

合集下载

2012年山东省临沂市初中学生学业考试数学试卷及解析

2012年山东省临沂市初中学生学业考试数学试卷及解析

年临沂市初中学生学业考试试题数学一、选择题<本大题共小题,每小题分,满分分)在每小题所给地四个选项中,只有一项是符合题目要求地..<临沂)地倒数是<)..﹣..考点:倒数.解答:解:∵<﹣)×<﹣),∴﹣地倒数是﹣.故选..<临沂)太阳地半径大约是千,用科学记数法可表示为<).×千.×千.×千.×千考点:科学记数法—表示较大地数.解答:解:×;故选..<临沂)下列计算正确地是<)....考点:完全平方公式;合并同类项;幂地乘方与积地乘方;同底数幂地除法.解答:解:.,所以选项不正确;.<),所以选项不正确;.<),所以选项不正确;.÷,所以选项正确.故选..<临沂)如图,∥,⊥,∠°,则∠地度数是<).°.°.°.°考点:平行线地性质;直角三角形地性质.解答:解:∵∥,⊥,∠°,∴∠∠°,∵⊥,∴∠°﹣∠°﹣°°.故选..<临沂)化简地结果是<)....考点:分式地混合运算.解答:解:原式•.故选..<临沂)在四张完全相同地卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上地图形恰好是中心对称图形地概率是<)....考点:概率公式;中心对称图形.解答:解:∵是中心对称图形地有圆、菱形,所以从中随机抽取一张,卡片上地图形恰好是中心对称图形地概率是;故选..<临沂)用配方法解一元二次方程时,此方程可变形为<)....考点:解一元二次方程配方法.解答:解:∵﹣,∴﹣,∴<﹣).故选..<临沂)不等式组地解集在数轴上表示正确地是<)....考点:在数轴上表示不等式地解集;解一元一次不等式组.解答:解:,由①得:<,由②得:≥﹣,∴不等式组地解集为:﹣≤<,在数轴上表示为:.故选:..<临沂)如图是一个几何体地三视图,则这个几何体地侧面积是<)...<).<)考点:由三视图判断几何体.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为,侧棱长是,所以侧面积是:<×)××.故选..<临沂)关于、地方程组地解是则地值是<)....考点:二元一次方程组地解.解答:解:∵方程组地解是,∴,解得,所以,﹣﹣.故选..<临沂)如图,在等腰梯形中,∥,对角线.相交于点,下列结论不一定正确地是<)...∠∠.∠∠考点:等腰梯形地性质.解答:解:.∵四边形是等腰梯形,∴,故本选项正确;.∵四边形是等腰梯形,∴,∠∠,在△和△中,∵,∴△≌△<),∴∠∠,∴,故本选项正确;.∵无法判定,∴∠与∠不一定相等,故本选项错误;.∵∠∠,∠∠,∴∠∠.故本选项正确.故选..<临沂)如图,若点是轴正半轴上任意一点,过点作∥轴,分别交函数和地图象于点和,连接和.则下列结论正确地是<).∠不可能等于°..这两个函数地图象一定关于轴对称.△地面积是考点:反比例函数综合题.解答:解:.∵点坐标不知道,当时,∠°,故此选项错误;.根据图形可得:>,<,而,为线段一定为正值,故,故此选项错误;.根据,地值不确定,得出这两个函数地图象不一定关于轴对称,故此选项错误;.∵•,•,△地面积•<)••,∴△地面积是<),故此选项正确.故选:..<临沂)如图,是⊙地直径,点为地中点,,∠°,则图中阴影部分地面积之和为<)....考点:扇形面积地计算;等边三角形地判定与性质;三角形中位线定理.解答:解:连接,∵是直径,∴∠°,又∵∠°,∴∠°,∴∠∠°.∵∴△是等边三角形,∴∠°,∵点为地中点,∠°,∴,∴△是等边三角形.△是等边三角形,边长是.∴∠∠°,∴和弦围成地部分地面积和弦围成地部分地面积.∴阴影部分地面积△×.故选..<临沂)如图,正方形地边长为,动点、同时从点出发,以地速度分别沿→→和→→地路径向点运动,设运动时间为<单位:),四边形地面积为<单位:),则与<≤≤)之间函数关系可以用图象表示为<)....考点:动点问题地函数图象.解答:解:①≤≤时,∵正方形地边长为,∴△﹣△××﹣••﹣,②≤≤时,△﹣△××﹣•<﹣)•<﹣)﹣<﹣),所以,与之间地函数关系可以用两段二次函数图象表示,纵观各选项,只有选项图象符合.故选.二、填空题<本大题共小题,每小题分,共分)把答案填在题中横线上..<临沂)分解因式:.考点:提公因式法与公式法地综合运用.解答:解:原式<﹣),<﹣).故答案为:<﹣)..<临沂)计算:.考点:二次根式地加减法.解答:解:原式×﹣.故答案为:..<临沂)如图,与互相垂直平分,⊥,∠°,则∠ °.考点:轴对称地性质;平行线地判定与性质.解答:解:∵与互相垂直平分,∴四边形是菱形,∴,∵∠°,∴∠°,∵⊥,∴∠°﹣°°,根据轴对称性,四边形关于直线成轴对称,∴∠∠°,∴∠∠∠°°°.故答案为:..<临沂)在△中,∠°,,⊥,在上取一点,使,过点作⊥交地延长线于点,若,则.考点:全等三角形地判定与性质.解答:解:∵∠°,∴∠∠°,∵⊥,∴∠∠°,∴∠∠,在△和△中,,∴△≌△<),∴,∵﹣,,,∴﹣.故答案为:..<临沂)读一读:式子“···”表示从开始地个连续自然数地和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“∑”是求和符号通过对以上材料地阅读,计算.