第8章材料的变形与断裂

合集下载

第8章 金属高温下的变形与断裂

第8章 金属高温下的变形与断裂

8
9
典型的蠕变曲线
金属蠕变过程用蠕变曲线来描述。 金属蠕变过程用蠕变曲线来描述。典型的蠕变曲线如图。 (1)Oa线段:是试样在t 温度下承受恒定拉应力σ时所产 线段: 线段 生的起始伸长率δq。 若应力超过金属在该温度下的屈服强度,则δq包括弹性伸长 弹性伸长 塑性伸长率两部分。 率和塑性伸长率 塑性伸长率 此应变还不算蠕变 应变还不算蠕变,而是由外载荷引起的一般变形过程。 应变还不算蠕变
20
(二)扩散蠕变
(二)扩散蠕变 扩散蠕变: 扩散蠕变:是在较高温度(约比温度(T/Tm)远超过0.5)下的 ( 一种蠕变变形机理。 它是在高温下大量原子和空位定向移动造成的 高温下大量原子和空位定向移动造成的。 高温下大量原子和空位定向移动造成的 在不受外力情况下,原子和空位的移动无方向性,因而宏观 上不显示塑性变形。 但当受拉应力σ作用时,在多晶体内产生不均匀的应力场 产生不均匀的应力场。 产生不均匀的应力场
17
刃位错攀移克服障碍的几种模型: 刃位错攀移克服障碍的几种模型: 可见,塞积在某种障碍前的位错通过热激活可以在新的滑移 面上运动(a),或与异号位错相遇而对消(b),或形成亚 晶界(c),或被晶界所吸收(d)。
18
当塞积群中某一个位错被激活而发生攀移时,位错源便可能 再次开动而放出一个位错,从而形成动态回复过程 动态回复过程。 动态回复过程 这一过程不断进行,蠕变得以不断发展。
7
本章介绍内容: 本章介绍内容: 阐述金属材料在高温长时载荷作用下的蠕变现象 蠕变现象。 蠕变现象 讨论蠕变变形和断裂的机理 蠕变变形和断裂的机理。 蠕变变形和断裂的机理 介绍高温力学性能指标及影响因素。 为正确选用高温金属材料和合理制定其热处理工艺提供基础 知识。

材料的力学性能 断裂与断口分析

材料的力学性能 断裂与断口分析

材料的力学性能-断裂与断口分析材料的断裂断裂是工程材料的主要失效形式之一。

工程结构或机件的断裂会造成重大的经济损失,甚至人员伤亡。

如何提高材料的断裂抗力,防止断裂事故发生,一直是人们普遍关注的课题。

任何断裂过程都是由裂纹形成和扩展两个过程组成的,而裂纹形成则是塑性变形的结果。

对断裂的研究,主要关注的是断裂过程的机理及其影响因素,其目的在于根据对断裂过程的认识制定合理的措施,实现有效的断裂控制。

✓材料在塑性变形过程中,会产生微孔损伤。

✓产生的微孔会发展,即损伤形成累积,导致材料中微裂纹的形成与加大,即连续性的不断丧失。

✓损伤达到临界状态时,裂纹失稳扩展,实现最终的断裂。

按断裂前有无宏观塑性变形,工程上将断裂分为韧性断裂和脆性断裂两大类。

断裂前表现有宏观塑性变形者称为韧性断裂。

断裂前发生的宏观塑性变形,必然导致结构或零件的形状、尺寸及相对位置改变,工作出现异常,即表现有断裂的预兆,可能被及时发现,一般不会造成严重的后果。

脆性断裂断裂前,没有宏观塑性变形的断裂方式。

脆性断裂特别受到人们关注的原因:脆性断裂往往是突然的,因此很容易造成严重后果。

脆性断裂断裂前不发生宏观塑性变形的脆性断裂,意味着断裂应力低于材料屈服强度。

对脆性断裂的广义理解,包括低应力脆断、环境脆断和疲劳断裂等。

脆性断裂一般所谓脆性断裂仅指低应力脆断,即在弹性应力范围内一次加载引起的脆断。

主要包括:与材料冶金质量有关的低温脆性、回火脆性和蓝脆等;与结构特点有关的如缺口敏感性;与加载速率有关的动载脆性等。

材料的断裂比较合理的分类方法是按照断裂机理对断裂进行分类。

微孔聚集型断裂、解理断裂、准解理断裂和沿晶断裂。

有助于→揭示断裂过程的本质→理解断裂过程的影响因素→寻找提高断裂抗力的方法。

材料的断裂将环境介质作用下的断裂和循环载荷作用下的疲劳断裂按其断裂过程特点单独讨论。

金属材料的断裂-静拉伸断口材料在静拉伸时的断口可呈现3种情况:(a)(b):平断口;(c)(d):杯锥状断口;(e)尖刃断口平断口:材料塑性很低、或者只有少量的均匀变形,断口齐平,垂直于最大拉应力方向。

