函数与相似三角形
中考数学二次函数与相似三角形
中考二次函数压轴题专题三二次函数与相似三角形突破口:寻找比例关系以及特殊角1 .综合与探究如图,平面直角坐标系中,抛物线与轴交于两点(在右侧),与轴交于点,点坐标为,连接,点是直线上方抛物线上一动点,且横坐标为.过点分别作直线的垂线段,垂足分别为和,连接.(1)求抛物线及直线的函数关系式;(2)求出四边形是平行四边形时的值;(3)请直接写出与相似时的值.2 .如图,在平面直角坐标系中,抛物线与轴交于A,B两点(点A 在点B的右侧),与轴交于点C,点A的坐标为,点B的坐标为点C的坐标为,(1)求抛物线的解析式;(2)M为第一象限内抛物线上的一个点,过点M作轴于点G,交于点H,当线段时,求点M的坐标;(3)在(2)的条件下,将线段绕点G顺时针旋转一个角,在旋转过程中,设线段与抛物线交于点N,在射线上是否存在点P,使得以P,N,G为顶点的三角形与相似?如果存在,请求出点P的坐标(直接写出结果);如果不存在,请说明理由.3 .已知二次函数(为常数,且)的顶点为,图象与轴交点为,,且点在点左侧.(1)求,两点的坐标.(2)当时,求的值.(3)在(2)的情况下,将轴下方的图象沿x轴向上翻折,与轴交于点,连接,记上方(含点,)的抛物线为.①设点为上一动点,当取最大值时,求点的坐标.②在上是否存在点,使以点,,为顶点的三角形与相似?若存在,请直接写出点坐标;若不存在,请说明理由.4 .如图,抛物线y=ax 2+bx+c(a≠0)的顶点坐标为(2,-1),并且与y轴交于点C(0,3),与x轴交于两点A,B.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似.若存在,求出点E的坐标;若不存在,请说明理由.5 .如图①,在平面直角坐标系xOy中,批物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x轴、y轴分别交于B、C两点,与直线AM交于点D.(1)求抛物线的对称轴;(2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;(3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.6 .如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D 两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.7 .如图1,在平面直角坐标系中,抛物线与轴交于点、(点在点右侧),点为抛物线的顶点.点在轴的正半轴上,交轴于点,绕点顺时针旋转得到,点恰好旋转到点,连接.(1)求点、、的坐标;(2)求证:四边形是平行四边形;(3)如图2,过顶点作轴于点,点是抛物线上一动点,过点作轴,点为垂足,使得与相似(不含全等).①求出一个满足以上条件的点的横坐标;②直接回答这样的点共有几个?8 .如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上,当与相似时,请直接写出所有满足条件的点的坐标.9 .如图,在平面直角坐标系中,抛物线的对称轴为直线,其图象与轴交于点和点,与轴交于点.(1)直接写出抛物线的解析式和的度数;(2)动点,同时从点出发,点以每秒3个单位的速度在线段上运动,点以每秒个单位的速度在线段上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为秒,连接,再将线段绕点顺时针旋转,设点落在点的位置,若点恰好落在抛物线上,求的值及此时点的坐标;(3)在(2)的条件下,设为抛物线上一动点,为轴上一动点,当以点,,为顶点的三角形与相似时,请直接写出点及其对应的点的坐标.(每写出一组正确的结果得1分,至多得4分)10 .如图,抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线及x轴分别交于点D、M.,垂足为N.设.①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线下方的抛物线上运动时,是否存在一点P,使与相似.若存在,求出点P的坐标;若不存在,请说明理由.11 .如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线上是否存在点M,使得以点M,N,E为顶点的三角形与相似?若存在,求点M的坐标;若不存在,请说明理由.12 .在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式(2)如图1,点为第四象限抛物线上一点,连接,交于点,连接,记的面积为,的面积为,求的最大值;(3)如图2,连接,,过点作直线,点,分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点,,使.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13 .如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.(1)求出二次函数和所在直线的表达式;(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;(3)连接,,在动直线移动的过程中,抛物线上是否存在点,使得以点,,为顶点的三角形与相似,如果存在,求出点的坐标,如果不存在,请说明理由.14 .如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求面积的最大值.(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.。
二次函数背景下的相似三角形问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数
模型介绍在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.例题精讲【例1】.如图,抛物线y=﹣x2+x+2交x轴于点A,B,交y轴于点C,点M是第一象限内抛物线上一点,过点M作MN⊥x轴于点N.若△MON与△BOC相似,求点M的横坐标.解:∵抛物线y=﹣x2+x+2交x轴于点A,B,交y轴于点C,∴当y=0时,0=﹣x2+x+2,解得x1=﹣1,x2=4,∴OB=4,当x=0时,y=2,∴OC=2,∵点M是第一象限内抛物线上一点,∴设M(m,﹣m2+m+2),∵MN⊥x轴,∴ON=m,MN=﹣m2+m+2,∠ONM=90°,∵∠BOC=90°,∴∠BOC=∠ONM,∵△MON与△BOC相似,∴或,∴=或=,∴m=或m=﹣1+(负值舍去),∴点M的横坐标为或﹣1+.变式训练【变1-1】.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).【例2】.如图,抛物线y=x2+bx+c与x轴交于A(1,0),B两点,与y轴交于点C(0,3).(1)求该抛物线的表达式;(2)过点B作x轴的垂线,在该垂线上取一点P,使得△PBC与△ABC相似,请求出点P的坐标.解:(1)把C(0,3)代入y=x2+bx+c,得c=3,∴y=x2+bx+3,把A(1,0)代入y=x2+bx+3,得1+b+3=0,解得b=﹣4,∴该抛物线的表达式为y=x2﹣4x+3.(2)当点P在点B上方时,如图1,PB=AB,∵PB⊥x轴,∴∠ABP=90°,抛物线y=x2﹣4x+3,当y=0时,则x2﹣4x+3=0,解得x1=1,x2=3,∴B(3,0),∴OB=OC=3,PB=AB=3﹣1=2,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∴∠PBC=∠ABC=45°,∵==1,∴△PBC∽△ABC,此时点P的坐标为(3,2);如图2,△PBC∽△CBA,且∠CBP=∠ABC=45°,∠BCP=∠BAC,∴=,∵BC2=OB2+OC2=32+32=18,BA=2,∴BP===9,此时点P的坐标为(3,9);当点P在点B下方时,∠PBC=135°,∠BAC=∠AOC+∠ACO=90°+∠ACO<135°,此时△PBC与△ABC不相似,综上所述,点P的坐标为(3,2)或(3,9).变式训练【变2-1】.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设点P(m,m2﹣2m﹣3),①当点P在第三象限时,设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S△POD=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,②当点P在第四象限时,设PD交y轴于点M,=×OM(x D﹣x P)=﹣m2+m+3,同理可得:S△POD=﹣m2+m+3,综上,S△POD有最大值,当m=时,其最大值为;∵﹣1<0,故S△POD(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=或﹣,故点Q(,﹣2)或(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,)或(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(﹣,2)或(,)或(,).1.抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.(1)求平移后的抛物线的解析式和点D的坐标;(2)∠ACB和∠ABD是否相等?请证明你的结论;(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.解:(1)∵将抛物线y=﹣x2平移,平移后的抛物线与x轴交于点A(﹣1,0)和点B(3,0),∴平移后的抛物线的表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)∠ACB与∠ABD相等,理由如下:如图,∵y=﹣x2+2x+3,∴点x=0时,y=3,即C点坐标为(0,3),又∵B(3,0),∠BOC=90°,∴OB=OC,∠OBC=∠OCB=45°.在△BCD中,∵BC2=32+32=18,CD2=12+12=2,BD2=22+42=20,∴BC2+CD2=BD2,∴∠BCD=90°,∴tan∠CBD===,∵在△AOC中,∠AOC=90°,∴tan∠ACO==,∴tan∠ACO=tan∠CBD,∴∠ACO=∠CBD,∴∠ACO+∠OCB=∠CBD+∠OBC,即∠ACB=∠ABD;(3)∵点P在平移后的抛物线的对称轴上,而y=﹣x2+2x+3的对称轴为x=1,∴可设P点的坐标为(1,n).∵△ABC是锐角三角形,∴当△CDP与△ABC相似时,△CDP也是锐角三角形,∴n<4,即点P只能在点D的下方,又∵∠CDP=∠ABC=45°,∴D与B是对应点,分两种情况:①如果△CDP∽△ABC,那么=,即=,解得n=,∴P点的坐标为(1,);②如果△CDP∽△CBA,那么=,即=,解得n=,∴P点的坐标为(1,).综上可知P点的坐标为(1,)或(1,).2.如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系.此时,A点坐标为(﹣1,0),B点坐标为(4,0)(1)试求点C的坐标;(2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式;(3)点D(1,m)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.解:(1)在Rt△ABC中,∠ACB=90°,OC⊥AB,由射影定理,得:OC2=OA•OB=4,即OC=2,∴C(0,2);(2)∵抛物线经过A(﹣1,0),B(4,0),C(0,2),可设抛物线的解析式为y=a(x+1)(x﹣4)(a≠0),则有:2=a(0+1)(0﹣4),a=﹣,∴y=﹣(x+1)(x﹣4)=﹣x2+x+2;(3)存在符合条件的P点,且P(,0)或(﹣,0).