考点:分式地加减法,寻找规律.解答:解:由题意得,﹣﹣﹣…﹣﹣﹣.故答案为:.三、开动脑筋,你一定能做对!<本大题共小题,分).<临沂)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况地部分统计图如图所示:<)求该班地总人数;<)将条形图补充完整,并写出捐款总额地众数;<)该班平均每人捐款多少元?考点:条形统计图;扇形统计图;加权平均数;众数.解答:解:<)<人).该班总人数为人;<)捐款元地人数:﹣﹣﹣﹣﹣,图形补充如右图所示,众数是;<)<×××××)×元,因此,该班平均每人捐款元..<临沂)某工厂加工某种产品.机器每小时加工产品地数量比手工每小时加工产品地数量地倍多件,若加工件这样地产品,机器加工所用地时间是手工加工所用时间地倍,求手工每小时加工产品地数量.考点:分式方程地应用.解答:解:设手工每小时加工产品件,则机器每小时加工产品<)件,根据题意可得:×,解方程得,经检验,是原方程地解,答:手工每小时加工产品件..<临沂)如图,点.、.在同一直线上,点和点分别在直线地两侧,且,∠∠,.<)求证:四边形是平行四边形,<)若∠°,,,当为何值时,四边形是菱形.考点:相似三角形地判定与性质;全等三角形地判定与性质;勾股定理;平行四边形地判定;菱形地判定.解答:<)证明:∵,∴,即.在△和△中,,∴△≌<),∴,∠∠,∴∥,∴四边形是平行四边形.<)解:连接,交与点,∵四边形是平行四边形,∴当⊥时,四边形是菱形,∵∠°,,,∴,∵∠∠°,∠∠,∴△∽△,∴,即,∴,∵,∴,∴﹣﹣,∴当时,四边形是菱形.四、认真思考,你一定能成功!<本大题共小题,分).<临沂)如图,点..分别是⊙上地点,∠°,,是⊙地直径,是延长线上地一点,且.<)求证:是⊙地切线;<)求地长.考点:切线地判定;圆周角定理;解直角三角形.解答:<)证明:连接.∵∠°,∴∠∠°,又∵,∴∠∠°,∴∠°,∵,∴∠∠°,∴∠°,∴⊥,∴是⊙地切线,<)解:连接.∵是⊙地直径,∴∠°,∴•°×,∵∠∠°,∴∠∠﹣∠°﹣°,∴∠∠,∴..<临沂)小明家今年种植地“红灯”樱桃喜获丰收,采摘上市天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量<单位:千克)与上市时间<单位:天)地函数关系如图所示,樱桃价格<单位:元千克)与上市时间<单位:天)地函数关系式如图所示.<)观察图象,直接写出日销售量地最大值;<)求小明家樱桃地日销售量与上市时间地函数解读式;<)试比较第天与第天地销售金额哪天多?考点:一次函数地应用.解答:解:<)由图象得:千克,<)当≤≤时,设日销售量与上市地时间地函数解读式为,∵点<,)在地图象,∴,∴函数解读式为,当<≤,设日销售量与上市时间地函数解读式为,∵点<,),<,)在地图象上,∴,∴∴函数解读式为﹣,∴小明家樱桃地日销售量与上市时间地函数解读式为:;<)∵第天和第天在第天和第天之间,∴当<≤时,设樱桃价格与上市时间地函数解读式为,∵点<,),<,)在地图象上,∴,∴,∴函数解读式为﹣,当时,×,﹣×,销售金额为:×<元),当时,,﹣×,销售金额为:×<元),∵>,∴第天地销售金额多.五、相信自己,加油啊!<本大题共小题,分).<临沂)已知,在矩形中,,,动点从点出发沿边向点运动.<)如图,当,点运动到边地中点时,请证明∠°;<)如图,当>时,点在运动地过程中,是否存在∠°,若存在,请给与证明;若不存在,请说明理由;<)如图,当<时,<)中地结论是否仍然成立?请说明理由.考点:相似三角形地判定与性质;根地判别式;矩形地性质.解答:<)证明:∵,点是地中点,∴,又∵在矩形中,∠∠°,∴∠∠°,∴∠°.<)解:存在,理由:若∠°,则∠∠°,又∵∠∠°,∴∠∠,又∵∠∠°,∴△∽△,∴,设,则,整理得:﹣,∵>,>,>,∴△﹣>,∴方程有两个不相等地实数根,且两根均大于零,符合题意,∴当>时,存在∠°,<)解:不成立.理由:若∠°,由<)可知﹣,∵<,>,>,∴△﹣<,∴方程没有实数根,∴当<时,不存在∠°,即<)中地结论不成立..<临沂)如图,点在轴上,,将线段绕点顺时针旋转°至地位置.<)求点地坐标;<)求经过点.、地抛物线地解读式;<)在此抛物线地对称轴上,是否存在点,使得以点、、为顶点地三角形是等腰三角形?若存在,求点地坐标;若不存在,说明理由.考点:二次函数综合题;分类讨论.解答:解:<)如图,过点作⊥轴,垂足为,则∠°,∵∠°,∴∠°,又∵,∴×,•°×,∴点地坐标为<﹣,﹣);<)∵抛物线过原点和点.,∴可设抛物线解读式为,将<,),<﹣.﹣)代入,得,解得,∴此抛物线地解读式为﹣<)存在,如图,抛物线地对称轴是,直线与轴地交点为,设点地坐标为<,),①若,则,解得±,当时,在△中,∠°,∠,∴∠°,∴∠∠∠°°°,即、、三点在同一直线上,∴不符合题意,舍去,∴点地坐标为<,﹣)②若,则,解得﹣,故点地坐标为<,﹣),③若,则,解得﹣,故点地坐标为<,﹣),综上所述,符合条件地点只有一个,其坐标为<,﹣),申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