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂一、基本概念1、韧性破坏;脆性破坏;脆化温度2、强迫高弹形变;冷流;细颈3、银纹;屈服;银纹屈服;剪切屈服4、拉伸强度;抗弯强度;弯曲模量;冲击强度;硬度5、应变诱发塑料─橡胶转变6、应变软化现象;应变变硬化现象7、银纹;裂缝;应力集中二、选择题1、下列高聚物中,拉伸强度最高的是( )A,低密度聚乙烯B,聚苯醚C,聚甲醛2、非晶态聚合物作为塑料使用的最佳温度区间为( )A,Tb---Tg B,Tg---Tf C,Tg以下3、甲乙两种聚合物材料的应力---应变曲线如图所示, 其力学性能类型和聚合物实例分别为( )A,甲聚合物:硬而强,硬聚氯乙稀;乙聚合物:软而韧,聚异戊二稀B,甲聚合物:硬而脆,聚甲基丙稀酸甲酯;乙聚合物:软而弱,聚丁二稀C,甲聚合物:硬而强,固化酚醛树酯;乙聚合物:软而韧 ,聚合物凝胶D,甲聚合物:硬而脆,硬聚氯乙稀;乙聚合物:软而弱,聚酰胺4、韧性聚合物单轴拉伸至屈服点时,可看到剪切带现象,下列说法错误的是()。

A、与拉伸方向平行B、有明显的双折射现象C、分子链高度取向D、每个剪切带又由若干个细小的不规则微纤构成5、拉伸实验中,应力-应变曲线初始部分的斜率和曲线下的面积分别反映材料的()。

A、拉伸强度、断裂伸长率B、杨氏模量、断裂能C、屈服强度、屈服应力D、冲击强度、冲击能6、在聚甲基丙烯酸甲酯的拉伸试验中,温度升高则()。

A、σB升高、εB降低,B、σB降低、εB升高,C、σB升高、εB升高,D、σB降低、εB降低,7、聚苯乙烯在张应力作用下,可产生大量银纹,下列说法错误的是()。

A、银纹是高度取向的高分子微纤构成。

B、银纹处密度为0,与本体密度不同。

C、银纹具有应力发白现象。

D、银纹具有强度,与裂纹不同。

8、杨氏模量、冲击强度、应变、切变速率的量纲分别是()。

A、N/m2, J/m2, 无量纲, S-1,B、N, J/m, 无量纲, 无量纲C、N/m2, J, 无量纲, 无量纲D、N/m2, J, m, S-19、可较好解释高抗冲聚苯乙烯(HIPS)增韧原因的为()。

大学材料科学基础第八章材料的变形与断裂(1)

大学材料科学基础第八章材料的变形与断裂(1)

六方晶系则需画图判定。
滑移系数量与金属的塑性 滑移系代表了晶体滑移时可能采取的空间取向,晶 体中滑移系数量越多,滑移时可能采取的空间取向就 越多,滑移就越容易进行,金属的塑性便越好。 面 心 立 方 金 属 : Cu,Al,Au,Ag,,Ni,γ-Fe, 奥氏体钢,体心立方金属α-Fe,铁素体,Mo,Nb的 塑性很好,而密排六方金属Mg,Zr,Be,Zn的塑性 则较差。当然滑移系数量并不是决定金属塑性高低唯 一的因素,合金的成分、强度的高低、加工硬化的能 力等也会影响到金属的塑性。试验表明,奥氏体钢的 塑性要优于铁素体钢。
金属拉伸曲线分析。 1 弹性变形阶段:ζ-ε呈直线关系。
(弹)塑性变形阶段: ζ-ε不遵循虎克定律
2 均匀塑性变形阶段:屈服阶段:ε增加,ζ基本保 持不变, ζ-ε呈非线性关系。 3 颈缩阶段(局部变形阶段):变形集中在局部区 域。 4 断裂阶段:从颈缩到断裂。
拉伸试验可以得到以下强度指标和塑性指标:
拉伸条件下滑移系上分切应力的计算。
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
θ-滑移面法线与拉伸轴的夹角
4 力轴作用在任意方向
二、孪晶(孪生)变形
孪生也是金属塑性变形的一种形式,一般情况下, 金属晶体优先以滑移的方式进行塑性变形,但是当滑 移难以进行时,塑性变形就会以生成孪晶的方式进行, 称为孪生。例如滑移系较少的密排六方晶格金属,当 处于硬取向时,滑移系难以开动,就常以孪生方式进 行变形。滑移系较多的fcc、bcc结构的金属一般不发 生孪生变形,但在极低的温度下变形或是形变速度极 快时,也会以孪生的方式进行塑性变形。 定义:晶体在难以进行滑移时而发生的另一种塑 性变形方式,其特点是变形以晶体整体切变的形式 进行而不是沿滑移系发生相对位移。