根据抛物线的解析式易知:D(1,3),联立直线AE和抛物线的解析式有:,解得,,∴E(6,﹣7),∴tan∠DBO==1,即∠DBO=45°,tan∠EAB==1,即∠EAB=45°,∴∠DBA=∠EAB,若以P、B、D为顶点的三角形与△ABE相似,则有两种情况:①△PBD∽△BAE;②△PBD∽△EAB.易知BD=3,EA=7,AB=5,由①得:,即,即PB=,OP=OB﹣PB=,由②得:,即,即P′B=,OP′=OB﹣BP′=﹣,∴P(,0)或(﹣,0).3.如图已知直线y=x+与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.解:(1)将点B(4,m)代入y=x+,∴m=,将点A(﹣1,0),B(4,),C(0,﹣)代入y=ax2+bx+c,解得a=,b=﹣1,c=﹣,∴函数解析式为y=x2﹣x﹣;(2)设P(n,n2﹣n﹣),则经过点P且与直线y=x+垂直的直线解析式为y=﹣2x+n2+n﹣,直线y=x+与其垂线的交点G(n2+n﹣,n2+n+),∴GP=(﹣n2+3n+4),当n=时,GP最大,此时△PAB的面积最大,∴P(,﹣),∵AB=,PG=,∴△PAB的面积=××=;(3)∵M(1,﹣2),A(﹣1,0),D(3,0),∴AM=2,AD=4,MD=2,∴△MAD是等腰直角三角形,∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设N(t,t2﹣t﹣)①如图1,当MQ⊥QN时,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,∵QN=MN,∠QNM=90°,∴△MNS≌△NMS(AAS)∴t﹣1=﹣t2+t+,∴t=±,∴t>1,∴t=,∴N(,1﹣);③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点M作MR ∥x轴,与过Q点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),∴SQ=QR=2,∴t+2=1+t2﹣t﹣,∴t=5,∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴t2﹣t﹣=t﹣1,∴t=2±,∵t>1,∴t=2+,∴N(2+,1+);综上所述:N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).4.如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)直接写出:b=2,c=1;(2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,若存在,直接写出点Q的坐标,若不存在,请说明理由.解:(1)将点A(0,1),B(﹣9,10)代入,∴,解得,∴抛物线的解析式为,∴b=2,c=1,故答案为:2,1;(2)∵AC∥x轴,A(0,1),∴,∴x1=﹣6,x2=0,∴C(﹣6,1),∵A(0,1),B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点,则E(m,﹣m+1),∴,∵AC⊥EP,AC=6,=S△AEC+S△APC∴S四边形AECP=×AC×EF+=×AC×(EF+PF)=×AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,当时,四边形AECP的面积的最大值是,此时点;(3)存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,理由如下:∵,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°.同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1),∵A(0,1),B(﹣9,10),C(﹣6,1),∴,AC=6,,以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1);②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1);综上所述:Q点坐标为(﹣4,1)或(3,1).5.已知抛物线经过点A(﹣2,0),B(0,﹣4),与x轴交于另一点C,连接BC.(1)求抛物线的解析式;=S△PBC,求直线AP的表达式;(2)如图,P是第一象限内抛物线上一点,且S△PBO(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请直接写出点D的坐标;若不存在,请说明理由.解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,=S△PBC,∵S△PBO∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),∴AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC、△ABE、△ACE、△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC 和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,OE=﹣2=∴E(,0),∵B(0,﹣4),∴BE:y=3x﹣4,则x2﹣x﹣4=3x﹣4,x1=0(舍),x2=8,∴D(8,20);②当△ABE与以B,C、E中的三点为顶点的三角形相似,如图3,此时E在C的左边,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,∵OE=<2,∠AEB或∠BEC是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);同理可得E在C的右边时,△ABE∽△BCE,∴=,设AE=2m,BE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2+2m﹣5=0,(m+)(3m﹣)=0,m1=﹣,m2=,∴OE=﹣12(舍)或,∵OE=<4,∠BEC是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,综上,点D的坐标为(8,20)或(,﹣6.如图,已知抛物线y =ax 2+bx +6经过两点A (﹣1,0),B (3,0),C 是抛物线与y 轴的交点.(1)求抛物线的解析式;(2)点P (m ,n )在平面直角坐标系第一象限内的抛物线上运动,直线CP 与x 轴交于点Q ,当∠BQC =∠BCO 时,求此时P 点坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得∠CNM =90°,且△CMN 与△OBC 相似,如果存在,请求出点M 和点N 的坐标.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+6得:,解得,∴抛物线的解析式为y=﹣2x2+4x+6;(2)由y=﹣2x2+4x+6得C(0,6),∴OC=6,当Q在x轴正半轴,如图:∵∠BQC=∠BCO,且∠COB=∠QOC,∴△COB∽△QOC,∴=,即=,∴OQ=12,∴Q(12,0),设直线CQ解析式为y=kx+6,则0=12k+6,∴k=﹣,即直线CQ为y=﹣x+6,由得(与C重合,舍去)或,∴P(,),当Q在x轴负半轴,如图:同理可得:△BOC∽△BCQ,∴=,即BC2=OB•BQ,而OC=6,OB=3,∴BC=3,∴(3)2=3×BQ,∴BQ=15,∴Q(﹣12,0),设直线CQ为y=mx+6,则0=﹣12m+6,解得m=,∴直线CQ为y=x+6,由得(舍去)或,∴P(,),综上所述,P点坐标为(,)或(,),(3)设M(t,﹣2t2+4t+6),则N(0,﹣2t2+4t+6),∴MN=|t|,CN=|2t2﹣4t|,∵OC=6,OB=3,∴OC=2OB,∵△CMN与△OBC相似,∴MN=2CN或CN=2MN,①MN=2CN时,如图:∴|t|=2|2t2﹣4t|,解得t=或t=或t=0(舍去),∴M(,),N(0,)或M(,),N(0,);②CN=2MN时,如图:∴|2t2﹣4t|=2|t|,解得t=0(舍去)或t=3(M与B重合,舍去)或t=1,∴M(1,8),N(0,8),综上所述,M(,),N(0,)或M(,),N(0,)或M(1,8),N(0,8).7.如图,抛物线与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为点C,D,.(1)求b,c的值;(2)求直线CD的函数解析式;(3)求∠ADB的度数;(4)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.解:(1)∵点A,B分别位于原点的左、右两侧,BO=3AO=3,∴A(﹣1,0),B(3,0),把A(﹣1,0),B(3,0)代入y=x2+bx+c,得,解得:,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,则∠DEB=∠COB=90°,∴DE∥OC,∴=,∵BC=CD,OB=3,∴=,∴OE=,∴点D横坐标为﹣,当x=﹣时,y=×(﹣)2﹣×(﹣)﹣=+1,∴点D坐标为(﹣,+1),设直线BD的函数解析式为y=kx+n,把B(3,0),D(﹣,+1)代入,得,解得:,∴直线BD的函数解析式为y=﹣x+;(3)如图2,连接AC,∵直线BD的函数解析式为y=﹣x+,∴C(0,),∵A(﹣1,0),D(﹣,+1),∴AC2=OA2+OC2=12+()2=4,则AC=2,BC2=OB2+OC2=32+()2=12,则BC=2,∴AB=3﹣(﹣1)=4,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠ACD=180°﹣90°=90°,∵BC=CD,∴CD=2,∴tan∠ADB===1,∴∠ADB=45°;(4)在△ABD中,tan∠ABD==,∴∠ABD=30°,∵∠ADB=45°,∴∠BAD=180°﹣(∠ABD+∠ADB)=180°﹣(30°+45°)=105°,∵CD=2,BC=CD=2,∴BD=BC+CD=2+2,由(3)知:AC=CD=2,∠ACD=90°,AB=4,∴AD=2,∵y=x2﹣x﹣,∴对称轴为直线x=1.∵点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,∴∠PBQ<90°,∴分两种情况:①当∠PBQ=∠ABD=30°时,如图3,设对称轴与x轴交于点M,则M(1,0),∴BM=3﹣1=2,∴PM=BM•tan∠PBQ=2×tan30°=,∵点P在抛物线的对称轴上且在x轴下方,∴P(1,﹣),BP===,∵△ABD与△BPQ相似,且∠PBQ=∠ABD,∴=或=,∴=或=,∴BQ=或BQ=,∴Q(,0)或(,0);②当∠PBQ=∠ADB=45°时,如图4,∵PM=BM•tan∠PBQ=2tan45°=2,∴P(1,﹣2),∴BP=2,∵△ABD与△BPQ相似,且∠PBQ=∠ADB,∴=或=,∴=或=,∴BQ=2﹣2或2+2,∴Q(5﹣2,0)或(1﹣2,0);综上所述,点Q的坐标为Q(,0)或Q(,0)或Q(5﹣2,0)或Q(1﹣2,0).8.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点,试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y=a(x+1)(x﹣4).将C(0,﹣2)代入得:﹣4a=﹣2,解得a=,∴抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣x﹣2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK∥DG,∴△AKE∽△DFE,∴=.