2012年临沂市中考样卷数学

2012年临沂市中考样卷数学

2012年临沂市初中学生学业考试样题数 学一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1. 下列各数中,比﹣1小的数是( ). (A )0 . (B )1 .(C )-2 . (D )2 .2. 2010年6月3日,人类首次模拟火星载人航天飞行试验 “火星-500”正式启动。

包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的 “火星之旅”。

将12480用科学记数法表示为( ).(A )12.48×103. (B )0.1248×105. (C )1.248×103. (D )1.248×104. 3. 下列各式计算正确的是( ).(A )x 2·x 3=x 6 . (B )2x +3x =5x 2. (C )(x 2)3=x 6. (D )x 6÷x 2=x 3.4. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是( ).(A ) (B ) (C ) (D )5.).(A )1. (B )-1. (C(D6. 如图,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD =3:5.则AB 的长是( ). (A )2cm . (B )3cm .(C )4cm .(D )cm .7. 如图,在等腰梯形ABCD 中,AB =2,BC =4,∠B =45°, 则该梯形的面积是( ).(A)-1. (B )4(C)-4. (D)-2.8. 在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是( ).(第7题图)(第6题图)(A )这组数据的平均数是4.3 . (B )这组数据的众数是4.5 .(C )这组数据的中位数是4.4 .(D )这组数据的极差是0.5 .9. 如图是一个包装盒的三视图,则这个包装盒的体积是( ). (A )1000πcm 3 . (B )1500πcm 3 . (C )2000πcm 3. (D )4000πcm 3.10. 若x >y ,则下列式子错误的是( ).(A )x -3>y -3 . (B )3-x >3-y . (C )x +3>y +2 . (D )3x >3y . 11. 如图,AB 是⊙O 的直径,弦CD 垂直平分OB ,则∠BDC 的度数为( ). (A )15°. (B )20°. (C )30°. (D )45°. 12. 如图,直线y =kx (k >0)与双曲线y =2x交于A 、B 两点,若A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1y 2+ x 2y 1的值为( ).(A )-4. (B )4. (C )-8. (D )0.(第12题图) (第13题图)13. 如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是( ).(A )12. (B )23. (C )34. (D )45. 14.甲、乙两同学同时从400m 环形跑道上的同一点出犮,同向而行.甲的速度为6m/s ,乙的速度为4m/s .设经过x (单位:s )后,跑道上此两人间的较短部分的长度为y (单位:m ).则y 与x (0≤x ≤300)之间的函数关系可用图象表示为( ).(第9题图) (第11题图)(A)(B)(C)(D)二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15. 分解因式:3a3 - 12a = .16. 有3人携带会议材料乘坐电梯,这3人的体重共210kg,毎梱材料重20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材枓.17. 如图, ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.(第17题图)(第18题图)18. 有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a、b的不等式表示为 .19. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数. 例如,6的不包括自身的所有因数为1、2、3,而且6=1+2+3,所以6是完全数. 大约2200多年前,欧几里德提出:如果2n-1是质数,那么2n-1·(2n-1)是一个完全数. 请你根据这个结论写出6之后的下一个完全数是 .三、解答题(共63分).20.(本小题满分6分)解不等式组xx x⎧⎨⎩≥3-(2-1)-2-10+2(1-)<3(-1),并把解集在数轴上表示出来.21. (本小题满分7分)为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况,并将所得数据进行了统计,结果如图1所示.(1)在这次调查中,一共抽查了____________名学生;(2)求出扇形统计图(图2)中参加“音乐活动”项目所对扇形的圆心角的度数;(3)若该校有2 400名学生,请估计该校参加“美术活动”项目的人数.22.(本小题满分7分)如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.(第22题图)23.(本小题满分9分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?24.(本小题满分10分)在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩. 图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图象解答下列问题:(1)甲摔倒前, 的速度快(填甲或乙); (2)甲再次投入比赛后,在距离终点多远处追上乙?25.(本小题满分11分)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点,∠AEF = 90°,且EF 交正方形外角∠DCG 的平行线CF 于点F , 求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连结ME ,则AM = EC , 易证△AME ≌△ECF ,所以AE = EF . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE = EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE = EF ”仍然成立. 你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.(第24题图)(第25题图)26.(本小题满分13分)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.(第26题图)2012年临沂市初中学生学业考试样题数学参考答案一、选择题(每小题3分,共42分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案 C D C B C D C A C B C A D C 二、填空题(每小题3分,共15分)15. 3a(a - 2)(a + 2). 16. 42 . 17. 6 . 18. 12a2 +12b2 >ab. 19. 28 .三、解答题(共63分)20. 解:解:解不等式()3212x---≥,得3x≤.解不等式102(1)3(1)x x-+-<-,得1x>-.所以原不等式组的解集为13x-<≤.把解集在数轴上表示出来为21. 解:(1)48.(2)由条形图可求出参加“音乐活动”项目的人数所占抽查总人数的百分比为12100%25%48⨯=.所以参加“音乐活动”项目对扇形的圆心角的度数为36025%90⨯=°°.(3)2 400×648=300(人).答:该校参加“美术活动”项目的人数约为300人.22. 证明:(1)∵AB=AC,∴∠B=∠BCA. ∴∠FAC=∠B+∠BCA=2∠B. ∵AD平分∠FAC,∴∠FAD=∠B. ∴AD∥BC .∴∠D=∠DCE.∵CD平分∠ACE,∴∠ACD=∠DCE.∴∠D=∠ACD.∴AC=AD.(2)∵∠B=60°,AB=AC,∴∠ACB=60°,∠FAC=∠ACE=120°.∴∠B=∠D CE=60°.∴DC∥AB.∵AD∥BC ,∴四边形ABCD是平行四边形.∵AB=BC,∴平行四边形ABCD是菱形.23. 解:设甲种商品应购进x件,乙种商品应购进y件.根据题意,得160 5101100. x yx y+=⎧⎨+=⎩解得:10060. xy=⎧⎨=⎩答:甲种商品购进100件,乙种商品购进60件.24.解:(1)甲.(2)设线段OD 的解析式为y=k 1x , 把(125,800)代入y=k 1x ,得k 1 = 325.∴线段OD 的解析式为y=325x (0≤x ≤125).设线段BC 的解析式为y=k 2 x + b ,把(40,200),(120,800)分别代入y = k 2 x + b ,得20040,2800120.2k b k b =+=+⎧⎪⎨⎪⎩ 解得 15,22100.k b ==-⎧⎪⎨⎪⎩∴线段BC 的解析式为y=151002x -(40≤x ≤120).解方程组325100.y x y x =-⎧⎪⎪⎨⎪⎪⎩,15=2 得 1000116400.11x y ==⎧⎪⎪⎨⎪⎪⎩,800-640024001111=.答:甲再次投入比赛后,在距离终点2400m 11处追上了乙.25.解:(1)正确.证明:在AB 上取一点M ,使AM=EC ,连结ME ,∴BM=BE. ∴∠BME=45°. ∴∠AME=135°.∵CF 是外角平分线,∴∠DCF = 45°. ∴∠ECF = 135°. ∴∠AME = ∠ECF .∵∠AEB +∠BAE=90°,∠AEB + ∠CEF = 90°, ∴∠BAE = ∠CEF. ∴△AME ≌ △ECF (ASA). ∴AE=EF. (2)正确. 证明:在BA 的延长线上取一点N , 使AN=CE ,连接NE.∴BN=BE.∴∠N=∠FCE=45°.∵四边形ABCD 是正方形, ∴AD ∥BE . ∴∠DAE=∠BEA .∴∠NAE=∠CEF . ∴△ANE ≌△ECF (ASA). ∴AE=EF.26.解:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),且过A (﹣2,0),B (﹣3,3),O (0,0),可得4209330a b c a b c c -+=-+==⎧⎪⎨⎪⎩, 解得120a b c ===⎧⎪⎨⎪⎩. ∴抛物线的解析式为y=x 2+2x ; (2)①当AE 为边时,∵A、O 、D 、E 为顶点的四边形是平行四边形, ∴DE=AO=2,则D 在x 轴下方不可能, ∴D 在x 轴上方且DE=2, ∴D 1(1,3),D 2(﹣3,3);②当AO 为对角线时,则DE 与AO 互相平分,因为点E 在对称轴上,且线段AO 的中点横坐标为﹣1,由对称性知,符合条件的点D 只有一个,与点C 重合,即C (﹣1,﹣1) 故符合条件的点D 有三个,分别是D 1(1,3),D 2(﹣3,3),C (﹣1,﹣1); (3)存在,∵B(﹣3,3),C (﹣1,﹣1),根据勾股定理得:BO 2=18,CO 2=2,BC 2=20, ∴BO 2+CO 2=BC 2.∴△BOC 是直角三角形.假设存在点P ,使以P ,M ,A 为顶点的 三角形与△BOC 相似, 设P (x ,y ),由题意知x >0,y >0,且y=x 2+2x , ①若△AMP∽△BOC,则AM PM BOCO=,即 x+2=3(x 2+2x )得:x 1=13,x 2=﹣2(舍去).当x=13时,y=79,即P (13,79).②若△PMA∽△BOC,则AM PM CO BO=,即:x 2+2x=3(x+2) 得:x 1=3,x 2=﹣2(舍去) 当x=3时,y=15,即P (3,15).故符合条件的点P 有两个,分别是P (13,79)或(3,15).。