第八章 材料的变形和断裂

第八章 材料的变形和断裂

名词解释(1)加工硬化(变形强化):当金属外加应力超过屈服强度后,随着变形程度的增加,变形的抗力也增加,要继续变形,必须增加外力,这种现象就叫加工硬化。

(2)颈缩:当应力达到抗拉强度时,试样不在均匀伸长,而是试样局部地方截面开始变细。

(3)位错宽度:(4)孪晶变形:晶体在切应力作用下沿着一定的晶面和晶向,在一个区域内发生连续顺序的切变,变形导致这部分的晶体取向改变了。

(5)多滑移:在多个滑移系上同时或交替进行的滑移。

(6)交滑移:晶体在两个或者多个滑移面上沿同一滑移方向进行的滑移。

(7)发生多系滑移时,在两个相交滑移面上运动的位错必然会互相交截,原来一直线位错经过交截后就会出现弯折部分,如果弯折部分仍在滑移面上,就叫扭折,若弯折部分不再滑移面上,就叫割阶。

(8)派纳力:在理想晶体中位错在点阵周期场中运动时所需克服的阻力(9)纤维组织:金属经过冷变形后,等轴状晶粒沿受力方向拉长,其中的夹杂物或者第二相也随之拉长。

(10)形变织构:金属在形变时,晶体的滑移面会移动,使滑移层逐渐转向与拉力轴平行。

原来的各个晶粒是任意取向的,现在由于晶粒的转动使各个晶粒的取向趋于一致,这就形成了晶体的择优取向。

(11)回复:在加热温度较低时,由于金属中的点缺陷及位错近距离迁移而引起的晶体某些变化。

(12)再结晶:冷变形金属由拉长的变形晶粒生成无畸变的新的等轴晶粒的过程。

(13)二次再结晶:(14)热变形:金属在再结晶温度以上的加工变形。

(15)蠕变:材料在高温下的变形不仅与应力有关,而且和应力作用的时间有关。

(16)应变时效:低碳钢经过少量预变形后,如果去载后立即再行加载则不会出现明显的屈服平台;若在室温下放置一较长的时间或在低温下经过短时加热后在进行拉伸试验,则屈服点又复出现,且屈服应力提高。

(17)第二相强化:当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。

(18)固溶强化:合金在形成单向固溶体后,变形时的临界切应力都高于纯金属,这叫做固溶强化。

第8章复合材料力学性能

第8章复合材料力学性能
1.76g/cm3);
➢强度高,拉伸强度为3.62GPa; ➢模量高于GF,为125GPa; ➢韧性好,断裂伸长率为2.5%; ➢缺点:表面惰性大,与树脂界面粘结性能差,抗压、抗
扭曲性能差。
14
14
基体材料
① 基体材料选择三原则:
第一,基体材料本身力学性能较好,如有较高的内聚强 度、弹性模量;与增强纤维有相适应的断裂伸长率; 第二,对增强材料有较好的润湿能力和粘结力,保证良 好的界面粘结; 第三,工艺性优良,成型和固化方法与条件简单,固化 收缩率低。
Ⅱ型CF(高强型): 强度>3GPa; 模量为230~270GPa; 断裂伸长率为0.5~1%
联碳化合物公司P-140 型CF: 模量高达966GPa
东丽公司T1000型CF: 强度达到7.05GPa; 模量为295GPa;
13
13
③ 芳纶的力学特性
➢以Kevlar-49为代表的芳纶是一种高模量有机纤维; ➢密度小(1.44g/cm3,GF为2.54g/cm3,T300为
17
17
8.2.1 纵向拉伸性能 (1)纵向拉伸应力σL 、拉伸模量EL
单向纤维复合材料纵向拉伸加载示意图和单向板纵向拉伸 简化力学模型图如下: PL = Pf + Pm
Pf 、 Pm分别为纤维(fibre)和基体(matrix)承受的载荷
18
18
当用应力表示
PL = Pf + Pm
σL AL = σf Af + σm Am
单向(纤维增强)复合材料 双向(正交纤维)复合材料 多向(纤维增强)复合材料 三向(正交纤维增强)复合材料 短纤维增强复合材料
4
4
(1)单向(纤维增强)复合材料

第8章变形与断裂(2)

第8章变形与断裂(2)
对 无 限 互 溶 的 Cu-Ni 合 金、Ag-Au合金,强化和 溶质浓度呈抛物线关系
铜镍固溶体的力学性能与成分的3关8 系
2. 固溶强化机制 根据溶质原子与位错间的交互作用,曾提出 过几种固溶强化的位错机制 溶质原子与位错的弹性交互作用
(1)点阵畸变 置换型溶质原子因为与溶剂 原子尺寸的差别,引起点阵 畸变,形成内应力场。位错 在内应力场中运动受阻
冷拉钢丝示意图
36
第七节 合金的变形与强化
合金 两种或两种以上金属与金属或金属与非 金属形成的,具有金属特性的 一、单相合金的变形与固溶强化
1. 固溶强化
与纯金属相比,固溶体的强度和硬度升高,塑 性和韧性降低的现象
37
固溶强化对具体合金, 表现规律不一样
对多数合金,溶解度有 限,强化和溶质浓度呈 线性关系
C
扭折与原位错线在同一滑移面上,可随主滑移线一道 运动,几乎不产生阻力,也可因位错线张力而消失3
B D
A 运动方向
bAB
D
bCD
C
bCD
A
割阶
C
B
割阶 与原位错线不在同一滑移面上,也常常不 是易滑移平面。位错会受到阻力
因为此割阶的滑移方向和原位错一致,所以
说明
P339最后一段
带有扭折或割阶的位错,其柏氏矢量与携带它 们的位错相同
扭折可因位错线张力而消失,但割阶不会因此 而消失
扭折可随位错线一道运动,几乎不产生阻力, 割阶与原位错不在同一滑移面上,一般只能通
过攀移随原位错一起运动,即使能随新位错一
起滑移,也增加其滑移阻力
9
10
11
2. 位错反应形成固定位错 两根位错线相遇发生反应后,可能会生成固定位 错—滑移面不是晶体滑移面的位错。固定位错自 身不能滑移运动,还会阻碍其他位错运动.