设直线BC的解析式为y=kx+b1,∴,解得,∴直线BC的解析式为y=x﹣2,∵A(﹣1,0),∴y=﹣﹣2=﹣,∴AK=,设D(m,m2﹣m﹣2),则F(m,m﹣2),∴DF=m﹣2﹣m2+m+2=﹣m2+2m.∴==﹣(m﹣2)2+.∴当m=2时,有最大值,最大值是.(3)符合条件的点P的坐标为(,)或(,).∵l∥BC,∴直线l的解析式为y=x,设P(a1,),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(﹣1,0),C(0,﹣2),B(4,0),∴AC=,AB=5,BC=2,∵AC2+BC2=AB2,∴∠ACB=90°,∵△PQB∽△CAB,∴==,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠BPN=90°,∴∠MQP=∠BPN,∴△QPM∽△PBN,∴===,∴QM=,PM=(a1﹣4)=a1﹣2,∴MN=a1﹣2,ON﹣QM=a1﹣=a1,∴Q(a1,a1﹣2),将点Q的坐标代入抛物线的解析式得×(a1)2﹣×a1﹣2=a1﹣2,解得a1=0(舍去)或a1=.∴P(,).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(a1,2).此时点P的坐标为(,).综上所述,符合条件的点P的坐标是(,)或(,).9.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;(3)将抛物线在0≤x≤3之间的部分记为图象L,将图象L在直线y=t上方部分沿直线y=t翻折,其余部分保持不动,得到一个新的函数图象,记这个函数的最大值为a,最小值为b,若a﹣b≤3,请直接写出t的取值范围.解:(1)将(3,0)代入y=﹣x+c得0=﹣2+c,解得c=2,∴y=﹣x+2.将x=0代入y=﹣x+2得y=2,∴点B坐标为(0,2).将(3,0),(0,2)代入y=﹣x2+bx+c得,解得,∴y=﹣x2+x+2.(2)如图,当BM∥AM时满足题意,点B,N关于抛物线对称轴对称,∵y=﹣x2+x+2,∴抛物线对称轴为直线x=﹣=,∴点N坐标为(,2),∴点M坐标为(,0).如图,当∠NBP=90°时符合题意,作NC⊥y轴于点C,则N(m,﹣m2+m+2),∵∠NBC+∠ABO=∠ABO+∠BAO=90°,∴∠NBC=∠BAO,∴△BCN∽△AOB,∴=,即,解得m=,∴点M坐标为(,0).综上所述,点M坐标为(,0)或(,0).(3)∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线顶点坐标为(,),∴翻折后顶点坐标为(,2t﹣),当点A为最低点时,t﹣0≤3,解得t≤3,令t﹣(2t﹣)=3,解得t=,∴≤t≤3.10.如图所示,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴相交于点C,B、C两点的坐标分别为(1,0)、(0,﹣3),直线y=kx+3k经过点A,与y轴交于点D.(1)求抛物线的函数表达式;(2)点E是抛物线上一动点(不与点C重合),连接AE,过点E作EF⊥x轴,垂足为F,若△AEF是等腰直角三角形,求点E的坐标;(3)在(2)的条件下,若在直线y=kx+3k上存在一点G使得△DFG与△AOC相似,求出k的值.解:(1)∵直线y=kx+3k经过点A,则点A的坐标为(﹣3,0),将点A、B、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为y=x2+2x﹣3;(2)设点E的坐标为(x,x2+2x﹣3),则AF=|x+3|,EF=|x2+2x﹣3|,∵△AEF是等腰直角三角形,∴AF=EF,∴|x2+2x﹣3|=|x+3|,∴x=﹣3(舍去)或x=0(舍去)或x=2,故点E的坐标为(2,5);(3)∵CO=BO=3,故△AOC为等腰直角三角形,当△DFG与△AOC相似时,则△DFG为等腰直角三角形,显然∠DFG不可能为直角,∵直线y=kx+3k与y轴交于点D,则点D(0,3k),由(2)知,点F(2,0),①当∠FDG为直角时,∵点G在直线AD上,故在∠FDG的前提下,总能找到GD=DF,故只需要DF⊥AD即可,在等腰Rt△FDG中,由直线AD的表达式为:y=kx+3k,则tan∠DOA=k,而tan∠DFO====,解得k=±;②当∠FGD为直角时,如下图,过点G作MN∥y轴,交x轴于点N,交过点D与x轴的平行线于点M,则DG=GF,设点G的坐标为(t,kt+3k),则MD=﹣t,MG=3k﹣tk﹣3k=﹣kt;GN=kt+3k,FN=2﹣t,∵∠MGD+∠FGN=90°,∠FGN+∠GFN=90°,∴∠MGD=∠GFN,∵∠GMD=∠FNG=90°,GD=FG,∴△GMD≌△FNG(AAS),∴MD=GN,MG=NF,即﹣t=kt+3k且﹣kt=2﹣t,解得k=2或﹣;当∠DFG=90°时,过点G作GH⊥x轴于H,则△ODF≌△HFG,∴GH=OF=2,HF=OD=3k,∵y=﹣2时,﹣2=kx+3k,∴x=,∴2+=3k,解得k=2或﹣综上,k=±或2或﹣.11.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N 的坐标,若不存在,请说明理由.解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得解得∴抛物线解析式为:y=∴抛物线对称轴为直线x=﹣(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P点.设过点C′、O直线解析式为:y=kx∴k=﹣∴y=﹣则P点坐标为(1,﹣)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,﹣a﹣1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,﹣)∵N为DM中点∴点M坐标为(2a,)把M代入y=,解得a=0(舍去)或a=4∴a=4则N点坐标为(4,﹣3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点M由(2)M为(2,﹣1)∴由相似CN=,MN=由面积法求N到MC距离为则N点坐标为(,﹣)∴N点坐标为(4,﹣3)或(,﹣)12.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)求出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D,F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点,若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.解:(1)由题意知,解得:,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,=1,即S△BNG﹣S△BMG=BG•(x N﹣1)﹣BG•(x M﹣1)=1,∵S△BMN∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L 1的解析式为y =﹣x 2+2x +1+m ,∴C (0,1+m )、D (2,1+m )、F (1,0),设P (0,t ),①当△PCD ∽△FOP 时,,∴,∴t 2﹣(1+m )t +2=0①;②当△PCD ∽△POF 时,,∴,∴t =(m +1)②;(Ⅰ)当方程①有两个相等实数根时,Δ=(1+m )2﹣8=0,解得:m =2﹣1(负值舍去),此时方程①有两个相等实数根t 1=t 2=,方程②有一个实数根t =,∴m =2﹣1,此时点P 的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m +1)2﹣(m +1)2+2=0,解得:m =2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2,方程②有一个实数根t =1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).13.设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P 在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;(3)在(2)的条件下,△BDP的外接圆半径等于或.解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2∴OB=,∴m=4,将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,∴抛物线的解析式为y=x2﹣x﹣2.(2)D(1,n)代入y=x2﹣x﹣2,得n=﹣3,由,得,,∴E(6,7),过E作EH⊥x轴于H,则H(6,0)∴AH=EH=7∴∠EAH=45°过D作DF⊥x轴于F,则F(1,0)∴BF=DF=3∴∠DBF=45°∴∠EAH=∠DBF=45°∴∠DBH=135°,90°<∠EBA<135°则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△EAB,则∴BP1===∴OP1=4﹣=,∴P1(,0).②若△DBP2∽△BAE,则∴BP2===∴OP2=﹣4=∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).(3)或.如图所示:先作△BPD的外接圆,过P作直径PM,连接DM,作DF⊥x轴于F.∵∠PMD=∠PBD,∠DFP=∠PDM,∴△PMD和△FBD相似,∴,∴PD===,DF=3,BD==3,∴PM==,∴△BPD的外接圆的半径=;同理可求出当P点在x轴的负半轴上时,△BPD的外接圆的半径=.14.如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD1=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O﹣OF=3﹣1=2,∴=,∴OC=,∴CA=CF=FA=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△PAM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△PAM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△PAM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.15.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,①求点M的坐标;②在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∴S△OBC∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)①设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得(舍去)或,∴M(﹣,),②∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,。
二次函数与相似三角形
分析: ( 1) 第一步是基础知识,可由学生自己解决,只对个别不会的学生加以
辅导,可以由 B 号学生帮助解决 ( 2) 第二步要判断两个直角三角形相似, 可以证明夹着直角的四条边成
0)、B(0,3)两点,其顶点为 D. (1) 求该抛物线的解析式; (2) △ AOB 与△ BDE 是否相似?如果相似, 请予以证明; 如果不相似, 请 说明理由 .