山东临沂中考数学复习试卷及答案

山东临沂中考数学复习试卷及答案

2012年山东临沂中考数学复习试卷及答案班级____姓名___________得分______一、细心填一填1.-2的倒数是______,=-|21|_______188= 。

2.苏州工业园区正建设成为具有国际竞争力的高科技工业园区和现代化、园林化、国际化的新城区.2005年,全区实现地区生产总值达580.7亿元,比开发之初增长了50倍.请你用科学记数法表示2005年园区生产总值为__________________元.3. 函数y =x +7 中,自变量x 的取值范围是__________4.因式分解:228x -=________________________.5.某班有7名同学参加校“综合素质智能竞赛”,成绩(单位:分)分别是87,92,87,89,91,88,76.则它们成绩的众数是__________分,中位数_____________分.6.如图是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角COD ∠=________度,(不考虑青蛙的身高).7.如图,测量小玻璃管口径的量具ABC ,AB 的长为12cm ,AC 被分为60等份.如果小玻璃管管口DE 正好对着量具上20等份处(DE ∥AB),那么小玻璃管口径DE 是_________cm .8.如图两个相同的梯形重叠在一起,则上面的梯形中未重叠部分面积是_________________。

9.如图,一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有___ 颗.第6题 第7题 第8题 第9题 二、精心选一选10.已知点(2,1)P -与点Q 关于x 轴对称,则点Q 的坐标为 ( ) A .(-2,1) B .(-2,-1) C .(2,1) D .(2,-1)11.下列四个函数中,y 随x 增大而减小的是 ( ) A .3y x = B .35y x =-+ C .3y x=-D .231y x x =-+- 12.将方程2410x x ++=配方后,原方程变形为 ( )A .2(2)3x +=B .2(4)3x +=C .2(2)3x +=-D .2(2)5x +=- 13.右图中水杯的俯视图是 ( )14.小明把自己一周的支出情况,用如图所示的统计图来表示,下面说法正确的是( ) A .从图中可以直接看出具体消费数额 B .从图中可以直接看出总消费数额 C .从图中可以直接看出各项消费数额占总消费额的百分比 D .从图中可以直接看出各项消费数额在一周中的具体变化情况15.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是 ( )A .25B .310C .320D .15第14题 第15题 第16题 16.用一把带有刻度的直尺,①可以画出两条平行的直线a 与b ,如图⑴;②可以画出∠AOB 的平分线OP ,如图⑵所示;③可以检验工件的凹面是否为半圆,如图⑶所示;④可以量出一个圆的半径,如图⑷所示。

山东省临沂市中考数学真题试卷(版+答案+解析)

山东省临沂市中考数学真题试卷(版+答案+解析)

山东省临沂市中考数学真题试卷(版+答案+解析)山东省临沂市中考数学真题试卷(版本+答案+解析)一、选择题1. 下面哪个数是负数?A) -3 B) 0 C) 2 D) 5答案: A) -3解析: 负数是小于零的数,而选项 A) -3 是一个小于零的数。

2. 下面哪个是一个无理数?A) 2 B) 3 C) √5 D) 1/2答案: C) √5解析: 无理数是不能表示为两个整数的比例形式的数,而选项C) √5 是一个无理数。

3. 一个正三角形的内角大小是多少度?A) 60 B) 90 C) 120 D) 180答案: A) 60解析: 一个正三角形的内角相等,那么每个内角为 180 度除以 3,即60 度。

4. 如果 a + b = 10,且 a - b = 2,那么 a 的值是多少?A) 4 B) 5 C) 6 D) 8答案: C) 6解析: 可以通过联立方程组,将两个方程相加消去b,得到2a = 12,因此 a = 6。

5. 若一个矩形的长为 8cm,宽为 4cm,那么它的周长是多少?A) 8cm B) 12cm C) 16cm D) 24cm答案: D) 24cm解析: 矩形的周长可以通过公式周长 = 2(长 + 宽) 计算,代入数值计算得到 2(8 + 4) = 24。

二、填空题1. 在等差数列 1, 4, 7, 10, ... 中,第 10 项是多少?答案: 28解析: 等差数列的通项公式为 an = a1 + (n-1)d,其中 a1 是首项,d是公差,n 是项数。

在该题中,a1 = 1,d = 4-1 = 3,n = 10,代入公式计算得到 a10 = 1 + (10-1)3 = 1 + 27 = 28。

2. 下列选项中,不是平行四边形的是()。

A) 正方形 B) 长方形 C) 菱形 D) 梯形答案: D) 梯形解析: 平行四边形的定义是两组对边平行的四边形,而梯形的定义是至少有一组对边不平行的四边形。

2012年中考数学精析系列——临沂卷

2012年中考数学精析系列——临沂卷

新世纪教育网精选资料 版权所有 @新世纪教育网2012 年中考数学精析系列——临沂卷(本试卷满分 120 分,考试时间 120 分钟)一、选择题(本大题共 14 小题,每题 3 分,满分 42 分)在每题所给的四个选项中,只 有一项为哪一项切合题目要求的. 1.( 2012 山东临沂 3 分)1 】的倒数是【6A .6B .﹣ 6C .1D .166【答案】 B 。

【考点】 倒数。

【剖析】依据两个数乘积是1 的数互为倒数的定义, 所以求一个数的倒数即用1 除以这个数.所以1=错误!未找到引用源。

应选 B 。

的倒数为 1÷错误!未找到引用源。

62.( 2012 山东临沂 3 分)太阳的半径大概是 696000 千米,用科学记数法可表示为【 】A . 696×103 千米B . 696×104千米 C . 696×105 千米 D . 696×106千米 【答案】 C 。

【考点】 科学记数法。

3.( 2012 山东临沂 3 分)以下计算正确的选项是【】A . 2a 2 4a 2 6a 42a 2 1 C . a 235B . a 1a D . x 7 x 5 x 2【答案】 D 。

【考点】 归并同类项,完好平方公式,幂的乘方,同底数幂的除法。

【剖析】 依据归并同类项, 幂的乘方, 同底数幂的除法的运算法例和完好平方公式逐个剖析 判断:A . 2a 2 4a 26a 6 ,所以 A 选项不正确;新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。

版权所有@新世纪教育网B.a2a2 +2a 1,所以B选项不正确;1C.a2 36,所以 C 选项不正确;aD.x7 x5 x2,所以D选项正确。

应选 D。

4.(2012山东临沂 3 分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是【】A.40°B.50°C.60°D.140°【答案】 B。