第八章材料的变形与断裂

第八章材料的变形与断裂
内应力场,位错在这内应立场中运动会受到阻力。 对一些合金还考虑弹性模量的差别。如尺寸上没有差别,溶
质原子切变模量较大,对位错有斥力,反之切变模量较小时则有 吸力。
第八章材料的变形与断裂
间隙式的溶质原子 对于间隙式的溶质原子,当其溶于体心立方中,会造成
不对称畸变。这时,溶质原子不仅和刃型位错,也和螺型位 错有强烈的交互作用,因而产生了很强的固溶强化效果。
第八章材料的变形与断裂
2)双交滑移机制 高层错能的面心立方和体心立方,变形时的 位错增殖主要是靠双交滑移。 见书上P342
第八章材料的变形与断裂
合金的变形与强化
固溶强化: 合金在形成单相固溶体后,变形时的临界切应力都高于
纯金属。
置换式的溶质原子,考虑溶质原子与溶剂原子尺寸的差别。 尺寸相差越大,溶解度越小,强化效果越大。 原子尺寸差别(或称错配)所引起的晶格畸变,会产生一
第八章材料的变形与断裂
三. 位错的增殖
1)F-R源(弗兰克-瑞德源) 塑性变形的过程中,尽管位错移出晶体产生滑移
台阶,但位错的数量(位错密度)却在不断的增加,这 是因为在外应力作用下发生塑性变形时位错会发生增 殖。
例如
第八章材料的变形与断裂
位错的增殖
利用Fnak-Read源说明增殖的过程。若滑移面上 有一段位错,CD两点钉住不可滑移,在外力作用下位 错应向右移动,这段位错将弯曲、扩张,相遇为异号 位错相消,产生一位错环,内部CD段还存在。反复可 生成一系列的位错环,扩展到晶体外的产生滑移台阶 可为柏氏矢量的整数倍。
3 消除:去应力退火。
第八章材料的变形与断裂
金属的断裂
一. 理论断裂强度 利用原子间结合力的模型可以求出金属的理论断裂强度。
第八章材料的变形与断裂

材料科学基础-习题

材料科学基础-习题

/jxtd/caike/这个网址有很多东西,例如教学录像,你可以上去看看,另外左下角有个“释疑解惑”,应该很有用第一章材料结构的基本知识习题1.原子中的电子按照什么规律排列?什么是泡利不相容原理?2.下述电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金属?(1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2(2) 1s2 2s2 2p6 3s2 3p6(3) 1s2 2s2 2p5(4) 1s2 2s2 2p6 3s2(5) 1s2 2s2 2p6 3s2 3p6 3d2 4s2(6) 1s2 2s2 2p6 3s2 3p6 4s13.稀土元素电子排列的特点是什么?为什么它们处于周期表的同一空格内?4.简述一次键与二次键的差异。

5.描述氢键的本质,什么情况下容易形成氢键?6.为什么金属键结合的固体材料的密度比离子键或共价键固体为高?7.应用式(1-2)~式(1-5)计算Mg2+O2-离子对的结合键能,以及每摩尔MgO晶体的结合键能。

假设离子半径为;;n=7。

8.计算下列晶体的离子键与共价键的相对比例(1) NaF(2) CaO9.什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

10.说明结构转变的热力学条件与动力学条件的意义,说明稳态结构与亚稳态结构之间的关系。

11.归纳并比较原子结构、原子结合键、原子排列方式以及晶体的显微组织等四个结构层次对材料性能的影响。

第二章材料中的晶体结构习题第三章高分子材料的结构习题1.何谓单体、聚合物和链节?它们相互之间有什么关系?请写出以下高分子链节的结构式:①聚乙烯;②聚氯乙烯;③聚丙烯;④聚苯乙烯;⑤聚四氟乙烯。