分析: (1) 加强准确度练习 (2)此题与例题十分相似,尽量让学生自己解决,只对个别不会的
学生加以辅导,可以由 A 号学生帮助解决
六、小结
类似本节这类综合应用题,我们应注意什么问题?要怎样解决问题?
( 1.认真读题,写出所有可得的基本信息; 2.再次确认细节问题,比如点
的位置,字母的取值范围等; 3.划分成几个小的基本问题逐步解决 ;4.仔细
观察结论,想一想有无其它方法或更为简单的方法,为以后解题总结经
验。)
已知抛物线 y=ax2+bx+c 的顶点坐标为 (4,-1),与 y 轴交于点 C(0,3),O 是原
点.
(1)求这条抛物线的解析式;
作业布置
(2)设此抛物线与 x 轴的交点为 A ,B( A 在 B 的左边),问在 y 轴上是否
存在点 P,使以 O,B,P 为顶点的三角形与△ AOC 相似?若存在,请求出点 P
的坐标:若不存在,请说明理由 .
一般形式
例1
与坐标轴交点
顶点坐标 板书设计
相似判定方法
相似三角形与三角函数的关系探究
相似三角形与三角函数的关系探究相似三角形是指对应角相等、对应边成比例的两个三角形。
它们之间存在着一种有趣的关系,与三角函数密切相关。
本文将探究相似三角形与三角函数之间的关系。
1. 引言相似三角形与三角函数是高中数学中的重要概念,它们的关系不容忽视。
相似三角形是几何学中的基础概念,而三角函数则是在解析几何和三角学中广泛应用的数学工具。
通过研究它们之间的关系,我们可以更深入地理解三角函数的性质和相似三角形的性质。
2. 相似三角形的定义与性质相似三角形的定义是指两个三角形的对应角相等,并且对应边成比例。
在相似三角形中,我们可以通过关联两个三角形的对应边,建立起三角函数与相似三角形之间的联系。
3. 三角函数与相似三角形的关系在相似三角形中,我们可以利用三角函数来研究各个角的关系。
以正弦函数为例,我们知道在一个直角三角形中,正弦函数定义为对边与斜边之比。
在相似三角形中,如果两个三角形的某个角相等,那么这两个三角形的对边与斜边的比例也相等。
因此,我们可以利用相似三角形的性质,将三角函数的定义推广到非直角三角形上。
4. 应用举例:利用三角函数求解相似三角形的边长比例在解决实际问题时,我们经常会遇到需要求解相似三角形边长比例的情况。
通过建立适当的三角函数关系,我们可以利用已知条件来求解未知边长的比例。
这种方法在测量不便或无法直接测量的情况下非常有用,例如建筑物高度的测量、地理测量等。
5. 三角函数与角度的关系除了与相似三角形相关联之外,三角函数还与角度的概念息息相关。
我们知道,三角函数的定义依赖于角度的概念。
在相似三角形中,对应角相等的两个三角形中,角的度数也是相等的。
因此,我们可以通过相似三角形的性质进一步研究三角函数与角度的关系。
6. 三角函数的周期性三角函数的周期性是它们独特的性质之一。
在相似三角形中,如果两个角的度数相等,那么这两个角的三角函数值也是相等的。
这意味着在一个周期内,三角函数的值会重复出现。
相似三角形及锐角三角函数
九年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:一、相关概念:1. 相似图形:形状相同的图形。
2. 相似多边形的性质:对应角相等,对应边成比例。
3. 相似比:相似多边形对应边的比。
二、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等三、相似三角形的判定✓通过定义(三边对应成比例,三角相等)✓平行于三角形一边的直线✓三边对应成比例(SSS)✓两边对应成比例且夹角相等(SAS)✓两角对应相等(AA)✓两直角三角形的斜边和一条直角边对应成比例(HL)四、相似三角形的性质✓对应角相等。
✓对应边成比例。
✓对应高的比等于相似比。
✓对应中线的比等于相似比。
✓对应角平分线的比等于相似比。
✓周长比等于相似比。
✓面积比等于相似比的平方。
五、位似:✓位似图形的概念:如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.✓在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.考点一一、选择题(每小题3分,共24分)1.下列命题:①所有的等腰三角形都相似,②所有的等边三角形都相似,③所有的等腰直角三角形都相似,④所有的直角三角形都相似.其中,正确的是 ( )A.②③B.②③④C.③④D.②④2.有两个顶角相等的等腰三角形框架,其中一个三角形框架的腰长为6,底边长为4,另一个三角形框架的底边长为2,则这个三角形框架的腰长为 ( ) A.6 B.4 C.3 D.23.如图,点P 是△ABC 的边AB 上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与原三角形相似.满足这样条件的直线最多有 ( ) A.2条 B.3条 C.4条 D.5条4.如图,E 是□ABCD 的边BC 延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A.1对B.2对C.3对D.4对5.两个相似菱形边长的比是1:4,那么它们的面积比是 ( ) A .1:2 B .1:4 C .1:8 D .1:166.下列条件中,不能判定以A /、B /、C /为顶点的三角形与△ABC 相似的是( ) A.∠C=∠C /=90°,∠B=∠A /=50° B.AB=AC ,A /B /=A /C /,∠B=∠B /C.∠B=∠B /,////C B BC B A AB =D. ∠A=∠A /,////C B BC B A AB =7.△ABC 的周长等于16,D 是AC 的中点,DE ∥AB ,交BC 于点E ,则△DEC 的周长等于( ) A.2 B.4 C.6 D.88.在□ABCD 中,E 是BC 的中点,F 是BE 的中点,AE 与DF 相交于H ,则△EFH 的面积与△ADH 的面积的比值为 ( ) A .21 B . 81 C .161 D .41二、填空题(每小题3分,共18分)9.有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm ,则这个地区的实际周长________。
二次函数与相似三角形综合题
二次函数与相似三角形二次函数与相似三角形例1 如图1,已知抛物线x x 41y 2+-=的顶点为A ,且经过原,与x 轴交于点O 、B 。
(1)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;点的坐标;(2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. . 函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、在未知三角形中利用勾股定理、三角函数、三角函数、三角函数、对称、对称、旋转等知识来推导边的大小。
识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
度,之后利用相似来列方程求解。
解:⑴如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6 将x =6代入1)2x (41y 2+--=,得y =-3, ∴D(6,-3); 例1题图题图 图1 OAByxOAByx图2 COABDyx图1 13E A'OAB Py x图2 (2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长;(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.解答:解:(1)∵抛物线y=ax 2﹣2ax+c (a≠0)经过点A (3,0),点C (0,4), ∴,解得,∴抛物线的解析式为y=﹣x 2+x+4; (2)设直线AC 的解析式为y=kx+b , ∵A(3,0),点C (0,4), ∴,解得,∴直线AC 的解析式为y=﹣43x+4.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,﹣43m+4), ∵点P 的横坐标为m ,点P 在抛物线y=﹣x 2+x+4上,∴点P 的坐标为(m ,﹣ m 2+m+4), ∴PM=PE﹣ME=(﹣m 2+m+4)﹣(﹣43m+4)=﹣m 2+73m ,即PM=﹣m 2+73m (0<m <3); (3)在(2)的条件下,连结PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=﹣m+4,CF=m ,PF=﹣m 2+m+4﹣4=﹣m 2+m . 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况:①若△PFC∽△AEM,则PF :AE=FC :EM ,即(﹣m 2+m ):(3﹣m )=m :(﹣ m+4), ∵m≠0且m≠3, ∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF 中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM 为直角三角形;②若△CFP∽△AEM,则CF :AE=PF :EM ,即m :(3﹣m )=(﹣m 2+m ):(﹣m+4), ∵m≠0且m≠3,yxEQP C B OA ∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM,∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为或1,△PCM 为直角三角形或等腰三角形.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解. 练习1、已知抛物线225333y x x =-+经过53(33)02P E æöç÷ç÷èø,,,及原点(00)O ,. (1)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.