2012年中考山东省临沂市中考题

2012年中考山东省临沂市中考题

COOCO.因你而专业.可圈可点web 试卷生成系统谢谢使用一、未分类(每空?分,共? 分)1、(2012•临沂)下列光现象中,与其他三个现象形成原因不同的一个是( )A .平面镜使房间感觉更宽敞B .雨后天空出现的彩虹 C .铅笔好像“断”了D .用放大镜观察蚂蚁2、(2012•临沂)下列各项措施中,用来减小有害摩擦的是( )A . 下雪后往马路上撒些炉渣B . 黑板上的字不容易擦干净时,双手用力按黑板擦擦黑板C . 自行转动部分加润滑油D . 自行车的轮胎表面做有凸凹不平的花纹3、(2012•临沂)如图所示,R 是用镍铬合金做成的变阻器,当导线夹向A 端移动时,小灯泡的亮度将( )A . 不变B . 变亮C . 变暗D . 无法判定4、(2011•永州)人骑自行车下坡时,速度越来越快,下列关于这一运动过程的说法中,正确的是( )A . 人与车的动能增大,重力势能增大B . 人与车的动能增大,重力势能减小C . 人与车的动能减小,重力势能增大D . 人与车的动能不变,重力势能不变5、(2012•临沂)对下列图中物理现象的描述,正确的是( )A . 雾的形成是液化现象,吸收热量B .露的形成是熔化现象,放出热量C .霜的形成是凝华现象,放出热量D .雷的形成是凝固现象,吸收热量6、如将一只盛有水的薄塑料袋,用细线扎紧袋口,用弹簧测力计测得其重力为9N ,再将这个装水的塑料袋浸入水中,当弹簧测力计示数为7N 时,袋内水面与袋外水面相比较( )A . 塑料袋内水面比袋外水面高B . 塑料袋内水面比袋外水面低C.塑料袋内水面与袋外水面相平D.塑料袋内水面与袋外水面高低无法判断7、下列符合安全用电要求的是()A.用湿抹布擦正在发光的灯泡B.家庭电路中,开关要串联在火线和电灯之间C.为了方便,将洗衣机三脚插头改成两脚使用D.用电器起火时,要迅速泼水8、(2012•临沂)下图所示的几种用电器工作时,以电能转化为内能为应用目的是()A.电视机B.电动自行车C.抽油烟机D.电烤箱9、(2012•临沂)关于物体的惯性,下列说法正确的是()A.足球在静止时没有惯性,运动时才具有惯性B.跳高运动员起跳前要助跑,是为了获得惯性C.赛车在高速行驶时不容易停下来,是由于速度越来越大惯性越大D.百米赛跑运动员到达终点不能立即停下来,是因为运动员具有惯性10、(2012•临沂)下列哪种设备是根据如图所示的实验原理制成的()A.电熨斗B.电动机C.电磁铁D.发电机11、(2012•临沂)汽车发动机常用水来做制冷剂,这是因为水的大;汽车用橡胶轮胎,这是利用了橡胶的弹性.12、(2012•临沂)如图是一种常用的动圈式话筒(麦克风)及其原理图.当你对着话筒说话时,声带振动发出声音,声波使与膜片相连的线圈振动.线圈在磁场中的这种振动,能产生随声音变化而变化的电流,这是现象.13、如图所示,赛艇的桨可看成一个杠杆.则赛艇的桨属于杠杆.14、(2012•临沂)2012年4月30日4时50分,我国采用“一箭双星”成功将第十一、第十二颗北斗导航卫星送入太空预定轨道.目前北斗卫星导航系统已应用于测绘、电信减灾求灾等诸多领域,该系统是依靠传递信息的.15、(2012•临沂)晓雯同学在做“探究物质的熔化规律”的实验时,观察到试管内的物质在熔化过程温度保持不变,此时温度指示如图所示,则该物质的熔点是℃.如果让该物质凝固,下列图象中能正确反映该物质凝固过程的是.16、(2012•临沂)学习了光学知识后,晓雯对有有关实验进行了思考和创新:(1)在如图所示的“探究平面镜成像规律”实验中,晓雯采用透明玻璃板代替平面镜来成探究活动,虽然成像不如平面镜清晰,但却能在观察到A蜡烛像的同时,也能观察到B蜡烛,这是为了能确定像的位置;(2)当点燃的蜡烛放在玻璃板前20cm的A处时,玻璃板后B处的蜡烛好像也被“点燃”了;移去B处的蜡烛,取一光屏放在B处,发现光屏上并没有出现蜡烛的像,这说明平面镜所成的像是虚像;(3)晓雯将玻璃板移动,在玻璃板位置放一凸透镜,B处放一光屏,发现光屏上恰好成清晰的道理、等大的蜡烛像,则该凸透镜的焦距为10 cm.17、(2012•临沂)“五一”假,晓雯和妈妈到南方旅游,在珠宝店买了一只金灿灿的实心观音项坠.回来后,晓雯特别想知道这个项坠是否是纯金的(ρ金=19.3×103kg/m3),她在实验室选用托盘天平、量筒、细线、烧杯和水等,进行了如下的实验操作:A、把托盘天平放在水平桌面上;B、把游码移到标尺的零刻度线处,调节横梁上的平衡螺母,使横梁在水平位置平衡;C、将项坠用细线系好浸没在量筒的水中,读出此时液面示数;D、将项坠放在左盘中,在右盘中增减砝码并移动游码直至衡量平衡;E、在量筒中倒入适量的水,读出此时液面的示数;请你回答下面问题:(1)正确测量项坠密度的实验操作顺序是:A、B、D E、C (其余两个步骤请用字母序号填出);(2)在上述D项操作中,右盘中砝码的质量和游码的位置如图所示,则项坠的质量是71.2 g;(3)若所测得项坠的体积为8cm3,则项坠的密度为8.9×103 kg/m3.由此结果可以确定项坠是不是纯金的.18、(2012•临沂)如图甲是晓雯同学探究“一段电路中的电流根电阻的关系”的实验电路图.(1)根据甲图,用铅笔连线将乙图的实物图连接完整.(2)实验时,晓雯先将5Ω和10Ω的定值电阻分别接在A、B两点之间,闭合开关调节滑动变阻器滑片得到两组实验数据填入了下表;然后她又将A、B两点的电阻更换为15Ω,闭合开关并调节滑动变阻器滑片,直到电压表的示数为3 V,此时的电流表的指针位于如图丙所示,请将第3次实验电流表的读数填入表格中的相应空格内.(3)分析晓雯三次试验数据可能得到的结论是:电压一定时,导体中的电流跟导体的电阻成反比.19、(2012•临沂)我国自主设计制造的“蛟龙”号载人潜水器,某次试潜顺利完成下潜5000m的深度,此次下潜全过程的平均速度约为0.6m/s,潜到最深处时海水对“蛟龙号”外壳的压强达到5×107Pa.(1)求“蛟龙”号本次下潜过程所用的时间约为多少?(2)如果“蛟龙”号潜水器的一个观测窗的面积约为0.03m2,则潜水器最深处时海水对观测窗的压力约为多大?二、计算题(每空?分,共?分)20、(2012•临沂)某种电热毯是由内部嵌入一根较长的电阻丝制成的,铭牌如图.(1)正常工作时,通过电阻丝的电流是多少?(结果保留两位小数)(2)若睡前电热毯正常工作半小时可以达到舒适的温度,求半小时内电流座了多少功?参考答案一、未分类1、考点:光的反射;光的折射现象及其应用。