2.加聚反应和缩聚反应有何不同?3.说明官能度与聚合物结构形态的关系。

要由线型聚合物得到网状聚合物,单体必须具有什么特征?4.聚合物的分子结构对主链的柔顺性有什么影响?5.在热塑性塑料中结晶度如何影响密度和强度,请解释之。

变形与断裂总结

变形与断裂总结

第一章:单向静拉伸试验:是应用最广泛的力学性能试验方法之一。

1)可揭示材料在静载下的力学行为(三种失效形式):即:过量弹性变形、塑性变形、断裂。

2)可标定出材料最基本力学性能指标:如:屈服强度、抗拉强度、伸长率、断面收缩率等。

拉伸力-伸长曲线拉伸曲线:拉伸力F -绝对伸长△L 的关系曲线。

在拉伸力的作用下,退火低碳钢的变形过程四个阶段:1)弹性变形:O ~e2)不均匀屈服塑性变形:A ~C3)均匀塑性变形:C ~B4)不均匀集中塑性变形:B ~k5)最后发生断裂。

k ~第二章:弹性变形:当外力去除后,能恢复到原形状或尺寸的变形。

特点:可逆性、单值线性、同相位、变形量小本质:都是构成材料的原子(离子)或分子从平衡位置产生可逆位移的反映。

弹性模量E :是表征材料对弹性变形的抗力,工程称材料的刚度.E 值越大,在相同应力下产生的弹性变形就越小。

弹性模量是结构材料的重要力学性能指标之一。

影响因素:1、键合方式 2、原子结构 3、晶体结构 4、化学成分 5.微观组织 6.温度 弹性模量 E 与切变模量 G 关系:(其中: ν-泊松比。

)比例极限σp :是材料弹性变形按正比关系变化的最大应力,即拉伸应力一应变曲线上开始偏离直线时的应力值。

弹性极限:材料由弹性变形过渡到弹-塑性变形时的应力,当应力超过弹性极限σe 后,便开始产生塑性变形。

(比例极限σp 和弹性极限σe 与屈服强度的概念基本相同,都表示材料对微量塑性变形的抗力,影响因素也基本相同。

)弹性比功ae :(弹性比能、应变比能)表示材料在弹性变形过程中吸收弹性变形功的能力。

一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。

物理意义:吸收弹性变形功的能力。

几何意义:应力σ -应变ε曲线上弹性阶段下的面积。

欲提高材料的弹性比功:提高σe ,或降低 E2E G ν=(1+)弹簧钢:含碳较高并添加Si 、Mn 等合金元素强化基体,经淬火+中温回火获得回火托氏体组织及冷变形强化,以提高其弹性极限,使弹性比功ae 和弹性提高。

材料力学第八章

材料力学第八章

D2 E2 O2
某实际应力状态:与 包络线相切,1>3, 3 1 有正负。 E3O3 O1O3 D3O3 D1O1 OO1 OO3 E2O2 O1O2 D2O2 D1O1 OO1 OO2 1 3 [ c ] [ t ] D3O3 D2O2 D1O1 2 2 2 1 3 [ c ] [ t ] OO3 OO2 OO1 2 2 2
最大拉应力1,与应力状态无关; 1.断裂原因: 2.强度准则: 1 u / nb 1 [ ] 断裂判据: 1 u 1 b 3.u由单向拉伸断裂条件确定: u b nb [ ] 4.应用情况:符合脆性材料的多向拉断试验,或 压应力不超过拉应力情况,如铸铁单向拉伸和 扭转;不能用于无拉应力的应力状态。
1.屈服原因: 形状改变比能uf,与应力状态无关;
2.强度准则:
1 uf ufu / ns ( 1 2 )2 ( 2 3 )2 ( 3 1 )2 [ ] 2
屈服判据:
1 uf ufu ( 1 2 )2 ( 2 3 )2 ( 3 1 )2 s 2
4.应用情况: 符合表面润滑石料的轴压破坏,某些 脆性材料压应力很大时的双向拉压状态。
§8-2
断裂准则
一、最大切应力理论(第三强度理论,Tresca准则) 不论材料处于何种应力状态,引起材料屈服的 原因是最大切应力max达到共同极限值s。
1.屈服原因: 最大切应力max,与应力状态无关; 2.强度准则: max s / ns 1 3 [ ]
[t]、[c]:许可拉、压应力; [ t ] 1 3 [ t ] 如[t]=[c],退化为最大切 [ c ] 应力准则。