点的坐标;若不存在,说明理由.(2)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?之间存在怎样的关系?为什么?(1)存在.)存在.设Q 点的坐标为()m n ,,则225333n m m =-+, 要使,BQ PB OCP PBQ CP OC =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12232m m ==,.当123m =时,2n =,即为Q 点,所以得(232)Q ,要使,BQ PB OCP QBP OC CP =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12333m m ==,,当3m =时,即为P 点,点, 当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.相似.Q 点的坐标为(232)(333)-,,,.(2)在Rt OCP △中,因为3tan 3CP COP OC Ð==.所以30COP Ð=. 当Q 点的坐标为(232),时,30BPQ COP Ð=Ð=. 所以90OPQ OCP B QAO Ð=Ð=Ð=Ð=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形.都是直角三角形.又在Rt OAQ △中,因为3tan 3QA QOA AO Ð==.所以30QOA Ð=. 即有30POQ QOA QPB COP Ð=Ð=Ð=Ð=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ Ð=Ð=,所以OQA OQP △≌△.2.在平面直角坐标系xOy 中,已知二次函数223y x x =-++的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C .(1)若直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO Ð与ACO Ð的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.的取值范围.(1)假设存在直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B \-,,,. 令0x =,得3y =.(03)C \,. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .yCl xB A 1x = 练习3图yx B E A OC D1x =l点B的坐标为(30),,点C的坐标为(03),,点A的坐标为(10)-,.4345.AB OB OC OBC\===Ð=,,223332BC\=+=.要使BOD BAC△∽△或BDO BAC△∽△,已有B BÐ=Ð,则只需BD BOBC BA=,①或.BO BDBC BA=②成立.成立.若是①,则有3329244BO BCBDBA´===.而45OBC BE DEÐ=\=,.\在Rt BDE△中,由勾股定理,得222229224BE DE BE BDæö+===ç÷ç÷èø.解得解得94BE DE==(负值舍去).93344OE OB BE\=-=-=.\点D的坐标为3944æöç÷èø,.将点D的坐标代入(0)y kx k=¹中,求得3k=.\满足条件的直线l的函数表达式为3y x=.[或求出直线AC的函数表达式为33y x=+,则与直线AC平行的直线l的函数表达式为3y x=.此时易知BOD BAC△∽△,再求出直线BC的函数表达式为3y x=-+.联立33y x y x==-+,求得点D的坐标为3944æöç÷èø,.]若是②,则有342232BO BABDBC´===.而45OBC BE DEÐ=\=,.\在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.解得解得2BE DE ==(负值舍去).321OE OB BE \=-=-=.\点D 的坐标为(12),. 将点D 的坐标代入(0)y kx k =¹中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.\存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944æöç÷èø,或(12),.(2)设过点(03)(10)C E ,,,的直线3(0)y kx k =+¹与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-. \此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y \==-,.\点P 的坐标为(512)-,.此时,锐角PCO ACO Ð=Ð.又二次函数的对称轴为1x =,\点C 关于对称轴对称的点C ¢的坐标为(23),. \当5px>时,锐角PCO ACO Ð<Ð;当5p x =时,锐角PCO ACO Ð=Ð; 当25p x <<时,锐角PCO ACO Ð>Ð.OxBEA O C1x =PC ¢ ·3.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C ,过点A 作AP ∥CB 交抛物线于点P . 在x 轴上方的抛物线上是否存在一点M ,过M 作MG ^x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.否则,请说明理由. 解:解: 假设存在假设存在A (1,0)-B (1,0)C (0,1)- ∵ÐPAB=ÐBAC =45 ∴P A ^AC ∵MG ^x 轴于点G , ∴ÐMGA=ÐPAC =90 在Rt △AOC 中,OA=OC=1 ∴AC=2 在Rt △PAE 中,AE=PE=3 ∴AP= 32 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <-(ⅰ) 当D AMG ∽D PCA 时,有AG PA =MG CA∵AG=1m --,MG=21m -即211322m m ---=解得11m =-(舍去)(舍去) 223m =(舍去)(舍去)(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即 211232m m ---=解得:1m =-(舍去)(舍去) 22m =- ∴M (2,3)-② 点M 在y 轴右侧时,则1m > (ⅰ) 当D AMG ∽D PCA 时有AG PA =MGCA∵AG=1m +,MG=21m -G M 图3 C B y P A oxG M 图2 C B y P A ox图1 C P B y A ox∴211322m m +-=解得11m =-(舍去)(舍去) 243m =∴M 47(,)39(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即211232m m +-=解得:11m =-(舍去)(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似相似M 点的坐标为(2,3)-,47(,)39,(4,15)4.4.(2013•曲靖压轴题)如图,在平面直角坐标系(2013•曲靖压轴题)如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线y=﹣x 2﹣3x+4..点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C ,交抛物线于点E .(1)当DE=4时,求四边形CAEB 的面积.的面积. (2)连接BE BE,,是否存在点D ,使得△DBE 和△DAC 相似?若存在,求此点D 坐标;若不存在,说明理由.说明理由.考点: 二次函数综合题. 分析: (1)首先求出点A 、B 的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C 坐标为(m ,0)(m <0),根据已知条件求出点E 坐标为(m ,8+m );由于点E 在抛物线上,则可以列出方程求出m 的值.在计算四边形CAEB 面积时,利用S 四边形CAEB =S △A CE +S 梯形OCEB ﹣S △BCO ,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x 2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x 2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴C E=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.5.5.(2013•绍兴压轴题)抛物线(2013•绍兴压轴题)抛物线y=y=((x ﹣3)(x+1x+1))与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 为顶点.为顶点.(1)求点B 及点D 的坐标.的坐标.(2)连结BD BD,,CD CD,抛物线的对称轴与,抛物线的对称轴与x 轴交于点E .①若线段BD 上一点P ,使∠DCP=∠BDE,求点P 的坐标.的坐标.②若抛物线上一点M ,作MN⊥CD,交直线CD 于点N ,使∠CMN=∠BDE,求点M 的坐标.的坐标.考点: 二次函数综合题.3718684分析: (1)解方程(x ﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x ﹣3)(x+1)与x轴交于A ,B 两点(点A 在点B 左侧),确定点B 的坐标为(3,0);将y=(x ﹣3)(x+1)配方,写成顶点式为y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,即可确定顶点D 的坐标;(2)①根据抛物线y=(x ﹣3)(x+1),得到点C 、点E 的坐标.