2012年临沂市中考数学试卷及答案解析

2012年临沂市中考数学试卷及答案解析

2012年临沂市初中学生学业考试试题数 学一、选择题(本大题共 14小题,每小题 有一项是符合题目要求的.11 . ( 2012临沂)的倒数是(6-_6考点:倒数。

解答:解:TX(- 6) =1,•••- 的倒数是-6.6故选B .2. ( 2012临沂)太阳的半径大约是A. 696 X 03 千米 考点:科学记数法一表示较大的数。

5解答:解:696000=696 X 0 ; 故选C .3. ( 2012临沂)下列计算正确的是(考点:完全平方公式;合并同类项;幕的乘方与积的乘方;同底数幕的除法。

解答:解:A . 2a 2+4a 2=6a 2,所以A 选项不正确;2 2B. (a+1) =a +2a+1,所以B 选项不正确;C. (a 2) 5=a 10,所以C 选项不正确; D . x 7 訣5=x选项正确.故选D .考点:平行线的性质;直角三角形的性质。

解答:解:AB // CD , DB 丄 BC ,/ 仁40 ° •••/ 3= / 仁40°•/ DB 丄 BC ,•••/ 2=90。

-/ 3=90°- 40°=50°2 2 4A . 2a 4a 6a2(a +1)3分,满分42分)在每小题所给的四个选项中,只 696000千米,用科学记数法可表示为( B . 696X 04千米)5 6 C . 696X 05 千米 D . 696X 0° 千米DB 丄BC ,/仁40°则/ 2的度数是(D . 140°O解答:解:原式= ?'=二a - 2 a a故选A .6. (2012临沂)在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形, 现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A 1 1 3A. -B. -C. 一D. 14 2 4考点:概率公式;中心对称图形。

解答:解:•••是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是故选B .2 2 2 2A. x 2 1B. x-2 1C. x 2 9D. x-2 9考点:解一元二次方程-配方法。

2012年临沂市中考数学试题及答案(word版)

2012年临沂市中考数学试题及答案(word版)

2012年临沂市中考数学试题第Ⅰ卷 选择题 共42分一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一个选项是符合题目要求的。

1、-61的倒数是 ( )A 、6B 、-6C 、61D 、-612、太阳的半径约为696000千米 ,把这个数据用科学记数法表示为 ( )A 、696×103千米B 、69.6×104千米C 、6.96×105千米D 、6.96×106千米 3、下列计算正确的是 ( )A 、2a 2+4a 2=6a 4B 、(a+1)2=a 2+1C 、(a 2)3=a 5D 、x 7÷x 5=x 24、如图,A B ∥CD ,D B ⊥BC ,∠1=40°,则∠2的度数是 ( )A 、40°B 、50°C 、60°D 、140° 5、化简2-a a2-a 41÷⎪⎪⎭⎫ ⎝⎛+的结果是 ( )A 、a2a + B 、2a a + C 、a 2a - D 、2-a a6、在四张完全相同的卡片上 ,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是 ( )A 、41 B 、21 C 、43 D 、17、用配方法解一元二次方程x 2-4x=5时,次方程可变形为 ( )A 、22=1 C 、(x+2)2=9 D 、(x-2)2=9 8、不等式组的解集在数轴上表示正确的是 ( )9、如图是一个几何体的三视图,则这个几何体的侧面积是 ( )A 、18cm 2B 、20cm 2C 、(18+23)cm 2D 、(18+43)cm 2 10、关于x 、y 的方程组⎩⎨⎧=+=-n my x m y x 3的解是⎩⎨⎧==11y x ,则nm -的值是 ( )A 、5B 、3C 、2D 、1A BC D11、如图,在等腰梯形ABCD 中,A D ∥BC ,对角线AC 、BD 相交于点O ,下列结论不一定正确的是( ) A 、AC=BD B 、OB=OCC 、∠BCD=∠BDCD 、∠ABD=∠ACD 12、如图,若点M 是x 轴正半轴上的任意一点,过点M 作P Q ∥y 轴,分别相交函数xk y 1=(x ﹥0)和xk y 2=(x ﹥0) 的图像于点P 和Q ,连接OP 、OQ ,则下列结论正确的是 ( )A 、∠POQ 不可能等于90°B 、21k k QM PM=C 、这两个函数的图像一定关于x 轴对称D 、∆POQ 的面积是)(2121k k +13、如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为 ( )A 、1B 、23C 、3D 、2314、如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B →C和A →D →C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x ≤8)之间的函数关系可用图像表示为 ( )第Ⅱ卷 非选择题 共78分二、填空题(本大题共5小题,每题3分,共15分)把答案填在题中横线上 15、分解因式:a-6ab+9ab 3=_____________ 16、计算:=8-214_________ 17、如图,CD 与BE 互相垂直平分,A D ⊥DB ,∠BDE=70°,则∠CAD =________°AB CD18、在Rt ∆ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD的延长线于点F ,若EF=5cm ,则AE=_______cm19、读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为∑∝1001n n ,这里“∑”是求和符号,通过对以上材料的阅读,计算∑∝+20121n 1)n(n 1=______________ 三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20、(本小题满分6分)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截瘫,社会各界纷纷为她捐款。

山东省临沭县中学2012年中考数学试题汇编 旋转 新人教版

山东省临沭县中学2012年中考数学试题汇编 旋转 新人教版

某某省某某县中学2012年中考数学试题汇编旋转新人教版(2012某某,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:18.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出AB、AD、BD的长度,再计算角度.解:(1)答案不唯一,如图,平移即可2(2)作图如上,∵AB=10,AD=10,BD=5∴AB2+AD2=BD2∴△ABD是直角三角形,AD可以看作由AB绕A点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大.(2012,某某)如图,在矩形ABCD中,AB=1,AD=2,将AD绕点A顺时针...旋转,当点D落在BC上点D1时,则AD1=________,∠A D1B=_______.A DB CD1(20125,某某)如图,在边长为1的正方形组成的网格中,⊿AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3)。

⊿AOB绕点O逆时针旋转90°后得到⊿A1OB1。

(直接填写答案)(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为。

(1)(-3,-2);(2)(-2,3);(3)10π2(2012,某某)下列图形中不是中心对称图形的是14.(2012•某某)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为 2 .考点:旋转的性质;等边三角形的性质。