第八章材料蠕变

第八章材料蠕变
扩散蠕变机理示意图
34
(3)晶界滑动蠕变机理 晶界在外力作用下,会发生相对滑动变形,但在常温下晶界变形极不明显,可以忽略不计。 在高温蠕变条件下,由于晶界强度降低,晶界的相对滑动引起的变形量很大,有时甚至占总蠕变 变形量的一半,从而产生明显的蠕变变形。
35
晶界滑动示意图
晶格畸变区
晶粒1
晶粒1
39
断裂方式:晶间断裂是蠕变断裂的普遍形式,高温低应力下情况更是如此。 等强温度: 晶界和晶内强度相等的温度。 因为温度升高,多晶体晶内 及晶界强度都随之降低,但后者 降低速率更快,造成高温下晶界 的相对强度较低的缘故。随应变速度下降,等强温度降低,从而使晶界断裂倾向增大。
晶粒2
晶粒2
36
晶界变形-----晶界滑动和迁移
● ●●
37
❖ 晶界的变形是由晶界的滑动和迁移交替进行的过程。 ❖ 晶界的滑动对变形产生直接的影响,晶界的迁移虽不提供变形量,但它能消除由于晶界滑动而在晶界
附近产生的晶格畸变区,为晶界的进一步滑动创造条件。 ❖ 因此,可以认为晶界滑动是硬化过程,而晶界迁移是软化过程。
第八章材料蠕变
温度对材料的力学性能影响很大,而且不同材料的力学性能随温度变化的规律不同。 金属材料:随着 温度 T 的升高---❖ 强度极限逐渐降低。 ❖ 断裂方式由穿晶断裂逐渐向沿晶断裂过渡。 ❖ 常温下可用来强化材料的手段,如加工硬化、固溶强化及沉淀强化等,强化效果逐渐削弱甚至消失。 陶瓷材料: ❖ 常温下脆性断裂;而在高温,借助于外力和热激活作用,变形的一些障碍得以克服,材料内部质点发
TL 20℃
20℃ 160℃ 341℃ 1091℃
5
8.1.1 蠕变现象
8.1 蠕变现象和蠕变曲线

第8章 材料的变形与断裂(四)

第8章 材料的变形与断裂(四)
图 8-46 硅钢片退火1h 后 晶粒尺寸的变化
8-46曲线1表示在发生二次再结晶周围,只
有一次再结晶的晶粒随温度升高均匀增大的情形, 曲线2表示不含MnS夹杂的高纯度的硅钢片的晶
粒长大与温度的关系
2013-7-13
由此表明没有明显的二次再结晶
17
材料科学基础
第8章 材料的变形与断裂
当加入少量杂质形成第二相(如硅铁中的MnS)能强烈钉扎住晶 界,阻碍晶界的移动,晶粒也就不会长大。
而当加热到高温,某些局部区域的MnS夹杂熔解,该处的晶粒便优先长 大,吞并了周围的晶粒,这就形成了晶粒的反常长大。 二次再结晶对材料的力学性能肯定有不良影响 但对硅钢片退火是有意要形成二次再结晶的,产生强的再结晶织构(110) [001](即高斯织构)和大晶粒,很适合制作变压器铁心等软磁材料。
二次再结晶的产生:主要是再结晶后晶粒长大过程中,只有少数晶粒 能优先长大,而大多数晶粒不易长大,这是因为: 冷变形造成了变形织构,再结晶退火至一定温度时(如对硅钢片至 少在900℃以上)又形成了再结晶织构,当织构形成后,各个晶粒的 取向趋于一致,晶粒间的位向差很小时,晶界是不易移动的,因为界 面能是随位向差的增大而增大,直至形成大角度晶界,界面能才趋于 一恒定值。 因此形成强烈织构后晶粒是不易长大的;
材料科学基础
第8章 材料的变形与断裂
第八章 材料的变形与断裂(四)
2013-7-13Leabharlann 1 材料科学基础
第8章 材料的变形与断裂
8.11 冷变形金属的再结晶
再 在加热温度更高时发生再结晶,而在此之前变形金属的力学性能和物 结 理性能都是逐渐变化的,但只要加热到某一确定值(或者说是一个很窄 晶 的温度范围),就可看到力学性能和物理性能急剧变化,加工硬化可以 现 完全消除,性能可恢复到未变形前的退火状态。 象 显微组织也发生明显变化,由拉长的变形晶粒变为新的等轴晶粒

材料力学中的变形与断裂研究

材料力学中的变形与断裂研究

材料力学中的变形与断裂研究材料力学是研究材料在外界作用下的变形与断裂行为的科学,应用广泛于各个领域。

变形与断裂的研究不仅关乎着材料的性能与稳定性,也对于材料的设计和制造具有重要意义。

一、材料的变形材料的变形是指材料由原来的形状、尺寸、结构和性质等相应地发生改变的过程。

材料的变形可以是弹性或塑性的,而弹性变形是指在外力作用下,材料发生形变但在去掉外力后能完全恢复原状;而塑性变形则是指材料在外力的作用下形成的变形会部分或完全保留下来。