连接BC ,过点C 作CH⊥DE 于H ,由勾股定理得出CD=,CB=3,证明△BCD 为直角三角形.分别延长PC 、DC ,与x 轴相交于点Q ,R .根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q 的坐标(﹣9,0),运用待定系数法求出直线CQ 的解析式为y=﹣x ﹣3,直线BD 的解析式为y=2x ﹣6,解方程组,即可求出点P 的坐标;②分两种情况进行讨论:(Ⅰ)当点M 在对称轴右侧时.若点N 在射线CD 上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在.解答:解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,点评: 本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.6.6.(2013•恩施州压轴题)如图所示,直线(2013•恩施州压轴题)如图所示,直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线y=y=x x 2﹣4x+3过点B 、C 和D (3,0). (1)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N 、B 、D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.的坐标. (2)在抛物线上是否存在点P ,使S △PBD =6=6?若存在,求出点?若存在,求出点P 的坐标;若不存在,说明理由.由.考点: 二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: (1)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M(2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N 1(0,0);(II )若BD 为直角边,B 为直角顶点,则点N 在x 轴负半轴上,∵OB=OD=ON 2=3,∴N 2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(2)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m 2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.。
二次函数与相似三角形
,点39 x+yC EPD6若是非直角三角形有如图1-2的几种基本型。
利用几何定理和性质或者代数方法建议方程求解都是常用的方法。
五、课后巩固1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
(1)求抛物线的解析式;(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
2、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点. (1)求抛物线的函数关系式;(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出A AB B OO x x y y 图① 图②30.30..都是直角三角形.3.30, ,13902∠+∠∴∠,90DAE =°,ADE 。
34AE AD ==45. BAC,3 BO BCBA ⨯=45BE ∴,BDE 中,由勾股定理,得332BO BA BC ⨯=45BE DE ∴,.BDE 中,由勾股定理,得DE =(负值舍去)4545E为等腰直角三角形1)+45∴90△在Rt ABC∠BAC=∴点为所求又D∴=CD BC (3)这样的△在Rt ABC。
初中锐角三角形和反比例函数和相似
初中锐角三角形和反比例函数和相似首先,让我们从锐角三角形开始。
锐角三角形是指一个三角形的所有内角都小于90度的三角形。
在初中数学中,我们通常会学习三角函数以及它们在锐角三角形中的应用。
而锐角三角形的三个重要的三角函数分别是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
通过这些函数,我们可以计算出在锐角三角形中任意一个角的正弦、余弦和正切值。
接下来,让我们来探索一下反比例函数。
在数学中,我们常常会遇到一种函数形式,即y与x之间满足y与x的乘积恒定的关系。
这种函数关系被称为反比例函数。
具体而言,对于一个反比例函数,可以用y=k/x的形式来表示,其中k是常数。
反比例函数的图像通常是一个双曲线。
首先,我们来看一下锐角三角形的一个重要性质,即三角比例恒等式。
对于一个任意锐角三角形ABC,我们有以下三个比例恒等式:sin A / a = sin B / b = sin C / ccos A / a = cos B / b = cos C / ctan A / a = tan B / b = tan C / c其中,A、B、C分别表示三角形的内角,a、b、c分别表示与这些角相对的边的长度。
这些比例恒等式表明,在锐角三角形中,角的正弦、余弦和正切值与它们相对的边的比值相等。
现在,让我们来引入反比例函数。
对于一个反比例函数y=k/x,我们可以将k理解为一个比例常数。
现在,我们来看一下,在锐角三角形的三角比例恒等式中,比例常数k与锐角的正弦、余弦和正切值之间的关系。
首先,考虑正弦函数sin。
根据三角比例恒等式sin A / a = sin B / b = sin C / c,我们可以将它表示为:sin A = kasin B = kbsin C = kc其中k为比例常数。
我们可以看到,k与a、b、c之间的关系正好是反比例函数y=k/x的形式。
同样地,我们也可以利用三角比例恒等式来推导出余弦函数和正切函数与反比例函数之间的关系。
函数与相似三角形结合典型试题
函数与相似三角形结合典型试题1、已知反比例函数y =m-2/x( x<0)的图象经过点A (-2,3),过点A 作直线AC 与函数y =m-2/x 的图象交于点B ,与x 轴交于点C ,且AB =2BC .(1)求m 的值及点B 的坐标:(2)求△AOB 的面积.2、如图,在△ABC 中,AB =AC =10,BC =12,AM ∥BC ,点P 在线段BC 上以每秒2个单位的速度由B 点向C 点运动,点Q 在线段BA 上以每秒1个单位的速度由B 点向A 点运动,在运动中,始终保持∠QPD =∠B ,且PD 交AC 于点E ,交AM 于点D ,当P 点运动到C 点时,Q 点随之停止运动.设运动时间为t (秒).(1)当t =4秒时,试证明:△BPQ ≌△CEP ; (2)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(3)当t 为何值时?使得S ∆ADE/S ∆CPE=1/4.3、如图,在直角梯形ABCD 中,∠D=90°,AB=10cm,BC=6cm ,AB ∥CD,AC ⊥BC, F 点以2cm/s 的速度在线段AB 上由A 向B 匀速运动,点E 同时以1cm/s 的速度在线段BC 上由B 向C 匀速运动,设运动的时间为t (0<t <5).(1)求证:⊿ACD ∽⊿BAC ;(2)求DC 的长(3)当t 为何值时,⊿FEB 与⊿ABC 相似?4、如图,已知△ABC 中,AB =AC =2,∠A =90°,O 为AB 边上移动,动点F 在AC 边上移动. (1)点E ,F 的移动过程中,△OEF 是否能成为∠EOF =45°的等腰三角形?若能,求BE 的长;若不能,请说明理由;(2)当∠EOF =45°时,设BE =x ,CF =y ,求y 与x 之间的函数解析式,并写出x 的取值范围.5、如图,在矩形ABCD 中,已知AB =2,BC =3,点E 为AD 边上一动点(不与A 、D 重合),连结CE ,作EF ⊥CE 交AB 边于F(1)求证:△AEF ∽△DCE ;(2)当△ECF ∽△AEF 时,求AF 的长;(3)在点E 的运动过程中,AD 边上是否存在异于点E 的点G ,使△AGF ∽△DCG 成立?若存在,请猜想点G 的位置,并给出证明;若不存在,请说明理由.6、如图1,已知,CE 是Rt △ABC 的斜边AB 上的高,点P 是CE 的延长线上任意一点,BG ⊥AP ,求证:(1)△AEP ∽△DEB ; (2) CE 2=ED·EP 。
相似三角形、三角函数、反比例函数知识点总结(导学案)
相似三角形知识点总结 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c da b c d a d b c a c ==()a 、d 叫 ,b 、c 叫 ,如果b=c ,那么b 叫做a 、d 的 。
把线段AB 分成两条线段AC 和BC ,使 ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
黄金比(黄金数)是 .例:线段AB=10m,点P是线段AB 的黄金分割点,则AP= .2. 比例性质:(1)基本性质 (2)合比性质 (3)等比性质3、相似比:相似多边形对应边长度的比叫做相似比(比例系数).4、 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===5、平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
BC DE AC AE AB AD ==( A 字型 ) (X 字型)6、 相似三角形的判定:① 对应相等,两个三角形相似 ② 对应成比例且 相等,两三角形相似 ③ 对应成比例,两三角形相似④如果一个直角三角形的 和 与另一个直角三角形的和 对应成比例,那么这两个直角形相似。