分析:由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.解答:解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.点评:此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.(2012,某某)下面四个标志图是中心对称图形的是【】A B C D(2012某某)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个考点:中心对称图形;轴对称图形。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题1. ( ) 设a、b、c、d是四个不同的整数,且a<b<c<d,那么它们中最小的一个是?A. aB. bC. cD. d2. ( ) 从一个圆盘上切下一个小扇形的时候,整个圆盘的周长减小7cm,小扇形的周长减小7cm的结果是原来的周长的等于1/3,那么整个圆盘的面积减小的结果是?A. 2/7B. 1/3C. 1/7D. 3/73. ( ) 如果x+y=200,x>y,那么x.y的最大值是A. 40000B. 40401C. 40500D. 405014. ( ) 如图,正方形ABCD中,E、F分别为AB和CD的中点,连结EF.求证:EF⊥BC.A. 对,方法不唯一B. 对,方法唯一C. 对,方法准确D. 错5. ( ) 如图,已知∠A=42°,AP和BP分别是△ABC的角平分线,且∠APC=∠BPC=96°,求∠PBC=_______°.A. 18B. 42C. 48D. 54二、填空题6. 六个完全相同的圆半径的和是90,则r的值为______.8. 如图,是一块标有长方体的正六面体.4、5、6三点所在直线交EF于点P,其中,exE=16cm,则EP=________cm.9. √(7+√41) +(7-√41) = ______10. 如图,ABCD是一个平行四边形,四边中点依次为E、F、G、H.则EFHG是平行四边形吗?(是或否)三、解答题11. 一个正整数恰好被13整除,当它的各位数字交换后,所得的数恰好被17整除,那么这个数是多少?12. 如图,①是一个等边三角形,边长为20cm.分别以A、B为圆心,AB为半径交于点P.连结OP,OP与②的交点为Q.求过P,Q两点的直线的长度13. 解方程:3(x-1)+4(x-2)=5(x+3)14. 如图,是一个摄影器材专卖店的平面图.把ㄨBCD┼縄顺时针旋转100°。

2012年临沂市初中学生学业考试答案

2012年临沂市初中学生学业考试答案

2012年临沂市初中学生学业考试 数学试题参考答案及评分标准说明:第三、四、五大题给出了一种或两种解法,考生若用其它解法,应参照本评分标准给分.一、选择题(每小题3分,共42分) 题号 l 2 3 4 5 6 7 8 9 10 11 12 13 14 答案BCDBABDAADCDCB二、填空题(每小题3分,共15分) 15.2)13(-b a16.0;17.70 l8.3;19.20132012三、开动脑筋,你一定能做对!(共20分) 20.解:(1)50%2814= (人). 因此该班总人数是50人.……………… (2分) (2)图形补充正确,……………………(3分) 众数是10.…………………………(4分)(3)1.13655501)4257201415161095(501=⨯=⨯+⨯+⨯+⨯+⨯ 因此该班平均每人捐款l3.1元.………(6分)21.解:设手工每小时加工产品x 件,则机器每小时加工产品(2x +9)件.……(1分) 根据题意,得921800731800+=⨯x x ……………………………………(3分) 解这个方程,得27=x ………………………………………(5分)经检验,27=x 是原方程的解.……………………………………………·(6分) 答:手工每小时加工产品27件.……………………………………………(7分)22.(1)证明:∵AF=DC ,∴AF+FC=DC+FC ,即AC=DF .又∵∠A=∠D ,AB=DE ,∴△ABC ≌△DEF .………………………·(2分) ∴BC=EF ,∠ACB=∠DFE .∴BC ∥EF .∴四边形BCEF 是平形四边形.(2)若四边形BCEF 是菱形, 连接BE ,交CF 于点G , ∴BE ⊥CF ,FG=CG .∵∠ABC=90°,AB=4,BC=3, ∴AC=5342222=+=+BC AB …………………………………(4分)∵∠BGC=∠ABC=90°,∠ACB=∠BCG ,∴△ABC ∽△BGC .∴BC CG AC BC =.即353CG =∴CG=59.∴FC=2CG=518…………..(6分) ∴AF=AC-FC=575185=-. 因此,当AF=57时,四边形BCEF 是菱形.………………………………(7分)四、认真思考,你一定能成功!(共19分)23.(1)证明:连接OA .∵∠B=60°,∴∠AOC=2∠B=120°……………(1分) 又∵OA=OC ,∴∠ACP=∠CAO=30°.∴∠AOP=60°……………………………………………………………(2分) 又∵AC=AP .∴∠P=∠ACP=30°.∴∠OAP=90°……………………………………………………………(4分) ∴OA ⊥AP ,∴AP 是⊙O 的切线.……………………………………(5分) (2)连接AD .∵CD 是⊙O 的直径,∴∠CAD=90°. ∴AD=AC·tan30°=3333=⨯……………………………(7分)∵∠ADC=∠B=60°.∴∠PAD=∠ADC 一∠P=60°一30°=30°.∴∠P=∠PAD ,∴PD=AD=3…………………………………… (9分) 24.解:(1)120千克……………………………………………………………(l 分) (2)当0≤x ≤12时,设日销售量与上市时间的函数解析式为kx y =. ∵点(12,120)在kx y =的图象上,∴10=k .∴函数解析式为x y 10=…………………………………………(2分) 当2012≤<x 时,设日销售量与上市时间的函数解析式为b kx y +=. ∵点(12,120),(20,0)在b kx y +=的图象上,∴⎩⎨⎧=+=+02012012b k b k ∴⎩⎨⎧=-=30015b k∴函数解析式为30015+-=x y …………………………………………(5分) (3)∵第l0天和第12天在第5天和第l5天之间,∴当1515≤<x 时,设樱桃价格与上市时间的函数解析式为b kx z +=. ∵点(5,32),(15,12)在b kx z +=b 的图象上,∴⎩⎨⎧=+=+1215325b k b k ∴⎩⎨⎧=-=422b k∴函数解析式为422+-=x z …………….(7分) 当10=x 时,y =10×10=100,z =-2×10+42=22.销售金额为 100×22=2200(元).………………………………………(8分) 当12=x 时,y =120,z =-2×12+42=18.销售金额为 120×18=2160(元).………………………………………(9分) ∵2200>2160,∴第l0天的销售金额多.…………………………………………(10分) 五、相信自己,加油呀!(共24分)25.(1)证明:∵a b 2=,点M 是AD 的中点,∴AB=AM=MD=DC . 又∵在矩形ABCD 中,∠A=∠D=90°,∴∠AMB=∠DMC=45°.∴∠BMC=90°.………………………………(2分) (2)存在.…………………………………………………………………’(3分) 理由:若∠BMC=90°,则∠AMB+∠DMC=90°. 又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC .又∵∠A=∠D=90°,∴△ABM ∽△DMC·…………………………………(4分)∴DMABCD AM =………………………………………………… (5分) 设AM=x ,则xb a a x -=,整理,得022=+-a bx x ………………………(6分)∵0,,2>>>b a a b ,∴0422>-=∆a b ……………………………………(7分) ∴方程有两个不相等的实数根,且两根均大于零,符合题意:∴当a b 2>时,存在∠BMC=90°.………………………………………(8分) (3)不成立.………………………………………………………………·(9分) 理由:若∠BMC=90°,由(2)可知022=+-a bx x ,∵0,,2>><b a a b ,∴0422<-=∆a b …………………………… (10分) ∴方程没有实数根.∴当a b 2<时,不存在∠BMC=900,即(2)中的结论不成立.………(11分) 26.解:(1)如图,过点B 作BC x ⊥轴,垂足为C ,则∠BCO=90°. ∵∠AOB=120°.∴∠BOC=60°. 又∵OA=OB=4 ∴242121=⨯==OB OC ,3223460sin =⨯=︒⋅=OB BC ∴点B 的坐标是(-2,32-).……………………………………(2分) (2)∵抛物线过原点D 和点A 、B ,∴可设抛物线解析式为bx ax y +=2将A (4,0),B (-2,32-)代入,得⎩⎨⎧-=-=+32240416b a b a解得⎪⎪⎩⎪⎪⎨⎧=-=33263b a ……………………………………………(4分) ∴此抛物线的解析式为x x y 332632+-=……………………………(5分) (3)存在…………………………………………(6分)如图,抛物线的对称轴是2=x , 直线2=x 与x 轴的交点为D .设点P 的坐标为(2,y )………………(7分) ①若OB=OP ,则2224||2=+y ,解得32±=y ………(8分) 当32=y 时,在Rt △POD 中,∠PDO=90°,sin ∠POD=23432==OP PD ∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°, 即P ,D ,B 三点在同一条直线上,∴32=y 不符合题意,舍去. ∴点P 的坐标为(2,32-).……………(10分) 方法一:②若OB=PB ,则2224|32|4=++y 解得32-=y∴点P 的坐标是(2,32-).……………………………………………(11分)③若OP=BP ,则2222|32|4||2++=+y y解得32-=y∴点P 的坐标是(2,32-).……………………………………………(12分)综上所述,符合条件的点P 只有一个,其坐标为(2,32-).…………(13分)方法二:在△BOP 中,求得BP=4,OP=4.又∵OB=4,∴△BOP 为等边三角形.…………………………………………………(12分) ∴符合条件的点P 只有一个,其坐标为(2,32-).………………… (13分)。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 45°C. 60°D. 120°答案:D3. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B4. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A5. 一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B6. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1/3D. 1答案:A7. 一个长方体的长、宽、高分别是4cm,3cm,2cm,那么它的体积是:A. 24 cm³B. 36 cm³C. 48 cm³D. 52 cm³答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 5 或 -5答案:D9. 一个分数的分子是3,分母是5,那么它的最简形式是:A. 3/5B. 1/5C. 3/1D. 5/3答案:A10. 如果一个数的立方根是3,那么这个数是:A. 27B. 3C. 9D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是____。