在材料的变形过程中,重要的参数之一是应力。

应力是指单位面积上所受的力,可以是拉伸、压缩或剪切力。

应力和材料之间的关系可根据材料的应力-应变曲线来描述。

应力-应变曲线可以反映材料的强度和韧性等性质。

二、材料的断裂随着外界条件的变化和作用力的增加,材料可能会发生断裂。

断裂是材料破裂的过程,由于材料内部承受的载荷过大而导致材料失去结构完整性。

研究材料的断裂行为有助于预测材料的寿命和安全性。

材料的断裂可以分为静态断裂和疲劳断裂两类。

静态断裂是指在静态载荷下材料的破裂,例如材料受到巨大的拉伸或压缩力时发生断裂。

疲劳断裂则是指在频繁重复的载荷作用下材料破裂,例如金属材料在长时间的交变应力下逐渐疲劳而导致断裂。

三、材料力学研究的重要性材料力学的研究对于材料的设计和制造具有重要意义。

通过研究材料的变形和断裂行为,可以对材料的强度、耐久性和寿命等进行评估和预测,从而选择合适的材料和设计出高性能的产品。

同时,材料力学的研究也为新材料的开发和创新提供了理论基础。

通过对材料内部结构和物理特性的深入了解,可以引导材料的设计和制备,提升其性能和功能。

在实际应用中,材料力学的研究对于工程和科学领域具有重要价值。

例如,航空航天领域对于材料的强度和耐久性要求极高,研究变形与断裂行为可以提供有效的材料选择和设计方案,确保航空器的安全运行。

四、材料力学研究的发展趋势随着科技的不断进步,材料力学的研究也在不断发展。

高分子科学-第8章 聚合物的屈服与断裂讲解

高分子科学-第8章 聚合物的屈服与断裂讲解

聚合物的断裂
脆性断裂 :屈服点前断裂 韧性断裂 :屈服点后断裂
12
8.1.2 影响应力-应变曲线的因素
1. 温度
1
曲线1: T《Tg ,硬玻璃态,键长 键角的变化,形变小,高模量——
2
3
T
脆性断裂
4
曲线2.3: Tb<T<Tg,软玻璃态:
出现强迫高弹形变,外力除
16
玻璃态聚合物与结晶聚合物的拉伸比较
相似:
都经历弹性形变、屈服、发展大形变、应变硬化、断裂等阶段。
其中大形变在室温时都不能自发回复,加热后可回复,故本质 上两种拉伸造成的大形变都是强迫高弹形变——“冷拉”。
区别:
(1)产生冷拉的温度范围不同,
非晶态Tb~Tg
结晶态Tb~Tm
(2)玻璃态聚合物在冷拉过程中凝聚态只发生分子链的 取向不发生相变;晶态聚合物还包含结晶的破坏、取向 和再结晶等过程(相变)。
屈服
(链段开 始运动)
应变硬化
(分子链沿 外力取向形 变不可回复)
应变软化
(链段运动)
冷拉(强
迫高弹形变)
7
强迫高弹形变
玻璃态高聚物在屈服点后大外力作用下发生的大形变,本质与橡胶的高弹 形变一样都是链段运动引起的,并不是分子链的滑移,只不过表现形式有差别。 由于聚合物处在玻璃态,形变在停止拉伸后无法自动恢复,但是如果让温度升 到Tg附近形变又可恢复。
(1)温度:Tb~Tg
0
exp
E
RT
温度越低
链段运动的松 强迫高弹形变 弛时间τ越大
必须使用更 大外力
存在一个特征温度Tb,如果低于该温度,玻璃态高聚物不 能发生强迫高弹形变,而只会发生脆性断裂,该温度称为

西安交大研究生材料科学基础判断题

西安交大研究生材料科学基础判断题

1 晶体结构不同的晶体可能有相同的晶体点阵。

正确错误2 晶体中与每一个阵点相对应的基元都是相同的。

正确错误3 晶体中与一个阵点相对应的基元都是一个原子。

正确错误4 晶体中与一个阵点相对应的基元可能是一个原子,也可能是多个原子。

正确错误5 如果晶体中与一个阵点相对应的基元是多个原子,这些原子必定不是同一种原子。

正确错误6 在由一种原子组成的晶体中,与一个阵点相对应的基元必定是一个原子。

正确错误7 对不同的晶体,与一个阵点相对应的基元必定都是不相同的。

正确错误8 一个简单正交晶体的。

正确错误9 对一个简单正交晶体:。

正确错误10 根据立方晶系晶面间距的计算公式,计算得纯铜晶体的。

正确错误11 体心立方晶体{110}中的所有晶面属于同一个晶带。

正确错误12 晶体中任意两个相交晶面一定属于同一个晶带。

正确错误13 、、三个晶面属于同一个晶带。

正确错误14 体心立方晶体{100}晶面族中的晶面属于[100]晶带。

正确错误15 Zn是密排六方结构,属简单六方点阵。

正确错误16 晶体中面密度越高的晶面,其面间距必定也越大。

正确错误17 晶体中非平衡浓度空位及位错的存在都一定会使晶体的能量升高。

正确错误18 晶体中的位错环有可能是一个纯刃型位错,但绝不可能是一个纯螺型位错。

正确错误19 晶体中的不全位错一定与层错区相连,反之亦然。

正确错误20 如果晶体中的亚晶界是由刃位错墙构成的,则相邻亚晶粒间的位向差越大,位错墙中位错的间距就越大。

正确错误21 如果晶体中的亚晶界是由刃位错墙构成的,则相邻亚晶粒间的位向差越大,亚晶界的比界面能越大。

正确错误22 位错线的运动方向总是垂直于位错线。

23 位错线的运动方向总是平行于位错线。

正确错误24 位错线的运动方向总是垂直于其柏氏矢量。

正确错误25 位错线的运动方向总是平行于其柏氏矢量。

正确错误26 位错运动所引起的晶体滑移方向总是平行于其柏氏矢量。

正确错误27 位错运动所引起的晶体滑移方向总是垂直于其柏氏矢量。

华南师范大学材料科学与工程教程第八章 材料的变形与断裂(二)