⑤ 三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似。
【注:三角形相似是证明乘积式、比例式的有效工具,同时也是三角形中求线段长的重要手段】7、相似三角形的性质:①相似三角形的 相等 ②相似三角形的 成比例③相似三角形 的比、 的比和 的比都等于相似比E B D (3)B CA E④相似三角形比等于相似比,比等于相似比的平方8、位似:如果两个图形不仅是图形,而且每组都交于一点,那么这样的两个图形叫做位似图形.【注:位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点,位似图形是相似图形,但相似图形是位似图形. 位似图形的对应边互相平行或共线位似图形上任意一对对应点到的距离之比等于相似比.】9、画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形.10、在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么对应点的坐标为(,) 【同向位似图形】或 (,) 【反向位似图形】,锐角三角函数1、锐角∠A的三角函数(按右图Rt△ABC填空)∠A的正弦:sin A = ,∠A的余弦:cos A = ,∠A的正切:tan A = ,∠A的余切:cot A =2、锐角三角函数值,都是实数(正、负或者0);3、正弦、余弦值的大小范围:<sin A<;<cos A<4、tan A•cot A = ; tan B•cot B = ;5、sin A =cos(90°- );cos A = sin( -)6、填表7、在Rt △ABC 中,∠C =90゜,AB =c ,BC =a ,AC =b ,1)、三边关系(勾股定理):2)、锐角间的关系:∠ +∠ = 90°3)、边角间的关系:sin A = ; sin B = ;cos A = ; cos B = ; tan A = ; tan B = ;4)、倒数关系: ;5)、商的关系: ;6)、平方和的关系: ;8、图中角 可以看作是点A 的 角也可看作是点B 的 角; 9、(1)坡度(或坡比)是坡面的 高度(h )和 长度(l )的比。
相似三角形与三角函数
初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。
中学数学复习三角函数与相似三角形
中学数学复习三角函数与相似三角形中学数学复习:三角函数与相似三角形导言:数学是一门既抽象又具有实用性的学科,其中三角函数与相似三角形是中学数学中重要的内容之一。
通过对三角函数与相似三角形的复习,我们能够巩固对于三角函数定义、性质以及相似三角形判定及性质应用的理解和掌握。
本文将全面复习这些内容,帮助读者进一步加强数学知识,为数学学习打下坚实的基础。
一、三角函数复习1. 三角函数的定义三角函数包括正弦函数、余弦函数和正切函数,它们分别是以一个角的正弦值、余弦值和正切值为函数值的函数。
对于一个锐角∠A,我们定义其正弦值为∠A的对边与斜边的比值,记作sinA;余弦值为∠A 的邻边与斜边的比值,记作cosA;正切值为∠A的对边与邻边的比值,记作tanA。
2. 三角函数的性质(1)单位圆上的正弦、余弦、正切值单位圆是半径为1的圆,将圆心O作为坐标原点,将x轴和y轴作为坐标轴。
对于单位圆上的点P(x, y),P到x轴的距离即为∠A的弧度值,也是∠A的正弦值和余弦值。
利用单位圆,我们可以得出许多三角函数的性质,如sin2A + cos2A = 1以及tanA = sinA/cosA等。
(2)三角函数的周期性三角函数在定义域(一般是实数集合)上都是周期函数。
其中,正弦函数和余弦函数的周期为2π,而正切函数的周期为π。
(3)三角函数的奇偶性正弦函数是奇函数,即sin(-x) = -sinx;余弦函数是偶函数,即cos(-x) = cosx;正切函数是奇函数,即tan(-x) = -tanx。
3. 三角函数的图像与性质(1)正弦函数和余弦函数的图像正弦函数和余弦函数都是周期函数,它们的图像都是由一条连续的波浪线组成。
正弦函数的最大值为1,最小值为-1,而余弦函数的最大值也为1,最小值同样为-1。
这两个函数的图像关于y轴对称。
(2)正切函数的图像正切函数在定义域的某些点处不存在,称为奇点。
在正切函数的图像中,奇点以虚线表示。
相似三角形的三点定形、相似三角形与函数综合问题
学生: 科目: 数 学 教师:知识框架一、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之.复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明.二、函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
相似三角形与三角函数的关系
相似三角形与三角函数的关系相似三角形是指具有相同形状但大小不同的两个三角形。
在数学中,相似三角形是一个重要的概念,它与三角函数有着密切的关系。
本文将探讨相似三角形与三角函数之间的关系,以及如何运用三角函数来解决相似三角形的问题。
一、相似三角形的定义与性质相似三角形是指两个三角形的对应角度相等,对应边比值相等的三角形。
根据相似三角形的定义,我们可以得出以下性质:1. 相似三角形的对应角度相等在两个相似三角形中,每个角度的度数都相等。
这是相似三角形的基本性质之一。
2. 相似三角形的对应边比例相等在两个相似三角形中,对应边的长度的比值是相等的。
这意味着,若两个三角形的对应边分别为a1、b1、c1和a2、b2、c2,则有以下比例关系:a1/a2 = b1/b2 = c1/c23. 相似三角形的面积比例是边长比例的平方相似三角形的面积比例等于对应边长比例的平方。
设两个相似三角形的对应边分别为a1、b1、c1和a2、b2、c2,则有以下关系:面积1 / 面积2 = (a1^2 / a2^2) = (b1^2 / b2^2) = (c1^2 / c2^2)二、三角函数与相似三角形的关系三角函数是研究角度与边长之间关系的重要工具。
在相似三角形中,对应角度相等,因此对应角的三角函数值也相等。
利用这一性质,我们可以在解决相似三角形问题时运用三角函数。
1. 正弦函数在相似三角形中的应用正弦函数在相似三角形中的运用较为广泛。
根据正弦定理,对于一个角为A的三角形,其对应的边长与正弦函数之间的关系为:a / sin(A) =b / sin(B) =c / sin(C)当两个三角形为相似三角形时,对应角相等,对应边比例相等。
因此,我们可以利用实际已知数据,通过正弦函数来计算未知量。
2. 余弦函数在相似三角形中的应用余弦函数也可以在相似三角形中得到应用。
根据余弦定理,对于一个角为A的三角形,其对应的边长与余弦函数之间的关系为:c^2 = a^2 + b^2 - 2ab * cos(C)在相似三角形中,对应边比例相等,因此可以通过已知数据和余弦函数来计算未知量。
中考数学二次函数与相似三角形有关的问题知识解读
二次函数与相似三角形有关的问题知识解读【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。
【解题思路】关于函数与相似三角形的问题一般三个解决途径:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形.根据未知三角形中已知边与已知三角形的可能对应边分类讨论;(2)利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解.【典例分析】【典例1】(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=或﹣,故点Q(,﹣2)或(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,)或(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(﹣,2)或(,)或(,).【变式1-1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(3)①当△AOC∽△DP A时,∵PD⊥x轴,∠DP A=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D 点坐标为(,1).【变式1-2】(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).【典例2】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).【变式2-1】(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.【解答】解:(1)将A(3,0),点C(0,﹣3)代入y=ax2﹣2x+c,∴,解得,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),D(1,0),F(1,﹣2),∴CD=,CF=,DF=2,∵E(﹣2,5),A(3,0),∴AE=5,设Q(x,y),①当△CDF∽△QAE时,==,∴==,∴AQ=5,EQ=5,∴,解得或(舍去),∴Q(﹣7,5);②当△CDF∽△AQE时,==,∴==,∴AQ=5,QE=10,∴,解得(舍去)或,∴Q(﹣12,5);③当△CDF∽△EQA时,==,∴==,∴EQ=5,AQ=10,∴,解得或(舍去),∴Q(3,﹣10);④当△CDF∽△QEA时,==,∴==,∴EQ=5,AQ=5,∴,解得或(舍去),∴Q(3,﹣5);综上所述:Q点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5).【变式2-2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ (点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【变式2-3】(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(1,0),B(﹣3,0),∴,解得,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴OC=OB=3,即△OBC是等腰直角三角形,∵抛物线的解析式为:y=﹣x2﹣2x+3,∴抛物线对称轴为:x=﹣1,∵EN∥y轴,∴△BEN∽△BCO,∴,∴,∴EN=2,①若△PQE∽△OBC,如图所示,过点P作PH⊥ED垂足为H,∴∠PEH=45°,∴∠PHE=90°,∴∠HPE=∠PEH=45°,∴PH=HE,∴设点P坐标(x,﹣x﹣1+2),∴代入关系式得,﹣x﹣1+2=﹣x2﹣2x+3,整理得,x2+x﹣2=0,解得,x1=﹣2,x2=1(舍),∴点P坐标为(﹣2,3),②若△EPQ∽△OCB,如图所示,设P(x,2),代入关系式得,2=﹣x2﹣2x+3,整理得,x2+2x﹣1=0,解得,(舍),∴点P的坐标为(﹣1﹣,2),综上所述点P的坐标为(﹣1﹣,2)或(﹣2,3)。