答案:±412. 一个数的立方是-27,这个数是____。

答案:-313. 一个圆的直径是14cm,那么它的半径是____cm。

答案:714. 如果一个三角形的内角和是180°,那么一个四边形的内角和是____°。

答案:36015. 一个数的相反数是-5,这个数是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年临沂市中考数学试卷一、选择题(共14小题,每小题3分,共42分)1.-16的倒数是()A.6 B.-6 C.16D.-162.太阳的半径大约是696000千米,用科学记数法可表示为()A.696×103千米B.69.6×104千米C.6.96×105千米D.6.96×106千米3.下列计算正确的是()A.2a2+4a2=6a4B.(a+1)2=a2+1 C.(a2)3=a5D.x7÷x5=x2 4.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°5.化简41+22aa a÷--()的结果是()A.2aa+B.2aa+C.2aa-D.2aa-6.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.17.用配方法解一元二次方程x2-4x=5时,此方程可变形为()A.(x+2)2 =1 B.(x-2)2 =1 C.(x+2)2 =9 D.(x-2)2 =98.不等式组2153112xxx-<⎧⎪⎨-+≥⎪⎩,的解集在数轴上表示正确的是()A.B.C.D.9.如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2 C.(cm2 D.(cm210.关于x、y的方程组3,x y mx my n-=⎧⎨+=⎩的解是1,1.xy=⎧⎨=⎩则|m-n|的值是()A.5 B.3 C.2 D.111.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是()A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD12.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=1kx(x>0)和y=2kx (x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.12kPMQM k=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是12(|k1|+|k2|)13.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.2CD.14.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C 和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)15.分解因式:a-6ab+9ab2= .16.计算:= .17.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= °.18.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.19.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n=∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211 (1)nn n =+∑= .三、解答题(共7小题,满分63分)20.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?21.某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量.22.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.23.如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?25.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.26.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2012年临沂市中考数学答案一.选择题1. B2. C3. D4. B5. A6. B7. D8. A9. A10. D11. C12. D13. C14. B二.填空题15. a(1-3b)216. 017. 7018. 319.20122013三.解答题20. 解:(1)14÷28% =50(人).该班总人数为50人;(2)捐款10元的人数:50-9-14-7-4=50-34=16,图形补充如图所示,众数是10;(3)150(5×9+10×16+15×14+20×7+25×4)=150×655=13.1元,因此,该班平均每人捐款13.1元.21. 解:设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意可得:180031800729x x⨯=+,解方程得x=27,经检验,x=27是原方程的解,答:手工每小时加工产品27件.22. (1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,AB=4,BC=3,∴AC,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴BC CGAC BC=,即353CG=,∴CG=95.∵FG=CG,∴FC=2CG=185,∴AF=AC-FC=5-185=75,∴当AF=75时,四边形BCEF是菱形.23.(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥AP,∴AP是⊙O的切线,(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC•tan30°=3=∵∠ADC=∠B=60°,∴∠PAD=∠AD C-∠P=60°-30°,∴∠P=∠PAD,∴PD=AD=24. (1)证明:∵b=2a,点M是AD的中点,∴AB=AM=MD=DC=a,又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,∴∠BMC=90°.(2)解:存在,理由:若∠BMC=90°,则∠AMB=∠DMC=90°,又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC,又∵∠A=∠D=90°,∴△ABM∽△DMC,∴AM ABCD DM=,设AM=x,则x aa b x=-,整理得:x2-bx+a2=0,∵b>2a,a>0,b>0,∴△=b2-4a2>0,∴方程有两个不相等的实数根,且两根均大于零,符合题意,∴当b>2a时,存在∠BMC=90°.(3)解:不成立.理由:若∠BMC=90°,由(2)可知x2-bx+a2=0,∵b<2a,a>0,b>0,∴△=b2-4a2<0,∴方程没有实数根,∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.25. 解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=12OB=12×4=2,BC=OB•sin60°∴点B的坐标为(-2,-.(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(-2,-1640,42a ba b+=⎧⎪⎨-=-⎪⎩解得,63ab⎧=-⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为y=-6x2+3x.(3)存在,如图,抛物线的对称轴是x =2,直线x =2与x 轴的交点为D ,设点P 的坐标为(2,y ),①若OB =OP ,则22+|y |2=42,解得y =±当y Rt △POD 中,∠PDO =90°,sin ∠POD =PDOP = POD =60°, ∴∠POB =∠POD +∠AOB =60°+120°=180°,即P 、O 、B 三点在同一直线上,∴y .∴点P 的坐标为(2,-②若OB =PB ,则42+|y +22=42,解得y =-P 的坐标为(2,-③若OP =BP ,则22+|y |2=42+|y +2,解得y =-P 的坐标为(2,-.综上所述,符合条件的点P 只有一个,其坐标为(2,-.。

相关文档
最新文档