华南师范大学材料科学与工程教程第八章 材料的变形与断裂(二)
C =S cos cos S =C /cos cos
20
C =S cos cos
施密特定律首先在六方晶系如Zn、Mg中得到证实。
右图中显示了纯度 99.999 %(质量 分数)的单晶锌在拉伸时的屈服点随晶 体位向变化的实验结果。 面心立方金属也符合施密特定律 但对体心立方金属,则不服从施密特定
位错宽度如何确定?阻力大小?
10
• 位错宽度的界定:位错中心A处,离两端平衡位置为b/2,一直往 两侧延伸到原子列偏离原平衡位置的位移为b/4时,位错两侧的宽度以W 表示,即为位错宽度。
•派-纳力(τP-N) 理想晶体中位错在点阵周期场中运动时所 需克服的阻力。
τP-N的大小主要取决于位错宽度W,W越小,τP-N就 越大,材料就难变形,相应的屈服强度也越大;
• cos cos 值大者,称为软取向,此时材料的屈服点
较ห้องสมุดไป่ตู้;
• 反之, cos cos 值小者,称为硬取向,材料屈服点
也较高
• 取向因子最大值在 + =90o的情况下, cos cos =1/2; • 当滑移面垂直于拉力轴或平行于拉力轴时,在滑移面 上的分切应力为零,因此不能滑移。
7
三、滑移与孪晶变形
1、滑移观察 1)光学显微镜观察
试样表面内有许多平行的或几组交叉的细线,是相
对滑移的晶体层与试样表面的交线
——滑移带
2)电子显微镜观察
滑移带是由是由更多的一组平行线构成
——滑移线
试样内的滑移带不是均匀分布的,滑移线构成的滑移台阶高约100nm, 如果滑移 b=0.25,则从滑移台阶的高度可粗略估计约有 400个位错移出了 8 晶体表面。
( 作 用 能 ) 平衡距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章材料的变形与断裂
材料的变形与断裂是材料科学中的重要研究内容,对于了解材料的性
能和使用寿命具有重要意义。

材料的变形是指在外力作用下,材料的形状、尺寸或结构发生改变的过程。

而断裂则是指在外力作用下,材料由于受到
极限载荷或破坏源的影响,导致形成裂纹最终导致材料的破裂。

材料的变形可以分为弹性变形和塑性变形两种情况。

在小应力作用下,材料会发生弹性变形,即在去除外力后能够恢复其原状。

而在大应力作用下,材料会发生塑性变形,即即使去除外力,材料也无法完全恢复其原状。

材料的弹性模量是一个衡量材料抗弹性变形能力的重要参数,不同材料具
有不同的弹性模量,常见材料如金属具有较大的弹性模量,而聚合物则具
有较小的弹性模量。

材料的塑性变形是材料工程中非常重要的一个特性,塑性变形不仅与
材料的力学性能有关,还与材料的微观结构和晶格缺陷等因素有关。

材料
在塑性变形过程中会产生塑性应变和塑性应力,塑性应变是材料发生塑性
变形时所引起的应变,而塑性应力则是材料发生塑性变形时所引起的应力。

常见的材料塑性变形包括屈服、流动、硬化等过程。

材料的断裂是指在外力作用下,材料发生了破裂。

材料的断裂主要分
为两种形式:韧性断裂和脆性断裂。

韧性断裂是指材料在外力作用下具有
一定韧性,在发生破裂前能够发生大量的塑性变形。

而脆性断裂则是指材
料在外力作用下没有发生明显的塑性变形,很快发生破裂。

韧性断裂常见
于许多金属材料,而脆性断裂则常见于一些玻璃、陶瓷等材料。

材料的断裂形式可以通过断口分析来确定。

不同的断口形式对应着不
同的材料断裂机制。

常见的断裂形式有拉断、韧窝断裂、脆窝断裂等。


断是指材料发生拉伸断裂,断口两侧平整光滑,常见于高强度的金属材料。

而韧窝断裂则是指材料发生韧性断裂,断口两侧有明显的韧窝。

脆窝断裂
则是指材料发生脆性断裂,断口两侧有明显的断裂窝。

通过对断口形态的
观察可以判断材料的断裂机制和断裂韧性。

材料的变形和断裂不仅仅涉及到力学性能的研究,还和材料的制备工艺、微观结构、晶体缺陷、应力和温度等因素有关。

因此,研究材料的变
形和断裂不仅仅是理论分析,还需要有大量的实验研究。

通过对材料的变
形和断裂进行深入研究,可以提高材料的使用寿命和安全性,指导材料的
设计和选择,为材料工程提供科学依据。

相关文档
最新文档