反比例函数与相似三角形综合
反比例函数与相似三角形如图,点A 在第一象限内,点B 在x 轴正半轴上,反比例函数x k y =)0(>k 的图象与直线OA 交于点C 、E 两点,与直线AB 交于点D ,若AB AO =. 求证:AE AC AD ⋅=2.方法一:(面积+相似)证: 作如图所示的辅助线,∵AB AO =,C 、D 在反比例函数x ky =上,∴BDG OCH S S 四边形=∆.∴ OAF ABF ADG OCH S S S S ∆∆∆∆==+.∴1=+∆∆∆∆OAFADG OAF OCHS S S S .∵ CH ∥AF ,∴ OCH ∆∽OAF ∆,则2)(OAOCS S OAF OCH =∆∆.同理2)(OAADS S OAF ADG =∆∆.∴12222=+OA AD OA OC ,则222OC OA AD -=.∴ ))((2OC OA OC OA AD -+=.由反比例函数的对称性知:OC OE =,∴AE AC AD ⋅=2.F G H 比方法一图方法二:(解析法+相似):证: 作如图所示的辅助线;设),(n m C ,),(t s D , 由对称性知),(n m E --. 易求得直线CD 的解析式为t n x ms k y ++-=; 易求得直线DE 的解析式为n t x ms k y -+=. 可求得),0(t n F +,),0(n t G -.∴ n GH FH ==,则DG DF =. ∴DGF DFG ∠=∠.∴DNM ONG DMN ∠=∠=∠.∵AB AO =,∴ AOB ABO ∠=∠.由三角形的外角定理知:E BDM ADC ∠=∠=∠. ∵A A ∠=∠,∴ ADC ∆∽AED ∆,则AD ACAE AD =.∴ AE AC AD ⋅=2.方法三:(三角函数+相似):证: 作如图所示的辅助线;∵AB AO =, ∴ AOB ABO ∠=∠.∵DF ∥OB ,∴ ABO ADF ∠=∠,同理AOB AEH ∠=∠. ∴AEH ADF ∠=∠. 设点),(m km D ,点),(n kn C ,由对称性得),(n kn E --.∴mn n m k m k n k CF )(-=-=,n m DF -=.在CDF Rt ∆中,mn kDF CF CDF ==∠tan ,同理mn kDEH =∠tan .∴DEH CDF ∠=∠.∴AED ADC ∠=∠.∵A A ∠=∠,∴∴ ADC ∆∽AED ∆,则AD ACAE AD=.∴ AE AC AD ⋅=2.FG H NM H F方法四:(见何国平老师的解法)。
“反比例函数与相似三角形问题”的复习课课例分析
“反比例函数与相似三角形问题”的复习课课例分析作者:吴博思来源:《课程教育研究》2020年第52期【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2020)52-0085-02一、教学背景分析笔者吴博思老师在深圳市九年级数学教研会上为全市初中数学老师上了一节中考专题复习示范课。
反比例函数是在学生学习了一次函数、二次函数的基础上开始学习的,反比例函数的教学一方面丰富了用函数思想分析问题、解决问题的经验,也为学生构建数学模型奠定了基础,在中学数学体系中占有重要的地位。
作为九年级第一轮复习课,学生已经学过了《反比例函数》和《相似三角形》全章的知识,掌握了反比例函数的概念、图像、性质,初步具有对反比例函数的有关问题进行合作探究的意识与能力,会用反比例函数的知识解决一些简单问题。
为了与时下的中考热点相结合,为大家提供一节有价值的复习课,笔者所在的备课组全体老师全力以赴、共同研究,经过反复几轮的备课、上课、评课等磨课活动,最终成功地展示了一节“反比例函数与相似三角形”的高效复习课。
下面笔者谈谈这节课的教学设计与反思,希望给同行一点启发。
二、教学设计分析设计分析:初中阶段最重要的三个相似三角形数学模型分别是“A字型”、“一线三等角模型”、“双垂直模型”,也是学生思维重要的切入口。
通过三道热身训练,让学生捕捉到反比函数当中隐藏的相似三角形的模型,通过辅助线的添加能够进一步呈现模型。
设计的目的就是抓住学生的心灵,激发学生的思维,为接下来的问题引入埋下伏笔,突出反比例函数与相似三角形结合的教学意图,顺理成章引出本节课的课题——反比例函数与相似三角形问题。
本环节注重夯实知识点,对于反比例函数与相似三角形的综合应用采用启发式教学,通过课前热身的训练指导学生进行知识的自我整理、自我质疑,通过自我挑战,达到自我提高的目标。
本环节将由学生自行探索题目中所蕴含的相似三角形模型,一方面可培养学生的表达能力,另一方面又能培养及时归纳总结的好习惯。
相似三角形在三角函数计算中的技巧与策略
相似三角形在三角函数计算中的技巧与策略在数学中,三角函数是经常出现的一个重要概念,它们在几何、物理、工程等领域中都具有广泛的应用。
而在进行三角函数计算的过程中,相似三角形的性质往往能够帮助我们简化计算步骤,提高计算的准确性和效率。
本文将讨论相似三角形在三角函数计算中的一些技巧和策略。
首先,我们来回顾下相似三角形的定义。
相似三角形指的是具有相同形状但大小不同的两个三角形。
按照相似三角形的定义,我们知道它们的对应角度相等,对应边的比例也相等。
利用相似三角形的性质,我们可以在三角函数计算中灵活运用以下几个技巧和策略:1. 角度相等可以使用相等的三角函数值:当两个三角形的对应角度相等时,它们的三角函数值也相等。
例如,如果两个三角形的角A相等,那么它们的正弦函数值sin(A)也相等。
这个性质可以用于简化计算中的繁复步骤,从而提高计算的速度和准确性。
2. 利用三角函数的定义关系进行计算:三角函数之间有一系列定义关系,如正弦函数sin(x)可以表示为余弦函数cos(x)的补函数,正切函数tan(x)可以表示为正弦函数sin(x)与余弦函数cos(x)的比值。
当我们知道某个角度的三角函数值时,可以利用这些定义关系来计算其他角度的三角函数值。
3. 利用相似三角形的比例关系计算边长:除了计算角度的三角函数值外,相似三角形的比例关系也可以应用到计算边长的过程中。
当两个三角形相似时,它们对应边的比例相等。
例如,如果两个三角形的斜边AB和BC的比例相等,即AB/BC = k,那么它们的正弦函数值sin(A)和sin(C)的比值也为k。
4. 利用特殊角的三角函数值进行计算:在计算过程中,经常会遇到一些特殊的角度,如30度、45度、60度等。
对于这些特殊角,我们可以提前计算出其正弦函数、余弦函数和正切函数的值,然后在实际计算中直接使用,避免重复计算,提高计算的效率。
综上所述,相似三角形在三角函数计算中提供了一些有用的技巧和策略,能够简化计算过程,提高计算的准确性和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与相似三角形
一、(2013陕西)在平面直角坐标系中,一个二次函数的图像经过A (1,0)B (3,0)两点.
(1)写出这个二次函数图像的对称轴;
(2)设这个二次函数图像的顶点为D,与y 轴交与点C ,它的对称轴与x 轴交与点E ,连接AC 、DE 和DB.当△AOC 与△DEB 相似时,求这个二次函数的表达式.
[提示:如果一个二次函数的图像与x 轴的交点为A 1(,0)x B 2(,0)x ,那么它的表达式可表示为
12()()y a x x x x =-- .]
二、(2013上海)如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2
(0y ax bx a =+>)经过点A
和x 轴正半轴上的点B ,AO OB == 2,0
120AOB ∠=.
(1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小;
(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.
M
A
B O
x
y
图9
三、(2013凉山州)如图,抛物线22y ax ax c =-+(0a ≠)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G 。
(1)求抛物线的解析式;
(2)抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长。
(3)在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、
F 为顶点的三角形和AEM △相似?若存在,求出此时m 的值,并直接判断PCM △的形状;若不存在,
请说明理由。
A
B C
l P M
F G D
O E
x
y
(第28题图)
四、(2013•乌鲁木齐)如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.
(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.。